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ABSTRACT

The pyramid wavefront sensor (PWFS) is the currently preferred design for adaptive optics (AO) systems for extremely large tele-
scopes, as focal plane wavefront sensing bears potential for a large intrinsic sensitivity gain when compared to Shack–Hartmann
(SH) sensors. Yet, obtaining a high quality pyramidal prism and a model-consistent assembly remains a critical design factor. We
demonstrate that the traditional gradient sensing controller is extremely sensitive to prism shape defects and assembly misalignments.
We show that even optimal registration of quadrants on the detector may be insufficient to prevent misalignment induced performance
loss through a theoretical analysis of the impact of detection plane quadrants sampling errors and individual translations, which may
be induced by a variety of mechanical defects. These misalignments displace wavefront information to terms not included in the
conventional gradient-like slopes maps and high spatial frequencies become invisible to the sole X− and Y− axis differences. We
introduce expanded space control (ESC) for quad-cell signal by generalizing output measurements of the PWFS and demonstrate
its insensitivity to misalignment-induced information loss, therefore dramatically relaxing machining and alignment constraints for
PWFS engineering. This work presents the theoretical developments leading to ESC design, along with validating performance and
robustness results, both in end-to-end numerical simulations and on a PWFS demonstrator bench at LESIA.
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1. Introduction

This paper presents novel research about pyramid wavefront
sensor (PWFS; Ragazzoni 1996) control, conducted within
the MICADO SCAO module (Davies et al. 2010; Clénet et al.
2014) development at LESIA. Developing a PWFS-based
adaptive optics (AO) system with more than 80 × 80 pupil
points resolution for the European Extremely Large Tele-
cope (the ELT) brings up unprecedented scalability challenges
to state-of-the-art focal plane sensing, making of paramount
importance the current effort to gather experience, data, and
thorough knowledge of PWFSs. Since its introduction, the
PWFS was demonstrated to provide a valuable sensitiv-
ity increase over equivalent Shack–Hartmann (SH) sensors
(Ragazzoni & Farinato 1999; Esposito et al. 2010). However,
theoretical and experimental developments on the PWFS remain
an active and open research topic. Knowledge of modu-
lation impact (Ragazzoni et al. 2002b), signal normalization,
edge-diffracted photons usage (Vérinaud 2004), theoretical
models (Shatokhina 2014; Fauvarque et al. 2016a,b), optimal
modal control (Gendron & Léna 1994; Korkiakoski et al. 2008a;
Deo et al. 2018), or phase reconstruction algorithms do not
yet converge into a unique, well-established set of operation
guidelines.

This paper presents a possible improvement to PWFS con-
trol, called expanded space control (ESC). Through expanding
the dimension of the sensor data space, ESC provides an oper-
ating mode that is robust to independent translations of the four
sensor quadrants and therefore to several PWFS defects. First,

Sect. 2 describes in detail the mathematics of extracting PWFS
signal from the detector and a generalized formalism to describe
different preprocessing options. Section 3 covers how pyramid
prism defects propagate into detector plane misalignments and
why models requiring well-defined subapertures do not hold
for PWFS. Section 4 covers a statistical analysis of misalign-
ment distribution and proposes an optimal method to preselect
detector data given the misalignment. Sections 5 and 6 intro-
duce an approach similar to system transfer function (TF) to
shed light on the reconstruction completeness issue with con-
ventional control and ESC, and propose quantitative figures of
merit for design risk assessment. Finally, Sect. 7 presents end-to-
end performance results, depending on signal normalization and
misalignment, through simulations with the COMPASS software
(Gratadour et al. 2014; Carlotti et al. 2014), and end-to-end runs
on a laboratory demonstrator bench.

2. Measurements of the pyramid wavefront sensor

Imaging the telescope pupil, or an altitude layer meta-pupil in
layer-oriented AO (Ragazzoni et al. 2002a), through a PWFS
or a conceptually similar focal plane optical design (Horwitz
1994; Gendron et al. 2010) generates four pupil-like images
(quadrants) in the detection plane, as shown in Fig. 1. These
quadrants can generally be assumed to be optically indepen-
dent, for example, when using a focal-point splitting prism
with sufficient angular deviation (Fauvarque et al. 2016b). Pupil
quadrant intensity maps ARaw, BRaw, CRaw, and DRaw, referred
to as “Raw” before preprocessing, are extracted by selecting
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Fig. 1. Typical observation on the PWFS detector – here on the labora-
tory bench–, illustrating a priori requirements for the pixel mask. White:
conventional control requires subpixel precision in estimating contours
and centers of quadrants. Yellow: with ESC, an estimated selection zone
containing all illuminated pixels of each quadrant is sufficient. Irrelevant
pixels can be eliminated from the selection zone afterward.

geometrically relevant areas of the detection plane and cropping
to the illuminated pupil-shaped quadrant area as follows:
ARaw(x, y)
BRaw(x, y)
CRaw(x, y)
DRaw(x, y)

 =


I(x − xA, y − yA)
I(x − xB, y − yB)
I(x − xC , y − yC)
I(x − xD, y − yD)


[

Cropped to pupil
quadrant footprint

]
, (1)

where (xi, yi)i=A,B,C,D are quadrants geometrical centers and
I(x, y) is the spatially continuous intensity map in the detec-
tion plane. Quadrant intensities ARaw, BRaw, CRaw, DRaw(x, y)
are binned and discretized by the detector pixel matrix into
two-dimensional matrices •[m, n], which we alternately con-
sider in a vectorized form •[k], i.e., as a list of pixel values,
possibly restricted only to a subset of sufficiently illuminated
pixels. Valid [m, n] (or [k]) indices are defined by the selected
pixel/subaperture mask, which must be identical for all four
quadrants, as shown in Fig. 1. We inherit the term of subaperture
from its usual acceptance with SH sensors: the projected foot-
print of the [m, n] pixel of each quadrant in the entrance pupil,
although it must be assumed those four footprints are identical.

Different approaches exist to process the quadrant pixels into
meaningful measurements. First, the quadrants need to be nor-
malized: the “local” normalization (noted •Loc), originally intro-
duced by Ragazzoni (1996), proposes normalizing by the total
intensity per subaperture as follows:
ALoc[k]
BLoc[k]
CLoc[k]
DLoc[k]

 =
1∑

Q=A,B,C,D

QRaw[k]


ARaw[k]
BRaw[k]
CRaw[k]
DRaw[k]

 , (2)

so as to bring a convenient closed form expression for relevant
measurements (Eq. (5)) within the ray optics modelization of
the PWFS. Another normalization method, referred to as the
“global” method hereafter (noted •Glob) was first proposed by
Vérinaud (2004), using the spatially averaged intensity,
AGlob[k]
BGlob[k]
CGlob[k]
DGlob[k]

 =
1〈 ∑

Q=A,B,C,D

QRaw[k]
〉

k


ARaw[k]
BRaw[k]
CRaw[k]
DRaw[k]

 , (3)

where 〈X[k]〉k is the average of vector X over all indices k. This
normalization was motivated by more recent small-signal lin-
earized models of the PWFS, and is now widely adopted in the
community. Normalized quadrants, either local or global, are[

Xnorm
Ynorm

]
[k] =

[
Anorm − Bnorm + Cnorm − Dnorm
Anorm + Bnorm −Cnorm − Dnorm

]
[k]

=

[
1 −1 1 −1
1 1 −1 −1

]
·


Anorm
Bnorm
Cnorm
Dnorm

 [k],

where norm ∈ {Loc, Glob}. (4)

In this formalism, the traditional gradient-like measurements
along the axes are therefore noted XLoc, YLoc or XGlob, YGlob
depending on the normalization. The derivation in the ray optics
approximation in Ragazzoni (1996) establishes the relationship
between the continuous measurements XLoc, YLoc and the gradi-
ent of the wavefront in the pupil,[
XLoc
YLoc

]
(x, y) =

2
π

arcsin
(

1
α

−−−→
Grad(δ)(x, y)

)
, (5)

where δ(x, y) is the optical path difference in the entrance pupil
and α is the circular modulation half-angle. This leads to con-
sider in discretized space,[
XLoc,Sine
YLoc,Sine

]
[k] = sin

(
π

2

[
XLoc
YLoc

]
[k]

)
, (6)

to obtain, assuming derivation approximations and leaving dis-
cretization aside, a sensible measurement of

−−−→
Grad(φ)(x, y).

We propose generalizing measurement methods by consider-
ing additional terms beyond gradient-like XLoc/Glob and YLoc/Glob.
ESC (Deo et al. 2017) of the PWFS considers sensor output
to be a combination of the former X, Y terms with two newly
defined terms: a cross-coupling term ZLoc/Glob and an intensity
term FLoc/Glob, defined by the following linear transform:


Xnorm
Ynorm
Znorm
Fnorm

 =


1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
1 1 1 1

︸                  ︷︷                  ︸
P

·


Anorm
Bnorm
Cnorm
Dnorm

 ,

where norm ∈ {Loc, Glob}. (7)

The typical structure of these four ESC measurements is
shown in Fig. 2, for a perfectly aligned PWFS (top) and a mis-
aligned system (bottom). The example in Fig. 2 is obtained from
interaction matrices of end-to-end simulations, whose setups and
parameters are covered in detail in Sect. 7.1.

This formalism allows us to define a variety of measure-
ment computation options; possibly any combination of terms
A, B, C, D and X, Y, Z, F with either local or global normal-
ization. A synthesis of end-to-end performance with various
PWFS measurements is presented in Sect. 7.2. In this section
we obtain results for an ideal PWFS with perfect alignment,
using the end-to-end AO simulator COMPASS (Gratadour et al.
2014) and we conclusively validate the superior performance of
global measurement methods over local measurement methods,
or XYLoc,Sine (Eq. (6)), at all illuminations.
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Fig. 2. Simulated small-signal differential response (interaction matrix measurement) of the PWFS in the four ESC measurement maps for 3 aber-
rations: tilt (left), spherical (center), and higher frequency Karhunen–Loëve #103 (right). Top row: the system is perfectly aligned and differential
signals in ZGlob and FGlob are zero. Bottom row: exaggerated misalignment case (up to ≈5% of pupil diameter for each quadrant), illustrating how
information is now spread across all four X, Y, Z, FGlob ESC measurements.

3. Misalignments of pyramid quadrants

Theoretical models of the PWFS usually rely on matching
•[m, n] quadrant pixels to be exactly superimposed, i.e., in a
comparison with a quad-cell SH, such that they correspond to
a given well-defined subaperture (Sect. 2). However, the PWFS
optical concept introduces additional degrees of freedom due to
both machining and alignment uncertainties, which do not have
equivalents in the quad-cell SH framework, such as indepen-
dent translations of each of the four quadrants with respect to
the detector sampling. This study thoroughly covers this case,
and leaves aside other potential effects such as differential pupil
magnification, rotation, or distortion, which we believe to be at
worst of a second order, if not non-existent, in classical refractive
optical designs. With these restrictions stated, we believe that
the conclusions of this research should apply to those defects as
well were they to be encountered in some hypothetical future
experimental design. The schematics in Fig. 3 synthesize how
archetypal pyramid apex defects introduce quadrant translations
and modify the intensity at the PWFS zero aberration operating
point, thus introducing signals unphysical to a perfect PWFS.

Even with major effort given to machining pyramidal prisms
with the greatest precision, the latest investigations (Pinna et al.
2017) report quadrant positioning up to a precision of only ≈1%
of the pupil diameter, which still represents a significant portion
of a subaperture for ELT-sized PWFS designs. For that reason, we
assume that risk mitigation procedures are required on the basis of
lack of accurate subpixel positioning capability of the quadrants.

After the translation and cropping process (Eq. (1)), quad-
rants are sampled and discretized by the pixel matrix. We
define the “true” quadrants as the would-be measurements if the
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Fig. 3. Schematic representations of common defects on the prism apex
and their impact on quadrant positioning. Panel a: nominal design of
the pyramid apex: quadrants lie on a perfect square, although the side
length of the square needs not match an integer multiple of the pixel
size. Panel b: polishing angle of facet B is excessive, shifting outward
edges of facet B; quadrant B is moved away from the optical axis and
receives more flux, whereas A and D receive less. Panel c: facet pol-
ishing depth is unequal, creating a roof apex. Intensities at zero-phase
point are modified.

quadrant centers (xi, yi)i=A,B,C,D were to lie exactly at the center
of pixels, defining the following discretization:

ATrue
Raw[m, n] =

"
x,y

ARaw(x, y)×Π(x − xA − m, y − yA − n) dx dy, (8)
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Fig. 4. Schematized selection of the detector pixels corresponding to
the centers of the first two quadrants A and B. Information is priorly
obtained that (xA, yA) = (37.57, 41.84) and (xB, yB) = (120.33, 41.42)
for this example. Panel a: idealized [0, 0] central pixel for quadrant
A (red) and nearest detector pixel (black) chosen as [0, 0] reference.
Panel b: at the center of quadrant B; red: idealized [0, 0] pixel for quad-
rant B; black: subaperture footprint of the [0, 0] pixel chosen for quad-
rant A; blue and green: possible pixel choices for [0, 0] of B: pixel “1”
(blue) minimizes absolute misalignment (|δB|, |εB|), whereas pixel “2”
(green) minimizes the differential misalignment (|δB − δA|, |εB − εA|).
Solid grid on panels a and b: detector pixel boundaries.

and similarly for quadrants B, C, and D, where Π(x, y) is the unit
rectangular function (Π(x, y) = 1 if |x| < 1

2 and |y| < 1
2 ; 0 oth-

erwise), and assuming a lattice of identical, square pixels com-
pletely covering the detector surface. However, as geometrical
centers need not match any pixel center, the actual measurement
becomes

AMeas.
Raw [m, n] =

"
x,y

ARaw(x, y)×Π(x−mA−m, y−nA−n) dx dy,

(9)

where [mi, ni]i=A,B,C,D are the indices of the detector pixel
retained as approximate center for quadrant i. The idealized ver-
sus actual pixel sampling issue is illustrated in Fig. 4a, and the
misalignment-inducing decision issue that arises with a second
quadrant in Fig. 4b.

We define the following quantity for all quadrants:
(δA, εA)
(δB, εB)
(δC , εC)
(δD, εD)

 =


(xA − mA, yA − nA)
(xB − mB, yB − nB)
(xC − mC , yC − nC)
(xD − mD, yD − nD)

 , (10)

which is not a misalignment indicator yet, but the offset between
the geometric centers of quadrants (xi, yi) and the coordinates
[mi, ni] on the pixel matrix considered as such. We establish the
link between these offsets and misalignment quantities in the fol-
lowing sections.

The importance of selecting appropriate central pixels to
have subaperture-like correspondence when processing quad-
rants into measurement maps is critical and is discussed in detail
in Sect. 5. Selection methods given knowledge of the center
(xi, yi) are discussed below in Sect. 4, looking toward (a) an opti-
mal way to select the central pixels (mi, ni) and (b) indicators of
worst and average-case scenarios for random alignment config-
urations.

4. Pixel selection and misalignment distributions

Beyond the opto-mechanical causes of PWFS quadrant transla-
tions, the question arises of how to perform pixel selection –
computing [mi, ni] – to obtain the smallest amount of misalign-
ments (δi, εi), and the best possible PWFS operating conditions.
Working hypotheses are that (1) we assume a design where no
extensive mechanical or optical effort was undertaken to guar-
antee subpixel quadrant positioning, and therefore the fractional
parts of (xi, yi) are uniformly distributed and (2) quadrant posi-
tions in the detecting planes (xi, yi) are accurately measured.

We quantify the amount of misalignment in the system with
the maximum position difference between any two quadrants, on
a single axis and on both axes, as follows:

MaxMisx = max
{
|δi − δ j|, i, j ∈ {A, B,C,D}, i , j

}
MaxMisy = max

{
|εi − ε j|, i, j ∈ {A, B,C,D}, i , j

} (11)

MaxMisboth ax. = max{MaxMisx, MaxMisy},

and we use this metric in the next paragraphs, where we ana-
lyze three pixel selection methods, comparing their performance
regarding the distribution of MaxMis on average and worst case
scenarios.

Naive approach. The most common approach for finding cen-
tral pixels, referred to as the naive method thereafter, is to sim-
ply round off each quadrant’s center independently to the nearest
detector pixel,

mi, ni = round(xi), round(yi), (12)

which leads to δi, εi uniformly distributed in [− 1
2 ,

1
2 ]. As illus-

trated in Fig. 4b, this method may lead to suboptimal pixel
choices starting with two quadrants: the naive method makes
selection of pixel “1”, while choosing pixel “2” allows for
reduced MaxMis values on both axes. This early arising issue
with pixel selection in terms of differential quadrant misalign-
ment appears striking enough to justify seeking more suitable
techniques.

Reference quadrant method. The reference quadrant method
consists in selecting an arbitrary quadrant, for example, A, to
round off (xi, yi)i=B,C,D in the idealized pixel frame of quad-
rant A, and finally replacing quadrants on the pixel grid of the
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Table 1. Statistical indicators of the alignment quality obtained with 3
alignment methods detailed in the text and Appendix A.

Method: Naive Ref. quad. Optimal

max{δi}(MaxMisx, y) 1 1 0.75
E(MaxMisx, y) 0.6 0.530 0.479
Median(MaxMisx, y) 0.614 0.5 0.5
E(MaxMisboth ax.) 0.715 0.638 0.554
Median(MaxMisboth ax.) 0.731 0.643 0.565

Notes. All values in px units.

detector by a common translation. It is therefore guaranteed that
misalignments are less than 1

2 px with the reference quadrant,

δA, εA ∈ [−
1
2
,

1
2

], δB,C,D ∈ [δA −
1
2
, δA +

1
2

],

εB,C,D ∈ [εA −
1
2
, εA +

1
2

], (13)

but yet misalignments between non-reference quadrants may
remain larger than 1

2 px. While misalignments are statistically
smaller than with the naive method (Table 1) the upper bound
MaxMis ≤ 1 remains unchanged.

Optimal method. We propose an optimal method to obtain [mi, ni]
values systematically minimizing MaxMis, whose implementa-
tion and proof of optimality are detailed in Appendix A. With
optimal pixel choice, the upper bound is reduced to
MaxMisx, y ≤

3
4 , reached only for evenly-spaced cases,

xA = xA, xB = xA +
1
4
, xC = xA +

1
2
, xD = xA +

3
4

(or permutations thereof), (14)

demonstrating worst-case PWFS alignment scenarios with a pair
of quadrant having 3

4 px relative misalignment.
Using David & Nagaraja (2005), we derived analytical dis-

tributions for MaxMisx, y and MaxMisboth ax., for all three meth-
ods with results synthesized in Fig. 5 and Table 1. In particular
for the optimal method, we obtain:

E(MaxMisx, y) = 23
48 ≈ 0.479

E(MaxMisboth ax.) ≈ 0.554,
(15)

showing that even with optimized pixel selection, a misalign-
ment of 1

2 px or more along either axis is to be expected and
accounted for in PWFS operation. This underlines not only
the importance of assessing the performance impact of such
misalignments, but also of proposing risk mitigating methods
regarding those impacts.

5. Misalignments: an analytical transform

5.1. Definition

As mentioned in Sects. 1 and 2, several models have been
established around the PWFS since its introduction (Ragazzoni
1996; Vérinaud 2004; Shatokhina et al. 2013; Shatokhina 2014;
Fauvarque et al. 2016a). Although it is beyond the scope of this
paper to discuss the analytical validity of these models, we
briefly summarize our hypotheses in this matter as follows: that
the signals XTrue

Loc|Glob and YTrue
Loc|Glob are (1) direction-sensitive oper-

ators along the axes, which may be linearized in a small signal

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
MaxMisx, y, naive
MaxMisx, y, qref.
MaxMisx, y, opt.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
MaxMisboth ax. , naive
MaxMisboth ax. , qref.
MaxMisboth ax. , opt.

Fig. 5. Probability density functions (pdf) for top: MaxMisx,y and
bottom: MaxMisboth ax. for pixel centering performed with naive, refer-
ence quadrant (qref.) or optimal methods (opt.). Solid (dashed) vertical
lines highlight the average (median) of the corresponding pdf. Opt. and
qref. pdfs overlap below 0.5, which is their common single-axis median.

regime compatible with AO closed loop operation and (2) con-
tain sufficient information to perform a complete and unambigu-
ous (besides piston mode) phase reconstruction. This latter point
has been recently demonstrated in Fauvarque et al. (2016a) in
the small-signal context: XTrue and YTrue signals contain all avail-
able phase information, whereas ZTrue and FTrue small-signal lin-
earizations are analytically null, and thus convey no information.
This demonstration however holds only if (1) the pyramidal apex
is ideal and (2) quadrants are ideally sampled and referenced,
i.e., if MaxMisboth ax. = 0.

We show that when either condition above fails – thus induc-
ing unforeseen independent translations of the quadrants – infor-
mation is shifted out from X and Y signals into ZMeas. and FMeas..
Let us express the relationship between idealized quadrants and
actual measurements before pixel discretization occurs; we can
express the translation of each quadrant (with abusive
notations),
AMeas.(x, y)
BMeas.(x, y)
CMeas.(x, y)
DMeas.(x, y)

 =


ATrue(x − δA, y − εA)
BTrue(x − δB, y − εB)
CTrue(x − δC , y − εC)
DTrue(x − δD, y − εD)

 , (16)

but this relationship does not conveniently transform through
pixel discretization. However, taking the spatial Fourier trans-
form of Eq. (16) (strictly, of Eqs. (8) and (9)), a relationship is
obtained that also expresses conveniently after discretization as
ÂMeas.(u, v)
B̂Meas.(u, v)
ĈMeas.(u, v)
D̂Meas.(u, v)

 =


exp(2iπ(δAu + εAv)) · ÂTrue(u, v)
exp(2iπ(δBu + εBv)) · B̂True(u, v)
exp(2iπ(δCu + εCv)) · ĈTrue(u, v)
exp(2iπ(δDu + εDv)) · D̂True(u, v)

 , (17)

where f̂ (u, v) is the two-dimensional discrete space Fourier
transform of f [m, n] (zero-padded at will), and u, v are spa-
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tial frequencies in [− 1
2 ,

1
2 ] px−1. Using the P transform (Eq. (7))

between normalized quadrants and ESC measurements X, Y, Z,
and F, and using P−1 = 1

4 Pt, we obtain:
X̂Meas.

ŶMeas.

ẐMeas.

F̂Meas.

 (u, v) =
1
4

P∆(u, v)Pt︸         ︷︷         ︸
M̂is


X̂True

ŶTrue

ẐTrue

F̂True

 (u, v), (18)

where ∆ is the complex linear phasor corresponding to quadrant
translations

∆(u, v) = Diag


exp(2iπ(δAu + εAv))
exp(2iπ(δBu + εBv))
exp(2iπ(δCu + εCv))
exp(2iπ(δDu + εDv))

 . (19)

The complex-valued, Fourier domain M̂is transformation
(Eq. (18)) provides us with a block-wise TF from the four per-
fect alignment measurements •True to the PWFS actual mea-
surements •Meas.. The M̂is operator is a unitary transform at all
frequencies with specific structure,

M̂is(u, v) =


p q r s
q p s r
r s p q
s r q p


with


s
r
q
p

 (u, v) =
1
4

P ·


exp(2iπ(δAu + εAv))
exp(2iπ(δBu + εBv))
exp(2iπ(δCu + εCv))
exp(2iπ(δDu + εDv))

 , (20)

and with coefficients additionally verifying |p + q + r + s|(u, v) =
1 for any frequency (u, v). Additionally, each of the terms is
Hermitian in (u, v), for example, p(−u,−v) = conj(p(u, v)).

5.2. Simulated impact on real AO systems

We present numerical demonstrations of the impact of M̂is on
PWFS measurements through a numerical simulation on a realis-
tic AO design. System parameters are similar to those presented
in Table 3 of an 18 m telescope with a 39×39 deformable mirror
(DM). In this section only, the PWFS follows exact Fried geom-
etry, i.e., with an actuator placed at each pixel corner in order
to obtain identically sized PWFS and DM Nyquist domains for
the sake of clarity. We use more realistic PWFS configurations
starting at the end of Sect. 6. Using this system, we measure the
response of the PWFS to each spatial frequency through inter-
action matrices over Fourier modes of the DM, thus computing
a pseudo-TF between the input phase and measurement terms.
This small signal TF on all four components X, Y, Z, F is shown
in Fig. 6, illustrating the alteration of measurements when the
system suffers quadrant misalignments. For this example, a mis-
alignment scenario with MaxMis = 0.75 px was chosen in com-
pliance with Eq. (14), specifically,

δA, δB, δC , δD = 0.00, 0.25, 0.75, 0.50 px
εA, εB, εC , εD = 0.75, 0.5, 0.00, 0.25 px. (21)

Numerical simulations of the response confirm no
information is within the small signal approximations of
Ẑ, F̂True

Glob. (Fig. 6, top), well validating the theoretical demon-
strations in Fauvarque et al. (2016a). We note that the nullity of
Ẑ, F̂True

Glob. – both from the theoretical developments and from all

|XTrue
Glob. (u, v)| |YTrue

Glob. (u, v)|

|ZTrue
Glob. (u, v)| |FTrue

Glob. (u, v)|

|XMeas.
Glob. (u, v)| |YMeas.

Glob. (u, v)|

|ZMeas.
Glob. (u, v)| |FMeas.

Glob. (u, v)|

0

2

4

6

8

10

Fig. 6. Simulated TF of the PWFS in the four measurement terms,
(top) without misalignment and (bottom) with MaxMis = 0.75 as per
Eq. (21). All 8 heat maps are shown over the Nyquist domain of the sys-
tem, i.e. − 1

2 < u, v < 1
2 . Color axis: projected linear response for a 1 µm

RMS phase input at 6 λ/D modulation. Symmetry around the 45◦ axis
is due to having εi = −δi + 0.75 (Eq. (21)) and is not a general property
of M̂is.

simulations we conducted without misalignment – is completely
independent of the system design, including the modulation
radius used, as long as a perfect four-faced PWFS is used.
On the other hand, misalignments (Fig. 6, bottom) induce a
signal attenuation in the NW-SE corners of X̂, ŶMeas.

Glob. , where
|p(±0.5,∓0.5)| = |q(±0.5, ∓0.5)| = 0 (Fig. 7, top), while the
information at these frequencies seems to be transferred to
Ẑ, F̂Meas.

Glob. measurements.
The M̂is transform corresponding to the example in Fig. 6 is

shown in Fig. 7 (top). For this misalignment, a total of 22.6% of
the simulated TF energy is borne by the ZMeas. and FMeas. terms.
As seen in Fig. 7 (bottom), this energy fraction highly depends
on the spatial frequency and follows the structure of s(u, v) and
r(u, v), reaching a maximum value of ≈75.5% energy in the NW
and SE corner areas of the Nyquist domain. Without consid-
ering the pixel integration (Eq. (9)) TF damping that at these
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|p(u, v)| |q(u, v)|

|r(u, v)| |s(u, v)|

0.0

0.2

0.4

0.6

0.8

1.0

norm([ZMeas. , FMeas. ])
norm([XMeas. , YMeas. , ZMeas. , FMeas. ])

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Top: magnitudes of the 4 terms of M̂is(u, v) for the case shown
in Fig. 6. The |p(u, v)| term goes to 0 in the NW and SE corners,
where measurement in XTrue is shifted in ZMeas. (YTrue in FMeas.) by the
r(u, v) term. Bottom: frequency dependent measurement energy ratio
of [ZMeas., FMeas.] cumulative energy to total energy. Edge effects are
induced by pixel area integration. White pixel: undefined value for pis-
ton mode.

corners, this energy fraction would reach 100% on the corner
points, where p = q = 0 and |r| = |s| = 1

√
2
·

From the observations above, it is expected that using an
XYGlob. measurement method, misalignment significantly affects
the sensing ability of the PWFS for input phase spatial fre-
quencies at a −45◦ angle, and corresponding speckles should
persist in the long exposure point spread function (PSF). This
behavior was confirmed with numerical simulations with nom-
inal and misalignment-altered PSFs as shown in Fig. 8. When
using XYGlob. control with misalignments (Fig. 8b), the correc-
tion zone is reduced, principally along the NW-SE axis, as we
need to filter out 15% of the modes based on the fraction of their
response contained in Z and F, a filtering required just to ensure
loop stability. As shown in Fig. 8c, when comparing to the nom-
inal PSF (Fig. 8a) we observe that besides the geometrical dis-
tortion of the PSF, the background within the correction zone of
the DM is amplified by up to 10, an unsatisfactory reduction of
AO performance.

More dramatic examples and their impact on PSFs were
presented in a previous work (Deo et al. 2017), showing mul-
tiple residual speckle stripes due to several zero-valued bands in
p(u, v) for extreme misalignment situations.

XYZFGlob. SR = 72.10% XYGlob. SR = 61.49%

(a) (b)
PSF Difference

2.0

1.5

1.0

0.5

0.0

0.5

1.0

(c)

Fig. 8. Panels a and b: long exposure H-band PSFs for the
0.75 px MaxMis misalignment case detailed in Figs. 6 and 7: with
XYZFGlob. measurement control (panel a) and with XYGlob. (panel b).
Panel c: Log10-scaled relative difference between the latter PSFs.

6. Misalignment figure of merit

Not all misalignments are equivalent because the magnitude
|M̂is(u, v)| is determined through six degrees of freedom, and
different misalignments – even with identical MaxMis – impact
PWFS operation with conventional XYGlob. at various degrees.
Our main focus is to emphasize the theoretical inability of
XYGlob. nominal operation past a certain degree of misalignment,
and we also investigate the compromise of using XYZGlob. as a
trade-off between reconstruction ability and computational cost.
First, unitarity of M̂is(u, v) ensures that unit gain in XTrue and
YTrue is split within all four ESC measurements without loss,
distributed depending on the four terms p, q, r, s (see Eq. (20)),
as follows:

– The diagonal term p(u, v) is the amount of accurate measure-
ment from XYTrue in XYMeas..

– The q(u, v) term cross-couples or swaps information between
x and y axes, however overall without loss between XYTrue

and XYMeas..
– The r(u, v) and s(u, v) terms are the critical quantities,

representing an information displacement from X, YTrue to
Z, FMeas..

With non-negligible r and s terms, complete wavefront informa-
tion cannot be retrieved anymore from measurements XMeas. and
YMeas. only, and phase retrieval requires operating with ESC.

It is useful to synthesize the phase reconstruction informa-
tion available within a given measurement mode, by introduc-
ing a quantitative frequency dependent figure of merit f om(u, v),
representing the fraction of information conserved from X̂True

and ŶTrue at a given spatial frequency. As we hypothesize knowl-
edge of both XTrue and YTrue is required for reconstruction, it fol-
lows that we consider the least of the two singular values (s.v.;
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0.7
0.8
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Center fit err. 0.1 px.
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Center fit err. 0.3 px.

(d) (e) (f)

Fig. 9. Statistical distribution of FOMXY (panels a–c) and FOMXYZ (panels d–f) for random misalignments either with fixed MaxMis from 0.1 px
to 1 px or distributed as the output of the 3 pixel selection methods (naive, qref., opt.) presented in Sect. 4. Boxes show the median and quartiles of
the distribution and whiskers the 1st and 9th deciles. From left to right for both rows: without noise on (xi, yi)i=A,B,C,D determination, with 0.1 px
and with 0.3 px RMS noise.

real-valued, positive) of the M̂is transform sub-matrix between
[XTrue, YTrue] and the considered measurements, i.e.,

f omXY (u, v) = σ2

([
p q
q p

]
(u, v)

)
(≤ 1)

f omXYZ(u, v) = σ2

([
p q r
q p s

]
(u, v)

)
(≤ 1)

f omXYZF(u, v) = σ2

([
p q r s
q p s r

]
(u, v)

)
(= 1),

(22)

where σ2(M) is smallest singular value of matrix M with two
rows. Further along this numerical reduction, a global figure of
merit expressed as a single scalar value for a given misalignment
ought to be provided. We estimated that the average or median
values were not suitable; we decided to quantify globally the S/N
value by the first quartile of f om• over the frequency domain,
which represents a S/N value guaranteed for 75% of the Fourier
modes of the system. Our global figure of merit is hence the
FOM• value such that" 0.5

u,v =−0.5

[
1 if f om•(u, v) ≤ FOM•

]
dudv = 0.25. (23)

The FOM ranges from 100% for nominal transfer between •Meas.

and •True measurements down to (theoretically) 0% for com-
plete signal loss. As a global S/N indicator, FOM is expected to
strongly correlate with the number of modes requiring to be fil-
tered out to ensure loop stability, and therefore AO performance.

We performed an extensive Monte Carlo analysis of FOM
values for XY and XYZ measurement modes, which are shown
in Figs. 9a and d. The median value of FOMXY drops dramati-
cally past MaxMis = 0.25 px, down to 0.37 at fixed tolerances
of MaxMis = 1 px. When using XYZ measurement, FOMXYZ
median is maintained at 0.67 for such cases, which demonstrates
the retrieval of information that had leaked into ZMeas. domain.

This statistical approach also lets us rank the FOM yielded by
pixel selection methods, with from best to worst optimal, refer-
ence quadrant and naive, correlatively with the MaxMis toler-
ances obtained with these. For reference, the misalignment case
example presented in Sect. 5, which has MaxMis = 0.75 px,
yields a FOMXY value of 0.49 and requires filtering 15% of con-
trolling modes just to permit loop stability, in a noiseless simu-
lation and yet with the degraded PSF shown in Fig. 8b.

Beyond our Sect. 4 hypothesis that quadrants centers can be
exactly known, we also investigated the final impact on FOM of
uncertainties in quadrant referencing. The stability and biases of
the many methods to fit quadrants on the detector, depending on
quadrant resolution, illumination conditions or noise levels, are
not documented to our knowledge, and final reliability may vary
depending on each PWFS AO design and calibration protocols.
With quadrant referencing errors, the pixel selection procedure
is performed on erroneous quadrant centers with coordinates

xerr
i = xi + errx

i
yerr

i = yi + erry
i .

(24)

While the δi, εi obtained through pixel selection on the values
of Eq. (24) comply with the statistics discussed in Sect. 4, actual
quadrant misalignment values of the system are δi−errx

i , εi−erry
i .

These errors can lead to a different and suboptimal pixel choice
for quadrant referencing, and further to the AO having a strongly
degraded M̂is transform compared to the optimal quadrant refer-
encing. Using the optimal method, and assuming the center find-
ing error is a zero-mean Gaussian process of standard deviation
σ, we simulated that the pixel selection is altered to a suboptimal
alternative in 50% (respectively 90%) of cases when σ = 0.1 px
(resp. 0.3 px).

The results of the impact study of calibration errors of (xi, yi)
using our FOM• indicator are presented in Figs. 9b, c, e and f,
allowing us to compare putative phase reconstruction capability
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Table 2. Probability of a zero-valued zone occurring in f omXY (u, v)
depending on pixel selection method, error on quadrant finding, and
PWFS pixels to DM actuators oversampling factor.

Px selection Quadrant center
Oversampling method error (px RMS)

0.0 0.1 0.3

naive (%) 26.2 31.4 61.1
1 px to qref. (%) 14.2 19.9 55.8
1 actu opt. (%) 4.1 11.5 51.4

naive (%) 9.6 14.5 43.0
96 px to qref. (%) 4.9 7.5 36.2
80 actu opt. (%) 0.2 2.3 31.9

naive (%) 0.2 1.0 14.8
96 px to qref. (%) 0.1 0.6 10.7
60 actu opt. (%) 0.0 0.0 8.6

Notes. Values are computed as Prob.(minu,v[ f omXY (u, v)] < 0.01) for
10 000 random (xi, yi)i=A,B,C,D.

of measurement modes XY , XYZ, and XYZF (FOMXYZF = 1)
for various misalignment and uncertainty error scenarios. The
impact of subpixel positioning uncertainty is significant; the M̂is
transform unknowingly affects reconstruction capability.

Another critical question arising concerning misalignment
impact is the possibility of zeros occurring in f omXY (u, v), i.e.,
potential reconstructor incapacity zones. With the optimal pixel
selection algorithm, only the special cases of Eq. (14) lead to two
zeros in opposite corners of the Nyquist domain. However, with
the reference quadrant or the naive methods, or with errors on
quadrant centers, the probability of zero-valued stripes crossing
f omXY (u, v) may be significant, with values reported on Table 2
(section“1 px to 1 actu”).

The values in Table 2 also include probability estimates
regarding PWFS to DM oversampling. Our mathematical devel-
opments so far focus on misalignment impact within the PWFS
Nyquist domain, implicitly assuming the latter matches the cor-
rection area of the DM. Because of the enhanced behavior of
PWFS in oversampling regimes rather than rigorous Fried geom-
etry (Vidal et al. 2017), most PWFS-based systems currently in
development are designed with oversampled PWFS. In this case,
metrics should be corrected to only take into account the correc-
tion area of the system. Although this work does not propose
an extensive analysis of oversampled behavior, we include in
Table 2 the probabilities of zeros occurring in the AO correc-
tion zone with oversampling ratios of the current designs of the
MICADO SCAO system (96 px to 80 actu) and the NFIRAOS
AO facility of the Thirty Meter Telescope International Obser-
vatory (TMT; 96 px. to 60 actu) (Wang et al. 2017). These values
show that misalignment-induced performance loss is well miti-
gated simply by system geometry when reaching oversampling
ratios above ≈1.5. Such a design decision may however not gen-
erally be a satisfactory trade-off for PWFS designs because it is
bound to enhance readout noise impact for dimmest guide stars.

7. Numerical simulations and laboratory results

7.1. Experimental setup and protocols

We performed end-to-end simulations and optical bench runs
to assess the performance of various measurement methods and
their stability regarding PWFS misalignment. To perform these
experiments at a realistic high-order AO scale, yet to maintain
acceptable computing times, we considered an 18 m diameter

Table 3. Parameters for measurement method comparison and quadrant
misalignment experimental runs.

Optical bench and numerical simulation configuration

Telescope D = 18.0 m diameter
Circular pupil – No obstruction
Single von Karman ground layer

Turbulence layer r0 = 12.9 cm–L0 = 25 m
||
−→v || = 10 m s−1

Source On-axis natural guide star
Readout noise 0.3 e− (bench: added numerically)
Loop rate Simulated as 500 Hz

Tip-tilt mirror
(bench: physical mount)

Deformable mirrors Square pitch piezo-stack
(bench: on LCOS-SLMa)

Piezo-stack mirror 39 × 39 actuators – Total 1,177 in pupil
PWFS subapertures 44 × 44 (simu.)–46 × 46 (bench)
PWFS wavelength Monochromatic at 658 nm
PWFS modulation Circular, tunable radius.
Simulation method Focal phase mask

(quadrants interferences included)
Modal integrator

Controller Optimized Karhunen–Loëve basisb

(defined on DM actuators)
Controller Gain Optimized scalar loop gain

Modal sensitivity compensationc,d

References. (a)Inoue et al. (2007), (b)Ferreira et al. (2018),
(c)Korkiakoski et al. (2008b) and (d)Deo et al. (2018).

telescope equipped with a 39 × 39 square-pitch DM, targeting
half the dimensions of ELT SCAO systems. The PWFS is sam-
pled with a 13–18% oversampling factor, consistent with the cur-
rent value of the MICADO SCAO design. Detailed information
on bench experimental setup and end-to-end run algorithms are
identical to previous work (Deo et al. 2017); major parameters
are recalled in Table 3.

For each controller mode and misalignment values (δi, εi),
end-to-end long exposure Strehl ratios (S.R.) are obtained by
(1) computing a reference modal interaction matrix I0 in Airy
spot regime; (2) bootstrapping the AO loop for 0.8 s (i.e., 400
frames) with command matrix I†0 , reaching a suboptimal sta-
tionary regime; (3) computing the sensitivity loss compensa-
tion modal coefficients Gmodal; and (4) running the AO loop and
recording telemetry data for 2.0 s (1000 frames) with the opti-
cal gain corrected command matrix Gmodal × I†0 . This procedure
applies to numerical simulations and bench experiments.

It is to be noted that our computations do not include optical
throughput, and therefore stellar magnitudes should be scaled
accordingly for real system projective performances. We use a
zero-point value of 2.62× 010 ph s−1 m−2, yielding the flux val-
ues given in Table 4.

Section 7.2 presents results of numerical simulations com-
paring a variety of measurement and normalization options for a
perfect PWFS to be conclusive regarding (1) the relative per-
formance of •Glob. and •Loc. normalizations and (2) conserva-
tion of system sensitivity when adding ESC measurements to
X and Y . Section 7.3 covers numerical simulations and opti-
cal bench experiments regarding robustness of XYGlob., XYZGlob.,
and XYZFGlob. methods relative to PWFS misalignments, toward
confirming the intrinsic robustness of XYZFGlob. to any amount
of misalignment.
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Table 4. Photonic flux values considered for experimental runs of
Sects. 7.2 and 7.3.

Stellar magnitude MagR 14.0 17.0 19.0

Full pupil (ph.it−1) 3.35× 104 2,110 335
Simulations (ph.it−1.subap−1) 22.0 1.39 0.22
Bench runs (ph.it−1.subap−1) 20.2 1.27 0.202

Notes. Zero-point value of 2.62× 1010 ph s−1 m−2.

7.2. Comparing measurement methods for a perfect PWFS:
Numerical simulations

We compared the end-to-end performance of •Glob., •Loc. and
XYLoc.,Sine measurement methods, at modulation radii rang-
ing from 2 to 6 λ/D, and for guide star magnitudes 14–19.
We tested an extensive number of centroiding options to
assess performance discrepancies, namely: (global) XYGlob.,
XYZGlob., XYFGlob., XYZFGlob., ABCDGlob.; (local): XYLoc.,
XYZLoc., ABCDLoc.; and (local-sine): XYLoc.,Sine. The ABCDnorm
modes are operated by considering PWFS output as the direct
concatenation of valid pixels of the four quadrants. These modes
are fully equivalent to the corresponding XYZFnorm modes: the
P transform preliminary operation from A, B, C, and D to X,
Y , Z, and F becomes factored into the system command matrix.
Numerical simulations confirmed this equivalence, with identi-
cal outputs down to floating point precision.

In all fairness regarding measurement methods, in partic-
ular discrepancies in the normalization of modal sensitivity
compensation coefficients, we performed all experiments after
an optimization of the integrator scalar gains given all other
parameters, thus eliminating this factor for result interpretation.
Figure 10 shows simulated performance for XY measurement
modes. Others methods listed above (XYZ•, XYF•, XYZF•,
ABCD•) could not be drawn due to excessive similarity: all •Glob.
methods, on the one hand, and all •Loc. and XYLoc.,Sine, on the
other hand, yield identical performance within two points of
Strehl ratio, at all guide star magnitudes and modulation radii.

ESC use preserves PWFS sensitivity. We previously discussed
that for a perfect PWFS prism and assembly, F and Z bear no
information, and even that FLoc. = 1 analytically and was not
considered. However the perfect similarity in performance with
or without adding terms Z and F satisfactorily demonstrates that
their addition to the processing does not degrade the noise prop-
agation, i.e., has no impact whatsoever on PWFS sensitivity.

Global outperforms Local. Finally, the results in Fig. 10
demonstrate the superior performance of •Glob. methods over
•Loc. methods. A limiting magnitude increase of up to 2

3 is
measured, and benefits are observed over the complete magni-
tude range – even for magnitudes <17, where 0-photon count
pixels do not yet cause normalization issues to •Loc. methods.

7.3. Misalignment impact on end-to-end performance

We analyze the impact of quadrant misalignments for various
MaxMis specifications and for stellar magnitudes 14–18.5, both
in numerical simulations and on the optical bench, currently
restricting our study to global normalization. We compare the
performance of conventional XYGlob. and ESC Modes XYZGlob.
and XYZFGlob.. The misalignments selected correspond to val-
ues of (δi, εi) deduced from Eq. (14) but multiplied by a scal-
ing factor to vary MaxMis as desired. In numerical simula-
tions, quadrants are misaligned by altering the orientations of

the refracting planes within the PWFS phase mask, allowing us
to set (xi, yi) with arbitrary precision. On the optical bench, the
high-resolution design of the PWFS detector is such that a WFS
pixel information is obtained by binning camera pixels by 6, and
therefore misalignments can be introduced with a 1

6 pixel-wide
uniformly distributed precision, i.e., with a standard deviation of
0.048 px.

Numerical simulation results are shown in Fig. 11, which
includes two operational behaviors:

– Solid lines: all DM modes are driven by the controller
– Dashed lines: mode filtering is performed based on a rejec-

tion criterion in order to maintain loop stability.
The rejection criterion is similar to f om• except that it is com-
puted directly on KL modes. During mode-filtered operation,
modes are either kept or rejected depending on the true phase
information (i.e., XTrue and YTrue) available in considered mea-
surements, either XY , XYZ, or XYZF. This requires computing
the complete interaction matrix in all four X, Y , Z, and F, before
computing the rejection criterion given, for example, in the XY
case by

Mode ratio =
norm([XMeas.,YMeas.])
norm([XTrue,YTrue])

=
norm([XMeas.,YMeas.])

norm([XMeas.,YMeas.,ZMeas., FMeas.])
,

(25)

which is the complementary quantity to Fig. 7 (bottom). A
threshold value of 40% was manually adjusted, trading off
between insufficient and excessive mode filtering; both choices
reduce the final performance.

We investigated the responses to misalignments up to
MaxMis = 1.5 px. Although this is beyond the worst case sce-
nario even for naive quadrant referencing, these cases largely
cover possible errors on quadrant centers adjustments, and we
also believe the stability of XYZFGlob. at large misalignments
– with previous work (Deo et al. 2017) investigating up to
MaxMis = 5.0 px – is, if not of operational utility, at least of
theoretical interest.

At all magnitudes tested, conventional XYGlob. shows
dramatic performance loss for misalignments larger than
MaxMis = 0.5 px. While mode filtering allows us to avoid criti-
cal AO failure (S.R. down to 0%), it remains an insufficient com-
promise that does not mitigate the misalignment-induced perfor-
mance loss.

Simulations with XYZFGlob. show no significant sensitivity
to misalignments, aside from extreme noise of MagR = 18.5,
and therefore offers a satisfactory solution to cancel out mis-
alignment effects, hence confirming theoretical developments of
Sect. 5, and paving the way for relaxing PWFS specifications to
favor this software-based solution. Finally, XYZGlob. provides an
intermediate misalignment mitigating ESC method at only 75%
the computational cost of XYZFGlob..

End-to-end runs with similar parameters were successfully
performed on the optical bench; the results are shown in Fig. 12.
Because the bench is operated with a spatial light modulator
(SLM) rather than a conventional DM, we use the following pro-
cess to generate phase screens: (1) the turbulence screen is gen-
erated numerically; (2) DM shape is generated; and (3) DM and
turbulence buffers are summed and displayed on the SLM. Also,
the SLM imposes a strictly monochromatic operation, making
actual H-band images unavailable, and in place these were syn-
thetically computed from the difference between turbulent and
DM phase screens. Another SLM-specific behavior constrained
us to discard data points for which emulated phase maps diverge
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Fig. 10. End-to-end simulation performance comparison of measurement methods, in particular the normalization employed, after optimization of
the loop gain, for a perfect PWFS design. Shaded area: error bars as ±1 standard deviations of the instantaneous short exposure S.R.
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Fig. 11. Numerical simulation performance results for various misalignment scenarios. Solid lines: all DM modes controlled (error as shaded areas,
defined as in Fig. 10); dashed lines: modes with dominant energy in Z and F filtered (error as solid bars), only shown when relative difference to
unfiltered control is larger than 1%. The Strehl ratio (S.R.) is measured at 1650 nm. Results are shown for rMod = 2 λ/D; simulations for 4 λ/D and
6 λ/D achieve similar performance.

beyond 1.5 µm RMS during AO loop operation. This leads to
artifacts of amplitude 2% S.R. to build up and dominate the
PSF recording. However, other data points with lower S.R. are
deemed valid, as the RMS residual is kept within 600 nm RMS
and no artifacts are observed.

Showing a flat phase screen on the SLM does not induce
a flat wavefront in the bench pupil, and the residual computa-
tion is biased by a residual aberration. After best effort calibra-
tion, we estimate this aberration to an unmeasured 50 nm RMS,
i.e., 4 pts of H-band S.R. at most, which is little compared to
the experimental results shown in Fig. 12 (H-band S.R. of 56%
mapping to 200 nm RMS residual through the Maréchal approx-
imation). Long-exposure S.R. in the R band were also measured
using an imaging camera, and confirm AO loop operability even
when lacking a coherent PSF core at the pyramid pin for guide
star magnitudes ≥17. R-band S.R. are satisfactorily consistent
with trends in computed H-band S.R. at magnitudes 14 and 17.
Bench experiments confirm numerical simulation results with
a consistent relative difference of 10 pts. H-band S.R. ceiling
performance.

The predicted absolute stability of XYZFGlob. control with
quadrant misalignments is experimentally confirmed by our opti-
cal bench results.

8. Conclusions

In this work, the authors propose a thorough analysis of (1) how
quadrants on the PWFS detector are extracted and normalized
from sensor data and (2) quadrant misalignments depending on
the quadrant pixel referencing algorithm. Simulation and bench
runs bring conclusive information regarding the better perfor-
mance of the global normalization (Vérinaud 2004) over the
local normalization (Ragazzoni 1996) with a sensitivity limit
gain of 2

3 of a magnitude.
Our theoretical analysis of independent quadrant translations

in the Fourier domain leads us into introducing ESC, generaliz-
ing the notion of output measurements for the PWFS. We the-
orize, and measure through experimental small-signal TFs, that
frequency information is shifted from gradient-like terms X and
Y into ESC terms Z and F due to the relative misalignments of
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Fig. 12. Adaptive optics bench performance results for various misalignment scenarios. Solid and dashed lines, shaded areas: same as in Fig. 11;
top row: H-band S.R. computed from the phase residuals; bottom row: measured S.R. in the R band, relative to bench focal camera nominal
alignment (≈80% absolute S.R.). Results are shown for rMod = 6 λ/D, which is close to minimal operational radius on bench due to PWFS prism
edge roughnesses of approximately 30 µm (1 λ/D) width. Cross markers: measured R-band S.R. is undetermined (explanations in the text).

the quadrants. As zero-gain frequency zones may appear within
the XY-only TF, it is expected that (a) past a certain misalign-
ment, conventional XY control is unable to sense all frequencies
of the PWFS domain and (b) that ESC should be insensitive to
any relative misalignments. Furthermore, through a Monte Carlo
statistical analysis of realistic quadrant misalignments, and by
introducing a scalar figure of merit to quantify performance loss
with conventional control, it is pointed out that realistic mis-
alignment situations may lead to significant AO performance
loss, therefore requiring risk mitigation procedures other than
for extremely tight pyramid prism specifications. As a concep-
tually simple extension of conventional XY PWFS control, ESC
provides a fitting candidate for misalignment impact mitigation.

Simulations and optical bench runs confirm that ESC with
four measurement maps XYZF is insensitive to misalignments,
as long as illuminated pixels are not cropped out by the quadrant
mask, and is thus up to the sensitivity limit. It is also demon-
strated that adding in the extra terms Z and F does not worsen
noise propagation, even if made unnecessary by low misalign-
ment situations.

Generally, this study attempts to bring additional arguments
to PWFS systems design trade-offs; along with prism qual-
ity and price, oversampling factor choice, or RTC dimension-
ing. With XYZF measurements twice as large, instrumental
RTCs specifications should be adapted. However, the command
matrix – slopes vector multiplication is well within the scope of
parallel computing, and the computational impact should be well
mitigated using GPU-based RTC architectures (Gratadour et al.
2016). The authors therefore believe XYZF or ABCD PWFS
control is a satisfactory risk mitigation choice and has the benefit
of dramatically relaxing PWFS design constraints.

Acknowledgements. This research is performed in the frame of the develop-
ment of MICADO, first light instrument of the ELT (ESO), with the support
of ESO, INSU/CNRS and Observatoire de Paris. The authors wish to thank the
fruitful contributions of D. Gratadour, F. Ferreira, and A. Sevin to the COMPASS
simulation tool and of Z. Hubert to the experimental bench.

References
Carlotti, A., Vérinaud, C., Gratadour, D., Westphal, M., & Beuzit, J.-L. 2014,

Proc. SPIE, 9148, 91486R
Clénet, Y., Buey, T. M., Rousset, G., et al. 2014, Proc. SPIE, 9148, 91480Z
David, H. A., & Nagaraja, H. N. 2005, Order Statistics, 3rd edn, eds. W. A.

Shewhart, & S. S. Wilks (John Wiley & Sons, Inc.)
Davies, R., Ageorges, N., Barl, L., et al. 2010, Proc. SPIE, 7735, 77352A
Deo, V., Vidal, F., & Gendron, E. 2017, in 5th AO4ELT conference-Adaptive

Optics for Extremely Large Telescopes
Deo, V., Gendron, E., Rousset, G., Vidal, F., & Buey, T. 2018, Proc. SPIE, 10703,

1070320
Esposito, S., Riccardi, A., Fini, L., et al. 2010, Proc. SPIE, 7736, 773609
Fauvarque, O., Neichel, B., Fusco, T., Sauvage, J.-F., & Girault, O. 2016a,

Optica, 3, 1440
Fauvarque, O., Neichel, B., Fusco, T., Sauvage, J.-F., & Girault, O. 2016b, Proc.

SPIE, 9909, 990960
Ferreira, F., Gendron, E., Rousset, G., & Gratadour, D. 2018, A&A, 616, A102
Gendron, E., & Léna, P. 1994, A&A, 291, 337
Gendron, E., Brangier, M., & Chenegros, G. 2010, in 1st AO4ELT conference-

Adaptive Optics for Extremely Large Telescopes, 05003
Gratadour, D., Puech, M., Vérinaud, C., et al. 2014, Proc. SPIE, 9148, 91486O
Gratadour, D., Dipper, N., Biasi, R., et al. 2016, Proc. SPIE, 9909, 99094I
Horwitz, B. A. 1994, in 1994 Symposium on Astronomical Telescopes &

Instrumentation for the 21st Century, International Society for Optics and
Photonics, 496

Inoue, T., Tanaka, H., Fukuchi, N., et al. 2007, Proc. SPIE, 6487, 64870Y
Korkiakoski, V., Vérinaud, C., & Le Louarn, M. 2008a, Appl. Opt., 47, 79
Korkiakoski, V., Vérinaud, C., & Le Louarn, M. 2008b, Proc. SPIE, 7015,

701554
Pinna, E., Briguglio, R. A., & Bonaglia, M. 2017, Pyramid Prototyping for the

GMT, Wavefront Sensing in the VLT era II
Ragazzoni, R. 1996, J. Mod. Opt., 43, 289
Ragazzoni, R., & Farinato, J. 1999, A&A, 350, L23
Ragazzoni, R., Diolaiti, E., Farinato, J., et al. 2002a, A&A, 396, 731
Ragazzoni, R., Diolaiti, E., & Vernet, E. 2002b, Opt. Commun., 208, 51
Shatokhina, I. 2014, PhD Thesis, Johannes Kepler Universität Linz, Austria
Shatokhina, I., Obereder, A., Rosensteiner, M., & Ramlau, R. 2013, Appl. Opt.,

52, 2640
Vérinaud, C. 2004, Opt. Commun., 233, 27
Vidal, F., Ferreira, F., & Deo, V. 2017, in 5th AO4ELT conference-Adaptive

Optics for Extremely Large Telescopes
Wang, L., Véran, J. P., & Ellerbroek, B. 2017, in 5th AO4ELT conference-

Adaptive Optics for Extremely Large Telescopes

A56, page 12 of 13

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833685&pdf_id=12
http://linker.aanda.org/10.1051/0004-6361/201833685/1
http://linker.aanda.org/10.1051/0004-6361/201833685/2
http://linker.aanda.org/10.1051/0004-6361/201833685/3
http://linker.aanda.org/10.1051/0004-6361/201833685/4
http://linker.aanda.org/10.1051/0004-6361/201833685/5
http://linker.aanda.org/10.1051/0004-6361/201833685/5
http://linker.aanda.org/10.1051/0004-6361/201833685/6
http://linker.aanda.org/10.1051/0004-6361/201833685/6
http://linker.aanda.org/10.1051/0004-6361/201833685/7
http://linker.aanda.org/10.1051/0004-6361/201833685/8
http://linker.aanda.org/10.1051/0004-6361/201833685/9
http://linker.aanda.org/10.1051/0004-6361/201833685/9
http://linker.aanda.org/10.1051/0004-6361/201833685/10
http://linker.aanda.org/10.1051/0004-6361/201833685/11
http://linker.aanda.org/10.1051/0004-6361/201833685/12
http://linker.aanda.org/10.1051/0004-6361/201833685/12
http://linker.aanda.org/10.1051/0004-6361/201833685/13
http://linker.aanda.org/10.1051/0004-6361/201833685/14
http://linker.aanda.org/10.1051/0004-6361/201833685/15
http://linker.aanda.org/10.1051/0004-6361/201833685/15
http://linker.aanda.org/10.1051/0004-6361/201833685/15
http://linker.aanda.org/10.1051/0004-6361/201833685/16
http://linker.aanda.org/10.1051/0004-6361/201833685/17
http://linker.aanda.org/10.1051/0004-6361/201833685/18
http://linker.aanda.org/10.1051/0004-6361/201833685/18
http://linker.aanda.org/10.1051/0004-6361/201833685/19
http://linker.aanda.org/10.1051/0004-6361/201833685/19
http://linker.aanda.org/10.1051/0004-6361/201833685/20
http://linker.aanda.org/10.1051/0004-6361/201833685/21
http://linker.aanda.org/10.1051/0004-6361/201833685/22
http://linker.aanda.org/10.1051/0004-6361/201833685/23
http://linker.aanda.org/10.1051/0004-6361/201833685/25
http://linker.aanda.org/10.1051/0004-6361/201833685/25
http://linker.aanda.org/10.1051/0004-6361/201833685/26
http://linker.aanda.org/10.1051/0004-6361/201833685/27
http://linker.aanda.org/10.1051/0004-6361/201833685/27
http://linker.aanda.org/10.1051/0004-6361/201833685/28
http://linker.aanda.org/10.1051/0004-6361/201833685/28


V. Deo et al.: A misalignment insensitive control method for the PWFS

Appendix A: Quadrant central pixel selection
methods

A.1. Preselected reference quadrant method

Within the reference quadrant method described succinctly in
Sect. 4, one of the quadrants is priorly chosen, here A, and central
pixels are selected through

mA, nA = round(xA, yA)

=⇒ δA, εA ∈

[
−

1
2
,

1
2

]
mB,C,D = round

(
round

(
xB,C,D − xA

)
+ xA

)
=⇒ |δB,C,D − δA| <

1
2

nB,C,D = round
(
round

(
yB,C,D − yA

)
+ yA

)
=⇒ |εB,C,D − εA| <

1
2
, (A.1)

with the inner rounding corresponding to nearest-pixel selection
for B, C, D for an idealized pixel lattice in which xA, yA are inte-
gers; and the outer rounding operations being a common nearest-
pixel roundoff of this idealized lattice on the actual detector pixel
matrix.

A.2. Optimal method

We consider the values of mi, ni, δi, εi after a naive method
roundoff. There are plenty of ways to modify this output to
minimize MaxMis. One method, for instance, is experiment-
ing with the reference quadrant method using all four possi-
ble references and selecting the best outcome, which will be
the optimum. However we prefer the following three-step algo-
rithmic description as it is insightful about the intrinsic geom-
etry of the problem being discussed: the minimization the total
span of an arbitrary number of real values only using integer
translations.

Without loss of generality, the demonstration is restricted to
the x-axis, and we assume sorted values at the beginning of the
process,

δA ≤ δB ≤ δC ≤ δD. (A.2)

Length testing. We define the four lengths that correspond to sep-
arations between δi values

l1 = δB − δA, l2 = δC − δB, l3 = δD − δC , l4 = 1 + δA − δD,

(A.3)

0 0.5 1.0 1.50−0.5−1.0−1.5
xb b b b b

δA δB δC δDδA + 1

l1 l2 l3 l4

Fig. A.1. Beginning of the optimal misalignment algorithm. In this
example, δA = −0.35, δB = −0.15, δC = 0.10, δD = 0.40, such that
l3 = 0.3 = lmax. The optimal value with this example is MaxMisopt.

x =
1 − lmax = 0.70 px.

0 0.5 1.0 1.50−0.5−1.0−1.5
xb b bbb

δA δB δCδDδC − 1

l1 l2l3 l4

Fig. A.2. After the pixel shifting step, with quadrants A, B, and C offset
one pixel to the left from the initial situation of Fig. A.1.

0 0.5 1.0 1.50−0.5−1.0−1.5
xb b bb

δA δB δCδD

MaxMisx = 0.70 ≤ 0.75

Fig. A.3. Final value of δi misalignments at the optimal choice of central
pixels mi.

as shown in Fig. A.1. We seek which of these four lengths is
maximal, with value lmax. Two outcomes are possible:

– l4 = lmax, in which case the algorithm skips to the termination
– l4 < lmax, and we perform a pixel shifting.

Pixel shifting. If lmax = l1, we shift the reference pixel for
quadrant A one pixel to the left, i.e., mA, δA are changed to
mA −1, δA + 1. In case lmax = l2 (resp. lmax = l3), this shift is per-
formed on both quadrants A and B (resp. A, B, and C), resulting
as on Fig. A.2.

Termination. All four quadrants are offset identically to mini-
mize the largest |δi|, so as to avoid offsets larger than 1 between
the quadrant center xi and the assumed central pixel mi. Between
Figs. A.2 and A.3, a 1 px right-shift is made, finally yielding
δi ∈ [−0.60, 0.10].

The situation at the end of the optimal algorithm is such that

MaxMisx = max
i
δi −min

i
δi = 1 − lmax, (A.4)

which is also the minimal sum of any three of the li, ensuring the
optimality of MaxMisx over choices of mi.
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