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A graph-theoretic approach to Wilf’s
conjecture

Shalom Eliahou

Abstract

Let S⊆N be a numerical semigroup with multiplicity m = min(S\{0})
and conductor c = max(N\S)+1. Let P be the set of primitive elements of
S, and let L be the set of elements of S which are smaller than c. A longstand-
ing open question by Wilf in 1978 asks whether the inequality |P||L| ≥ c al-
ways holds. Among many partial results, Wilf’s conjecture has been shown
to hold in case |P| ≥ m/2 by Sammartano in 2012. Using graph theory in
an essential way, we extend the verification of Wilf’s conjecture to the case
|P| ≥ m/3. This case covers more than 99.999% of numerical semigroups
of genus g≤ 45.

Keywords and phrases. Numerical semigroup; Apéry set; loopy graph;
vertex-maximal matching; normality number; downset.

1 Introduction
Denote N = {0,1,2,3, . . .} and N+ = N \ {0} = {1,2,3, . . .}. For a,b ∈ Z, let
[a,b[= {z ∈ Z | a≤ z < b} and [a,∞[= {z ∈ Z | a≤ z} denote the integer intervals
they span. A numerical semigroup is a subset S ⊆ N containing 0, stable under
addition and with finite complement in N. Equivalently, it is a subset S ⊆ N of
the form S = 〈a1, . . . ,an〉 = Na1 + · · ·+Nan where gcd(a1, . . . ,an) = 1. The set
{a1, . . . ,an} is then called a system of generators of S, and the smallest such n is
called the embedding dimension of S.

For a numerical semigroup S, its gaps are the elements of N \ S, its genus is
g = |N\S|, its multiplicity is m = minS∗ where S∗= S\{0}, its Frobenius number
is f = maxZ\S and its conductor is c = f +1. Thus [c,∞[⊆ S and c is minimal
for this property. As in [11], we denote L = S∩ [0,c[.
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We partition S∗ as S∗= PtD, where D = S∗+S∗= {x+y | x,y∈ S∗} is the set
of decomposable elements of S∗, and P = S∗ \D is the set of primitive elements of
S∗. As easily seen, P is finite since P⊆ [m,c+m[. Moreover S = 〈P〉 since every
element of S∗ is a sum of primitive elements, and P is the unique minimal system
of generators of S. Thus |P| equals the embedding dimension of S.

In 1978 Wilf asked, in equivalent terms, whether the inequality

(1) |P||L| ≥ c

always holds [25]. Wilf’s conjecture, as it is now known, has been verified in
several cases, including when |P| ≤ 3, or c ≤ 3m, or m ≤ 18, or |L| ≤ 12, or
|P| ≥ m/2. See Delgado [6] for an extensive recent survey of partial results on
Wilf’s conjecture, and [1, 2, 5, 10, 11, 13, 15, 16, 18, 19, 22, 23, 24, 25] for some
relevant papers. The verification in case |P| ≥ m/2 is due to Sammartano [22] in
2012. Our purpose in this paper is to extend it to the case |P| ≥ m/3.

Theorem 1.1. Let S be a numerical semigroup with multiplicity m and minimal
generating set P. If |P| ≥ m/3 then S satisfies Wilf’s conjecture.

This result was first presented in 2017 at a conference in Umeå [12]. The
present proof is a streamlined version of the original unpublished one.

As later noted by Manuel Delgado, who attended the Umeå conference, an
overwhelming majority of numerical semigroups satisfies the condition of Theo-
rem 1.1. Specifically, among all 23022228615 numerical semigroups of genus
g ≤ 45, the proportion of those satisfying |P| ≥ m/3 exceeds 99.999%. In ad-
dition, Delgado discovered that the condition of Theorem 1.1 is well suited to
efficiently trim the tree of numerical semigroups while probing certain open prob-
lems concerning them [7]. In particular, this will lead to significant advances on
the verification of Wilf’s conjecture by computer. While the first such major effort
reached genus g = 50 [1], and the current published verification record stands at
genus g = 60 [16], Delgado and Fromentin have now verified Wilf’s conjecture up
to genus g = 80, and aim to reach genus g = 100 before publishing their result [8].

1.1 Contents
In Section 2, we introduce the depth and total depth functions on a numerical
semigroup. In Section 3, we construct a map S 7→ G(S) associating to every nu-
merical semigroup S a finite graph G(S) whose properties play a key role in this
paper. Those properties, combining algebra and graph theory, are developed in
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Section 4. Section 5 is devoted to proving Theorem 1.1. In the last Section 6, we
take a closer look at the map S 7→ G(S) by considering its range and fibers.

2 The depth functions δ and τ

Throughout this section, let S ⊆ N be a numerical semigroup with multiplicity m
and conductor c.

Definition 2.1. The depth of S is the integer q = dc/me. We denote it by depth(S).

See also [14]. More generally, we define the depth function δ : S→ Z on S as
follows.

Definition 2.2. For all x ∈ S, let δ(x) ∈ Z denote the unique integer such that

x+δ(x)m ∈ [c,c+m[.

We call δ(x) the depth of x.

For instance, assuming S 6= N, the elements of [c,c+m[ have depth 0, those
in [c+m,∞[ have negative depth while those in S∩ [0,c[ have positive depth. The
largest depth in S is attained by 0, namely δ(0) = depth(S) = dc/me.

Notation 2.3. Let q = depth(S) = dc/me. We set ρ = cm−q. Thus ρ ∈ [0,m[ and
c = qm−ρ.

As in [11], we denote

(2) Si = S∩ [im−ρ, im+m−ρ[

for all i≥ 0. This yields the partition S =
⊔

i≥0 Si. In particular, we have S0 = {0},
m ∈ S1 and c ∈ Sq. More generally, we have

(3) Si = {x ∈ S | δ(x) = q− i}

as easily verified. Note also the equality

(4) L = S0tS1t·· ·tSq−1.

The following was shown in [11]. Its verification is straightforward.
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Proposition 2.4. Let S be a numerical semigroup. For all 0 ≤ i ≤ j such that
j ≥ 1, we have

(5) Si +S j ⊂ Si+ j−1tSi+ jtSi+ j+1.

Moreover, if ρ = 0 then

(6) Si +S j ⊆ Si+ jtSi+ j+1.

These set addition properties may be translated in terms of the depth function
δ as follows. The rightmost inequality will be used throughout the paper.

Proposition 2.5. Let S be a numerical semigroup of depth q≥ 1. For all x,y ∈ S,
we have

(7) δ(x+ y)+q+1 ≥ δ(x)+δ(y) ≥ δ(x+ y)+q−min(ρ,1).

Proof. As observed in (3), for all x ∈ S we have

x ∈ Si ⇐⇒ δ(x) = q− i.

Let x,y ∈ S, and assume x ∈ Si, y ∈ S j. Then δ(x) = q− i, δ(y) = q− j, and so
δ(x)+δ(y)−q = q− i− j. The addition properties (5) and (6) now yield

q− i− j−1≤ δ(x+ y)≤ q− i− j+min(ρ,1),

whence

δ(x)+δ(y)−q−1≤ δ(x+ y)≤ δ(x)+δ(y)−q+min(ρ,1).

This is equivalent to (7), as desired.

Definition 2.6. Let A⊂ S be a finite subset. We define the total depth of A as

τ(A) = ∑
x∈A

δ(x).

In the sequel, we use graph-theoretical tools to estimate the total depth δ(X) of
X , the set of nonzero Apéry elements of S, as a step towards proving Theorem 1.1.
The key idea is to exploit (7) by forming suitable pairs {x,y} of elements of X .
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2.1 The number W (S) and Apéry elements
Let S⊆N be a numerical semigroup of multiplicity m and conductor c. As above,
we partition S∗ = PtD into primitive and decomposable elements, and we set
L = S∩ [0,c[. We shall use the following notation from [11].

Notation 2.7. W (S) = |P||L|− c.

Thus, Wilf’s conjecture amounts to state that W (S) ≥ 0 holds for every nu-
merical semigroup S. In this paper, as in [11], we focus on estimating W (S) from
below. For this purpose, we need the nonzero Apéry elements of S. The set

Ap(S) = {s ∈ S | s−m /∈ S},

called the Apéry set of S1, is central in the theory of numerical semigroups. It has
m elements, one in each class mod m, actually its least member belonging to S.
As is well known and easy to see, the smallest and largest elements of Ap(S) are
0 and c+m− 1, respectively. The additive properties of Ap(S) \ {0} play a key
role in this paper.

Notation 2.8. We denote by X = Ap(S)\{0} the set of nonzero Apéry elements.

Proposition 2.9. The following hold.

• δ(x)≥ 0 for all x ∈ X.

• m = |P|+ |X ∩D|.
• |L| = q+ τ(X).

Proof.

• As maxX = c+m−1, it follows that X ⊂ [m,c+m[. The conclusion follows
from the definition of δ.

• We have |X |= |X ∩P|+ |X ∩D|. The definitions imply that |X |= m−1 and
P\X = {m}, so |X ∩P|= |P|−1. The stated formula follows.

• Let a ∈ L be minimal in its class mod m. Then either a = 0 or a ∈ X .
Moreover a+ im ∈ L if and only if i ∈ [0,δ(a)[. Hence

|L∩ (a+mN)| = δ(a).

Now δ(0) = q, so that τ(L∩mN) = q. Summing over all x ∈ X , i.e. over all
nonzero classes mod m, we cover all of L and the claimed formula follows.

1Or more precisely, the Apéry set of S with respect to m.
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Corollary 2.10. We have W (S) = |P|τ(X)−|X ∩D|q+ρ.

Proof. By definition, W (S) = |P||L|− c = |P||L|−qm+ρ. Since |L| = q+ τ(X)
and m = |P|+ |X ∩D| by Proposition 2.9, the stated formula follows.

Our proof strategy for Theorem 1.1 will be to use graphs to estimate τ(X) from
below using (7) and simultaneously estimate |X ∩D| from above, thereby leading
to show W (S) ≥ 0 for the numerical semigroups under consideration. For this
purpose, the following considerations will be useful. First, here is an analogue, in
additive notation, of the notion of proper divisor.

Definition 2.11. Let b ∈ S∗. A summand of b is any a ∈ S∗ such that b ∈ a+S∗,
i.e. such that there exists s ∈ S∗ with b = a+ s.

As a matter of notation, given a,b∈ S, it is customary to write a� b whenever
b−a ∈ S. The following additive property is well known and crucial.

Lemma 2.12. Let x ∈ X ∩D. If x = a+ b with a,b ∈ S∗, then a,b ∈ X. That is,
any summand of a nonzero Apéry element is a nonzero Apéry element.

Proof. If a /∈ X , then a = a′+m for some a′ ∈ S∗. Hence x = a′+b+m, whence
x /∈ X since a′+b ∈ S∗.

3 The associated graph
In this section, we define a map S 7→ G(S) associating to every numerical semi-
group S a finite graph G(S). Properties of G(S) will then be shown to have a direct
bearing on the parameters τ(X) and |X ∩D| involved in Corollary 2.10 and hence
on Wilf’s conjecture.

Definition 3.1. Let S ⊆ N be a numerical semigroup. The graph G = G(S) asso-
ciated to S is defined as follows.

• The edge set E(G) consists of all subsets {x,y} ⊆ X such x+ y ∈ X. The
equality x = y is allowed.

• The vertex set V (G) consists of all endvertices of the edges. Thus, an el-
ement x ∈ X belongs to V (G) if and only if there exists y ∈ X such that
x+ y ∈ X.
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Remark 3.2. More generally, one may associate a graph G(A) to any finite (or
not) subset A of a monoid (M,+). The edges of G(A) are all subsets {x,y} ⊆ A
such that x+ y ∈ A, and its vertices are all endvertices of the edges. This graph
carries much information on the additive properties of A. For a numerical semi-
group S, the graph G(S) is obtained in this general form by taking G(S) = G(A),
where A = X is the set of nonzero Apéry elements of S.

By construction, the graph G(S) has no isolated vertices. More generally, it
follows from the definition that G(S) is a loopy graph as defined below.

Definition 3.3. A loopy graph is a finite graph with no isolated vertices, no mul-
tiple edges but possibly with loops.

We shall further need the following definitions/notation.

Definition 3.4. In a loopy graph, an edge with equal endvertices is a loop, other-
wise it is a true edge. A vertex is loopy if it supports a loop, or nonloopy otherwise.
The loopy-complete graph on n vertices, denoted LKn, is the graph obtained from
the complete graph Kn by attaching a loop to every vertex.

Notation 3.5. For a loopy graph G, we denote by λ(G) its number of loops. It
coincides with its number of loopy vertices since G has no multiple edges.

For example, Figure 1 displays G(S) for S = 〈12,13,14,15,17,19,20,21〉.
Here |P|= 8, m = 12 and X = {13,14,15,17,19,20,21,28,30,34,35}. In partic-
ular, the three loopy vertices are 14,15,17, exactly those x ∈ X such that 2x ∈ X .

Figure 1: The graph G(S) associated to S = 〈12,13,14,15,17,19,20,21〉.

7



3.1 Vertex-maximal matchings
Let G = (V,E) be a loopy graph. A matching M in G is a subgraph consisting of
mutually nonadjacent edges. Loops are allowed in M.

Definition 3.6. The vertex-maximal matching number of G is the maximum num-
ber of vertices touched by a matching M in G. We denote this number by vm(G).
In formula:

vm(G) = max
M⊆G
|V (M)|

where M runs over all matchings of G.

Definition 3.7. A vertex-maximal matching of G is a matching touching vm(G)
vertices. An edge in G is active if it is contained in a vertex-maximal matching of
G, and passive otherwise. We denote by E+ ⊆ E the set of active edges.

A loop needs not be active in general. However, a vertex-maximal matching
contains all the loopy vertices, as easily seen. Moreover, we have vm(G)≥ λ(G),
since any set of ` loops in G is a matching with ` vertices.

Proposition 3.8. Let G be a loopy graph with vm(G) = k and such that G is
edge-maximal for this property. Let `= λ(G). Then G contains LK`.

Proof. As mentioned above, every vertex-maximal matching in G contains all of
its ` loopy vertices2. Assume that x,y are nonadjacent loopy vertices. Then, as
easily seen, adding the edge {x,y} to G does not increase vm(G). This contradicts
the edge-maximality of G with respect to vm(G). Hence G⊇ LK`.

An interesting general question, with direct implications for the present ap-
proach to Wilf’s conjecture, is the following.

Question 3.9. Given integers n≥ k ≥ 1, let G be a loopy graph on n vertices and
such that vm(G) = k. What is the maximum number of edges allowed in G?

For instance, consider a loopy graph G with (n,k) = (5,4). While the non-
complying graph LK5 has 15 edges, we show in Proposition 5.7 that G has at most
10 edges, and this is optimal as witnessed by the complying graph K5.

For n ≥ k+2 with k ≥ 2 even, say k = 2r, it might be that the optimal upper
bound on |E(G)| seeked in Question 3.9 is given by(

r+1
2

)
+ r(n− r).

2But again, not necessarily all of its loops.
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This number of edges is achieved by the complying graph G = LKr ∨Kn−r, the
join [4] of LKr and the empty graph Kn−r on n− r vertices. Recall that G1∨G2 is
obtained by adding to G1tG2 all possible edges between V (G1) and V (G2).

A similar construction can be made for k odd.

3.2 The weight of edges
Let G = G(S) be the graph associated to a numerical semigroup S⊆ N. As usual,
we denote by D,X ⊂ S∗ the sets of decomposable and nonzero Apéry elements,
respectively.

Definition 3.10. Let e= {x,y}∈E(G). The weight of e is defined as wt(e)= x+y.

By construction, this yields a map wt : E(G)→ X ∩D.

Proposition 3.11. The map wt: E(G)→ X ∩D is onto.

Proof. For every z ∈ X ∩D, there exist x,y ∈ X such that z = x+ y. Thus {x,y} is
an edge of G and has weight z.

It follows that

(8) |X ∩D| ≤ |E(G)|.

Here is a useful formula for the difference |E(G)|− |X ∩D|.

Proposition 3.12. We have

|X ∩D|= |E(G)|− ∑
z∈X∩D

(|wt−1(z)|−1).

Proof. The fibers of wt constitute a partition of E(G). Thus

|E(G)|= ∑
z∈X∩D

|wt−1(z)|.

Note that |wt−1(z)| ≥ 1 for all z ∈ X ∩D since w is onto. Subtracting 1 to each
such summand yields

|E(G)|= |X ∩D|+ ∑
z∈X∩D

(|wt−1(z)|−1).
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In particular, the larger |V ∩D| is, the farther away |X∩D|will be from |E(G)|.
For instance, if there is at least one fiber of cardinality more than 1, then |X ∩D|<
|E(G)|.

Remark 3.13. If all edge weights are distinct, then wt is a bijection and hence
|X ∩D|= |E(G)|.

Lemma 3.14. Distinct adjacent edges have distinct weights. Similarly, distinct
loops have distinct weights.

Proof. Distinct adjacent edges are of the form {x,y},{x,z} with y 6= z, whence
x+ y 6= x+ z. Distinct loops are of the form {x,x},{y,y} with x 6= y, implying
2x 6= 2y.

3.3 Normal and weak edges
We use the same notation as above.

Lemma 3.15. Let {x,y} be an edge in G. Then δ(x)+δ(y)≥ q−min(ρ,1).

Proof. We have x+ y ∈ X by hypothesis. The inequality now directly follows
from (7) and Proposition 2.9.

Definition 3.16. An edge {x,y} in G is weak if δ(x)+ δ(y) = q− 1, and normal
otherwise, i.e. if δ(x)+δ(y)≥ q.

Remark 3.17. If ρ = 0 then all edges of G are normal. This follows from the
above lemma.

Notation 3.18. We denote by E0(G) and E1(G) the set of weak and normal edges
of G, respectively. Thus

E(G) = E0(G)tE1(G).

Lemma 3.19. If {x,y} ∈ E0(G), then δ(x+ y) = 0.

Proof. Indeed, by hypothesis we have x+ y ∈ X and δ(x)+ δ(y) = q− 1. The
former implies δ(x+ y) ≥ 0 by Proposition 2.9, and the latter implies ρ ≥ 1 and
δ(x+ y) = 0 by (7).
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Proposition 3.20. Let S⊆ N be a numerical semigroup. Let

(9) X0 = {z ∈ X ∩D | ∃x,y ∈ X , z = x+ y, δ(x)+δ(y) = δ(z)+q−1}.
Then |X0| ≤ ρ.

Proof. Let z = x+ y ∈ X0, and assume x ∈ Si,y ∈ S j. Then δ(x)+δ(y) = δ(z)+
q−1 if and only if z ∈ Si+ j−1. Now, by the definition of the Si, we have

(Si +S j)∩Si+ j−1 ⊆ [(i+ j)m−2ρ,(i+ j)m−ρ[.

Thus, the only classes mod m for which such a deficit may occur are those in
[−2ρ,−ρ[. And since there is only one element of X per class mod m, the state-
ment follows.

Corollary 3.21. We have ρ≥ |wt(E0(G))|.
Proof. Let X0 ⊆ X ∩D be as defined in (9). It suffices to show

(10) wt(E0(G))⊆ X0,

and the conclusion will follow from Proposition 3.20. Let e = {x,y} ∈ E0(G).
Then δ(x)+δ(y) = q−1 by hypothesis. Let z = wt(e) = x+y. Then z ∈ X ∩D by
definition, and δ(z) = 0 by Lemma 3.19. Therefore z ∈ X0 and we are done.

3.4 The normality number
We keep using the same notation as above.

Definition 3.22. The normality number of the graph G = G(S) is defined as

ν = ν(G) = max
M⊆G

#{endvertices of all normal edges in M},

where M runs over all vertex-maximal matchings in G. Thus 0≤ ν≤ vm(G).

Recall from Section 3.1 that an edge is active if it belongs to a vertex-maximal
matching, and that we denote by E+ ⊆ E the subset of active edges. The partition
E = E0tE1 into weak and normal edges induces a corresponding partition on E+.

Notation 3.23. We denote by E+
0 ⊆ E0 the subset of active weak edges, and by

E+
1 ⊆ E1 the subset of active normal edges. Thus E+ = E+

0 tE+
1 .

The interest of this partition is that only active edges are actually involved in
the definition of the normality number ν(G). That is, we have

(11) ν(G) = max
M⊆G

#{endvertices of E(M)∩E+
1 },

where M runs over all vertex-maximal matchings in G.
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3.5 A lower bound on τ(X)

We now have all the ingredients at hand to formulate our key lower bound on τ(X)
and hence on W (S). We keep using the same notation as above.

Theorem 3.24. Let G = G(S), n = |V (G)| and k = vm(G). Then

τ(X)≥
(
k(q−1)+ν

)
/2+(n− k).

Proof. Let M ⊆ G be a vertex-maximal matching, and set VM = V (M). Thus
|VM|= k. Moreover, by (11), we may assume that the number of vertices touched
by the normal edges of M is maximal, i.e. is equal to ν = ν(G).

We have τ(X) ≥ τ(V ) since V ⊂ X . We now evaluate τ(V ) from below. Let
V M =V \VM. Then |V M|= n− k. We have τ(V ) = τ(VM)+ τ(V M). Since V ⊂ L
and since δ(a)≥ 1 for all a ∈ L, we have

τ(V M)≥ |V M|= n− k.

We now estimate τ(VM). For that, we need to count the edges of M by distin-
guishing the nonloops and the loops, and the weak and the normal ones. Let r0, t0
denote the number of weak nonloops and loops in M, respectively. Similarly, let
r1, t1 denote the number of normal nonloops and loops in M, respectively. Thus

k = 2(r0 + r1)+ t0 + t1, ν = 2r1 + t1.

For every edge {x,y} in M, we have δ(x)+ δ(y) = q− 1 if it is weak, while
δ(x)+δ(y)≥ q if it is normal. It follows that

τ(VM) ≥ r0(q−1)+ r1q+ t0(q−1)/2+ t1q/2
=

(
(2r0 + t0 +2r1 + t1)(q−1)+2r1 + t1

)
/2

=
(
k(q−1)+ν

)
/2.

Summarizing, we have

τ(X)≥ τ(V ) = τ(VM)+ τ(V M)≥
(
k(q−1)+ν

)
/2+(n− k).

4 Properties of G(S)

Let G(S) = G = (V,E) be the graph associated to the numerical semigroup S.
Most results in this section, combining algebraic and graph-theoretic properties,
will be used in Section 5 to prove Theorem 1.1.
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Among the vertices in V , distinguishing between the primitive and the decom-
posable ones is crucial. Thus, we shall systematically consider the partition

V = (V ∩P)t (V ∩D).

In this context, we prefer using the more intuitive multiplicative notation, as
the elements of V ∩D are best viewed as monomials in V ∩P.

For instance, if V ∩P = {x1,x2} and V ∩D = {2x1,x1 + x2,2x2,3x1} in stan-
dard additive notation, we prefer to write V ∩D = {x2

1,x1x2,x2
2,x

3
1}. In this way,

we can speak of divisors, multiples, antichains under divisibility, and so on. For
instance, we find it more convenient to say “x1 divides x1x2” rather than “x1 is a
summand of x1 + x2” or write x1 � (x1 + x2) in standard additive notation.

More formally, let us rename our given additive numerical semigroup S as S0.
We then embed S0 in the one-variable polynomial ring R[Z], and more precisely
in the semigroup ring R[S0]⊆ R[Z], where

R[S0] = {∑
a∈S0

λaZa | λa ∈ R for all a ∈ S0 and λa = 0 for almost all a}.

We then set S= {Za | a∈ S0}. It is a multiplicative submonoid of {Zn | n∈N}with
finite complement and neutral element Z0 = 1. We have a monoid isomorphism

(12) ϕ : S0→ S

defined by ϕ(a) = Za and satisfying ϕ(a+ b) = ϕ(a)ϕ(b) for all a,b ∈ S0. We
will refer to S as a numerical semigroup in multiplicative notation.

4.1 Switching to multiplicative notation
Thus, from now on in this section, S is a numerical semigroup in multiplicative
notation, arising from its additive counterpart S0 ⊆ N via the isomorphism ϕ in
(12). We denote S∗ = S \ {1}. All other usual notions related to S0, such as the
multiplicity, the conductor, the subsets L,P,D,X ,V and so on, are transported via
ϕ to S without changing notation.

For clarity, let us rewrite the weight of edges of G = G(S) in multiplicative
notation. The weight map wt : E(G)→ X ∩D is then defined as follows: for any
edge {x,y} ∈ E(G), we set

wt({x,y}) = xy.

Note that xy ∈ X ∩D by construction.
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A word of caution is needed here. The decomposition of an element z ∈ X ∩D
as a product of primitive elements is not unique in general. That is, z may be
represented by several formally distinct monomials in P. On the other hand, we
do have simplification properties such as

x2 = y2⇒ x = y and xz = yz⇒ x = y

for all x,y,z ∈ S, as follows from the analogous additive properties in S0 ⊆ N.

4.2 Downsets
As above, let S denote a numerical semigroup in multiplicative notation.

Definition 4.1. Let u ∈ S∗. A proper factor of u is an element v ∈ S∗ such that
v 6= u and v divides u, i.e. such that there exists v′ ∈ S∗ satisfying u = vv′.

Definition 4.2. A downset in S∗ is a subset I ⊆ S∗ which is stable under taking
proper factors. That is, if u ∈ I and if v ∈ S∗ is a proper factor of u, then v ∈ I.

The following lemma is a restatement of Lemma 2.12 in the present context.

Lemma 4.3. The subset X ⊂ S∗ is a downset. �

Lemma 4.4. The set V of vertices of G is a downset. It coincides with the set of
proper factors of all elements of X ∩D.

Proof. Let x ∈ V . Then there exists y ∈ X such that xy ∈ X and so {x,y} ∈ E.
Actually xy ∈ X ∩D and x is a proper factor of xy. If x′ is a proper factor of x,
then x′y is a proper factor of xy, hence it belongs to X since X is a downset, hence
{x′,y} ∈ E. This implies x′ ∈ V . Therefore V is a downset, as claimed. Let now
z ∈ X ∩D, and let x ∈ S∗ be a proper factor of z. Let y = z/x. Then x,y ∈ X by
Lemma 4.3 and {x,y} ∈ E. Hence x ∈V , as desired.

Given a vertex x ∈ V , we denote as usual by NG(x) ⊆ V its set of neighbors,
i.e.

NG(x) = {y ∈ X | xy ∈ X}= {y ∈V | xy ∈ X}.
As usual, the degree of vertex x is defined as deg(x) = |NG(x)|.

Lemma 4.5. Let u ∈V . Then NG(u) is a downset.

Proof. We have uv∈ X since v∈NG(u). Let w be a proper factor of v. Then w∈V
and v = v′w for some v′ ∈V . Hence uv′w ∈ X , implying uw ∈ X , implying in turn
w ∈ NG(u).

14



4.3 More vertex properties
Lemma 4.6. We have |P| ≥ |V ∩P|+1.

Proof. Indeed, with m denoting as usual the multiplicity of S, we have m ∈ P\V
since m /∈ X .

The next result helps locate in V the proper factors of the vertices in V ∩D, if
any.

Proposition 4.7. Let v1 6= v2 ∈V . If v1 divides v2, then deg(v1)> deg(v2).

Proof. Let w ∈ V be such that v2 = v1w. Let t = deg(v2) and denote NG(v2) =
{z1, . . . ,zt}. Since ziv2 = ziwv1 ∈ X for all i by hypothesis, and since X is a
downset, it follows that

{w,z1, . . . ,zt ,z1w, . . . ,ztw} ⊆ NG(v1).

That set is of cardinality at least t + 1 since w,z1w, . . . ,ztw are pairwise distinct.
Whence deg(v1)≥ t +1, as desired.

Corollary 4.8. All vertices in G of maximal degree belong to V ∩P. Moreover,
for any r ≥ 1, the subset of vertices of G of degree r forms an antichain under
divisibility. �

4.4 On loopy and nonloopy vertices
Definition 4.9. Let z ∈ S∗. We define the length of z to be the largest integer t ≥ 1
such that z = x1 . . .xt with x1, . . . ,xt ∈ S∗. We then write t = len(z).

In particular, len(z) = 1 if and only if z ∈ P. Since X is a downset, it follows
that if z ∈ X , then len(z) coincides with the largest integer t ≥ 1 such that z =
x1 . . .xt with x1, . . . ,xt ∈ X .

Proposition 4.10. All vertices in V ∩D of maximal length are nonloopy.

Proof. Let u ∈V ∩D be of maximal length, say t ≥ 2. Let x ∈V ∩P be a proper
factor of u, say u= xv with v∈X . Assume for a contradiction that u is loopy. Then
u2 ∈ X . Since u2 = xvu and v ∈ X , it follows that xu ∈V ∩D and len(xu)≥ t +1.
This contradicts the maximality of t. Therefore u is a nonloopy vertex of G, as
claimed.
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Corollary 4.11. If all vertices in G are loopy, then V ∩D = /0, i.e. V ⊂ P. �

Lemma 4.12. Let y∈V be a nonloopy vertex. Then y divides none of its neighbors
in G.

Proof. Let z ∈ NG(y) such that z = yz′ with z′ 6= 1. We have yz ∈ X since y,z are
neighbors. Hence y2z′ ∈ X , implying y2 ∈ X and thus contradicting that y is a
nonloopy vertex.

Lemma 4.13. Every proper factor of a loopy vertex is loopy.

Proof. Let u ∈V and assume that u is loopy. Hence u2 ∈ X . Let v ∈V be a proper
factor of u. Since X is stable under taking proper factors, it follows that v2 ∈ X .
Whence v is loopy.

Lemma 4.14. If λ(G) = 1, then the unique loopy vertex u ∈V is primitive.

Proof. We have u2 ∈ X since u is loopy. If u ∈ D, then u = ab with a,b ∈ X .
Therefore a2 ∈X , so that a is also a loopy vertex, and we are done since a 6= u.

4.5 More on V ∩P and V ∩D

Proposition 4.15. We have |V ∩D| ≥ deg(u) for all u ∈ V ∩D. If V ∩D = {u},
then NG(u) = {x} for some x ∈V ∩P, and u = x2.

Proof. Let u∈V ∩D. We have u = wv for some w∈V . Let t = deg(u) and denote

NG(u) = {z1, . . . ,zt}.

Since ziu = ziwv ∈ X ∩D for all i by hypothesis, it follows that

{z1w, . . . ,ztw} ⊆V ∩D,

whence |V ∩D| ≥ t. Assume now V ∩D = {u} with u = wv as above. Since
|V ∩D| = 1, it follows from the above that t = 1, whence NG(u) = {z1}. Thus
z1wv∈X∩D, implying {z1w,z1v,wv}⊆V ∩D. Therefore z1w= z1v=wv, whence
z1 = w = v and u = z2

1. Moreover z1 ∈ P, for if z1 had proper factors in V , this
would imply z1 ∈V ∩D, contradicting the equality V ∩D = {z2

1}.

Proposition 4.16. We have |X ∩D| ≤ |E(G)|−deg(u) for all u ∈V ∩D such that
u 6= x2 with x ∈ P.
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Proof. Let u ∈V ∩D be such that u 6= x2 with x ∈ P. Let x ∈V ∩P be a primitive
factor of u, so that u = wx for some w∈V with w 6= x. Set t = deg(u) and NG(u) =
{z1, . . . ,zt}. Then ziu = ziwx ∈ X ∩D for all i. For all i, the edges {zix,w} and
{x,ziw} are distinct since x /∈{zix,w} but have the same weight ziwx. Since ziwx 6=
z jwx for i 6= j, it follows from Proposition 3.12 that |X ∩D| ≤ |E(G)|−deg(u) as
desired.

Proposition 4.17. If |X∩D|= |E(G)|, then any edge {u,v} not contained in V ∩P
is of the form {x,x2} with x ∈V ∩P and x2 a leaf with unique neighbor x.

Proof. By Proposition 3.12, the hypothesis |X ∩D|= |E(G)| implies that distinct
edges have distinct weights. Let {u,v1v2} be an edge with v1,v2 ∈V . Thus uv1v2 ∈
X , so that {u,v1v2}, {v1,uv2} and {v2,uv1} are all edges in G with same weight
uv1v2. Hence these edges coincide, so that u = v1 = v2 and the edge is {u,u2}.
Thus u3 ∈ X . Now if u were not primitive, say if u = u1u2 with u1,u2 ∈ V , then
u3

1u3
2 ∈ X , and this would yield at least two distinct edges with same weight, e.g.

{u1,u2
1u3

2} and {u2
1,u1u3

2}. Hence u ∈ V ∩P, as claimed. Finally, let v ∈ V be
a neighbor of u2. Then u2v ∈ X , yielding two edges with same weight, namely
{u,uv} and {u2,v}. Hence {u,uv}= {u2,v}, implying u = v. Thus NG(u2) = {u},
as claimed.

5 Proof of main theorem
Let S be a numerical semigroup in multiplicative notation, arising from a classical
numerical semigroup S0 ⊆ N via the isomorphism (12). The following notation
will be used throughout Section 5.

Notation 5.1. The symbols m,c,q,ρ,P,D,L,X usually associated to S0 will also
denote the corresponding objects in S transported from S0 via (12). Further, we
denote G(S) = G = (V,E) the graph associated to S, and we set

(13) n = |V |, k = vm(G), ν = ν(G), λ = λ(G).

Note that by definition, we have λ≤ k ≤ n. This section is devoted to proving
Theorem 1.1. The proof is divided into several cases and subcases depending
mainly on the values of k and λ. Recall that Wilf’s conjecture has been shown to
hold when |P| ≤ 3 or q≤ 3, in [15] and [11], respectively. Therefore, throughout
the proof, we freely assume |P| ≥ 4 and q≥ 4, even though these hypotheses may
be dispensed of in most subcases.
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5.1 A reduction
We first reduce the proof of Theorem 1.1 to the case τ(X)≤ 2q−1.

Lemma 5.2. If Wilf’s conjecture holds in case τ(X)≤ 2q−1, then Wilf’s conjec-
ture holds in case |P| ≥ m/3.

Proof. We have W (S) = |P||L|− c = |P||L|−qm+ρ. Assume |P| ≥ m/3.
Case I. Assume |L| ≥ 3q. Then |P||L| ≥ (m/3)(3q) = mq = c+ ρ. Therefore
W (S)≥ ρ and we are done.
Case II. Assume |L| ≤ 3q−1. Since |L|= q+τ(X), it follows that τ(X)≤ 2q−1.
Since Wilf’s conjecture is assumed to hold in this case, the proof is complete.

Proposition 5.3. If τ(X)≤ 2q−1 and q≥ 4, then k ≤ 4.

Proof. We have 2q−1≥ τ(X)≥ k(q−1)/2. If k ≥ 5, then 2q−1≥ 5(q−1)/2,
implying 3≥ q, contrary to our assumption q≥ 4.

Thus, we need only examine the cases k = 0,1,2,3,4 to complete the proof of
Theorem 1.1, i.e. that W (S) ≥ 0 in all cases under consideration. We start with
0≤ k ≤ 2.

5.2 Proof in cases k = 0,1,2

Case k = 0. Then E = /0 and so |X ∩D|= 0. Hence W (S)≥ |P|τ(X)+ρ≥ 0.

Case k = 1. Then G consists of exactly one loopy vertex, so n = k = |X ∩D|= 1.
Hence τ(X)≥ (q−1+ν)/2, yielding

W (S) = |P|τ(X)−|X ∩D|q+ρ

≥ 4(q−1+ν)/2−q+ρ

≥ q−2+2ν+ρ,

and so W (S)≥ 2 since q≥ 4 by assumption.

Case k = 2. Then n ≥ 2 and G has at most two loops, i.e. 0 ≤ λ ≤ 2. By Theo-
rem 3.24, we have τ(X)≥ q−1+ν/2+(n−2), whence

(14) W (S)≥ |P|(q−1+ν/2+(n−2))−|X ∩D|q+ρ.
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Assume first |X ∩D| ≤ 3. Then using |P| ≥ 4, we have

W (S) ≥ 4(q−1+ν/2+(n−2))−3q+ρ

= q+4(n−3)+2ν+ρ.

Since n≥ 2 and q≥ 4, this yields W (S)≥ 0 and we are done.
Assume now |X ∩D| ≥ 4. Then n≥ 3.
• The case λ = 2 cannot occur here since it would imply n = 2.
• If λ = 1, let x ∈ V be the sole loopy vertex. Since k < 3, all true edges

are incident to x. Thus all edges of G are of the form {x,u} with u ∈ V , and
|E| = |V | = n. Since x is of largest degree, namely n, it follows that x ∈ V ∩
P by Corollary 4.8. Since all edges are pairwise adjacent, all edge weights are
distinct, whence |X ∩D| = |E| = n by Proposition 3.12. Hence V ∩D ⊆ {x2} by
Proposition 4.17. It follows that |V ∩P| ≥ n−1, whence |P| ≥ n by Lemma 4.6.
Plugging the above information on |X ∩D| and |P| into (14), we get

W (S) ≥ n(q−1+ν/2+(n−2))−nq+ρ

= n(n−3)+nν/2+ρ,

and we are done since n≥ 3.
• Finally, if λ= 0, then since |E| ≥ 4, G must be a star at a vertex x with at least

3 legs. Hence x∈V ∩P. Since x is nonloopy, we have x2 /∈ X . The same argument
as above, using that all edges of G are of the form {x,u} with u ∈V \{x}, yields
|X ∩D|= |E|= n and V ∩D = /0 here. Hence |P| ≥ n+1, yielding

W (S) ≥ (n+1)(q−1+ν/2+(n−2))−nq+ρ

= q+n(n−3)+nν/2+ρ.

This concludes the proof in case k = 2.

5.3 Proof in case k = 3

We start with a general remark on loopy graphs H with vm(H) = 3.

Lemma 5.4. Let H be a loopy graph such that vm(H) = 3. Then λ(H)≥ 1, and
either K3 ⊂ H ⊆ LK3, or else all true edges of H share a common vertex.

Proof. Since vm(H) is odd, it follows that H has at least one loop. Since vm(H)<
4, any two true edges are adjacent. Therefore, either H contains a triangle, in
which case |V (H)| = 3 and 1 ≤ λ(H) ≤ 3, or else all true edges of H share a
common vertex and 1≤ λ(H)≤ 2.
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Let us go back to our graph G = G(S). We have 1 ≤ λ ≤ k = 3 ≤ n. In the
present case, it follows from Theorem 3.24 that

(15) τ(X)≥ (3(q−1)+ν)/2+(n−3).

We start with an easy particular case.

Proposition 5.5. If k = 3 and |X ∩D| ≤ 4, then W (S)≥ 0.

Proof. As usual, we assume |P|,q ≥ 4. By (15) we have τ(X) ≥ 3(q− 1)/2.
Hence

W (S) ≥ |P|3(q−1)/2−4q+ρ

≥ 6(q−1)−4q+ρ

= 2(q−3)+ρ

≥ 2+ρ.

Thus, from now on in this section, we assume |X∩D| ≥ 5, whence in particular
|E(G)| ≥ 5.

• Case λ = 3. Then n = 3 and hence 5≤ |X ∩D| ≤ |E| ≤ 6. By (15) we have
τ(X)≥ (3(q−1)+ν)/2, and so

W (S) = |P|τ(X)−|X ∩D|q+ρ

≥ |P|(3(q−1)+ν)/2−|X ∩D|q+ρ

≥ 6(q−1)+2ν−|X ∩D|q+ρ.

◦ Assume first |X ∩D| = 6. Then |E| = 6, so that G is isomorphic to LK3 and
so all six edges are active. (See Definition 3.7.) Moreover, all edge weights are
distinct since |X ∩D|= |E| here. The above inequalities imply

W (S)≥−6+2ν+ρ.

– If ν = 0, then all six edges of G are weak, whence ρ≥ 6 by Corollary 3.21.
It follows that W (S)≥ 0 and we are done.

– If ν = 1 then all edges of G, except exactly one loop, are weak. Therefore
ρ≥ 5, whence W (S)≥ 1.

– If ν = 2, then since ν < 3 = k, all three matchings of G = LK3 have a weak
edge. Hence ρ≥ |E0(G)| ≥ 3. It follows that W (S)≥−6+4+3 = 1.

– Finally, if ν = 3 then W (S)≥ ρ and we are done.
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◦ Assume now |X ∩D|= 5. Then |E|= 5 or 6. We now have

(16) W (S)≥ q−6+2ν+ρ.

Moreover, since G coincides here with either LK3 or LK3 minus a true edge, all
edges of G are active as easily seen.

– If ν = 0, all active edges are weak, whence ρ ≥ 4. Hence (16) implies
W (S)≥ 2 and we are done.

– If ν≥ 1 then (16) implies W (S)≥ ρ and we are done.

• Case λ = 2. Let x1,x2 denote the two loopy vertices. At the very least,
besides its two loops, G has one true edge adjacent to exactly one of the loopy
vertices, say x1. Now, either G is contained in the graph with the edge {x1,x2}
plus pendant edges incident to x1, or else G is contained in LK3 minus one loop,
in which case n = 3 and |E(G)| ≤ 5.
◦ Assume first that G is contained in the graph with the edge {x1,x2} plus

n− 2 pendant edges incident to x1. Among the n vertices, at most two belong
to V ∩D. Hence |V ∩P| ≥ n− 2, so that |P| ≥ n− 1 by Lemma 4.6, and more
precisely |P| ≥ max(n− 1,4). We have |E(G)| ≤ 3+ (n− 2) = n+ 1, so that
|X ∩D| ≤ n+1. By (15), it follows that

W (S)≥max(n−1,4)((3(q−1)+ν)/2+(n−3))− (n+1)q+ρ.

− If n≥ 5, we get

W (S) ≥ (n−1)((3(q−1)+ν)/2+(n−3))− (n+1)q+ρ

≥ (n−5)(q−1)/2+(n−1)(ν/2+n−4)−2+ρ

≥ 4(ν/2+1)−2+ρ

= 2ν+2+ρ.

− If 3≤ n≤ 4, and using |P| ≥ 4, we get

W (S) ≥ 4((3(q−1)+ν)/2+(n−3))− (n+1)q+ρ

= 6(q−1)+2ν+4(n−3)− (n+1)(q−1)− (n+1)+ρ

= (5−n)(q−4)+2ν+6−4+ρ

≥ 2ν+2+ρ.

◦ Assume now that G is contained in LK3 minus one loop. Then n = 3 and
|X ∩D| ≤ |E(G)| ≤ 5. Moreover, as easily seen by inspection, at least 4 edges of
G are active.
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– If ν = 0, all active edges are weak, whence ρ≥ 4. Hence, with |X ∩D| ≤ 5,
it follows from the above that W (S)≥ 2+ρ and we are done.

– Assume now ν≥ 1. By (15), we have

τ(X)≥ (3(q−1)+ν)/2.

It follows that

W (S) ≥ 4((3(q−1)+ν)/2−5q+ρ

= 6(q−1)+2ν−5q+ρ

= q−6+2ν+ρ

≥ ρ

since q≥ 4 and ν≥ 1.

• Case λ = 1. Then G contains one loopy vertex x and one nonincident true
edge. If G contains a triangle, then |E| ≤ 4 since k = 3, as easily seen. This is
incompatible with our current assumption |X ∩D| ≥ 5.

Therefore G is triangle-free. Hence G consists of the loopy vertex x and a star
T centered at a distinct vertex y. Since |E| ≥ 5 by our current assumption, T has
at least 3 pendant edges. And if T is connected to x, then the connecting edge
is between y and x, for otherwise we would have k ≥ 4. In any case, we have
|E| ≤ n+1.

We claim that V ⊂ P. First y ∈ V ∩P since it has maximal degree. We also
have x ∈V ∩P. For otherwise, since x is loopy, we have x2 ∈ X ∩D, whence any
proper factor of x would also be a loopy vertex in G by Lemma 4.13, contradicting
λ = 1. The remaining vertices are all of degree 1 and connected to y, thus they
form an antichain for divisibility. Hence, if any such vertex z pertained to V ∩D,
it would be a monomial in x,y of length at least 2. Now by Lemma 4.12, z cannot
be divisible by y. Hence z is equal to or divisible by x2. Thus yx2 ∈ X , implying
xy ∈V and connected to x. But this is impossible since NG(x)⊆ {x,y}.

By the above and Lemma 4.6, it follows that |P| ≥ n+ 1. Using |X ∩D| ≤
|E| ≤ n+1 as shown earlier, we have

W (S) ≥ |P|τ(X)−|X ∩D|q+ρ

≥ (n+1)τ(X)− (n+1)q+ρ

≥ (n+1)(τ(X)−q)+ρ.

But τ(X)> q, since τ(X)≥ 3(q−1)/2 and q≥ 4. Hence W (S)≥ ρ≥ 0.

The proof of the main theorem in the particular case k = 3 is now complete.
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5.4 Proof in case k = 4

By Proposition 5.3, the value k = 4 is the largest admissible one for k = vm(G)
under the assumption τ(X)≤ 2q−1.

Then n≥ 4, and the general bound τ(X)≥ (k(q−1)+ν)/2+(n− k) yields

τ(X) ≥ 2(q−1)+ν/2+(n−4)
= 2(q−3)+ν/2+n.

This puts strong restrictions on n and ν.

Lemma 5.6. Assume τ(X) ≤ 2q− 1 and k = 4. Then n ∈ {4,5} and ν ≤ 2. If
n = 5, then ν = 0 and τ(X) = 2q−1.

Proof. We have 2(q− 3) + ν/2 + n ≤ τ(X) ≤ 2q− 1. Hence ν/2 + n ≤ 5. It
follows that n≤ 5 and that ν≤ 2 since n≥ 4. If n = 5, then ν = 0 and the above
bounds on τ(X) yield 2(q−3)+5≤ τ(X)≤ 2q−1, whence τ(X) = 2q−1.

5.4.1 The subcase k = 4,n = 5

Throughout this section, we fix the following values of the various parameters and
refer to these hypotheses as the current case:

(17) n = |V (G)|= 5, k = vm(G) = 4, τ(X)≤ 2q−1.

Then ν = 0 and τ(X) = 2q−1 as seen above. In particular, the former implies
that all active edges are weak. This will imply useful lower bounds on ρ = qm−c
and hence on W (S).

We shall need an upper bound on the number of edges of G, actually valid in
a general graph-theoretic setting.

Proposition 5.7. Let H = (V,E) be a loopy graph. If |V | = 5 and vm(H) = 4,
then |E| ≤ 10.

Proof. Set V =V1tV2, where V1 is the set of loopy vertices and V2 =V \V1. Let
E = E1 tE2 tE12, where E1 is the set of edges of the induced subgraph H[V1],
E2 is the edge set of H[V2] and E1,2 = [V1,V2], the set of edges from V1 to V2. We
further denote H1 = H[V1], H2 = H[V2] and H1,2 the bipartite graph with edge set
E1,2.

The proof proceeds by fixing the loop number λ = λ(H) = |V1| and letting it
assume all possible values from vm(H) = 4 to 0.
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The case λ(H) = 4 is impossible. For otherwise, since V2 would consist of a
single nonisolated nonloopy vertex y1, there would be a true edge incident with
y1 and a loopy vertex x1 ∈V1. But then, that edge and the three loops at the other
three vertices in V1 would constitute a matching touching 5 vertices, contrary to
the hypothesis k = 4.

Assume λ(H) = 3. We claim |E| ≤ 8. Set V1 = {x1,x2,x3}, V2 = {y1,y2}.
Since vm(H1) = 3, we must have vm(H2)≤ 1, whence vm(H2) = 0 since H2 has
no loops. Thus y1,y2 are not neighbours in H, i.e. |E2| = 0. Up to renumbering
of V1, we may assume x1 ∈ NH(y1). We claim then that NH(y1) = NH(y2) = {x1}.
Indeed, since y2 is not isolated, it must have a neighbour in V1. But if y2 had a
neighbor other than x1, say x2, then the edges {x1,y1}, {x2,y2} and the loop at
x3 would yield vm(H) = 5, contrary to the hypothesis. Therefore NH(y2) = {x1}.
By symmetry, we get NH(y1) = {x1} as well. Thus |E1,2|= 2. Since |E1| ≤ 6, we
conclude |E| ≤ 8 in the present case. The case |E|= 8 is uniquely realized, up to
isomorphism, by the following loopy graph:

Assume λ(H) = 2. We claim |E| ≤ 9. Indeed, as easily seen, there are ex-
actly three isomorphism classes of edge-maximal loopy graphs H with the given
parameters. These classes have 6, 7 and 9 edges, respectively:
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Assume λ(H) = 1. We claim |E| ≤ 8. Indeed, the unique isomorphism class
of edge-maximal loopy graphs H with the given parameters is the following one,
with 8 edges:

Assume λ(H) = 0. Then |E| ≤ 10. Indeed, the complete graph K5 is the
unique edge-maximal simple graph with the given parameters.

Let us go back to our graph G = G(S) = (V,E). Since |X ∩D| ≤ |E|, the above
result implies |X ∩D| ≤ 10. We start with a reduction to the case |X ∩D| ∈ {8,9}.

Proposition 5.8. In the current case (17), if either |X ∩D| ≤ 7, or V ⊂ P, or
|X ∩D| ≥ 10, then S satisfies Wilf’s conjecture.

Proof.
• Assume |X ∩D| ≤ 7. We have W (S) ≥ |P|(2q− 1)− 7q+ρ. Our assumptions
|P|,q ≥ 4 further yield W (S) ≥ 4(2q− 1)− 7q+ ρ = q− 4+ ρ ≥ ρ and we are
done.
• Assume V ⊂ P. Then |P| ≥ |V |+1 = 6. Hence, using |X ∩D| ≤ 10, we have

W (S) ≥ |P|τ(X)−|X ∩D|q+ρ

≥ 6(2q−1)−10q+ρ

= 2q−6+ρ.

Since q≥ 4 in the current case, we get W (S)≥ 2+ρ and we are done.
• Assume |X ∩D| ≥ 10. By Proposition 5.7, we have |E| ≤ 10. Whence |E|= 10
since |E| ≥ |X ∩D| ≥ 10. Moreover, it follows from the proof of that Proposition
that the only case where |E| = 10 is G = LK5. Since G is regular, it follows
from Corollary 4.8 that V ⊂ P. Thus S satisfies Wilf’s conjecture by the previous
case.
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We next assume |V ∩D|= 1.

Proposition 5.9. In the current case (17), if |V ∩D| = 1 then S satisfies Wilf’s
conjecture.

Proof. The hypotheses imply |V ∩ P| = 4, whence |P| ≥ 5. Moreover, by the
previous result, we may assume |X ∩D| ≤ 9. Then

W (S) ≥ |P|τ(X)−|X ∩D|q+ρ

≥ 5(2q−1)−9q+ρ

= q−5+ρ.

Since ν = 0, and since there is a vertex-maximal matching touching 4 vertices,
it follows that there at least two active weak edges. Corollary 3.21 then implies
ρ≥ 1, and we conclude W (S)≥ 0 as desired.

It remains to treat the case |V ∩D| ≥ 2 and |X ∩D| ∈ {8,9}. From here, we
again proceed by descending values of λ(G) from 4 to 0. The case λ = 4 is
impossible in the present context.

Assume λ = 3. Let x1,x2,x3 be the loopy vertices and y1,y2 the nonloopy
ones. We have seen that |E| ≤ 8 in this case. But since |X ∩D| ≥ 8, it follows that
|X ∩D| = |E| = 8. This only way to achieve this, up to isomorphism, is that G
contains LK3 on the vertices x1,x2,x3 with y1,y2 linked to x1. (See corresponding
picture in the proof of Proposition 5.7.) We have x1 ∈ P since it is of highest
degree. Since |V ∩D| ≥ 2 by assumption, it follows from Proposition 4.17 that
V ∩D consists of leaves, each of the form x2 with x ∈ V ∩P as unique neighbor.
Therefore V ∩D= {y1,y2}, and since both have x1 as unique neighbor, this implies
y1 = y2 = x2

1, an absurdity since y1,y2 are distinct. Hence the present case, namely
n = 5, k = 4, |X ∩D| ≥ 8, |V ∩D| ≥ 2 and λ = 3, cannot occur.

Assume λ = 2. Let x1,x2 be the loopy vertices and y1,y2,y3 the nonloopy
ones. We have seen that |E| ≤ 9 in this case. If |E|= 9, then G is the join between
LK2 and K3, i.e.

G = LK2∨K3

as pictured here:
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x1 x2

y1 y2 y3

Incidentally, note that this graph realizes the first occurrences of W0(S)< 0. (See
[13] for more details.) We further assume |V ∩D| ≥ 2. We claim that

(18) V ∩D = {y1,y2,y3}= {x2
1,x1x2,x2

2}.

Indeed, by Corollary 4.8, the xi belong to V ∩P since they have maximal degree
5, and the yi constitute an antichain for divisibility since they all have degree
2. Hence the vertices in V ∩D are monomials in x1,x2. By symmetry, we may
assume y1 ∈ V ∩D and y1 = x1u for some u ∈ V . Since {x1,y1} ∈ E, it follows
that x2

1u ∈ X . Hence x2
1 ∈V ∩D. Up to symmetry again, we may assume y1 = x2

1.
Since {x2,y1} ∈ E, we have x2

1x2 ∈ X , whence x1x2 ∈V ∩D. Say y2 = x1x2. Since
{x2,y2} ∈ E, it follows that x1x2

2 ∈ X . Hence x2
2 ∈ V ∩D, implying y3 = x2

2. This
proves (18), as claimed. Now, even though |E|= 9 here, Proposition 3.12 implies
|X ∩D| ≤ 7 since two pairs of edges have the same weight, namely

wt({x1,x1x2}) = wt({x2
1,x2}),

wt({x2,x1x2}) = wt({x2
2,x1}).

Therefore this case is settled by Proposition 5.8.
Assume now |E| = |X ∩D| = 8, and still |V ∩D| ≥ 2 of course. Then G is

obtained by suppressing an edge from the graph LK2 ∨K3 above. By Proposi-
tion 4.17, the vertices in V ∩D must all be of degree one. However, in G, at most
one vertex has degree one as easily seen. Therefore this case is impossible.

Assume λ = 1. Then |E| = |X ∩D| = 8 again. As seen above, G is the join
LK1∨T of a loop LK1 with a claw T . However, this case is again made impossible
by Proposition 4.17 since there are no vertices of degree 1.

Assume λ = 0. Again, we may assume |X ∩D| ∈ {8,9} and |V ∩D| ≥ 2. We
have G⊆ K5 since it has 5 vertices and no loops.

The case G = K5 is impossible, for it would imply V ⊂ P, contrary to our
hypotheses. Hence |E| ∈ {8,9} and G is obtained by removing 1 or 2 edges from
K5.
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If |X ∩D|= |E|, then Proposition 4.17 implies that the vertices in V ∩D have
degree 1. But G has no vertices of degree less than 2, so this case is impossible.

It remains to consider the case |X ∩D| = 8, |E| = 9. Thus G is K5 minus one
edge, i.e. G = K3∨K2. Its degree distribution is (3,3,4,4,4). Hence |V ∩P|= 3,
|V ∩D|= 2. Set V ∩P = {x1,x2,x3}, V ∩D = {y1,y2}. Then y1,y2 are monomials
in x1,x2,x3. Assume y1 is divisible by x j for some j, so y1 = x jv for some v ∈
V . Since y1,x j are neighbors, it follows that x jy1 ∈ X , whence x2

jv ∈ X , whence
x2

j ∈ X . Therefore x j is a loopy vertex, in contradiction with the hypothesis λ = 0.
Hence this case is impossible as well.

This completes the verification of Wilf’s conjecture in case k = 4, n = 5 and
τ(X)≤ 2q−1.

5.4.2 The subcase k = 4,n = 4

Throughout this section, the current case is given by the following hypotheses:

(19) n = |V (G)|= 4, k = vm(G) = 4, τ(X)≤ 2q−1.

This implies

(20) τ(X)≥ 2(q−1)+ν/2

and ν≤ 2 in this context, as seen above. We have |E| ≤ 10, the number of edges
of LK4.

Proposition 5.10. In the current case (19), if either |X ∩D| ≤ 6 or V ⊂ P, then S
satisfies Wilf’s conjecture.

Proof. As above, we freely assume |P|,q≥ 4.
• Assume |X ∩D| ≤ 6. Then

W (S) ≥ |P|(2(q−1)+ν/2)−6q+ρ

≥ 8(q−1)+2ν−6q+ρ

= 2q−8+2ν+ρ

≥ 2ν+ρ

and we are done.
• Assume V ⊂ P. Then |P| ≥ 5 here. Thus

W (S) ≥ 5
(
2(q−1)+ν/2

)
−|X ∩D|q+ρ

= (10−|X ∩D|)q+5ν/2−10+ρ.
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We now examine separately the cases |X ∩D|= 10,9,8,7.
◦ If |X ∩D|= 10, then |E|= 10 and G = LK4. Then

W (S)≥ 5ν/2−10+ρ.

Since G = LK4, all 10 edges are active.
– If ν = 0, then all edges are weak, i.e. E = E+

0 . We have ρ ≥ wt(E0), and
since wt is a bijection here, this implies ρ≥ 10. Hence W (S)≥ 0 if ν = 0.

– If ν = 1, then exactly one vertex is touched by a normal edge. Hence all
edges are weak except one loop. It follows that ρ ≥ 9, whence W (S) ≥ 5/2−
10+9, implying W (S)≥ 2.

– Finally, if ν= 2, then at most 2 vertices are touched by a normal edge. Hence
at most 3 edges are normal, and so at least 7 edges are weak. It follows that ρ≥ 7.
Hence W (S)≥ 5−10+7 = 2. This completes the case |X ∩D|= 10.
◦ If |X ∩D|= 9, then W (S)≥ q−10+5ν/2+ρ. Then here also, each edge is

active.
– If ν = 0, then all edges are weak, hence ρ≥ 9. Thus W (S)≥−6+9 = 3.
– If ν = 1, then exactly one loop is normal. Hence there are at least 8 weak

active edges, so that ρ≥ 8. Thus W (S)≥−6+5/2+8, implying W (S)≥ 5.
– Finally, if ν = 2, then at most 2 vertices are touched by normal edges, hence

at most 3 edges are normal. Hence there are at least 6 active weak edges, implying
ρ≥ 6. Hence W (S)≥ 5 and we are done for the case V ⊂ P, |X ∩D|= 9.
◦ If |X ∩D|= 8, then W (S)≥ 2q−10+5ν/2+ρ≥−2+5ν/2+ρ. Then G is

LK4 with at most 2 missing edges. Then, as easily seen by examining the various
possibilities for G, it is straightforward to check that G contains at least 7 active
edges in each case.

– If ν = 0, then the above implies ρ≥ 7, and so W (S)≥−2+ρ≥ 5.
– If ν≥ 1, then W (S)≥−2+5ν/2+ρ≥ 1+ρ and we are done.
◦ If |X ∩D|= 7, then W (S)≥ 3q−10+5ν/2+ρ≥ 2+5ν/2+ρ and we are

done. This completes the proof of the proposition.

Having settled the case |V ∩D|= 0, we now tackle the case |V ∩D|= 1.

Proposition 5.11. In the current case (19), if |V ∩D| = 1 then S satisfies Wilf’s
conjecture.

Proof. Set V ∩D = {u}. It follows from Proposition 4.15 that u = x2 with x∈ P as
its sole neighbor. Hence u is a nonloopy vertex and deg(u) = 1. The latter implies
|E| ≤ 7. Since |X ∩D| ≤ |E| and the case |X ∩D| ≤ 6 has already been settled,
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it remains to examine the case |X ∩D| = |E| = 7. Therefore G consists of LK3
with x as one of the vertices, to which a pendant edge is attached with endvertex
u = x2:

x

x2

Note that G has exactly 4 active edges, the thicker ones in the picture. We have

W (S)≥ 8(q−1)+2ν−7q+ρ = q−8+2ν+ρ.

– If ν = 0 then all active edges of G are weak. Since wt is a bijection here, it
follows that ρ≥ 4. Hence W (S)≥ 0, as desired.

– If ν= 1 then all active edges are weak, except for one normal loop. It follows
that ρ≥ 3 and that W (S)≥ 1.

– If ν≥ 2 then W (S)≥ ρ since q≥ 4.

It remains to consider the cases |V ∩D|= 2,3.

Proposition 5.12. In the current case (19), if |V ∩D| ≥ 2 then S satisfies Wilf’s
conjecture.

Proof. Assume first |V ∩D|= 2. Set V ∩P = {x1,x2} and V ∩D = {u1,u2}. Thus
u1,u2 are monomials in x1,x2. We claim that |X ∩D| ≤ 6. Indeed, as V is a
downset, the only possibilities up to symmetry are

{u1,u2} = {x2
1,x1x2}, {x2

1,x
2
2}, {x3

1,x
2
1}.

Now, since all proper factors of the elements of X ∩D are vertices by Lemma 4.4,
the corresponding only possibilities for X ∩D are

{x3
1,x

2
1x2,x2

1,x1x2,x2
2}, {x3

1,x
3
2,x

2
1,x1x2,x2

2}, {x4
1,x

3
1,x

2
1,x

2
1,x1x2,x2

2},

respectively, as is straightforward to check. For instance, if {u1,u2}= {x2
1,x1x2},

then x1x2
2 cannot belong to X ∩D since its proper factor x2

2 is not in V . This

30



concludes the proof of the claim, and hence of the case |V ∩D| = 2 by Proposi-
tion 5.10.

Assume finally |V ∩D|= 3. Set V ∩P = {x}. Then again, since V is a downset
and made of monomials in x, it follows that V ∩D = {x2,x3,x4}. Therefore X ∩
D = {x2,x3,x4,x5} and we are done again.

This concludes our proof of Theorem 1.1. We close this section with a straight-
forward consequence.

Corollary 5.13. Wilf’s conjecture holds for all numerical semigroups of multi-
plicity m≤ 12.

Proof. Let S be a numerical semigroup of multiplicity m ≤ 12. If |P| ≤ 3 then S
satisfies Wilf’s conjecture by [15]. If |P| ≥ 4 then |P| ≥ m/3 since m ≤ 12, and
we conclude with Theorem 1.1.

Remark 5.14. Corollary 5.13 has just been improved with a verification of Wilf’s
conjecture up to multiplicity m ≤ 18, by computer calculations with a specially
developed algorithm based on the Kunz polytope and polyhedral geometry [2].

6 Equivalence of numerical semigroups
In this section, we investigate the range of the map S 7→ G(S) and we briefly
consider its fibers.

6.1 Realizability
Given any loopy graph G, is there a numerical semigroup S such that G(S) is
isomorphic to G? The answer is given below.

We first recall a notation from [11]. If x1, . . . ,xn, t are positive integers, we
denote by 〈x1, . . . ,xn〉t the numerical semigroup defined as follows:

〈x1, . . . ,xn〉t = 〈x1, . . . ,xn〉∪ [t,∞[.

This construction makes sense even if the xi are not globally coprime. Note that
the conductor c of 〈x1, . . . ,xn〉t satisfies c≤ t.

Theorem 6.1. Let G = (V,E) be a loopy graph. Then there exist infinitely many
numerical semigroups S such that G(S) is isomorphic to G.
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Proof. Set n = |V |. Take m sufficiently large, and choose any integer sequence
x1, . . . ,xn satisfying the following two conditions:

• m/3≤ x1 < · · ·< xn < (m−1)/2,
• the xi + x j are pairwise distinct.

Then the n+
(n+1

2

)
elements of the set

{x1, . . . ,xn}∪{xi + x j | 1≤ i≤ j ≤ n}

are pairwise distinct mod m. This is because xi ∈ [m/3,(m− 1)/2[ and xi + x j ∈
[2m/3,m−1[ for all i, j. Let

S0 = 〈m,m+ x1, . . . ,m+ xn〉2m.

The above directly implies G(S0) = LKn. To obtain G itself, we need only
erase in LKn those edges not belonging to G. For each edge {m+ xi,m+ x j} to
be erased, it suffices to add to S0 the new generator m+ xi + x j. This will yield S
such that G(S) = G. Details are left as an exercise to the reader.

For instance, here are realizations of the complete loopy graph LKn as G(S)
for infinitely many numerical semigroups S. For a subset A in Z or Z/mZ, we
denote 2A = A+A = {a+b | a,b ∈ A}.

Example 6.2. The graph LK3 is realized by the numerical semigroup

S = 〈m,m+1,m+3,m+7〉2m

with the condition 2(m+7) ≤ 2m+(m−1), i.e. with m ≥ 15. Setting A = {m+
1,m+3,m+7}, and computing A∪2A in Z/mZ, we have

A∪2A≡ {1,3,7}t{2,4,8,6,10,14} mod m.

Since m ≥ 15, these 9 elements are nonzero and pairwise distinct mod m. More-
over, 2A⊆ [c,c+m[= [2m,3m−1[. Hence G(S) is the loopy-complete triangle.

Example 6.3. More generally, the graph LKn is realized by the numerical semi-
group

S = 〈m,m+1,m+3, . . . ,m+2n−1〉2m

with the condition 2(m+2n−1)≤ 2m+(m−1), i.e. with m≥ 2n+1−1. Setting
A = {m+1,m+3, . . .m+2n−1}, and computing A∪2A in Z/mZ, we have

A∪2A≡ {1,3, . . . ,2n−1}t{2,4,8, . . . ,2n+1−2} mod m.
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6.2 Graph-equivalence
We now briefly consider the fibers of the map S 7→ G(S).

Definition 6.4. Let S,S′ be two numerical semigroups. We say that S,S′ are graph-
equivalent if their associated graphs G(S),G(S′) are isomorphic.

For instance, the class of numerical semigroups S such that G(S) = /0 is well
known. It coincides with the set of so-called maximal embedding dimension nu-
merical semigroups, i.e. those for which e = m, where e = |P| is the embedding
dimension and m is the multiplicity. Indeed, we have

|P|= m ⇐⇒ P = X t{m} ⇐⇒ X ∩D = /0,

where P,X are the sets of primitive and nonzero Apéry elements of S, respectively.

The following tables give, for all 1≤ g≤ 20,

• the number ng of numerical semigroups of genus g,

• the number γg of equivalence classes of numerical semigroups of genus g.

g 1 2 3 4 5 6 7 8 9 10 11 12
ng 1 2 4 7 12 23 39 67 118 204 343 592
γg 1 1 2 3 4 6 11 15 27 41 66 115

g 13 14 15 16 17 18 19 20
ng 1001 1693 2857 4806 8045 13467 22464 37396
γg 190 322 569 1014 1761 3107 5475 9621

Those values of γg were obtained using the function IsomorphicGraphQ in
Mathematica 10. Needless to say, it would be very interesting to determine the
long-term behavior of the sequence γg.

For instance, for g = 7, the 39 numerical semigroups of genus 7 regroup into
γ7 = 11 equivalence classes. The eleven nonisomorphic loopy graphs arising this
way are the following ones: the empty graph, the two loopy graphs with 1 edge,
the five loopy graphs with 2 edges, and three more loopy graphs with 3 edges,
namely
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We conclude this paper with a question. Can one show a priori that if a numer-
ical semigroup S satisfies Wilf’s conjecture, then so do all equivalent numerical
semigroups S′ ∼ S? For instance, the less dense G(S) is, the easier one may ex-
pect checking Wilf’s conjecture on S will be. At any rate, the proofs in this paper
show that the properties of the graphs G(S) for the numerical semigroups S under
consideration play a central role towards this endeavor.

Acknowledgments. The author wishes to thank Manuel Delgado and Jean
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