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Conditional propagation of chaos for mean field
systems of interacting neurons

Xavier Erny*, Eva Lécherbach! and Dasha Loukianova*

* Laboratoire de Mathématiques et Modélisation d’Eury, Université d’Evry Val d’Essonne, UMR CNRS 8071 and
T Statistique, Analyse et Modélisation Multidisciplinaire, Université Paris 1 Panthéon-Sorbonne, EA 4548

Abstract: We study the stochastic system of interacting neurons introduced in De Masi et al.
(2015) and in Fournier and Lcherbach (2016) in a diffusive scaling. The system consists of N
neurons, each spiking randomly with rate depending on its membrane potential. At its spiking
time, the potential of the spiking neuron is reset to 0 and all other neurons receive an additional
amount of potential which is a centred random variable of order 1/+/N. In between successive
spikes, each neuron’s potential follows a deterministic flow. We prove the convergence of the
system, as N — o0, to a limit nonlinear jumping stochastic differential equation driven by
Poisson random measure and an additional Brownian motion W which is created by the
central limit theorem. This Brownian motion is underlying each particle’s motion and induces
a common noise factor for all neurons in the limit system. Conditionally on W, the different
neurons are independent in the limit system. We call this property conditional propagation
of chaos. We show the convergence in distribution, prove strong convergence with respect
to an appropriate distance, and we get an explicit rate of convergence. The main technical
ingredient of our proof is the famous coupling introduced in Komlés, Major and Tusnady
(1976) of the point process representing the small jumps of the particle system with the limit
Brownian motion.

MSC 2010 subject classifications: 60J75, 60K35, 60G55, 60G09.

Keywords and phrases: Multivariate nonlinear Hawkes processes with variable length mem-
ory, Mean field interaction, Piecewise deterministic Markov processes, Interacting particle sys-
tems, Propagation of chaos, Exchangeability, Hewitt Savage theorem, KMT approximation.

Introduction
This paper is devoted to the study of the Markov process XN = (XtN’l7 . ,XtN’N) taking values
in RY and solving, for i = 1,..., N, for t > 0,
) . t ) t ) ) 1 t .
xNi= xlV +f b(XN)ds —J XNiazNi 4 — Zf U;(s)dZN, (1)
0 0 VN 57190

where U;(s) are i.i.d. centred random variables and where for each 1 < j < N, Z™J is a simple
point process on R, having stochastic intensity s — f (X s{\f] )

The particle system (1) is a version of the model of interacting neurons considered in De Masi
et al. (2015), inspired by Galves and Locherbach (2013), and then further studied in Fournier and
Locherbach (2016) and Cormier, Tanré and Veltz (2018). The system consists of N interacting
neurons. In (1), Z*/ represents the number of spikes emitted by the neuron j in the interval [0, ]
and XtN J the membrane potential of the neuron j at time t¢. Spiking occurs randomly following a
point process of rate f(z) for any neuron of which the membrane potential equals z. Each time a
neuron emits a spike, the potentials of all other neurons receive an additional amount of potential.
In De Masi et al. (2015), Fournier and Locherbach (2016) and Cormier, Tanré and Veltz (2018) this
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amount is of order N1, leading to classical mean field limits as N — 0o. On the contrary to this, in
the present article we study a diffusive scaling where each neuron j receives the amount U;(t)//N
at spike times ¢ of neuron i,i # j. The variable U;(t) is centred modeling the fact that the synaptic
weights are balanced. Moreover, right after its spike, the potential of the spiking neuron i is reset
to 0, interpreted as resting potential. Finally, in between successive spikes, each neuron’s potential
follows a deterministic flow with drift b.

Equations similar to (1) appear also in the frame of multivariate Hawkes processes with mean
field interactions. Indeed, if (Z™) _,_ is a multivariate Hawkes process where the stochastic

intensity of each ZN+ is given by f (X{Y), with
XN = ot xd + Z f =0 ()dZ, 2)

then XN satisfies v
t
XN =x¥ —ozf XNds + — f 8)dzN3|
SRS

which corresponds to equation (1) with b(z) = —ax, but without the big jumps, i.e. without the
reset to 0 after each spike.

The above model of Hawkes processes has been studied in our previous paper Erny, Locherbach
and Loukianova (2019). There we have shown firstly that X~ converges in distribution in D(R,,R)

to a limit process X solving
dXt = —OtXtdt + g4/ f (Xt)th, (3)

and secondly that the sequence of multivariate counting processes (Z™V¥). converges in distribution
in D(R,,R)N* to a limit sequence of counting processes (Z%), . Here, every Z' is driven by its
own Poisson random measure and has the same intensity (f(X;-)),, X the strong solution of (3)
with respect to some Brownian motion W. Consequently, the processes Z* (i > 1) are conditionally
independent given the Brownian motion W.

In the present paper we add the reset term in (1) that forces the potential X ** of neuron i to go
back to 0 at each jump time of Z™:¢. This models the well-known biological fact that right after its
spike, the membrane potential of the spiking neuron is reset to a resting potential which we choose
to be equal to 0. From a mathematical point of view, this reset to 0 induces a de-synchronization
of the processes X' (1 <4 < N). In terms of Hawkes processes, it means that in (2), the process
X has been replaced by

Nt
i 1 . . )
XM= — E J, _ eI (5)dZN7 | where Lt = sup{s < t: AZN" =1}

is the last spiking time of neuron i before time ¢.! Thus the integral over the past, starting from 0
in (2), is replaced by an integral starting at the last jump time before the present time. In Galves
and Locherbach (2013), such processes are termed being of variable length memory, in reminiscence
of Rissanen (1983), and we are thus considering multivariate Hawkes processes with mean field
interactions and variable length memory. As a consequence, on the contrary to the situation in

'Tn the present paper, the drift b(x) = —ax of (3) has been replaced by a general drift coefficient.
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Erny, Locherbach and Loukianova (2019), the point processes Z¥'* (1 < i < N) do not share the
same stochastic intensity. It turns out that the reset term in (1) is a jump term that survives in the
limit N — oo.

Before introducing the exact limit equation for the system (1), let us explain informally how the

limit particle system associated to (XN’i)1<i<N should a priori look like. So suppose that there

exists a process (X1, X2, Xf, .)€ D(Ry, R)N* such that for all K > 0, we have weak convergence
LXNL XNEY (XY, XE) in D(R.,R)X, as N — oo. In equation (1) the only term
that depends on N is the martingale term which is approximately given by

1 S :
MY = —ZJ U;(s)dzZN.
VN = o

Each X% should then solve the equation (1), where the term M} is replaced by M; :=
1/2

lim M},
N—owx
Because of the scaling in N~/¢  the limit martingale M; should be a stochastic integral with respect

to some Brownian motion, and its variance should be the limit of
N2 > (1 1 ¢ N,j
E|(M = E|— X )| d
O] = o | ¥ 2103 ds
where o is the variance of Uj(s). Therefore, the limit martingale should be of the form

t 1N v .
= ] — 9, — . N
M, JJO J\}I_IPIN ;1 f <Xs ) dWy JL J\}I—I&MS (f)dW,

where 12 is the empirical measure of the system (X2V7)

1SN

Since the law of the N—particle system (X™!,..., XVV) is symmetric, the law of the limit
system X = (X', X2, X3 ...) must be exchangeable, that is, for all finite permutations o, we have
that £(X°(M, X7 ) = £(X). In particular, the theorem of Hewitt-Savage, see Hewitt and
Savage (1955), implies that the random limit

L = lim iE(SXi (4)

exists. Supposing that u converges, it necessarily converges towards yi,. Therefore, X should solve
the limit system

t t t
Xi— X +f b(X1)ds —J Xi_dZi + af Vi (F)dW.,i e N, (5)
0 0 0

where (W,);>¢ is a standard one-dimensional Brownian motion, where each Z¢ has intensity t
f(X} ), and where p, is given by (4).

Analogously to Erny, Licherbach and Loukianova (2019), the scaling in N~%/2 in (1) creates a
Brownian motion W in the limit system (5). We will show that the presence of this Brownian mo-
tion entails a conditional propagation of chaos, that is the conditional independence of the particles
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given W. In particular, the limit measure p; will be random. This differs from the classical frame-
work, where the scaling is in N~! (see e.g. Delattre, Fournier and Hoffmann (2016), Ditlevsen and
Locherbach (2017) in the framework of Hawkes processes, and De Masi et al. (2015), Fournier and
Lécherbach (2016) and Cormier, Tanré and Veltz (2018) in the framework of systems of interacting
neurons), leading to a deterministic limit measure ps and the true propagation of chaos property
implying that the particles of the limit system are independent.

This is not the first time that conditional propagation of chaos is studied in the literature; it has
already been considered e.g. in Carmona, Delarue and Lacker (2016), Coghi and Flandoli (2016)
and Dermoune (2003). But in these papers the common noise, represented by a common (maybe
infinite dimensional) Brownian motion, is already present at the level of the finite particle system,
the mean field interactions act on the drift of each particle, and the scaling is the classical one in
N~!. On the contrary to this, in our model, this common Brownian motion, leading to conditional
propagation of chaos, is only present in the limit, and it is created by the central limit theorem as
a consequence of the joint action of the small jumps of the finite size particle system. Moreover, in
our model, the interactions survive as a variance term in the limit system as a consequence of the
diffusive scaling in N—/2,

Now let us discuss the form of pg, which is the limit of the empirical measures of the limit
system (X{),_,. The theorem of Hewitt-Savage, Hewitt and Savage (1955), implies that the law of
(X z) isa mlxture directed by the law of us. As it has been remarked by Carmona, Delarue and
Lacker (2016) and Coghi and Flandoli (2016), this conditioning reflects the dependencies between
the particles.

Since the variables X* are conditionally independent given the Brownian motion W, s will be
shown to be the conditional law of the solution given the Brownian motion, that is, P—almost

surely, B B
ps(-) = P(X{ € [(Wi)osi<s) = P(X{ € |[W), (6)

for any i € N. Equation (5) together with (6) gives a precise definition of the limit system.

The nonlinear SDE (5) is not clearly well-posed, and our first main result, Theorem 1.1, gives
appropriate conditions on the coefficients b and f of the system that guarantee pathwise uniqueness
and the existence of a strong solution to (5). We then establish the convergence of the system
(XN’i)lgéN to (Xi)izl‘ We prove strong convergence with respect to an appropriate distance in
an L'—sense together with a rate of convergence in Theorem 1.6, and convergence in distribution
in Theorem 1.3.

To prove the strong convergence, we couple the point processes of (1) with the Brownian motion
appearing in the limit equation (5) using ideas that go back to Kurtz (1978). This coupling is based
on a corollary of the KMT inequality (see Theorem 1 of Komlos, Major and Tusnady (1976)). To
the best of our knowledge, this strategy of proof is completely new and has neither been used in
Erny, Locherbach and Loukianova (2019) nor in the frame of classical mean field limits where the
scaling is in N~

Flnally, Proposmon 1.8 states the convergence in law of the sequence of empirical measures

= N~ Zz 1 XNL Jisg? 1L P(D(R,R)), to the random limit u = P((X;)i=0 € -|W). This
random limit measure p satisfies the following nonlinear stochastic PDE in weak form: for any test
function ¢ € CZ(R), the set of C2-functions on R such that ¢, ¢’ and ¢” are bounded, for any ¢ > 0,

fRsaumdx)=szo<x)ﬂo(dx>+f (jso 2)te dx) Ve (Fdw,
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# [ (160 — @150 + @) + 3 e () o).

Organisation of the paper. In Section 1, we introduce formally the systems that we will study,
we fix some notations, and we state the main results, Theorems 1.1, 1.3 and 1.6 and Proposition 1.8.
Section 2 is devoted to the proofs of the main results. Finally, in Appendix Section 3, we prove
some important technical results that we use in the paper, in particular we complete the proof of
the well-posedness of the limit system together with some useful a priori estimates.

1. Notation, Model and main results
1.1. Notation

Let us introduce some notation we use throughout the paper.
If E is a metric space, we note:

e P(E) the space of probability measures on E endowed with the topology of the weak conver-
gence,

o CJ'(E) the set of the functions g which are n times continuously differentiable such that gk
is bounded for each 0 < k < n,

e CI'(E) the set of functions g € C}*(E) that have a compact support.

In addition, in what follows D(R,,R) denotes the space of cadlag functions from R, to R,
endowed with the topology of the uniform convergence on every compact set, and C' and K denote
arbitrary positive constants whose values can change from line to line in an equation. We write Cy
and K if the constants depend on some parameter 6.

In the sequel, v will denote a probability measure on (R,B(R)) with { uv(du) = 0 and with
S 2 d _ 2

g U V(du) = o”.

1.2. The finite system

We consider, for each N > 1, a family of i.i.d. Poisson measures (7(ds,dz,du));—1 _n on Ry x
R, x R having intensity measure dsdzv(du), as well as an i.i.d. family (Xév’i)izlw’N of R-valued
random variables independent of the Poisson measures. The object of this paper is to study the
convergence of the Markov process X} = (XtN’l, e ,XtN’N) taking values in RY and solving, for
i=1,...,N,fort >0,

XN X0 +J b(XN1)ds —J XM poxeminy (ds, dz, du)

0 [0,t] xR+ xR

1 2 ' .
N i /[0 t]xR+xRU]l{z<f(X§V_’j)}7r](dS’dzvd“)7 (7)
JF )

Xévﬂ. ~ 1.
The coefficients of this system are the drift function b : R — R, the jump rate function f : R +— Ry

and the probability measures v and 1. The generator of the process X* is given for any smooth
test function ¢ : RV — R by

N N
Lpla) = 3} drplalbla) + 3, £(w) | wa) (w(w — et Y re) - w(z)> ,

i=1 j#i
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where @ = (z1,...,2x) and where e; denotes the j—th unit vector in RY.
In order to guarantee existence and uniqueness of a strong solution of (7), we introduce the
following hypothesis.

Assumption 1. The functions f and b are Lipschitz continuous.

In addition, we also need the following condition to obtain a priori bounds on some moments of

the process (X™F) _. ..

Assumption 2. We assume that §, xdv(x) = 0, §p #*dv(z) < +o0, and {3 22dv(z) < +o0.

Under Assumptions 1 and 2, existence and uniqueness of strong solutions of (7) follow from
Theorem IV.9.1 of Tkeda and Watanabe (1989), exactly in the same way as in Proposition 6.6 of
Erny, Locherbach and Loukianova (2019).

1.3. The limit system

The limit system (X' i)i>1 satisfies the following dynamic

X = Xi+ f b(X ds—J, Xﬁ_]l{zgf(gi )}ﬂi(ds,dz,du)
[0,t] xR+ xR o

+0J E[f (X)) Ws]aws, (®)

In the above equation, (W})¢»0 is a standard one-dimensional Brownian motion which is independent
of the Poisson random measures, and Ws = o{W,t < s}. Moreover, the initial positions X},i > 1,
are i.i.d., independent of W and of the Poisson random measures, distributed according to vy Wthh
is the same probability measure as in (7). The common jumps of the particles in the finite system,
due to their scaling in 1/+/N and the fact that they are centred, by the Central Limit Theorem,
create this single Brownian motion W; which is underlying each particle’s motion and which induces
the common noise factor for all particles in the limit.

The limit equation (8) is not clearly well-posed and requires more conditions on the rate func-
tion f. Let us briefly comment on the type of difficulties that one encounters when proving trajec-
torial uniqueness of (8). Roughly speaking, the jump terms demand to work in an L!'—framework,
whereas the diffusive terms demand to work in an L?—framework. Graham (1992) proposes a unified
approach to deal both with jump and with diffusion terms in a non-linear framework, and we shall
rely on his ideas in the sequel. The presence of the random volatility term which involves conditional
expectation causes however additional technical difficulties. Finally, another difficulty comes from
the fact that the jumps induce non-Lipschitz terms of the form X! f(X?). For this reason a classical
Wasserstein-1—coupling is not appropriate for the jump terms. Therefore we propose a different
distance which is inspired by the one already used in Fournier and Locherbach (2016). To do so, we
need to work under the following additional assumption.

Y i
XO ~

Assumption 3. 1. We suppose that inf f > 0.
2. There exists a function a € C*(R,R,), strictly increasing and bounded, such that, for a suitable
constant C, for all x,y € R,

|a"(2) = a"(y)| + la’(x) — d'(y)| + [b(z) = b()| + | f(2) — F(W)] < Cla(z) = a(y)|-
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Note that Assumption 3 implies Assumption 1 as well as the boundedness of the rate function f.
An example where Assumption 3 is satisfied is f(x) = ¢ +darctan(z), where ¢ > d7, d > 0, with a
similar choice for b. In this case, we choose a = C'f.

Under these additional assumptions we obtain the well-posedness of each coordinate of the limit
system (8), that is, of the (F;);— adapted process (X;); which is solution of the SDE

d)_(t = b (Xt) dt — Xt, J 1{z§j'(xt_)}ﬁ(dt7 dZ, du) + o4/ /,Lt(f)th,
R4y xR

Xo ~ w,

(9)

where i, (f) = E[ f (X¢)| W] and where F; = o{n([0,s] x A),s <t, A€ BR, xR)} v W,.
Theorem 1.1. Grant Assumption 3.
1. Pathwise uniqueness holds for the nonlinear SDE (9).

2. If additionally, §, 22dvg(x) < +o0, then there exists a strong solution (X;)i=o of the nonlinear
SDE (9) that satisfies, for every t > 0,

sup E [Xf] < +o00.

0<s<t

In what follows we just give the proof of Item 1. of the above theorem since its arguments are
important for the sequel. We postpone the rather classical proof of Item 2. to Appendix.

Proof of Item 1. of Theorem 1.1. Consider two solutions ()A(t)t>0 and (X;)s>0, defined on the same

probability space and driven by the same Poisson random measure 7 and the same Brownian

motion W, and with Xo = Xo. We consider Z; := a(Xt) — a(Xy), for all t < T. Recall Jiy(f) =
E[f(X,)|W,] and denote i, (f) = E[f(X,)|Ws]-

Using Ito’s formula, we can write

zi- | (R0 (R) — B! (X)) ds + 5 | @ @0n() - R (p)ods

0 0

- J[o e ) TN gy A2 du)

=

+f [a(0) = a(Xs )L 55 yooe . n7(ds, dz, du)
[0,t] xRy xR {F(Xo)<z<f(X.2)}

~

+ J [a(Xs-) — a(O)]]l{f(k\s_)<Z<f(fs_)}7r(ds, dz,du) =: Ay + My + Ay,
[0,t]xR4 xR

where A; denotes the bounded variation part of the evolution, M; the martingale part and A; the
sum of the three jump terms. Notice that

M, = f (al(ﬁs) ﬁs(f) - a/(‘)\és) ﬁs(f))O’dVVs

0

is a square integrable martingale since f and a’ are bounded.
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We wish to obtain a control on | Z*| := sup,<; | Zs|. We first take care of the jumps of | Z;|. Notice
first that, since f and a are bounded,

A(z,y) := (f(z) A fy)a(z) —a(y)] + |f (@) = fW)] ||a(0) = a(y)| + [a(0) — a(z)]
< Cla(z) — a(y)],
implying that

Esup|A.| < CEJM X.)|ds < CtE|Z7|.

Moreover, for a constant C' depending on o2, |||, [|a]x, [|a’|«, [a” |- and ||b],
Esup |4,| < C’J E|b(X,) — b(X,)|ds + CJ Ela'(R,) — a'(X,)|ds

= e Uo ja"(R.) — a"(X.)\ds + L B(7) = ol )'ds] '

We know that |b(X,) — b(X,)| + |/ (Xs) — a/(X,)| + |a”"(Xs) — a”"(X,)| < Cla(X,) —a(X,)| = C|Z].
Therefore,

t t
BsuplA.| < CE| [ (Z1as + [ |70 - mu(hlas|.

s<t

Moreover,

7 () = (D1 = [E (£(R) = FE)W) | <E (1£(R) = FE)IWS) < E(ZIW),
and thus,
t
f () = Ru()lds < B [ 1Z01ds < 1127].
0
Putting all these upper bounds together we conclude that for a constant C' not depending on ¢,

Esup |A| < CtE|Z}|.
s<t

Finally, we treat the martingale part using the Burkholder-Davis-Gundy inequality, and we obtain

(@RI = d RV < C[(@(R) = (X)) + (Vi) = Vi ()]
< C1ZF P+ C(is(F) = V()P

where we have used once more that |a'(z) — a'(y)| < Cla(x) —a(y)| and that f and a’ are bounded.
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Finally, since inf f > 0,

IW7s(f) = VEs(F)I? < Cliis(f) = i (f)]> < C (B(ZEWs)).

We use that (Z;): is (F:):—adapted to obtain that E(|Z*||W;) = E(|Z*||W;) for all t = s. Moreover,
|Z¥| < |ZF|, implying that E(|Z*||Ws) = E(|Z¥||W:) < E(]Z]||Wt). Therefore we obtain the upper

bound
Wi(f) = Vs (D> < C (B( 2 |[W))°

for all s < t, which implies the control of

Esup [M,| < CVIE|Z}|.
s<t

The above upper bounds imply that, for a constant C not depending on ¢ nor on the initial condition,
E|Z}| < C(t + VHE|Zf|,

and therefore, for ¢, sufficiently small, E|Z | = 0. We can repeat this argument on intervals [t1, 2¢;],

with initial condition th, and iterate it up to any finite T because t; does only depend on the
coefficients of the system but not on the initial condition. This implies the assertion. O

Corollary 1.2. Grant Assumption 3 and suppose that S]R 22dvy(z) < +0o0. Then the measure i =
P((Xt)i=0 € -|W) satisfies the following nonlinear stochastic PDE in weak form: for any ¢ € C(R),
for anyt >0,

[ camtan) = [ ctamtan + t ([ ¢mian) Viinaw.
[ [ (1000) = @7 @) + 0 @bla) + a5 o).
L J]R ( 2 )

The proof of the above corollary is given in Appendix.

1.4. Convergence in distribution

The main results of this paper concern the convergence of the system (XN’i) L<icn tO (Xi)pl. The
first one proves that convergence in distribution holds. In order to state it, we need some additional
integrability assumption on the measure v.

Assumption 4. We assume that {, e**v(dx) < oo for all |a] < ag for some ag > 0.

Theorem 1.3. Grant Assumptions 2, 3 and 4. Then the sequence of processes (XN’i) converges

EN*

0 (Xi)ieN* in distribution in the space D(R+,R)N* endowed with the product topology, where
D(R.,R) is endowed with the topology of uniform convergence on every compact set.

Theorem 1.3 is proved in Section 2.3. The second main result is a strong convergence result
stated with respect to an appropriate L'—norm, relying on an explicit coupling. To construct this
coupling, we first introduce an auxiliary particle system.

Remark 1.4. In Theorem 1.3, we implictly define XN* = 0 for every i > N + 1.
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1.5. An auxiliary particle system and a strong approximation result

In what follows we exploit the old idea of time change that goes back at least to Kurtz (1978) and

rewrite the evolution of the finite particle system in a different way. For that sake, we consider a

standard Poisson process N; of rate 1 and a family of i.i.d. variables (U,),>1 distributed according to

v, independent of everything else, as well as a family of i.i.d. variables (V},),>1 uniformly distributed
n [0,1], independent of the previous variables. We also define

N,
Z; = Z (Unyvn) = (Ztlazf) (11)

n=1

which is a compound Poisson process. Notice that its first coordinate process Z; is centred since

E[U,] =0.
Then, according to Theorem 7.4.1 of Daley and Vere-Jones (2003), instead of writing the dynamics
of XNt i =1,...,N, as solution of a SDE driven by N independent Poisson random measures as

in (7) above, we rather describe their dynamic by solving a SDE driven by a time change of the
compound Poisson process Z. This leads to the following representation

v e [ [ xmazse Lz L

NN

In the above equation, the random time change A,{V X is given by

Nt
AYY =3 [ peeyas
j=10

The counting processes ZtN "1 < i < N, are defined by the classical thinning of N ,~.x which
t

L
VN

represents the total number of jumps (spikes) during [0,¢]. To define ZV!, each jump time ¢ of
N ,~.x is accepted as jump of neuron i, that is, of ZN+t | with probability
t

[
SN

To realise these probabilities we use the uniform random variables V,, which are given by the second
coordinate process ZZ. More precisely, introducing for any 1 <i < N and x € R,

Yo f(ay)

Fi(x) :=

,Fo(aj) = 0,

the process ZtN’i is given by

t
ZN’i = J 1 dN ,~.x
N A T RTE AN TE S S

s

and the remainder terms by

t
R = f Zn xdZN
) Al



X. Erny et al./Conditional propagation of chaos 11

It is straightforward to show that (12) defines the same dynamic as (7).

The important point is that we can couple the centred coordinate Z' of the compound Poisson
process Z with a Brownian motion. Indeed Corollary 7.5.5 of Ethier and Kurtz (2005), based on
Komlés, Major and Tusnady (1976), gives the following

Lemma 1.5. Grant Assumption 4. Then Z, can be constructed on the same probability space as a
standard one-dimensional Brownian motion By, such that

|Zt — 0B

<K<
t=0 logtv2

almost surely, where K is a random variable having exponential moments, and o =V [U1].

Applying the above result, we know that Zi‘ N.X behaves, for large N, as o B ANX The process

B ~.x can be written as
t

t N )
By =JO j;f (Xi”)dW;V, (13)

where W7 is another one-dimensional standard Brownian motion.
Therefore, we will be able to show that, for N large enough, (X™:!,... XV:V) behaves as the
auxiliary process (X1 ... XNV where

t

KNG xNi j FRNHawN,

t e t
b(XN)ds — J XNtazNi 4 af
0

0 0

(14)
)Z—é\f,i ~ Lo,

and where dZN'# has compensator f(XN)ds.

The well-posedness of (14) holds true under Assumptions 1 and 2 if we suppose moreover that
inf f > 0. This can be proved with the same reasoning as for (7), using Theorem IV.9.1 of Tkeda
and Watanabe (1989).

Obviously, (14) is a mean field particle version of the limit system (8), constructed with a
particular choice of underlying Brownian motion. In the following, we denote by XV the strong
solution of the system (8) defined with respect to the Brownian W¥. Moreover we will denote by
X any solution of the system (8) defined for some Brownian W that does not depend on N. We
can now state the second main result of this paper.

Theorem 1.6. If Assumptions 2, 8 and J hold, then, for each N € N* there exists a one-
dimensional standard Brownian motion WY such that, for everyt > 0,4 < N,

N, o N (In N)'/2 1
E| sup Jo (X)) —a(X, )|]<Ct (wa (]\]1/4 TR (15)

where a is the function given in Assumption 3, w, its modulus of continuity, and (XN’i)1<i<N 18
the solution of (8) with respect to the Brownian motion W and the initial condition Xév’i = Xév’i.

Remark 1.7. Let us emphasise the fact that the expression in (15) vanishes as N goes to infinity.
Indeed, under Assumption 3, the function a is Lipschitz continuous, so its modulus of continuity
vanishes.
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Theorem 1.6 is proved in Section 2.2. A consequence of the above result is the following

Proposition 1.8. Grant the assumptions of Theorem 1.6. If a’(x) # 0 for all x € R, then for each
t > 0, the sequence of empirical measures p¥ = N~1 Zfil (S(XN,i)t>0 converges in distribution in
P(D(Ry,R)) to 11 = P((X1)is0 € [W).

The proof of Proposition 1.8 is postponed to Appendix.

2. Proofs of the main results
2.1. Useful properties of the limit system

In the proof of Theorem 1.6, we use an important property of the limit system (8), which is the
conditional independence of the processes X* (i > 1) given the Brownian motion W.

Proposition 2.1. If Assumption 3 holds and SR 22dvg(r) < +o0, then

(i) for all N € N* there exists a strong solution ()_(i)KKN of (8), and pathwise uniqueness
holds,
(ii) X', ..., XN are independent conditionally to W,
(iii) for allt >0, almost surely, the weak limit of < vazl (5)_(‘7;[()&] is given by limy .. Zfil 0%
P(X[jpq € W) = P(X{j g €-IW).

If0.]
The proof of Proposition 2.1 is postponed to Appendix, in Section 3.1.

2.2. Strong convergence

We prove the convergence of the finite system (7) to the limit system (8), by controlling the distance
between these systems and the auxiliary system (14). This is done by introducing a suitable coupling
between (7) and (14). .

Proposition 2.2. Suppose that Xév’i = )N(év’i, for all 1 < i < N. Grant Assumptions 2, 8 and 4.
Then there exists a coupling of XN and XN such that for all t > 0, for alli=1,..., N,

(In N)'/2

SN N,i
]E[sup ‘XS ~ X! 7

0<s<t

:|<Ct

Proof. By exchangeability, it suffices to prove the result for ¢ = 1. We couple the two processes by
using the KMT approximation of Lemma 1.5 and then using a total variation coupling of the two
jump processes ZV:!1 and ZN:1.

Step 1. Construction of the coupling. We construct the initial process XV = (X1 .. XNN)
driven by the underlying compound Poisson process Z; as in (12). Then we couple Z with the
Brownian motion B according to Lemma 1.5 and thus, by time change, with the Brownian motion
W of (13). Therefore, in what follows, we shall work with the filtration

ftN = FZy « VO’{WSN,S <t} (16)
t

where FZ is the natural filtration of the compound Poisson process Z.
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To construct the total variation coupling of ZV>! and ZN’I, we complete the jumps of Zf\m,
using the construction of Lemma 4 of Brémaud and Massoulié (1996), to a Poisson random measure
nl(dt,dz) on R, x R, having intensity dtdz. This PRM 7! depends on ng’l, by copying all of its
points T,, adding to them a random mark z which is placed uniformly on the strip z € [0, f(Xgll_)[,
independently of anything else. Finally, we add independent PRM marks on the missing domain
{(t,2)eRL : 2 > F(X1}. Notice that the PRM 7! depends on Z™!, and thus on the compound
Poisson process Z of (11). We use the same construction for all other coordinates ¢ > 1, using the
same underlying Z and independent PRM’s on the missing domains.

We are now able to define the dynamics of X™1, coupled to X™!, by

X0t = Xé“%f b(f(;“)ds—f
0 [0,t] xRy

t
Xﬁlﬂ{zgf(iﬁl)}dﬂl(s, Z)

(17)

Using this construction of 7! guarantees that X! and X™! have a maximal number of common
jumps.

Step 2.

Let (My)n be an increasing sequence of positive numbers that goes to infinity. Then

t
XN —XtN’l‘ <J ‘b (Xj\”) —b(X;Vvl)‘ds
0
)’\(‘N,l]l =N _XN,l]l ‘ 1
+f]o,m+‘ o ear @y T X g (o 47 (,2)

N
3} FRENIVY — By

j=1

i

Let
u =E [ sup

0<<s<t

SN Nl .
XNt x] ”

note that, for all £ > 0,u)¥ < +oo thanks to the points (i) and (iv) of Lemma 3.1.
Then, using that the expectation of the jump term

$N,1 v — X . 1
J]] R gy myy = X gy 52
above is bounded by
1 t
B[] [ 120 = x2as |+ [ E[LARED — DO + 19D ] as, as)
0 0

and inserting

L= Tgmm ey T LIRN x s )
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in the second term of (18), we obtain (with Markov inequality and points (¢) and (¢4¢) of Lemma 3.1)

< Ctul +C(1 + My)tul¥ +%

9 1/2
¢ 1 & N 1 N In N
+oE f — N XNy - = S Ny ds +K——,
0 N;l NjZ::l VN

for some constants C, K > 0. Here, we have used Lemma 1.5. Hence, using that inf f > 0, for all
e [0,T],

5 N\ 1/2
C In N N ,
ulf < C(t+ Myt + 5 + K“W + CoE L <N 3 ‘X;v,a _ XSN,JD s
N j=1
Now, introducing v"? = sup |XN9 — XN:J| and using that E [vt ] = ul for all j, we have
0<s<t
CT In N N
N N :
Uy <C’(t+MNt)ut +M7]2V+K\/N g [ ]
CT In N
<O(t+ Myt +Vt)ull + —5 + K—=.

BTN

Choose now ty = m, such that (assuming C' > 1 and My > 1)
1 1 1
Cty + Myty +Vtn) <C 16C R—FE <1/2.
Then for all t <ty < T,
C In N
N T
uy € 2—5 +2K——.
t MJ%] /N

The above argument can be iterated such that for each n € N* for all t < nty < T,

which implies in turn that for all T > 0, for all ¢ € [0,T],

2T /tn] <E§ +Kl\%\\;> Kr (MlN + (IH%MN> :

Finally, choosing My = N'/*/(In N)/? proves the proposition. O

Now we control the distance between the auxiliary system and the limit system. For that sake
we construct the auxiliary system and the limit system using the same Poisson random measures
7'(ds,dz) as those used in (17). Our argument relies on the conditional independence of the coor-
dinates of the limit system.
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Proposition 2.3. Grant Assumptions 2 and 3, and suppose that )wfé\” = )_(év’i for all i. Then for
all s < t, N B
Esup [a(XN1) — a(XNY| < CNT2,

s<t

Proof. The proof is done by decomposing the evolution of a(XtN ’1) in the following way.

t
a(XNY) = a(X +L o' (XN1)p(X V) ds +J[ (a(o) - a()‘(;fl)) Loy (ds, dz)

0,t] xRy

2 pt N
_ 1
" N,1 N, _ nN
+ = Oa(X )N;f(x 9)ds — B +gf
where
o2 [t -
BY = ?J a"(XN1
0
and
t —
MY = af a' (XM
0
Since

<MV >,<o? (sup|a'(m)2|>

z€eR

recalling that the variables XV (1 < j < N) are i.i.d. conditionally to W (see Proposition 2.1),
taking conditional expectation E(-|W") implies that

E[< MY >] <CN'and E[BY] <C,N 7!,
and this implies the result, with the same reasoning as in the proof of Theorem 1.1. O

We conclude with the

Proof of Theorem 1.6. The result is now a straightforward consequence of Propositions 2.2 and 2.3.
O

2.3. Weak convergence

Now we prove the convergence in distribution of the finite system (7) to the limit system (8) in the
topology of the uniform convergence on every compact set.

Lemma 2.4. Let (a;),.y be a sequence of continuous functions from Ry to R. Then the function
® defined as
®: (z;); € D(R+,R)N > (a; 0 2;), € D(Ry,R)N

is continuous, where D(R,,R)YN is endowed with the product topology with respect to the uniform
convergence on every compact set.
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Proof. Let ((x?)ieN)n be a sequence that converges to some (2;),. This means that, for every ¢, 2}
converges to z; in D(R,R) uniformly on every interval [0,T] (T > 0).

Consequently, for every i, a; oz} converges to a;ox; uniformly on every compact set. This implies
the convergence of @ ((z7'),) to ® ((z;);). O

Proof of Theorem 1.3. Let X~ and X" be defined as in Theorem 1.6. We define a metric dyy on
D(R,,R) that defines the topology of the uniform convergence on every compact set by

+o0
1
o) = 3 g0 (18 s 1a6) - 3.
n—1 0<s<n
Then we define the following metric d on D(R+,R)N*, that defines the product topology with
respect to dy

gl

()i () 1=, 5 o).

i=1

Now we prove that (a o X™)  converges to (a0 X?), in distribution in the topology of d (that
is the product topology with respect to the topology of the uniform convergence on the compact
sets), where (X7), . is a solution of (8) for any Brownian motion W that does not depend on N.

Let g : D(Ry, R)N* — R be any bounded and uniformly continuous function. We want to
prove that E [g (®(X?))] converges to E [g (®(X))] (= E [g (®(X"))]) as N goes to infinity, where
((w:)i) := (a0 xi)i.

Then we have,

[E[g (2(X™))] - E[g (2(X))]| <E[[g(@(X™)) — g(@(XM))]]
<E [w, (4 (2(XY), 2(X™)))], (19)
where w, is the modulus of continuity of g (with respect to the metric d).
Thanks to Theorem 1.6, for any increasing function ¢ : N* — N* there exists another one v such

that d (®(X*WID) &(X#(¥(N))) vanishes almost surely as N goes to infinity. Then, using (19),
E [g (2(X?¥1)))] converges to E[g (®(X))]. This proves that,

E[g(@(X™)] 77 Elg (2(X))].

N-ox

As the previous convergence holds for any bounded and uniformly continuous function g, we
know, by Portmanteau theorem (see Theorem 2.1 of Billingsley (1999)), that (a o X™**)  converges
to (a0 X?). in distribution in the product topology with respect to the uniform convergence on
every compact set, as N goes to infinity.

Then, applying Lemma, 2.4 with a; := a~! that is continuous, we obtain the result. O

3. Appendix
3.1. Properties of the limit system

We start with the
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Proof of Item 2. of Theorem 1.1. The proof is done using a classical Picard-iteration. For that sake
. 0] _ %
we introduce the sequence of processes X; * = Xy, and

t
x 2 X+ | b(x)as —f X(£ﬁ+1]11{z<f(5([n])} (ds,dz, du) +aj N (f)dWs,
0 [0,t] xRy xR T

where -
u = P(XIY e W),

Let us first prove a control on the moments of X" uniformly in n. We define, for each k € N*,
Tp 1= inlginf{t >0 : |X | > k(n + 1)}
ne

Applying Ito’s formula we have

_ 2 _ t
E [(Xt[ﬁj,j]) ] <E[X2]+ QJ

0

E [Xs[qikub (Xb]m)] ds + o? L E [, ()] ds.

Using that f and b are bounded, we have

tATE

_ 2 t
ut[nH] =E [(X[n+1]> ] <C+1t)+ C’f uL”H]ds.
0

Then, by Gronwall’s lemma, we know that, for all ¢ > 0

_ 2
sup sup sup E [(Xs[’i]m) ] < +o0.

keN neN 0<s<t

Besides, (7x)x is nondecreasing, so it converges almost surely to some 7, which is almost surely
infinite since

P(r <t) = lim P(7, <1) <lim P (Ein eN, | XM | > k(n + 1))
- [n]
<lm 3 (\th > K1)

&
se Z K2 (n+1)? n+1 SimE =0

Then, by Fatou’s lemma, we know that

N2
sup sup E [(Xg[”]> ] < 400. (20)

neN 0<s<t

Now, we prove the convergence of Xt["]. The same strategy as the one of the proof of Item 1. of
Theorem 1.1 allows to show that

67 = Esup la(X[") — a(X]" 1))

s<t

satisfies

< C(t+ e,
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for all n > 1, for a constant C' only depending on the parameters of the model, but not on n, neither
on t. Choose t; such that

C(t1 ++/t) <

N =

Since sup, <y, |a()_(&[0])| = a(Xo) < ||a]+, we deduce from this that

57, <2 "al..

This implies the almost sure convergence of a (X't[”]) to some random variable Z; for all ¢t € [0, ¢4].

As a is an increasing function, this implies the almost sure convergence of Xt[n] to some (possibly
infinite) random variable X;. The almost sure finiteness of X; is then guaranteed by Fatou’s lemma
and (20).

It remains to prove that X is solution of the limit equation (9) which follows by standard
arguments (note that the jump term does not cause troubles because it is of finite activity). The
most important point is to notice that

Wi (f) = E(F (X)) — E(F(X)W)

almost surely, which follows from the almost sure convergence of f (Xt["]) — f(X}), using dominated
convergence.

Finally, once the convergence is proven on the time interval [0,¢1], we can proceed iteratively
over successive intervals [kt1, (k + 1)¢1] to conclude the proof. O

We just proved existence and uniqueness of strong solution of the SDE (9). In the paper, we also
need to know some properties about the joint distribution of the limit system given by (8), not only
each of its coordinate individually.

Proof of Proposition 2.1. (i) Given a Brownian motion W and i.i.d. Poisson measures 7, the same
proof as the one of Theorem 1.1 implies the existence and the uniqueness of the system given in (8)
for 1 <i< N.

(#i) The construction of the proof of Item 2. of Theorem 1.1, together with the proof of Theorem
1.1 of Chapter IV.1 and of Theorem 9.1 in Chapter IV.9 of Ikeda and Watanabe (1989), imply the
existence of a measurable function ® that does not depend on k = 1,..., N, and that satisfies, for
each 1<k<N,

Xk =Xk, W)
and for all t > 0,
Xl = Pe(XE, 0. xmy xmr (Ws)sst); (21)

in other words, our process is non-anticipative and does only depend on the underlying noise up to
time ¢.
Then we can write, for all continuous bounded functions g, h,

E [g(X)h(X7)| W] = E [ g(@(Xd, 7', W)(@(X], 7/, W))W | = v(w),

where ¥(w) i= E [g(@(X5, 7', w)h(@(XF, 77, w))| = E[g(@(X, 7', w)] E[A(@(XF, 7, w))| =

¥i(w)1h;(w). With the same reasoning, we show that E [ g(X®)| W] = ¢;(W) and E [ h(X7)| W] =
1;(W). The same arguments prove the mutual independence of X*,... XV conditionally to W.
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(7i) Using the representation X\’EO q = ®,(Xk, 78, W), we can write for any continuous and

bounded function g : D([0,t],R) — R,

-1 2 . _ E Vi _ - E vio_i W
.[]R gd(N i:15Xﬁ0,t]) - N izlg(X‘[O,t]) - N 7;:19 o (I)t(XO?ﬂ- ’ )

Using the law of large numbers on the account of the sequence of i.i.d. PRM’s and working condi-
tionally on W, we obtain that

N
. -1 o _ ol 1 _ 1 _ 1
Jim, [ 9dV Y0, ) = E g0 @Kt W) W] = E |9 o)W | = E[g(X o)l (Wa)ost |
where we have used (21). O

3.2. Proof of Proposition 1.8

For m = L(X) € P(D(Ry,R)), for every t1,...,tx € Ry, let my, 4y = L(Xyy,..., Xy,), and
T(tr,ote) (M) = My, 1,)- One can note that m, 4,y is continuous on P(D(R,,R)).

Step 1. In a first time, we prove the convergence in distribution of ,ugh“_,tk) to fi(y,... 4, for any

0 < t; <...< tg. For this purpose, let us consider the algebra M composed of the functions ¢ of
the form

@:meP(R’“)Hh(JAldm,...,f)\rdm), (22)

where h : R” — R is Lipschitz continuous and bounded, and )\; € Cy(R¥) satisfies, for every
Tlyeeo s ThyYly---5 Yk € R,

k
|)‘i(m1a s ’xk) - )‘i(ylv' . ,yk)| <C Z |a(xj) - a(yj)|'
j=1

Let us prove that, for all ® € M,

E|ouf,. )| = B[ ...00)]- (23)

N>

For @ in the form (22), we have
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_h (E [Al(X’glV’l, - ,X{ZJ)‘ WN] K [AT(XQ"I, . ,ij’l)‘ WN])H
<c o (x) =0 (52
ross

N

1 SN.j SN, SN, SN,j

= D MEN, X) [/\i(th i X J)‘WN]
j=1

Then, Theorem 1.6 and Proposition 2.1.(iii) imply (23).

Besides, the sequence u( is tight. Indeed, it is well-known that this is equivalent to

tls ’tk) N
the tightness of the sequence (th’l, . ,XZZ’l)N (see Proposition 2.2 of Sznitman (1991)), and

this is a mere consequence of Theorem 1.3.

Now, to obtain the convergence in distribution of f“é\t]h...,tk) to i1y, 4,), it is sufficient to
show that the algebra M separates the points. Indeed, if this is the case, Theorem 3.4.5.(a) and
Lemma 3.4.3 of Ethier and Kurtz (2005) imply the result.

Let m,m’ be two distinct probabilities on RF. There exist a; < 8; (1 < i < k) such that

m(C) # m/(C) with C = ]_[l 1lev, B;]. Let us assume that m(C) > m/(C). This implies the

existence of some § > 0 that satisfies m(]_[le[ai, Bi]) > m'(]_[le[ai — 6,8 +6]).

Let us consider \; € CF(R) such that 1., g,1(7) < Xi(2) < 1[q,—s8,+6](7). Defining A\(z) :=
k .
| [;=1 Ai(z), we obtain,

k k

J)\dm >m <H[ai,ﬁi]> >m' (H — 6,8 + 6] ) )\dm'.
i-1 i=1

Considering ®(m”) := h({ Adm”), with h(z) := z if |z| < 1 and h(z) = :c/|:c| if |z| > 1, we have

®(m) # &(m’). It only remains to prove that, & € M, that is, [A\;(x) — Xi(y)| < Cla(z ) a(y)|-

This is a straightforward consequence of the fact that sup “a, ((f))I‘ < o0, since \; belongs to C}(R),

and a'(x) # 0, for any x € R.

Step 2. Now we can deduce, from Step 1, the convergence in distribution of pN to pu. As a
consequence of Proposition 2.2 of Sznitman (1991) and Theorem 1.3, the sequence pv is tight. Let
[t be any limit of a converging subsequence of u”V. The continuity of T(t1,....tn) and Step 1 imply
that, for all ¢1,...,t, € Ry,

n

L((ty,otn)) = LU ) (24)

To conclude the proof, we just have to show that L(u) = L(fi). Let us consider A/ the algebra
composed of the functions of the form

®me PO@R) — i ( [Ny ap oo [ Mtz )

where \; € Cy(R¥), h € Co(R™), 1 € R,

By (24), for all ® € N, E[®()] = E [®(1)]. Now, using Theorem 3.4.5.(a) of Ethier and Kurtz
(2005), we just have to show that A separates the points of P(D(R4,R)).

This last point is straightforward: let m,m’ € P(D(R4,R)) such that m # m’. This implies the

existence of ¢1, ...t such that £(X, 1)) # LYy, 10))s that is, §Adm, 4y # S)\dm'(thm)tk)
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for some A € Cy(RF). Now let h : R + R be defined as h(z) = z if |2| < ||M|» + 1, and h(z) =
T L (|| \[loo +1) otherwise. Then ® : m” — h( S)\dm” ,...tk.)) belongs to N and satisfies <I>( ) # d(m’).

3.3. Proof of Corollary 1.2

Applying Ito’s formula, we have

o0 = o(X0) + [ (¢RI + 5 (X)) s+ [ PRIV imlDaw.

0

+ J Tecpx.y (cp(O) — Lp()_(s,) w(ds,dz,du). (25)
[0,t] xR4 xR

Since ¢’, 0", b and f are bounded, it follows from Fubini’s theorem that
‘ I - L 4 5 ' Y X L onix
E(| (¢ (X:)b(Xs)+ 3% (Xs)us(f))ds|W ) = E P (X)D(Xs) + 50" (X )us (HIW ) ds

| J J ( ;w (z )m(f)) 15 (dz)ds.

Moreover, by independence of Xy and W, E(p(Xo)|W) = {; ¢(z)vo(dz).
To deal with the martingale part in (25), we use an Euler scheme to approximate the stochastic
integral I; := Sé ©'(Xs)4/1s(f)dWs. For that sake, let 7 := k27"¢,0 < k < 2", n > 1, and define

2" —1

I = Z <p'()_(tn o J Vs (f)dWs,

k=0
then E(|I; — I}'|*) — 0 as n — o, and therefore E(I]'|W) — E(I;|W) in L?(P), as n — oo. But

2" —1

BUFW) = 5 B (KW - f (X)W s (P,

in L?(P), since the sequence of processes Y := > _01 Ly, t;;H]( JE('(Xin)[W),0 < s < 8,
converges in L?(Q x [0,t]) to E(¢'(X,)|W).

We finally deal with the jump part in (25). Since f is bounded, and by independence of W and ,
we can rewrite this part in terms of an underlying Poisson process IV, independent of W and having

rate | f|w, and in terms of i.i.d. variables (V,),>1 uniformly distributed on [0, 1], independent of
W and of N as follows.

N,
f Licpzay (9(0) = o(Xoo) m(ds, dz, du) = 3 Lyypy, vies(Xr, 3 (9(0) — o(X1, ).
[0,t] xR+ xR ne1

Taking conditional expectation E(-|WW), we obtain

Ny
E (Z L1 v f (%m, 03 (0(0) = ‘P(XTn—)”W) =
n=1
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(Z f);iy #(0) — (X, - ))|W>

¢
- | B0 — )W) ds
where we have used the independence properties of (V},),,, Ny and W and the fact that conditionally
on {N; = n}, the jump times (71,...,T;,) are distributed as the order statistics of n i.i.d. times
which are uniformly distributed on [0, ¢]. This concludes our proof.

3.4. A priori estimates

In this subsection, we prove useful a priori upper bounds on some moments of the solutions of
the SDEs (7) and (14). Most of our previous results were stated under our Assumptions 1 and 2.
However our computations hold true under weaker assumptions as shows the following

Lemma 3.1. If f is subquadratic and b sublinear, if the measures v and vy admit a second moment
and {3 udv(u) = 0, then

27
(i) for allt >0, sup sup E (X

NeN#*0<s<t

(ii) for allt >0, sup E| sup
NeN* 0<s<t

Nl)
‘XNl]
(i4i) for allt >0, sup sup E ( tN’1>2 < 400.

NeN*O<s<t

(iv) for allt >0, sup E| sup XN !
NeN#* 0<3<t

< +00.

Proof. We just prove (i) and (i4); (¢9¢) and (iv) follow from similar arguments. By Ito’s formula,
we have that

(Xj“)2 < (Xé“) +2J (X1 b (XN1) ds

N 2 9
+ X;V’I—i-u) — Xévgl 1 andml (s, z,u).
jZ:?f[O,t]xﬂth [( VN ( ) {z<p(x207)}4T ( )

As f is subquadratic, b is sublinear, and the X+ are identically distributed,

E[(XtN’l)Q]<E[<XN1)]+Ct+CJ XSNl dHJZJ XN’J d

<E [(Xé“)z] +Ct + CL E[(x2)*]as,

where the constant C' is not the same in the two lines above.

Then, we prove the lemma using Gronwall’s lemma, and stopping times Tg = /\1<1<N T;{V’i with

TI]}[ZI inf{t >0 : | X' > K}.
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(74) We use that
L
VN

where M}N is the martingale M}¥ = Z;VZQ S[o t]xR_,_x]RU]l{zsf(XN‘j)}dTrj(s’ z,u). Then

t
ral <‘Xév’1‘+0t+cj X ds + = [ME];
0

t
1
sup | X1 S‘XN71‘+Ct+Cf XNYds + — sup |[MN).
O<‘92t| 3 | 0 o| o \/NOSSI;| |

Now, to conclude the proof, it is sufficient to notice that

1 1 1/2
—FE| sup |MN|| <E|=[MY ]
VN |:0$szt| * |] [N[ b

is uniformly bounded in N. O
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