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Outside temperature is an important quantity in building control. It enables improvement in inhabitant energy consumption forecast or heating requirement prediction. However most previous works on outside temperature forecasting require either a lot of computation or a lot of different sensors. In this paper we try to forecast outside temperature at a multiple hour horizon knowing only the last 24 hours of temperature and computed clear-sky irradiance up to the prediction horizon. We propose the use different neural networks to predict directly at each hour of the horizon instead of using forecast of one hour to predict the next. We show that the most precise one is using one dimensional convolutions, and that the error is distributed across the year. The biggest error factor we found being unknown cloudiness at the beginning of the day. Our findings suggest that the precision improvement seen is not due to trend accuracy improvement but only due to an improvement in precision.

Introduction

Motivation: EcobioH2 building

Today's buildings energy consumption is decreasing due to progress in used materials and appliances energy management, so that in the near future we could envision positive energy buildings, i.e. buildings that produce more energy than they consume. This implies using a local source of energy, like solar panels on the rooftop or a windmill, rather than power from the grid. However, local energy sources are usually intermittent. Therefore, a storage of the energy is required for the low-to-no-production periods, like batteries, and a way to control storage/usage periods. This implies knowing in advance the energy production

The research reported in this publication is part of the EcobioH2 project supported by EcoBio and ADEME, the french agency for environnement and energy. This project is funded by the PIA, the french national investment plan for innovation. and demand. Both being highly influenced by external climate, ourstudy focuses on temperature forecast. The EcobioH2 project [3] [4] intends to be the first low footprint building in France using hydrogen fuel cells for energy storage and a neural network for its control. The 6-storey building of approximately 10 000 squared meters will host retail, cultural, lodging, offices and digital activities. It will have solar panels on its rooftop to produce energy, hybrid hydrogen energy storage to store it. EcobioH2 project requires temperature forecast to design an energy control and monitoring system balancing local energy needs and energy production.

Temperature forecast

Temperature forecast is required to refine electricity load forecast [START_REF] Deihimi | Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction[END_REF]. The influence of heat is important on appliances consumption and need for cooling/heating. Moreover the weather fluctuations cause behavior shifts of inhabitants.

Knowing what the outside temperature will be in the next 6 to 24 hours, we can predict, and take into account, how much energy will be needed for heating or cooling the building. The aim of this paper is to investigate the temperature forecast on a several hours horizon with a limited amount of sensors. In particular neither wind speed nor wet-bulb thermometers will be available. The exploitation of our predictor should also not require a too large amount of data.

Related works

Different methods have been proposed for short-term temperature forecasting. [START_REF] Abdel-Aal | Hourly temperature forecasting using abductive networks[END_REF] uses Abductive networks, a method that links multiple Volterra series together in order to ease network interpretation. However this method uses a network for each prediction hour which induces a huge complexity. Better methods have since been found. Those methods are outlined below.

Based upon a physical model of temperature, [START_REF] Ramakrishna | Joint probabilistic forecasts of temperature and solar irradiance[END_REF] uses Volterra series to propose probabilistics forecasts. The authors propose to use hidden Markov models and the Viterbi algorithm to account for the cloudiness variation. They predict at short terms of 15 minutes and 30 minutes and still have a lot of parameters to learn (2 Volterra series, 2 HMM, 1 Autoregressive filter).

[9] is using Echo-State networks hidden state to account for cloudiness. This implies a long and complex convergence for the network. Furthermore the authors only predict at an hour horizon, when we want to have a several hours horizon, or a day horizon using one completely different network depending on the hour the forecast is made.

Simpler Artificial Neural Networks forecasting methods have also been proposed, such as [11]. The authors use many different sensors (wet temperature, wind speed, humidity, pressure, . . . ) that we don't have on site. [START_REF] Abhishek | Weather forecasting model using artificial neural network[END_REF] needs the last 10 years of values of a given day as an input of their network and only predicts the values of the next day while we need a forecast for several hours of the current day.

The closest work to ours is [START_REF] Salque | Neural predictive control for single-speed ground source heat pumps connected to a floor heating system for typical french dwelling[END_REF] detailed in [START_REF] Salque | Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel[END_REF]. After training it predicts temperature using only the last 24 hours of temperature measures and computed irradiance data. This prediction happens only at the next hour. The authors then use the prediction in 1 hour of the network to predict the temperature in 2 hours yielding to a propagation error that increases with the forecast horizon. Moreover this prediction method preprocess the data before feeding it to the network. This preprocessing might limit the network learning capacity.

In the sequel, we will investigate different neural networks architectures to improve the several hours horizon forecast

Model and problem setting

We want to forecast the outside temperature T out for each hour up to an horizon of H = 6 hours or H = 24 hours. At the trained network input, we use only the N = 24 last hours of temperature values T out (t -N + 1 : t) and the computed irradiance I th between t -N + 1 and t + H, where t is the current instant. In other words, we want to find the function f such that the H hours temperature forecast T out (t + 1 : t + H) is given by: T out (t + 1 :

t + H) = f (T out (t -N + 1 : t); I th (t -N + 1 : t + H)), where MSE: T t=1 H h=1 T out (t + h) -T out (t + h) 2 is minimal. This problem is shown in Fig. 1.
We denote X(t + 1 : t + H) = (X(t + 1), X(t + 2), . . . , X(t + H)) the vector containing the H values of X between hours t + 1 and t + H with a time step of 1 hour. Identically for X(t -N + 1 : t). The computed irradiance I th is the clear-sky irradiance. It is the power received if the sky does not have any cloud. I th can be computed using the equations found in [START_REF] Ineichen | Quatre années de mesures d'ensoleillement à Genève[END_REF]. T out is given in K, and In the sequel, we will use neural networks to learn the function f as defined in Fig. 1, from the sole T out and I th .

I th in W/m 2 . I th (t -N + 1 : t + H) Tout(t -N + 1 : t) f Tout(t + 1 : t + H)
Our work is based upon [START_REF] Salque | Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel[END_REF]. This method preprocesses the input data as

y 1 = I th (t+1); T out (t); max(T out (t-N +1 : t)); min(T out (t-N +1 : t)); T out (t); T out (t-1)
where T out (t) is the mean of T out (t -N + 1 : t). This preprocessed input y 1 is then fed to an hidden neural network layer with bias b 2 and a tanh activation function such that y 2 = tanh(y 1 × W 2 + b 2 ). The hidden layer output is then fed to the output layer Dense(1) with bias b 2 and no activation function giving the one value output T out (t + 1) = y 2 × w 3 + b 3 . This method is displayed in Fig. 2. We suspect that using T out (t + 1) as an input of the neural network to predict T out (t + 2) may induce error propagation.

I th (t -N + h : t + h -1)
Tout(t -N + h : t + h -1)

P reprocess Dense y1

Dense(1) y2

Tout(t + 1) delay Fig. 2. [START_REF] Salque | Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel[END_REF] network structure

Multi-horizon

In order to avoid error propagation, we propose to adapt the network proposed in [START_REF] Salque | Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel[END_REF] to directly forecast up to t + H horizons with each t + n, n ∈ [1, H] as an output of the network. We preprocess the data in the same way as [START_REF] Salque | Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel[END_REF]. However to ensure our network has the same input information as their when run over H horizons we add I th (t + 2 : t + H) to the output of the preprocessing: y 1 = I th (t + 1 : t + H); T out (t); max(T out (t-N +1 : t)); min(T out (t-N +1 : t)); T out (t); T out (t-1) . In the contrary of [START_REF] Deihimi | Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction[END_REF], we don't want to train as many networks as the number of outputs. This means that our network's Dense layer is common to all prediction horizons. The formula for this layer is the same, only the dimension changes; the output is made of H values, one for each of the horizon time-step. This yields to: T out (t + 1 : t + H) = y 2 × W 3 + b 3 This network named preprocess multih is shown in Fig. 3.

I th (t -N + 1 : t + H) Tout(t -N + 1 : t) P reprocess Dense y1
Dense(H) y2 Tout(t + 1 : t + H) Fig. 3. preprocess multih network structure

Raw input

In order to understand if the preprocessing proposed by [START_REF] Salque | Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel[END_REF] limits the method performance, we propose to remove the inputs preprocessing and to feed the network with the raw inputs: in y r = (I th (t -N + 1 : t + H); T out (t -N + 1 : t)). These raw inputs are sent to Dense and Dense(H) layers using the same formulas as the previous network preprocess multih with different dimension. Fig. 4 show this network named raw multih. Next, we investigate the usage of a convolutional layer enabling the network to do a better analysis of the inputs [START_REF] Lecun | Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks[END_REF] because convolutions enable the network to factor for local temporal convolutions. Doing so, we adopt a similar approach as in audio processing [START_REF] Korzeniowski | A fully convolutional deep auditory model for musical chord recognition[END_REF]. In our case a 1D convolution should be sufficient since our signal seems has a slow frequency evolution. To our knowledge, it is the first attempt to apply such solution to temperature forecasting.

I th (t -N + 1 : t + H) Tout(t -N + 1 : t) Dense Dense(H) Tout(t + 1 : t + H)
Each raw input is fed to a separate convolutional layer with bias, no activation and no padding. For each convolution c in C, the number of convolutions, the formula is convI c = I th (t -N + 1 : t + H) * f ilterI c + bI c and convT c = T out (t-N +1 : t) * f iltersT c +bT c . With * the convolution operator. The output of those two convolutional layer is flattened and concatenated in a 1 dimension vector y 1 to be sent to the hidden layer. The hidden layer Dense and the output layer Dense(H) use the same formulas as raw multih and preprocess multih. This method depicted in Fig. 5 is named conv multih.

Linear predictor

For the sake of comparison, we want to measure the benefit of the neural networks in regards to linear forecasts. We will call the linear method linear raw multih. In this case, the same raw inputs, I th (t -N + 1 : t + H) and T out (t -N + 1 : t), are fed to the output layer with bias b and no activation function:

T out (t + 1 : t + H) = y r × W + b

Available datasets

There are many datasets available that take their data from weather stations around the world. The World Meteorological Organization (WMO) has its own set of weather stations. Composed of an aggregation of weather stations from country specific meteorological organizations. Information about the current weather status is broadcasted using synoptic code, also known as "code synop" [START_REF]International Codes, Volume I.1[END_REF]. Each station has its own diffusion schedule from each hour to every 6 hours.

The aeronautic industry also has its own weather records called Metar (ME-Teorological Aerodrome Report) [2]. Each airport makes its own report and broadcasts it every half hour.

The US National Radiation Research Laboratory built some weather stations to study solar radiations. Their data [START_REF] Andreas | NREL: Measurement and Instrumentation Data Center (MIDC) Home Page[END_REF] is freely available on each project website and include the local temperature.

Other datasets take their sources from satellite observations. They only use weather stations to calibrate the interpretation of their imagery. Satellite imagery has the benefit of having data for more locations instead of a few discrete measure points.

In this work, we use the NASA Merra-2 [START_REF] Gelaro | The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)[END_REF] data. Those data are composed of an aggregation of different, wordwide, observations with a 1 hour frequency. The dataset is packed with clear-sky irradiance and available freely for specific locations and the years [2005][2006] In the following experiments we used the Merra-2 dataset on the town of Avignon (43.95, 4.817) in France, the location of the EcobioH2 building, obtained through SoDa HelioClim-3 Archives for free [START_REF]HelioClim-3 Archives for Free -www.soda-pro.com[END_REF]. Using the data of 2005 as the train set and of 2006 as the validation and test set. Using the same data for test and validation can be made since we did not reach overfitting in any of our training. And therefore, could not optimize the number of epochs for the validation dataset.

Used metrics

We pose T = T out (t + 1 : t + H) to improve readability and N the sample size. Next, we recall the equations of different metrics.

RM SE = 1 N N i=0 (T i -T i ) 2 (1) 
RMSE is our primary metric. It lends itself easily to interpretation as an error interval since it is expressed in the same metric as the output variable.

R 2 = 1 - N i=0 (T i -T i ) 2 N i=0 (T i -T i ) 2
(2)

R 2 allows us to know how much of the signal is predicted. Giving us an idea of our room for improvement.

M AE = 1 N N i=0 |T i -T i | (3) 
MAE is used in many works. It can be interpreted as an error interval but does not penalize far-off predictions.

Results

Using the training data, we perform a stochastic gradient descent algorithm in order to find the different parameters W i and b i for the different networks and hyperparmeters combination. Then we evaluate each hyperparmeter combination on the train set and select the best one. The result is displayed in Table 1. Then we predict on the test set to obtain RMSE, MAE and R 2 . While the error values of RMSE and MAE are in Kelvin, they are equal to the error values in degree Celsius.

Algorithms

In Table 2 we see that [START_REF] Salque | Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel[END_REF] error increases way more the further the horizon. It suggests that indeed using T out (t + 1) as an input of the neural network to predict T out (t + 2) induce error propagation. Therefore our approch to multiple horizon forecast is the right one. The same Table exhibits that, according to the RMSE metric, the best precision for all given metrics is achieved with the conv multih network. We explain this result by the ability of convolution to characterize the sky cloudiness. Table 3 4 indicates that we predict most of the signal. The fact that even the most basic predictor, linear raw multih, gives excellent results validate the way we stated the problem of temperature forecast. However even small forecasting improvement can be useful since they can be leveraged by other predictors. 

Analysis

We analyze in more details the results of the proposed conv multih, because it is the most precise one, to understand its weaknesses. In Fig. 6, we plot the RMSE against the prediction hour. We see that there is a spike in error at the beginning of the day, from 5am to 8am. Since cloudiness is defined as c = 1 -I real I expected = 1 -I local I clear sky , and since the clear sky irradiance is zero before sunrise, we can't have a cloudiness information before the sunrise. Hence, this spike is due to the insufficient information regarding the upcoming cloudiness of the day. We did the same analysis regarding the month of the instant t (Fig. 8) and the evolution of error (RMSE) during the year (Fig. 7). No other spike can be seen, the error is evenly shared across the year. The location of prediction has a great influence on the prediction error. We see in Table 5 that Nice, a city by the sea in the south of Avignon, has better results than Avignon. This is due to the climatic conditions of the city, Nice having way less clouds than Avignon. We used Nice as a comparison point since it is the location [START_REF] Salque | Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel[END_REF] used. The goal of forecasting is to be precise (RMSE). It should be noted that this precision can be slightly improved by letting the training continue even when the gradient is small. This can be seen when using a logarithmic scale as in Fig. 9. Still this improvement cost a lot more computations per error unit.

We also want to know if the prediction is reliable. For this reason, we introduce the trend accuracy:

trend k (x) = 0 if |x | ≤ k sign(x ) otherwise trend accuracy k = count(trend k ( T i ) = trend(T i )) N (4) 
That is the accuracy of the network to forecast if the temperature will rise, fall or stay constant. We choose k = 0.3 as the interval for the constant class. From our results, Table 2, this value seems to be lowest standard deviation we could have. Thus values in this interval could be seen as a stable trend. In Table 6 we see that if the conv multih is always very close from the best accuracy. It is rarely the best one. When preprocessing is removed accuracy values are in a very small interval. This show the improvement seen in RMSE is not due to an improvement in accuracy but solely in an improvement in precision. Keep in mind that the categorization of trends been a bit arbitrary, variation is to be expected, so the difference seen may not be significant.

Algorithms

t+1 t+2 t+3 t+4 t+5 t+6 [START_REF] Salque | Méthode d'évaluation des performances annuelles d'un régulateur prédictif de PAC géothermiques sur banc d'essai semi-virtuel[END_REF] 0.834 0.710 0.659 0.665 0.683 0.695 preprocess multih 0.835 0.735 0.690 0.694 0.683 0.689 linear raw multih 0.809 0.724 0.704 0.704 0.699 0.705 raw multih 0.811 0.729 0.714 0.697 0.699 0.697 conv multih 0.848 0.756 0.713 0.698 0.696 0.695 Table 6. Trend accuracy (.3) for each horizon and network

Conclusion

In this paper, we proposed several neural networks for temperature forecast based on the sole previous 24 hours temperature and computed irradiance. We showed that convolutional neural networks are a good tool for temperature forecasting. The proposed networks display precision improvement over linear predictors and non-linear ones. However progress should be made to account for cloudiness at sunrise and improve prediction accuracy. Our solution has the main advantage of not propagating forecasting error through time, and to have the best precision of forecast.
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Table 1 .

 1 Best hyper-parameters found for each network

		epochs learning batch number of neurons conv number
			rate	size	in hidden layer sizes of conv
	[17]	50k	0.001	8	5		
	preprocess multih 50k	0.001	8	50		
	linear raw multih 150k 0.001	32			
	raw multih	150k 0.001	32	14		
	conv multih	50k	0.001	8	60	3	24

Table 2 .

 2 RMSE (K) for each horizon and network

	Algorithms	t+1 t+2 t+3 t+4 t+5 t+6
	[17]	0.475 0.996 1.433 1.753 1.962 2.084
	preprocess multih 0.412 0.715 0.962 1.171 1.354 1.515
	linear raw multih 0.409 0.756 1.030 1.256 1.413 1.540
	raw multih	0.375 0.644 0.882 1.098 1.289 1.428
	conv multih	0.340 0.602 0.846 1.053 1.236 1.380

Table 3 .

 3 is available to enable comparison with other works who uses this metric. MAE (K) for each horizon and network

	Algorithms	t+1	t+2 t+3 t+4 t+5 t+6
	[17]	0.342 0.761 1.125 1.396 1.568 1.665
	preprocess multih 0.293 0.531 0.729 0.895 1.038 1.169
	linear raw multih 0.294 0.565 0.785 0.964 1.089 1.182
	raw multih	0.277 0.481 0.660 0.832 0.982 1.091
	conv multih	0.2413 0.440 0.629 0.792 0.936 1.048
	Table		

Table 4 .

 4 R 2 in percentage for each horizon and network

	Algorithms	t+1 t+2 t+3 t+4 t+5 t+6
	[17]	99.72 98.77 97.44 96.17 95.20 94.59
	preprocess multih 99.79 99.36 98.85 98.29 97.72 97.14
	linear raw multih 99.79 99.29 98.68 98.03 97.51 97.05
	raw multih	99.82 99.48 99.03 98.50 97.93 97.46
	conv multih	99.86 99.55 99.11 98.62 98.10 97.63

Table 5 .

 5 RMSE (K) of conv multih for the cities of Nice and Avignon

	Location t+1	t+2	t+3	t+4	t+5	t+6
	Nice	0.2171 0.4006 0.5635 0.7004 0.8049 0.8916
	Avignon 0.3397 0.6021 0.8460 1.0527 1.2355 1.3800