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NEW PANCAKE SERIES FOR π

1 0 t 4 (1-t) 4
1+t 2 dt. He then used this equation to derive a new series converging to π. In [START_REF] Backhouse | Pancake functions and approximation to π[END_REF], Backhouse studied the general case of integrals of the form

1 0 t m (1-t) n
1+t 2 dt and derived conditions on m and n so that they could be used to evaluate π. As a sequel, he derived accurate rational approximations of π. This work was extended in [START_REF] Lucas | Integral proofs that 355/113 > π[END_REF] where new rational approximations of π are obtained. Some related integrals of the forms

1 0 t m (1-t) n
1+t 2 P (t)dt and 1 0 t m (1-t) n √ 1-t 2 P (t)dt with P (t) being of polynomial form are also investigated. In [START_REF] Lucas | Approximations to π derived from integrals with nonnegative integrands[END_REF], the author gives more new approximations and new series for the case m = n = 4k. In [START_REF] Bouey | A new series for π via polynomial approximations to arctangent[END_REF], new series for π are obtained with the integral

α 0 t 12m (α-t) 12m 1+t 2
dt where α = 2 -√ 3. The general problem of improving the convergence speed of the arctan series by transformation of the argument has also been considered in [START_REF] Scott | Another series for the inverse tangent[END_REF][START_REF] Sofo | New identities for the arctan function[END_REF]. In this work, the author considers an alternative form for the denominators in integrals. As a result, new series are obtained for multiples of π by some algebraic numbers. The alternative integral. In the following θ will be a real number with 0 < θ < π and we define

I θ = 1 0 dt t 2 -2t cosθ+1 . We have t 2 -2t cosθ + 1 = (t -e iθ )(t -e -iθ )
and thus I θ is a proper well-defined integral. The computation of I θ is a classical exercise of integration. We have

I θ = 1 0 dt (t -cos θ) 2 + sin 2 θ = 1 sin 2 θ 1 0 dt 1 + ( t-cos θ sin θ ) 2 = 1 sin θ 1-cos θ sin θ -cos θ sin θ du 1 + u 2 Moreover: 1 -cos θ sin θ = 1 -cos 2 (θ/2) + sin 2 (θ/2) 2 sin(θ/2) cos(θ/2) = sin(θ/2) cos(θ/2) = tan(θ/2) - cos θ sin θ = - 1 tan(θ) = -tan π 2 -θ = tan θ - π 2 
Therefore:

I θ = 1 sin θ arctan u tan(θ/2) tan θ-π 2 = π -θ 2 sin θ
This integral can alternatively be computed by first decomposing the integrand as:

1 t 2 -2t cosθ + 1 = 1 2i sin θ 1 t -e iθ - 1 t -e -iθ
and then integrating with the function log extended to the complex domain.

1 Factorizing pancake functions. We let P θ (x) = (x -e iθ )(x -e -iθ ). Let now A(x) = x m (1 -x) n be a function with m, n integers such that m, n ≥ 1. Such functions have been called pancake functions because of the shape of their graph. Following the steps of previous works, we are then looking for a factorization A(x) = P θ (x)Q(x) + R where Q(x) is a polynomial with real coefficients and R is a real constant. In the following, such a decomposition will be called an acceptable factorization. We then prove the following theorem.

Theorem 1. Acceptable factorizations exist only for θ being a rational multiple of π. Let then θ = rπ/s with r and s positive integers with 0 < r < s and (r, s) = 1. Then an acceptable factorization exists according to the following criteria:

• For any r and s values, the pair (m, n) with n even is a solution if only if m + n/2 = 0[mod s],

• If r and s are odd, the pair (m, n) with n odd is also a solution if and only

if 2m + n = 0[mod s].
If an acceptable factorization exists then necessarily A(e iθ ) = A(e -iθ ) = R. Since A(x) is a polynomial with real coefficients, we have Ā(x) = A(x) for any x ∈ C. Thus we have R = R and R is a real number. Reciprocally if A(e iθ ) = R with R real, then by conjugacy A(e -iθ ) = R. Then the polynomial A(x) -R has x -e iθ and x-e -iθ as factors. Since 0 < θ < π, both factors are distinct and A(x)-R admit P θ (x) as a factor. We also have A(e iθ ) = e imθ (1-e iθ ) n = e i(m+n/2)θ (-2i sin(θ/2)) n . Therefore Arg(e iθ ) = ((m + n/2)θ -nπ/2)[mod 2π] and A(e iθ ) is real if and only if:

(m + n/2)θ = nπ/2[mod π] (1) 
It is clear that if the latter equation has solutions then θ is necessarily a rational multiple of π. Therefore let r and s integers such that θ = rπ/s, 0 < r < s and (r, s) = 1. Equation (1) becomes then successively:

(m + n/2)rπ = nsπ/2[mod sπ] (2m + n)rπ = nsπ[mod 2sπ] (2m + n)r = ns[mod 2s] (2)
We suppose first that n is even, so that n = 2n with n an integer. Then (2) successively becomes:

(2m + 2n )r = 0[mod 2s] (m + n )r = 0[mod s] m + n = 0[mod s] (3) 
since (r, s) = 1. We suppose now that n is odd. Then (2) becomes:

(2m + n)r = s[mod 2s] (4)
Modulo 2, we obtain then r = s[mod 2]. Therefore, since (r, s) = 1, we have necessarily r = s = 1[mod 2] and both r and s are odd. Modulo s, (4) gives

(2m + n)r = 0[mod s] 2m + n = 0[mod s] (5) Reciprocally if 2m + n = 0[mod s] and r = s = 1[mod 2] then (4) is satisfied.
If θ = π/2, using Theorem 1, the criterion derived in [START_REF] Backhouse | Pancake functions and approximation to π[END_REF] is recovered. Thus the latter theorem is a generalization of this work. Another remark that can be made is that, since acceptable factorizations exist only for values of θ being rational multiple of π, in these cases, corresponding values of I θ are products of π by some real algebraic numbers. Series development. We suppose now that this is the case and this factorization will be used to develop I θ in series. For x ∈ (0, 1), we have 1 P θ (x) = Q(x) A(x)-R , so that:

I θ = - 1 0 Q(x) R -A(x) = - 1 R 1 0 Q(x) 1 -A(x) R (6) 
For any real number t such that t = 1 and any integer K ≥ 0, we have

K k=0 t k = 1 -t K+1 1 -t
We suppose then that |A(x)/R| ≤ M < 1 for all x in (0, 1). Therefore we have

RI θ + K k=0 1 0 A(x) R k Q(x)dx = - 1 0 (A(x)/R) K+1 Q(x) 1 -A(x) R dx (7)
However, by the mean value theorem, we have

1 0 (A(x)/R) K+1 Q(x) 1 -A(x) R ≤ sup x∈(0,1) (A(x)/R) K+1 Q(x) 1 -A(x) R ≤ M K+1 1 -M sup x∈(0,1) |Q(x)| (8) 
Now it is clear that the right-hand side of (8) tends to 0 when K goes to infinity. Therefore, passing to the limit, we obtain

I θ = - ∞ k=0 1 R k+1 1 0 Q(x)(A(x)) k dx (9)
The same result can be obtained by using the uniform convergence of the series ∞ k=0 t k to the function 1 1-t in (0, M ). The commutation of sum and integral is then justified and the result follows. It can also be remarked that functions (A(x)) k are pancake functions and since Q(x) is a polynomial, integrands of (9) are sums of pancake functions. At this point, it is useful to recall definitions and well-known properties of the Beta and Gamma Eulerian functions.

Definition 2. The function Γ(x) is defined for x > 0 by Γ(x) = ∞ 0 e -t t x-1 dt. If n ∈ N, we have Γ(n + 1) = n!. The function B(x, y) is defined for x, y > 0 by B(x, y) = 1 0 t x-1 (1 -t) y-1 dt and we have B(x, y) = Γ(x)Γ(y) Γ(x+y) .
Therefore the integral I θ is the sum of beta integrals and can be evaluated by the use of Definition 2. More precisely, if we set Q(x) = deg(Q) i=0 q i x i , we have, if convergence is assumed:

I θ = - ∞ k=0 1 R k+1 1 0 deg(Q) i=0 q i x i x mk (1 -x) nk dx = - ∞ k=0 1 R k+1 deg(Q) i=0 q i 1 0 x mk+i (1 -x) nk dx = - ∞ k=0 1 R k+1 deg(Q) i=0 q i B(mk + i + 1, nk + 1) = - ∞ k=0 1 R k+1 deg(Q) i=0 q i Γ(mk + i + 1)Γ(nk + 1) Γ((m + n)k + i + 2) = - ∞ k=0 1 R k+1 deg(Q) i=0 q i (mk + i)!(nk)! ((m + n)k + i + 1)! (10) Using Stirling's formula, i.e. n! ∼ √ 2πn( n e
) n , it is then possible to find the order of convergence of the final right-hand side of (10). We have, for k large:

(11) (mk + i)!(nk)! ((m + n)k + i + 1)! ∼ mk + i e mk+i nk e nk e (m + n)k + i + 1 (m+n)k+i+1 × 2π(mk + i)(nk) (m + n)k + i + 1 ∼ e (mk + i) mk+i (nk) nk ((m + n)k + i + 1) (m+n)k+i+1 2πmnk m + n = e (mk) mk+i (nk) nk ((m + n)k) (m+n)k+i+1 (1 + i mk ) mk+i (1 + i+1 (m+n)k ) (m+n)k+i+1 2πmnk m + n ∼ e k (m) mk+i (n) nk ((m + n)) (m+n)k+i+1 e i e i+1 2πmnk m + n ∼ 1 √ k m m n n (m + n) m+n k m i (m + n) i+1 2πmn (m + n)
Therefore the final right-hand side of (10) is convergent if and only if m m n n (m+n) m+n < |R|. In order to justify the passage to the limit in (10), we need to check that |A(x)| < |R| on the entire interval (0, 1). Therefore, we are now looking for an upper bound for function A(x). Since the function log is concave on the positive real axis, for x ∈ (0, 1), we have, successively:

m log(nx) + n log(m -mx) m + n ≤ log mn m + n (nx) m (m -mx) n ≤ mn m + n m+n A(x) = (nx) m (m -mx) n n m m n ≤ m m n n (m + n) m+n = A m m + n
Therefore we obtain the same condition as in the previous paragraph. Moreover, since the bound is tight, the condition cannot be relaxed.

With a little work, it is also possible to find an upper bound independent of m and n. For m, n ≥ 1, we have

m n + m m n n + m n ≤ mn (m + n) 2 = 1 2 + m n + n m ≤ 1 4 
However, we have R = A(e iθ ) and from preceding computations, we obtain |R| = (2 sin(θ/2)) n . Therefore if we have

2 n+2 sin n (θ/2) > 1
the convergence criterion is met and the series development of (9) is valid. Alternatively, the following sensitive criterion can also be used:

2 n sin n (θ/2) > m m n n (n + m) m+n
Examples. In this section, we detail computations for some values of θ in both cases of Theorem 1 if possible. The case θ = π/2 is the classical case already exposed in [START_REF] Backhouse | Pancake functions and approximation to π[END_REF] and is thus not addressed.

• θ = π/3. We have then r = 1, s = 3,

I π/3 = 2π 3 √ 3 and P π/3 (x) = x 2 -x + 1.
From what precedes, acceptable pairs are of the form (m, 2n) with m+n = 0[mod 3] and of the form (m, n) with n odd and 2m + n = 0[mod 3]. The simplest case for odd n is obtained with the pair (m, n) = (1, 1). We have then A(x) = x(1 -x), R = 1 and Q(x) = -1. We have 2 n+2 sin n (θ/2) = 4 and the convergence criterion is met. From (10), we have then: 11), the convergence of the series is of order O(k -1/2 .4 -k ). This series was already obtained by Euler [START_REF] Euler | Investigatio quarundam serierum quae ad rationem peripheriae circuli ad diametrum vero proxime definiendam maxime sunt accommodatae[END_REF] using his transformation of the arctan summation series. For even n, the simplest case is obtained by the pair (m, n) = (2, 2). We have then A(x) = (x(1 -x)) 2 , R = 1 and Q(x) = x 2 -x -1. Since 2 n+2 sin n (θ/2) = 4, the series development is valid and (10) gives

2π 3 √ 3 = ∞ k=0 (k!) 2 (2k + 1)! From (
2π 3 √ 3 = ∞ k=0 (2k)!(2k)! (4k + 1)! + (2k + 1)!(2k)! (4k + 2)! - (2k + 2)!(2k)! (4k + 3)! = ∞ k=0 (2k)! 2 (4k + 3)! (20k 2 + 24k + 7)
The general term of this series is then of order O(k -1/2 .16 -k ).

• θ = π/4. We have then r = 1, s = 4, I π/4 = 3 √ 2π 8

and P π/4 (x) = x 2 -√ 2x + 1. From Theorem 1, acceptable factorizations exist only for even values of n and the condition is then m + n/2 = 0[ mod 4]. The simplest case is then (m, n) = (3, 2) for which R = 2 -√ 2. We have 2 n+2 sin n (θ/2) ∼ 2.34 > 1, so that the convergence criterion is met. After computations the following series is obtained from (10).

3 √ 2π 8 = ∞ k=0 (3k)!(2k)! (5k + 4)! 1 (2 - √ 2) k+1 × [(163 -20 √ 2)k 3 + (298 -46 √ 2)k 2 + (177 -34 √ 2)k + 34 -8 √ 2]
Using (11), it is found that the general term of this series is of order O k -1/2 .

108 3125(2- √ 2)
k . The second simplest case is (m, n) = (2, 4) for which we have

R = -6 + 4 √ 2.
We have then 2 n+2 sin n (θ/2) ∼ 1.37 > 1 and the convergence criterion is met. We obtain

3 √ 2π 8 = ∞ k=0 (2k + 1)!(4k)! (6k + 5)! 1 (-6 + 4 √ 2) k+1 × [(-2576 + 1560 √ 2)k 3 + (-4648 + 2800 √ 2)k 2 + (-2592 + 1550 √ 2)k -424 + 250 √ 2]
The general term of this series is O k

-1/2 . 16 729.(6-4 √ 2)
k .

• θ = π/6. In this case, we have then r = 1, s = 6, I π/6 = 5π 6 and P π/6 (x) = x 2 -√ 3x + 1. Again acceptable factorizations only exist for even values of n. The two simplest cases are (m, n) = (5, 2) and (m, n) = (4, 4). In the first case, we have 2 n+2 sin n (θ/2) ∼ 1.07 and the convergence criterion is met. In the second case, we have 2 n+2 sin n (θ/2) ∼ 0.28. However, we also have 2 n sin n (θ/2) ∼ 0.07 and m m n n /(m + n) m+n = 1/256 ∼ 0.004 and thus the sensitive convergence criterion is met. We obtain then the following two series. k .

• θ = π/15. In this case, we have r = 1 and s = 15. From Theorem (1), acceptable factorizations exist for (m, n) such that n is odd and 2m + n = 0[ mod 15]. A possible case is (m, n) = [START_REF] Bouey | A new series for π via polynomial approximations to arctangent[END_REF][START_REF] Bouey | A new series for π via polynomial approximations to arctangent[END_REF]. However, we have then 2 n sin n (θ/2) ∼ 0.0004 while m m n n /(m + n) m+n = 1/1024 ∼ 0.00097. Therefore, in this case, the sensitive convergence criterion fails. Equation ( 6) still holds but the right-hand side of ( 7) is then diverging, so that (10) is no more justified. Therefore the existence of an acceptable factorization is not a sufficient condition to obtain convergent series. However, in this case, other choices of parameters, like (m, n) = (7, 1), give proper convergent series.

  these series are respectively O k -1/2 .
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