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NEW PANCAKE SERIES FOR π

YANNICK SAOUTER

Introduction. In [1], Dalzell proved that π = 22
7 −

∫ 1

0
t4(1−t)4

1+t2 dt. He then used

this equation to derive a new series converging to π. In [2], Backhouse studied

the general case of integrals of the form
∫ 1

0
tm(1−t)n

1+t2 dt and derived conditions on
m and n so that they could be used to evaluate π. As a sequel, he derived ac-
curate rational approximations of π. This work was extended in [3] where new
rational approximations of π are obtained. Some related integrals of the forms∫ 1

0
tm(1−t)n

1+t2 P (t)dt and
∫ 1

0
tm(1−t)n√

1−t2 P (t)dt with P (t) being of polynomial form are

also investigated. In [4], the author gives more new approximations and new series
for the case m = n = 4k. In [5], new series for π are obtained with the integral∫ α

0
t12m(α−t)12m

1+t2 dt where α = 2−
√

3. The general problem of improving the conver-
gence speed of the arctan series by transformation of the argument has also been
considered in [6, 7]. In this work, the author considers an alternative form for the
denominators in integrals. As a result, new series are obtained for multiples of π
by some algebraic numbers.
The alternative integral. In the following θ will be a real number with 0 < θ < π

and we define Iθ =
∫ 1

0
dt

t2−2t cosθ+1 . We have t2 − 2t cosθ + 1 = (t − eiθ)(t − e−iθ)
and thus Iθ is a proper well-defined integral. The computation of Iθ is a classical
exercise of integration. We have

Iθ =

∫ 1

0

dt

(t− cos θ)2 + sin2 θ
=

1

sin2 θ

∫ 1

0

dt

1 + ( t−cos θ
sin θ )2

=
1

sin θ

∫ 1−cos θ
sin θ

− cos θ
sin θ

du

1 + u2

Moreover:

1− cos θ

sin θ
=

1− cos2(θ/2) + sin2(θ/2)

2 sin(θ/2) cos(θ/2)
=

sin(θ/2)

cos(θ/2)
= tan(θ/2)

−cos θ

sin θ
= − 1

tan(θ)
= − tan

(π
2
− θ
)

= tan
(
θ − π

2

)
Therefore:

Iθ =
1

sin θ

[
arctanu

]tan(θ/2)

tan
(
θ−π2

) =
π − θ

2 sin θ

This integral can alternatively be computed by first decomposing the integrand as:

1

t2 − 2t cosθ + 1
=

1

2i sin θ

[ 1

t− eiθ
− 1

t− e−iθ
]

and then integrating with the function log extended to the complex domain.
1
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Factorizing pancake functions. We let Pθ(x) = (x − eiθ)(x − e−iθ). Let now
A(x) = xm(1 − x)n be a function with m, n integers such that m,n ≥ 1. Such
functions have been called pancake functions because of the shape of their graph.
Following the steps of previous works, we are then looking for a factorization
A(x) = Pθ(x)Q(x) + R where Q(x) is a polynomial with real coefficients and R
is a real constant. In the following, such a decomposition will be called an accept-
able factorization. We then prove the following theorem.

Theorem 1. Acceptable factorizations exist only for θ being a rational multiple of
π. Let then θ = rπ/s with r and s positive integers with 0 < r < s and (r, s) = 1.
Then an acceptable factorization exists according to the following criteria:

• For any r and s values, the pair (m,n) with n even is a solution if only if
m+ n/2 = 0[mod s],
• If r and s are odd, the pair (m,n) with n odd is also a solution if and only
if 2m+ n = 0[mod s].

If an acceptable factorization exists then necessarily A(eiθ) = A(e−iθ) = R.
Since A(x) is a polynomial with real coefficients, we have Ā(x) = A(x̄) for any
x ∈ C. Thus we haveR = R̄ andR is a real number. Reciprocally ifA(eiθ) = R with
R real, then by conjugacy A(e−iθ) = R. Then the polynomial A(x)−R has x− eiθ
and x−e−iθ as factors. Since 0 < θ < π, both factors are distinct andA(x)−R admit
Pθ(x) as a factor. We also have A(eiθ) = eimθ(1−eiθ)n = ei(m+n/2)θ(−2i sin(θ/2))n.
Therefore Arg(eiθ) = ((m + n/2)θ − nπ/2)[mod 2π] and A(eiθ) is real if and only
if:

(m+ n/2)θ = nπ/2[mod π](1)

It is clear that if the latter equation has solutions then θ is necessarily a rational
multiple of π. Therefore let r and s integers such that θ = rπ/s, 0 < r < s and
(r, s) = 1. Equation (1) becomes then successively:

(m+ n/2)rπ = nsπ/2[mod sπ]

(2m+ n)rπ = nsπ[mod 2sπ]

(2m+ n)r = ns[mod 2s]

(2)

We suppose first that n is even, so that n = 2n′ with n′ an integer. Then (2)
successively becomes:

(2m+ 2n′)r = 0[mod 2s]

(m+ n′)r = 0[mod s]

m+ n′ = 0[mod s]

(3)

since (r, s) = 1. We suppose now that n is odd. Then (2) becomes:

(2m+ n)r = s[mod 2s](4)

Modulo 2, we obtain then r = s[mod 2]. Therefore, since (r, s) = 1, we have
necessarily r = s = 1[mod 2] and both r and s are odd. Modulo s, (4) gives

(2m+ n)r = 0[mod s]

2m+ n = 0[mod s]
(5)

Reciprocally if 2m+ n = 0[mod s] and r = s = 1[mod 2] then (4) is satisfied.
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If θ = π/2, using Theorem 1, the criterion derived in [2] is recovered. Thus
the latter theorem is a generalization of this work. Another remark that can be
made is that, since acceptable factorizations exist only for values of θ being rational
multiple of π, in these cases, corresponding values of Iθ are products of π by some
real algebraic numbers.
Series development. We suppose now that this is the case and this factorization

will be used to develop Iθ in series. For x ∈ (0, 1), we have 1
Pθ(x) = Q(x)

A(x)−R , so that:

Iθ = −
∫ 1

0

Q(x)

R−A(x)

= − 1

R

∫ 1

0

Q(x)

1− A(x)
R

(6)

For any real number t such that t 6= 1 and any integer K ≥ 0, we have

K∑
k=0

tk =
1− tK+1

1− t

We suppose then that |A(x)/R| ≤M < 1 for all x in (0, 1). Therefore we have

RIθ +

K∑
k=0

[ ∫ 1

0

(A(x)

R

)k
Q(x)dx

]
= −

∫ 1

0

(A(x)/R)K+1Q(x)

1− A(x)
R

dx(7)

However, by the mean value theorem, we have∣∣∣∣∣
∫ 1

0

(A(x)/R)K+1Q(x)

1− A(x)
R

∣∣∣∣∣ ≤ sup
x∈(0,1)

∣∣∣∣∣ (A(x)/R)K+1Q(x)

1− A(x)
R

∣∣∣∣∣
≤ MK+1

1−M
sup

x∈(0,1)

|Q(x)|
(8)

Now it is clear that the right-hand side of (8) tends to 0 when K goes to infinity.
Therefore, passing to the limit, we obtain

Iθ = −
∞∑
k=0

1

Rk+1

∫ 1

0

Q(x)(A(x))kdx(9)

The same result can be obtained by using the uniform convergence of the series∑∞
k=0 t

k to the function 1
1−t in (0,M). The commutation of sum and integral is

then justified and the result follows. It can also be remarked that functions (A(x))k

are pancake functions and since Q(x) is a polynomial, integrands of (9) are sums
of pancake functions. At this point, it is useful to recall definitions and well-known
properties of the Beta and Gamma Eulerian functions.

Definition 2. The function Γ(x) is defined for x > 0 by Γ(x) =
∫∞

0
e−ttx−1dt.

If n ∈ N, we have Γ(n + 1) = n!. The function B(x, y) is defined for x, y > 0 by

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt and we have B(x, y) = Γ(x)Γ(y)

Γ(x+y) .

Therefore the integral Iθ is the sum of beta integrals and can be evaluated by

the use of Definition 2. More precisely, if we set Q(x) =
∑deg(Q)
i=0 qix

i, we have, if
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convergence is assumed:

Iθ = −
∞∑
k=0

1

Rk+1

∫ 1

0

[ deg(Q)∑
i=0

qix
i

]
xmk(1− x)nkdx

= −
∞∑
k=0

1

Rk+1

[ deg(Q)∑
i=0

qi

∫ 1

0

xmk+i(1− x)nkdx

]

= −
∞∑
k=0

1

Rk+1

[ deg(Q)∑
i=0

qiB(mk + i+ 1, nk + 1)

]

= −
∞∑
k=0

1

Rk+1

[ deg(Q)∑
i=0

qi
Γ(mk + i+ 1)Γ(nk + 1)

Γ((m+ n)k + i+ 2)

= −
∞∑
k=0

1

Rk+1

[ deg(Q)∑
i=0

qi
(mk + i)!(nk)!

((m+ n)k + i+ 1)!

]

(10)

Using Stirling’s formula, i.e. n! ∼
√

2πn(ne )n, it is then possible to find the order
of convergence of the final right-hand side of (10). We have, for k large:

(11)
(mk + i)!(nk)!

((m+ n)k + i+ 1)!
∼(

mk + i

e

)mk+i(
nk

e

)nk(
e

(m+ n)k + i+ 1

)(m+n)k+i+1

×√
2π(mk + i)(nk)

(m+ n)k + i+ 1

∼ e
(mk + i)mk+i(nk)nk

((m+ n)k + i+ 1)(m+n)k+i+1

√
2πmnk

m+ n

= e
(mk)mk+i(nk)nk

((m+ n)k)(m+n)k+i+1

(1 + i
mk )mk+i

(1 + i+1
(m+n)k )(m+n)k+i+1

√
2πmnk

m+ n

∼ e

k

(m)mk+i(n)nk

((m+ n))(m+n)k+i+1

ei

ei+1

√
2πmnk

m+ n

∼ 1√
k

(
mmnn

(m+ n)m+n

)k
mi

(m+ n)i+1

√
2πmn

(m+ n)

Therefore the final right-hand side of (10) is convergent if and only if mmnn

(m+n)m+n <

|R|. In order to justify the passage to the limit in (10), we need to check that
|A(x)| < |R| on the entire interval (0, 1). Therefore, we are now looking for an
upper bound for function A(x). Since the function log is concave on the positive
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real axis, for x ∈ (0, 1), we have, successively:

m log(nx) + n log(m−mx)

m+ n
≤ log

(
mn

m+ n

)
(nx)m(m−mx)n ≤

(
mn

m+ n

)m+n

A(x) =
(nx)m(m−mx)n

nmmn
≤ mmnn

(m+ n)m+n
= A

(
m

m+ n

)
Therefore we obtain the same condition as in the previous paragraph. Moreover,

since the bound is tight, the condition cannot be relaxed.
With a little work, it is also possible to find an upper bound independent of m

and n. For m, n ≥ 1, we have(
m

n+m

)m(
n

n+m

)n
≤ mn

(m+ n)2
=

1

2 + m
n + n

m

≤ 1

4

However, we have R = A(eiθ) and from preceding computations, we obtain |R| =
(2 sin(θ/2))n. Therefore if we have

2n+2 sinn(θ/2) > 1

the convergence criterion is met and the series development of (9) is valid. Alter-
natively, the following sensitive criterion can also be used:

2n sinn(θ/2) >
mmnn

(n+m)m+n

Examples. In this section, we detail computations for some values of θ in both
cases of Theorem 1 if possible. The case θ = π/2 is the classical case already
exposed in [2] and is thus not addressed.
• θ = π/3. We have then r = 1, s = 3, Iπ/3 = 2π

3
√

3
and Pπ/3(x) = x2 − x + 1.

From what precedes, acceptable pairs are of the form (m, 2n) with m+n = 0[mod 3]
and of the form (m,n) with n odd and 2m + n = 0[mod 3]. The simplest case for
odd n is obtained with the pair (m,n) = (1, 1). We have then A(x) = x(1 − x),
R = 1 and Q(x) = −1. We have 2n+2 sinn(θ/2) = 4 and the convergence criterion
is met. From (10), we have then:

2π

3
√

3
=

∞∑
k=0

(k!)2

(2k + 1)!

From (11), the convergence of the series is of order O(k−1/2.4−k). This series was
already obtained by Euler [8] using his transformation of the arctan summation
series. For even n, the simplest case is obtained by the pair (m,n) = (2, 2). We have
then A(x) = (x(1− x))2, R = 1 and Q(x) = x2 − x− 1. Since 2n+2 sinn(θ/2) = 4,
the series development is valid and (10) gives

2π

3
√

3
=

∞∑
k=0

[
(2k)!(2k)!

(4k + 1)!
+

(2k + 1)!(2k)!

(4k + 2)!
− (2k + 2)!(2k)!

(4k + 3)!

]

=

∞∑
k=0

(2k)!2

(4k + 3)!
(20k2 + 24k + 7)

The general term of this series is then of order O(k−1/2.16−k).
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• θ = π/4. We have then r = 1, s = 4, Iπ/4 = 3
√

2π
8 and Pπ/4(x) = x2−

√
2x+ 1.

From Theorem 1, acceptable factorizations exist only for even values of n and the
condition is then m+ n/2 = 0[ mod 4]. The simplest case is then (m,n) = (3, 2)

for which R = 2−
√

2. We have 2n+2 sinn(θ/2) ∼ 2.34 > 1, so that the convergence
criterion is met. After computations the following series is obtained from (10).

3
√

2π

8
=

∞∑
k=0

(3k)!(2k)!

(5k + 4)!

1

(2−
√

2)k+1
×

[(163− 20
√

2)k3 + (298− 46
√

2)k2 + (177− 34
√

2)k + 34− 8
√

2]

Using (11), it is found that the general term of this series is of order O
(
k−1/2.(

108
3125(2−

√
2)

)k)
. The second simplest case is (m,n) = (2, 4) for which we have

R = −6 + 4
√

2. We have then 2n+2 sinn(θ/2) ∼ 1.37 > 1 and the convergence
criterion is met. We obtain

3
√

2π

8
=

∞∑
k=0

(2k + 1)!(4k)!

(6k + 5)!

1

(−6 + 4
√

2)k+1
×

[(−2576 + 1560
√

2)k3 + (−4648 + 2800
√

2)k2 + (−2592 + 1550
√

2)k

− 424 + 250
√

2]

The general term of this series is O
(
k−1/2.

(
16

729.(6−4
√

2)

)k)
.

• θ = π/6. In this case, we have then r = 1, s = 6, Iπ/6 = 5π
6 and Pπ/6(x) =

x2 −
√

3x+ 1. Again acceptable factorizations only exist for even values of n. The
two simplest cases are (m,n) = (5, 2) and (m,n) = (4, 4). In the first case, we have
2n+2 sinn(θ/2) ∼ 1.07 and the convergence criterion is met. In the second case,
we have 2n+2 sinn(θ/2) ∼ 0.28. However, we also have 2n sinn(θ/2) ∼ 0.07 and
mmnn/(m + n)m+n = 1/256 ∼ 0.004 and thus the sensitive convergence criterion
is met. We obtain then the following two series.

5π

6
=

∞∑
k=0

(2k)!(5k)!

(7k + 6)!

1

(2−
√

3)k+1
×

[(19149− 2072
√

3)k5 + (55007− 7068
√

3)k4 + (61627− 9464
√

3)k3

+ (33685− 6240
√

3)k2 + (9008− 2036
√

3)k + 948− 264
√

3]

5π

6
=

∞∑
k=0

(4k)!(4k + 3)!

(8k + 7)!

1

(−7 + 4
√

3)k+1
×

[(−13888 + 7552
√

3)k3 + (−26544 + 14448
√

3)k2 + (−16184 + 8828
√

3)k

− 3144 + 1722
√

3]

General terms of these series are respectively O
(
k−1/2.

(
12500

823543.(2−
√

3)

)k)
and

O
(
k−1/2.

(
1

256.(7−4
√

3)

)k)
.

• θ = π/15. In this case, we have r = 1 and s = 15. From Theorem (1),
acceptable factorizations exist for (m,n) such that n is odd and 2m + n = 0[
mod 15]. A possible case is (m,n) = (5, 5). However, we have then 2n sinn(θ/2) ∼
0.0004 while mmnn/(m + n)m+n = 1/1024 ∼ 0.00097. Therefore, in this case, the
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sensitive convergence criterion fails. Equation (6) still holds but the right-hand side
of (7) is then diverging, so that (10) is no more justified. Therefore the existence of
an acceptable factorization is not a sufficient condition to obtain convergent series.
However, in this case, other choices of parameters, like (m,n) = (7, 1), give proper
convergent series.
Acknowledgements. The author wishes to warmly thank the anonymous referee
for his rigorous reading of this note and his helpful comments on the initial man-
uscript. Additional thanks are in order for the example of divergent series of the
last paragraph which has been suggested by the referee.
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