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Abstract—The virtualization of compute and network re-
sources enables an unseen flexibility for deploying network
services. A wide spectrum of emerging technologies allows an
ever-growing range of orchestration possibilities in cloud-based
environments. But in this context it remains challenging to rhyme
dynamic cloud configurations with deterministic performance.
The service operator must somehow map the performance spe-
cification in the Service Level Agreement (SLA) to an adequate
resource allocation in the virtualized infrastructure. We propose
the use of a VNF profile to alleviate this process. This is illustrated
by profiling the performance of four example network functions
(a virtual router, switch, firewall and cache server) under varying
workloads and resource configurations. We then compare several
methods to derive a model from the profiled datasets. We select
the most accurate method to further train a model which predicts
the services’ performance, in function of incoming workload
and allocated resources. Our presented method can offer the
service operator a recommended resource allocation for the
targeted service, in function of the targeted performance and
maximum workload specified in the SLA. This helps to deploy
the softwarized service with an optimal amount of resources to
meet the SLA requirements, thereby avoiding unnecessary scaling
steps.

Index Terms—Network Function Virtualization, Performance
Analysis, Performance Profiling.

I. INTRODUCTION

THE advancements in the domain of cloud computing,
Software Defined Networking (SDN) and Network Func-

tion Virtualization (NFV) enable a unseen flexibility and pro-
grammability of both compute and network configurations. By
softwarizing network functions, we move away from dedicated
hardware based, monolithic systems to a virtualized solution
for offering telecom services. The service is decomposed into
multiple microservices which each get an allocated share
of resources such as CPU time, memory access or network
bandwidth. Typical tasks involved in network services include
packet forwarding, routing, inspection or any other form of
network traffic processing. Beyond the application layer, the
deeper layers of the network traffic are checked or manipulated
in a chained configuration. This means that network traffic
is sequentially steered through a, possibly lengthy, chain of
processors such as routers, firewalls, load-balancers or proxy-
servers. In the NFV domain, the main aim is to provide
softwarized solutions for each of those network functions,
which can be deployed on commercial-of-the-shelf (COTS)
servers. Ideally, equally high performance is expected com-
pared to rigid, dedicated hardware middleboxes, but at a lower

cost, higher flexibility regarding scaling, configuration and less
prone to vendor and technology lock-in.

At deployment time of the network service, an estimation of
the required capacity and related resource allocation needs to
be made. The performance contract is given in the Service
Level Agreement (SLA) and should be translated to the
required resources. In case of a hardware based middlebox,
performance can be more easily guaranteed and specified, as
this is a controlled and isolated environment. The internal
processing is completely under control and validated by the
middlebox vendor. Configuration settings are tested and speci-
fied in the vendor’s test environment. But in this case, the total
resource reservation is not flexible and often resulting in an
over-provisioned and expensive amount of rigid middleboxes,
calculated to support the maximum expected workload. When
using Virtual Network Functions (VNFs) instead, the resource
reservation translates to the amount of virtualized compute and
network resources needed to process the real-time workload,
e.g. the number of vCPUs, memory and bandwidth which
must be reserved to support the current number of users. Over
time, the amount of resources can be adjusted dynamically
and more fine-grained. However, characterizing or modelling
the performance and required resources of such a VNF is
not a straightforward task. The softwarized nature of VNFs
implies a much larger space of possible hardware and software
configurations, which can influence the resource usage and
performance in many unexpected directions.
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Fig. 1. A common IaaS environment helps to profile the VNF in a
representative context and infrastructure.
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In Fig. 1, we can see how cloud-native Infrastructure-
as-a-Service (IaaS) management enables new dynamics in
using test and operational infrastructures. We have outlined
such a platform architecture in [1], where Service Operators
can source VNFs from multiple Vendors to integrate them
in their services. Building further on well-known DevOps
methodologies, the vendor and operator can share the same
IaaS environment to validate and operate VNFs. This helps to
profile the VNF in a representative operational context, similar
to where the operator would deploy it. In another previous
publication [2] we had also advocated the practical use of a
sandbox environment for validating VNFs prior to deployment
in production and also adopted the idea to profile the VNF
in this sandboxed environment. Virtualized IaaS and DevOps
methodologies create an ideal framework for automated VNF
profiling, as several challenges exist:
(i) It is impractical to exhaustively validate the performance
in all possible situations due to limited time, budget and
infrastructure availability. We must select a representative
subset of infrastructure and workload configurations to profile
the VNF on. In a datacenter for example, it might be sufficient
to profile a VNF on one node (using vertical scaling) and than
extrapolate its performance when scaling out horizontally to
similar hardware nodes.
(ii) The operator must often consider the VNF as a black
box because the internal implementation is not exposed by the
vendor. Without a provided analytical performance model, the
VNF performance needs to be characterized through testing.
A black-box profiling approach has the benefit that VNF
functionality is also validated with representative workloads.
Every NFV use-case will have its own specific workloads, and
it is hard to capture all VNF flexibility in an analytical model.
We argue that profiling through testing can offer a more trusted
approach compared to a theoretical model of the internal VNF
workings, derived by source code analysis.

In the following sections we will give details of our mea-
surements and the implementation of a VNF profiling method.
Next, in Section II, we discuss other related research where we
build further on. Then, in Section III, the tested VNFs and used
measurement setup are described. In Section IV we compare
and select the best analysis methods to derive a model for the
VNF performance. In the remaining Sections V and VI we
discuss practical use cases for a VNF profile.

II. RELATED WORK

Unsurprisingly, the underlying server hardware character-
istics have a deep impact on the performance. Parameters
such as processor architecture, clock rate, size of the in-
ternal processor cache, memory latency, bandwidth of inter-
processor and peripheral buses, etc. have a strong impact on
the performance of the specific application or VNF running
on that server. An extensive list of capabilities for bare metal
and virtualized environments can be found in [3]. There
it is also described how descriptor files can help to more
strictly orchestrate VNF performance to specific hardware.
To accurately profile and reproduce the VNF performance,
the service operator must be aware of the factors which can

TABLE I
VERSATILITY OF THE INFRASTRUCTURE CONFIGURATION IN CLOUD

ENVIRONMENTS.

Situation Type of settings

Orchestration Instantiation latency caused by orchestration plat-
form implementation. [5]

Operating
System
(Kernel
space)
+
Hypervisor
(Dom0)

CPU pinning.
Kernel-bypassing with network polling drivers (e.g.
DPDK, netmap, FD.io). [6]
Resource scheduling optimization (vCPU time,
memory, packet processing) [7] [8].
Kernel network buffers and queue tweaks [9].
Hypervisor processing overhead (Xen) [10].

Bare metal NIC (line rate, TCP processing offload, SR-IOV).
CPU (clock speed, hyperthreading support).
Memory (layered cache [11], RAM, DMA).
Disk IO speed.
Offload to specialized (accelerated) hardware e.g.
GPU, FPGA [12].

Network Congestion control, delay, routing protocols,
Degradation due to virtualization overhead [13].

influence the service performance. Possible factors are listed in
Table I with references for measured results in the literature.
Since it is practically impossible to exhaustively profile all
possible configurations, the service provider should be aware
of the settings and control them as good as possible. This is
also illustrated in [4] where vswitch performance is very much
depending on factors such as traffic mix, scheduler settings and
other deployment configuration options.

Different frameworks to obtain VNF profiles have been
described before: [14] and [15] describe an architecture to
implement a VNF profiling framework where users can com-
pare the performance of VNFs in a controlled environment
with multiple types of workload. Similarly, the work in [16]
explains how an automated VNF profiling system was imple-
mented, compatible with a DevOps approach. The automation
of profiling measurements is further exemplified on chains
of multiple VNFs in [17]. The authors propose that a chain
of VNFs should in fact be considered as a single entity for
profiling. These publications do however not provide an
analysis method to model the profiled data for performance
prediction.

An extensive overview of different statistical prediction
methods for resource allocation is given in [18], however
without quantitative results to compare the methods. Validated
methodologies to predict the VNF performance from earlier
measurements are presented in [19] and [20]. Curve fitting is
used to model the relation between VNF performance metrics
and input workload. The proposed methods monitor which
resource and workload metrics are most correlated with a given
KPI metric. The fitted relation is checked and adapted in real-
time using a sliding window of the most recent samples. There
is however no quantative comparison with other modelling
methods, nor is discussed how initial resource allocation can
be improved by profiling prior to deployment in production.

A different method is presented in [21] and [22] where
the VNF performance is modelled using queuing theory. The
monitored KPI metrics of the VNFs include e.g. buffer size,
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arrival rate and process rate. But only limited configurations
are tested (with a fixed resource allocation) and it is not
investigated if this method can be used to map SLA parameters
to a recommended resource allocation. Other drawbacks of this
method are that specialized probes are needed to monitor the
different queue sizes in the VNF, which can be impossible
for black-box/proprietary VNFs. Furthermore, as described in
[20], queue size or process rate can change dynamically when
the VNF gets saturated, which is not captured in the proposed
queueing models.

III. GATHERING DATA FOR PERFORMANCE MODELLING

A common knowledge from the machine learning domain
is that a learning model is often only as good as the data used
to train it. Since our goal is to predict the performance of a
VNF as good as possible, care must be taken during the data
gathering process that the performance of the VNF is measured
in a representative way. This is done in our measurement
setup by isolating the resources used by the Device Under
Test (DUT) and taking care that the traffic source/sink are not
saturated during the measurements. During VNF profiling, we
try to specify the performance of a VNF, within certain bound-
ary conditions. To specify this, we categorize the monitored
metrics into four types:
• Workload metrics are used to quantify the amount of

’work’ which is presented at the VNF’s input. These reflect
the user generated load (e.g. pps, packet size, requests/s, the
variety in payload content or L2/3 header fields).

• Resource metrics quantify the payable/physical/scalable
hardware resources obtained from the IaaS provider and al-
located to the VNF (e.g. vCPU, MEM, storage or network).
Also OS or hypervisor related metrics bound to the IaaS are
considered (e.g. context switches or cache usage).

• Performance metrics monitor the Key Performance Indica-
tors (KPI). These are (often SLA-defined) measurements of
the processed workload, thus taking the output of the VNF
into account (e.g. delay, loss or throughput).

• Context parameters are one-shot IaaS settings (e.g. buffer
length, scheduler algorithm, see Table I) or VNF specific
configurations (e.g. firewall rules or routing table length).
This is part of the initialization and assumed fixed after
deployment. In a IaaS context, many hardware settings
are strictly limited or even completely shielded by the
infrastructure provider. The VNFs are tested with one fixed
context setting.
Categorizing the metrics like this, helps us to define which

metrics should be monitored in the first place. After the
measurements, we will need to train the VNF profile to predict
the performance metrics from the resource allocation and
workload metrics. For each of the tested VNFs we will later
specify the metrics more in detail.

A. Measurement Setup

Figure 2 represents the different functional blocks used
in the measurement setup. The DUT is the VNF which is
being profiled, it gets an input and output interface. The test
traffic is routed through a hypervisor switch, from the traffic

source, through the DUT, to the traffic sink. The Profiling
Controller iterates over every tested workload and records
the monitored metrics for further analysis. A control interface
must be foreseen in the DUT and traffic source/sink for initial
configuration and to start/stop the workload. The Monitoring
Framework is configured by the Controller to gather metrics
exported by a range of monitoring probes and exported by
the traffic source/sink. We use Prometheus as framework. The
used probes are cAdvisor, Prometheus Node Exporter and a
custom tool to export Virtual Machine metrics gathered by
KVM and libvirt.

Fig. 2. The measurement setup used for profiling the VNFs.

The VNFs are running on a compute node with 2x 8core
Intel E5-2650v2 (2.6GHz) CPU with Ubuntu 16.04. Linux
Bridge is used as the hypervisor switch. We do not change
the default OS options (e.g. we leave hyperthreading enabled).
Depending on the virtualization of the VNF (container or
Virtual Machine (VM)) we use the configuration options of
Docker resp. KVM to isolate the CPU cores between the DUT
and the traffic sink/source.

B. Measurement Strategy

The monitoring capabilities of the platform where the VNFs
are tested provide the base for our additional analysis. The
general data gathering workflow works like this:
1) We define the workload and resource configuration bound-

aries to deploy the DUT. These should be representative for
the expected values possible in the production environment.
Ideally the same type of IaaS node is used for profiling and
in production. In between these boundaries we manually
specify a number of intermediate values. Likewise, we also
define the KPIs which quantify the DUT performance.

2) The metrics which represent the generated workload, al-
located resources and VNF performance should be moni-
torable by the Monitoring Framework. The Profiling Con-
troller instructs the Monitoring Framework to gather the
required metrics.

3) The Profiling Controller configures the DUT and traffic
source/sink with the specified resource allocation, and starts
the workload. The Controller iterates over all combinations
of the workloads and resource allocations defined in step
1. After each tested configuration is stabilized (see next
subsection), the representative metric values are recorded
and the next configuration is tested.

4) The Monitoring Framework is configured to alert the
Controller if either the traffic source/sink is overloaded
(i.e. at their max cpu usage). In this case, the measured
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performance is marked as invalid, as it is bounded by
the traffic VNFs and not by the profiled DUT. These
measurements are not included in the profiled DUT model.

5) When all measurements are completed, we have recorded
the performance of the VNF in a large range of possible
configurations. Each configuration depicts a certain input
workload and resource allocation. This dataset is then
analyzed further in section IV.

C. Assessing Measurement Stability

Each workload should only be generated long enough until a
representative measurement can be taken. To assess the stabil-
ity of an ongoing measurement, we derive a stability indicator
which is based on the geometric mean of all monitored metrics
xi together:(

n∏
i=1

xi

) 1
n

= n
√

x1x2 · · · xn = exp

[
1
n

n∑
i=1

ln xi

]
(1)

It can be seen in Eq. 1 that the geometric mean converges
to a stable value, if the sum of the logs of the metrics also
becomes stable. This has the advantage that metrics with
different scales can be combined in the stability indicator.
The sum of the logs will change proportionally to a relative
change in any of the metrics (e.g. if one metric varies 5%,
the geometric mean will change proportionally, regardless of
the scale of the metric). By taking the logs, we also limit the
risk of calculation overflow. When a workload is started, the
measured metrics will stabilize after a certain ramp-up time.
We assume that under a fixed workload, the resources and
performance metrics xi will converge to a stable value, being
constant with a certain Gaussian measurement noise. Under
the Central Limit Theorem, the sum of the logs will then be
approximately normal, so the mean and standard deviation
should stabilize also. The central tendency of the complete
set of profiled metrics is therefore monitored by Eq. 2. Every
second, we monitor S in a moving window of the last 10sec.
∆S depicts the difference between consecutive windows of the
mean and std.

∆S =

{
∆mean(

∑n
i=1 ln xi) < ε1

∆std(
∑n

i=1 ln xi) < ε2
(2)

When ∆S stays below the thresholds for the last 5 sliding
windows, we assume the measurement is stable and record
the mean of the last 10sec of every monitored metric xi . The
thresholds ε1,2 can be calibrated prior to the profiling test;
under a stable workload, we can monitor the lower limits
of ∆mean and ∆std on our setup. The stability indicator ∆S
has been implemented in the monitoring framework itself and
an event is fired to the Profiling Controller when stability
is detected. By having only one single stability metric we
decrease the monitoring overhead. This removes the need for
the Profiling Controller to constantly poll all of the monitored
metrics to check if the measurement has stabilized. If the
metrics are not stable after 60sec, the workload is stopped
and no measurements are recorded. In our setup, a stable

measurement is detected after 30sec on average. This means
it takes about 30sec to test a single configuration.

D. Measured Network Functions

Typical NFV use cases such as a virtualized Evolved
Packet Core (EPC) or IP Multimedia Subsystem (IMS) make
primarily use of request-based or packet forwarding VNFs
[23]. Since we want to analyze the typical relation between
workload, resource and performance metrics, we select four
typical packet forwarding or request-based VNFs. These VNFs
exemplify our generic understanding of a VNF implementa-
tion: the available amount of CPU and bandwidth is scheduled
over the ingress workload, proportionally to the incoming
packets or requests. So each processed packet or request will
receive a fair share of the available resources. After resource
saturation, performance starts to deteriorate, since packets and
requests will receive a smaller share of resources as prior to
saturation. We suspect that the trends observed in these VNFs
can fit to other ones also, as long as the VNF implementation
is based on the same principle: resource usage is proportional
to packet or request rate and KPIs are affected by resource
saturation.

We monitored the performance of three typical packet
forwarding-based VNFs:
• Router: an evaluation license of a commercially General

Available vRouter, implemented as a VM. In Fig. 3f we
can see that the performance of this router is capped from
2vCPUs onwards. The traffic source and sink are each in a
different L3 subnet. We do not alter the default routing table
and let the router forward the traffic from source to sink.

• Firewall: an evaluation license of a commercially General
Available vFirewall. This is a stateful firewall, providing L3,
L4 and L7 functionality. We activate a built-in set of rules
to protect against: (i) DoS, operating on L3 and L4. (ii)
Additionally we block SSH, SYSLOG and MYSQL services
and (iii) we enable the offered DNS, Web and AntiVirus
inspection tools operating at L7. Implemented as a VM, the
license limits the resource allocation to max 1vCPU. This
is seen in Fig. 3c and 3g where resource allocation stops at
max 1vCPU.

• OVS: To compare with the performance of the other packet
forwarding VNFs, we deploy OpenvSwitch v2.10.1 (an
open source softwarized vswitch implementation) into a
VM based on Alpine Linux v3.9.1. The OpenvSwitch is
configured as a standalone switch, so a flow entry is inserted
for every unique flow passing through, one per unique mac
source-destination pair. Note that to benefit from multi-core
cpu allocation, we must enable multiqueue virtio-net drivers
in KVM. This enables packet sending/receiving processing
to scale with the number of available vCPUs of the guest
VM. We must divide the available vCPUs over the specified
number of queues in the virtio driver and the processing in
the VM (OVS) itself.

We stress the above VNFs by generating multiple unique
parallel flows. Also the packetsize is varied. The tool Scapy is
used to craft a .pcap file which describes a stream of packets
with varying mac addresses. Tcpreplay is then used to stream



5

0 200 400 600 800 1000
packetrate (kpps)

0

100

200

300

400

500

600

700

800

to
ta

l c
pu

 u
sa

ge
 (%

)

OVS packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU
2.0vCPU
3.0vCPU
4.0vCPU
6.0vCPU
8.0vCPU

(a) OVS CPU usage

0 100 200 300 400 500
packetrate (kpps)

0

100

200

300

400

500

600

to
ta

l c
pu

 u
sa

ge
 (%

)

Router packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU
2.0vCPU
3.0vCPU
4.0vCPU
6.0vCPU

(b) Router CPU usage

0 25 50 75 100 125 150 175
packetrate (kpps)

20

40

60

80

100

to
ta

l c
pu

 u
sa

ge
 (%

)

Firewall packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU

(c) Firewall CPU usage

0 10 20 30 40 50 60
concurrent requests (requests)

50

100

150

200

250

300

350

400

to
ta

l c
pu

 u
sa

ge
 (%

)

Squid cache hit ratio=50%, filesize=1000kB

allocated vCPUs and bandwidth
0.25vCPU - 1Gbps
0.5vCPU - 1Gbps
0.75vCPU - 1Gbps
1.0vCPU - 2Gbps
2.0vCPU - 3Gbps
3.0vCPU - 4Gbps
4.0vCPU - 5Gbps

(d) Cache CPU usage

0 200 400 600 800 1000
packetrate (kpps)

0

20

40

60

80

100

pa
ck

et
 lo

ss
(%

)

OVS packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU
2.0vCPU
3.0vCPU
4.0vCPU
6.0vCPU
8.0vCPU

(e) OVS packet loss

0 100 200 300 400 500
packetrate (kpps)

0

20

40

60

80

pa
ck

et
 lo

ss
(%

)

Router packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU
2.0vCPU
3.0vCPU
4.0vCPU
6.0vCPU

(f) Router packet loss

0 25 50 75 100 125 150 175
packetrate (kpps)

0

20

40

60

80

100

pa
ck

et
 lo

ss
(%

)

Firewall packetsize=512B, flows=1000flows

allocated vCPUs
0.25vCPU
0.5vCPU
0.75vCPU
1.0vCPU

(g) Firewall packet loss

0 10 20 30 40 50 60
concurrent requests (requests)

0

250

500

750

1000

1250

1500

1750

ca
ch

ed
 fi

le
 re

sp
on

se
 ti

m
e 

(m
s)

Squid cache hit ratio=50%, filesize=1000kB

allocated vCPUs and bandwidth
0.25vCPU - 1Gbps
0.5vCPU - 1Gbps
0.75vCPU - 1Gbps
1.0vCPU - 2Gbps
2.0vCPU - 3Gbps
3.0vCPU - 4Gbps
4.0vCPU - 5Gbps

(h) Cache response time

Fig. 3. Subset of measured VNF metrics under different resource allocations (with 99% confidence interval).

the .pcap file at a given packetrate from the traffic source.
There is also an iperf stream running, with an iperf server in
the traffic sink. This is used to monitor packet loss. For the
router and firewall to function properly, we need to make sure
the ARP table of the VNF contains the mac addresses of the
generated packets, so the router forwards the packets properly
to the traffic sink. This is done by arp spoofing the VNF under
test from the traffic sink.

Generated workload metrics:
• packetrate: [0.1-1000]kpps, 20 different packetrate values

are selectively chosen, spaced evenly along the log scale.
• packetsize: [64,128,512,1024,1500]bytes
• unique flows: [1,2,10,100,1000,10000] parallel flows
Resource metrics:
• CPU allocation: [0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 8] vCPUs

A subset of the measured configurations is illustrated in
Fig. 3a 3b, 3c. Some VNFs have a more limited set of
vCPU allocations, due to license issues. Since we specify the
generated packetrate and packetsize up front, the bandwidth
requirements for the VNF can be easily determined.

Performance metric:
We choose packet loss (%) as the main KPI to reflect the
performance of the packet forwarding VNFs. A subset of the
measured configurations is illustrated in Fig. 3e 3f, 3g.

We also check the performance of a typical request-based
VNF. For this type of VNFs, both the allocated bandwidth as
the number of vCPUs influence the performance.
• Cache: Squid v3.5 is deployed in a Docker container.

Following the recommended configuration options for multi-
threaded performance we deploy one Squid instance per al-
located vCPU core, each instance serving at a different TCP
port. The incoming requests are then load-balanced over the
Squid instances using rules in iptables. We configure Squid
as a cache server, using RAM to store the cached files.

The cache server is serving files to the traffic generator. We
stress the cache server by generating n concurrent file requests.
This means at any given time, there are n pending file requests
ongoing, by n threads. Locust.io is the tool used to generate
the file requests. The traffic source is generating file requests
of varying filesizes. The traffic sink is a webserver, a Python
based implementation which generates a random file with the
requested size. Files which are not cached in the DUT are
requested to the traffic sink webserver. We also control how
much of the file requests ask non-cached files by manipulating
the http request header (setting ‘Cache-Control: no-cache‘ in
the http header). This emulates a varying cache hit ratio.

Generated workload metrics:
• concurrent requests: [1-60], 15 different values are uni-

formly chosen.
• filesizes: [1,5,10,50,100,500,1000]kB
• cache hit ratio: [10,50,90]%
Resource metrics:
• CPU allocation: [0.25, 0.5, 0.75, 1, 2, 3, 4] vCPUs
• Bandwidth allocation: [0.25-5]Gbps

To model the influence of the bandwidth limit, a number of
bandwidth allocations is dynamically chosen, relative to the
vCPUs used. For each allocated number of vCPU, we allocate
up to three selected bandwidth limits (e.g. for 0.25vCPU we
test 0.25 and 1Gbps, for 2vCPU we test 1, 2 and 3Gbps).
The bandwidth allocation is configured by a ratelimit on the
download link to the traffic source, using tcset. A subset of
the measured configurations is illustrated in Fig. 3d.

Performance metric:
We choose the response time of cached file requests (ms) as
the main KPI to reflect the performance of the cache server,
as illustrated in Fig. 3h.

For all the tested VNFs we consider CPU as the most
important resource metric, and assume CPU is more likely
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to become a bottleneck resource than memory. This is also
confirmed in [7].

Taking all the different workload and resource configura-
tions into account, there are up to 5400 different configurations
to be tested for one VNF. We reported in section III-C that
each configuration takes an average of 30s to get a stable
measurement, this means the complete profiling can take up
to 45hours for one VNF. The iteration through all the profiled
configurations is automated by the Profiling Controller, which
controls the above mentioned tools and settings to generate all
the different workloads and allocate the specified resources.
This long profiling time pinpoints one of the main problems
with VNF profiling: many possible configurations lead to a
multiplicative growth rate of the test time. Possible ways to
mitigate this include narrowing down the possible configura-
tion options, or apply a better way to select which sample
configurations are most interesting to measure.

IV. ANALYSIS OF PROFILED DATA

In the previous section we described how different VNF
metrics were gathered under a set of different workload
and resource configurations. Having this profiled information
available, we want now to know, how well we can predict the
performance of the VNF from this dataset by a trained model.
We try out several modelling techniques and compare their
accuracy.

In Fig. 3 we can see a subset of the resource allocations
and the related performance measured at the same time. Every
data point is the mean of minimum 15 repeated measurements.
We also derive a confidence interval for each point. Although
some noise is present, we can clearly identify some trends in
the profiled datasets:
• When resources are freely available (no CPU starvation),

workload and resource usage are highly correlated. CPU
usage rises with increasing workload on the x axis. Mean-
while, performance metrics on the bottom row plots remain
fairly constant while CPU still has margin.

• When resources become scarce (CPU reaches saturation),
CPU usage flattens to the maximum available amount, even
if workload still increases. The correlation between mea-
sured workload on the x axis and resource usage is lowering.
From this point onwards, the performance metrics start
to increase more rapidly. Now, workload and performance
metrics are more correlated.
It is important to notice here that the same kind of trend

is witnessed with every VNF. The steepness and trend break-
point of the monitored resource usage and performance differs
from configuration to configuration. This is illustrated in Fig.
4b and 4c. For better readability, we only show a small subset
of processed workloads and the according CPU usage and
KPIs. During our measurements, we observe a general trend
as depicted in Fig. 4a (this trend can also be seen in Fig. 3).
Intuitively, this also corresponds to how we expect a VNF to
be generally implemented: with resource saturation reached by
increasing packet or request rate. While the data in Fig 3 is
averaged over 15 repeated tests, the remainder of the paper is
based on a limited subset of only five repeated tests. We do

this to reflect more a real-life situation where limited time is
available to gather many repeated tests. As a result, a certain
portion of noise is not averaged out in the data as seen in Fig.
4. In general, the gathered data is characterized by following
aspects, which impact the accuracy of the later used modelling
methods:

a) Heavy non-linear relations and trends in various
monitored metrics: There is a steep trend-break in the perfor-
mance when the resources reach saturation. Also the variation
caused by changing workloads cannot be fit to low-grade poly-
nomials as is mostly highly non-linear. This causes regression
methods to fail at modelling the performance trends of the
VNFs as regression methods try to fit the performance to a
polynomial combination of workload and resource metrics.
This is shown in Fig. 4b and 4c where we see that the
performance trends (red curves) are varying under different
workload configurations. This variation seems hard to capture
accurately in a model.

b) Noisy measurements of the performance metrics: Due
to noise on performance measurements, there is no guarantee
for a monotonous trend for the measured performance. The
noise can cause highly over-fitted models, especially with
interpolation methods. (see e.g. Fig. 4b where a non-smooth
curve would result from interpolating between measured per-
formance values.)

c) Inability to gather a lot of training samples because of
the slow profiling measurements: Due to time restrictions, the
amount of profiled samples is rather limited. We need to work
with a limited set of samples where only selected workload
and resource configuration have been measured before. This
can give problems with interpolation and nearest neighbor
based methods, if little neighboring samples are available. Also
machine learning based methods such as ANN tend to fail with
little training samples.

d) A monotonic function approximates the observed
trends: When averaging multiple repeated measurements, a
smoother curve occurs as illustrated in Fig. 3 and 4a. This is
useful information because we can use the smoother curve to
approximate the noisy data. Moreover, we can use a monotonic
function which helps to calculate a resource recommendation
as outlined further in Section IV-E. In our algorithm, the
observed monotonic function simplifies the process to lookup
the according workload for a specified resource and KPI value,
since monotonicity avoids the need to take local extrema into
account.

A. General Analysis Method

For a user of a network service, the performance of the
deployed VNFs is specified in the SLA. Typically the SLA
defines performance limits which must be met while the work-
load varies in a certain range. For example, the VNF can have
max 1% packet loss while the incoming traffic is max 1Gbps,
or the response time is max 500ms while the incoming request
rate is 10 requests/sec. So the SLA imposes a relation between
incoming workload and performance KPIs. The operational
platform however, can only allocate resources to a VNF, it
has no direct idea how the allocated resources impact the
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Fig. 4. Generic observed trends and data example subsets. This shows how varying workloads induce noisy, non-linear resource and KPI measurements which
follow certain trends.

performance of the VNF. This is where the VNF profile can
help. The profiled dataset can be used to derive a relation
between allocated resources and resulting performance. The
main goal of doing the profiling measurements, is to derive
a model which predicts the needed resource allocation, in
function of the specified workload and performance in the
SLA. From an abstract and generalized viewpoint, the VNF
performance model can be described as:

f (wl, res) = per f (3)

where:
wl = input workload (e.g. packetrate, filesize)

res = resource allocation (e.g.number of allocated vCPUs)
per f = VNF KPI metrics (e.g. packet loss)

This model f allows us to predict the performance at any
given workload and resource allocation. Next, we need to find
a resource configuration which meets our performance target:
per ftarget . Therefore we can define following cost function:

minimize
�� f (wl, res) − per ftarget

�� (4)

The objective is now to find the minimal (cheapest) resource
allocation which can process a given workload at a given
performance target. We do this by iterating over all profiled
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Fig. 5. Comparison of different modelling techniques fitted to the same sample set. Each plot depicts three lines, i.e. the same three configuration settings.
The dashed line shows how the trained model predicts a configuration outside of the training set. Curve fitting approximates best the observed trends.
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resource allocations, and in each resource allocation we find
the maximum workload which minimizes the above cost
function. As a result, we derive from the profiled dataset how
much workload the VNF can process under given resource
allocations. This can be used by the orchestration or scaling
procedure to estimate the optimal resource allocation in order
to process a certain specified workload with known perfor-
mance. We will exemplify this procedure in section IV-E.
As mentioned earlier, a smooth monotonic function f (wl, res)
would simplify the calculation, since no multiple local minima
have to be taken into account.

B. Model Comparison
The function f in Eq. 3 and 4 can be implemented using

various techniques. In this section we describe our learnings
from comparing following methods:
• Linear Regression: We can try linear regression methods

to fit to non-linear trends by using polynomial expansion on
the predictors of the model. In this case this means including
also the mutual products of workload and resource allo-
cation parameters and even include higher order products.
As exemplified in [24] the introduced collinearity is then
handled by using the Lasso method to select only the most
relevant terms in the regression. The result is however not
satisfactory. And we conclude that regression works not well
in this use-case.

• k-Nearest Neighbors (kNN): By taking the average of
the k nearest profiled samples, we can model non-linear
trends more easily. We search the optimal k, by testing
different values for k and checking which one yields the best
accuracy. We also standardize the configuration metrics, so
the distance to neighboring configurations is not skewed by
the different scales of the metrics.

• Interpolation: Instead of calculating the mean of neighbor-
ing samples, we can also interpolate between surrounding
samples. The interpolant is constructed by triangulating the
input data using Delaunay triangulation, and on each triangle
performing linear barycentric interpolation. This method
also works in multiple dimensions, so we can interpolate
between any number of configuration metrics to predict the
performance of an intermediate configuration. We use the
method griddata implemented in the Python SciPy library
[25].

• Artificial Neural Network (ANN): Neural networks are
widely applied to model non-linear datasets and we train
an ANN to model the shown performance trends. The used
ANN type is a multi-layer perceptron regressor (using the
standard relu activation function). The hyperparameters are
found by exhaustively testing different values for optimal
accuracy (each VNF yields different model parameters). The
regularization parameter α ranges from 10−1 to 10−6. We
obtain the best results when using two hidden layers, within
each hidden layer a number of nodes varying between 15
and 20. Higher numbers of hidden layers and nodes give
no further improvement. For each VNF, the input layer
has a node for each workload and resource configuration
parameter, the output layer has one node for the used KPI
metric.

• Curve Fit: We try to fit a pre-defined set of analytic curves
to the measured performance samples for each profiled con-
figuration. The performance values of any new configuration
are then interpolated between the fitted curves (using the
same interpolation method as described above). This method
offers the best accuracy, as we will further detail in section
IV-C.

1) General Thoughts on the Models Used: In Fig. 5, each
plot shows the same subset of measured samples and how
they are approximated. Here we can compare how well each
method succeeds at modelling the smooth monotonic function
we put forward as objective. The ’trained configurations’ are
defined in Section III-D and comprehend the total set of
profiled resource allocation and workload settings. The dashed
line shows how the model predicts the performance of an
’untrained configuration’. An ’untrained configuration’ means
this resource/workload combination is not tested in the profiled
dataset, hence no samples are available. The model must learn
the behaviour of any untrained configuration from the limited
set of profiled training configurations.

The regression (Fig. 5a) is the least accurate becuase it
cannot handle the steep trend break happening at resource
saturation. We can also clearly see how the ANN, kNN and
Interpolation method do not guarantee a monotonic rising
function. The Curve Fit method approximates best the trends
seen in previous plots (Fig. 3 and 4), especially considering
the imperfections of the data (noisiness and limited quantity
of samples). Moreover, we can guarantee the modelled perfor-
mance trend to be monotonous. This benefits Eq. 4, as it would
guarantee a single possible solution for the recommended
resource allocation.

Table II summarizes different accuracy metrics for the
different methods per VNF. Each reported accuracy is the
result of a 5-fold cross validation: The profiled dataset was
divided into five equal parts, with each part serving once as
the test set and the other parts forming the training set of the
model. In the last row we have normalized and averaged the
accuracy metrics to be able to compare between the different
VNFs. The Curve Fit method seems to be the overall winner
with the lowest error values.

While the accuracy metrics for the ANN in Table II might
seem acceptable, care must be taken: as seen in Fig. 5d, there
is no guarantee that the ANN models the samples in a sensible
way. This means: packet loss should be zero at low packetrates
and then monotonically increase. The same is true for the
kNN method. For the Interpolation method (shown in 5c), the
monotonicity is broken by noise in the sample measurements.
The method we look for, should be able to yield a ’smoother’
curve, which can model a fairly constant performance value
at low workloads and then transition into a steeper curve. To
tackle the issues which decrease the accuracy in the above
described methods, we develop a model based on curve fitting.
As can be seen in Fig. 5e, this method guarantees a smooth
and monotonically rising modelled performance trend. We will
detail the accuracy metrics later in section IV-D. First we
explain the Curve Fit method more in detail.



9

Regression kNN Interpolation ANN Curve Fit
VNF r2 MAE MAD RMSE r2 MAE MAD RMSE r2 MAE MAD RMSE r2 MAE MAD RMSE r2 MAE MAD RMSE

OVS(%) 0.45 19.49 17.54 23.4 0.79 7.42 1.38 14.7 0.87 4.67 0.52 11.4 0.93 4.95 1.88 8.42 0.97 2.33 0.48 4.75
Router(%) 0.53 14.87 11.71 19.01 0.95 2.06 0.13 5.99 0.97 1.52 0.11 4.69 0.98 1.51 0.24 4.1 0.97 1.95 0.28 4.92

Firewall(%) 0.85 8.21 5.54 11.78 0.98 1.73 0 4.23 0.99 1.51 0 3.36 0.99 1.18 0.12 2.63 0.99 1.65 0.07 3.72
Cache(ms) 0.85 14.8 2.15 47.98 0.92 6.86 0.27 36.29 0.95 3.98 0.13 28.31 0.99 5.16 1.25 12.49 0.98 1.84 0.18 19.96
Norm.Avg. 0.67 1 1 1 0.91 0.3 0.05 0.51 0.95 0.2 0.02 0.4 0.97 0.21 0.18 0.26 0.98 0.14 0.04 0.3

TABLE II
ACCURACY METRICS OF THE INVESTIGATED MODELLING TECHNIQUES.(MAE, MAD AND RMSE ARE IN MS FOR THE CACHE VNF, PACKET LOSS (%)

FOR THE OTHER VNFS.)

C. The Curve Fit Method

The training procedure of our Curve Fit method is illustrated
with two sample subsets in Fig. 6. Based on observations of
the profiled dataset and intuitive reasoning on the inner VNF
workings, we use a piecewise model where two curves are
fitted to the samples of each profiled configuration. We define
following analytic relations to model the performance:
• In the non-saturated region, we choose an exponential func-

tion because of its characteristics similar to the observed
trends: the function stays low in the beginning and only
starts to rise rapidly later, as a transition phase to the
saturated region.

• The functions in the saturated region are based on intuitive
assumptions of the internal VNF processing (see Section
III-D). The included parameters allow extra freedom to fit
the slope and the x-axis intercept to the samples of each
configuration.

For the packet loss of the forwarding VNFs, we define an
exponential curve which starts at zero and stays very low,
until it starts to rise near a value b. After resource saturation,
we model the packet loss by:

packet loss (%) =
A − P

A
100 = 100(1 −

P
A
)

where:
A = Actual incoming packet rate.
P = Processed packet rate (max throughput) at saturation.

The above equation shows that after saturation, the packet loss
is a function inversely proportional with the incoming packet
rate. We use this information to define following analytic
model for the packet loss (x is the ingress packet rate):{
−exp(−ab) + exp [a(x − b)] , non-saturated
100(1 − c

x−d ), saturated, with x>c+d
(5)

For the cache server, we use the same exponential curve in
the non-saturated region, but now the resulting value can be
larger than zero at low request rates. After resource saturation,
we model that the response time is given by:

response time (s) =
FS
BW

U

where:
BW = The maximum reachable download bandwidth
FS = The average filesize of one file request
U = The number of ongoing file requests
The actual value of BW is determined by both the processing
time needed to prepare the request response and the link
capacity to send the response. We assume that BW is constant
(per configuration) after saturation, but we can only indirectly
quantify its value by profiling. The above equation shows
that after saturation, the response time is linearly proportional
to the number of concurrent ongoing requests. We use this
information to define following analytic model for the cache
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Fig. 6. Curve fit strategy exemplified in two sample subsets. Different trend curves are used before and after resources get saturated.
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response time (x is the number of concurrent ongoing re-
quests): {

a + exp [b(x − c)] , non-saturated
d(x − e), saturated, with x > e

(6)

As seen in Fig. 6 we also need a method to split the metrics
in a non-saturated and saturated subset. Each sample subset is
then fitted to its respective analytic model given in Eq. 5 and
6, by deriving optimal values for the parameters a, b, c, d, e. In
Algorithm 1 we describe the procedure of fitting these curves
to the profiled dataset.

Algorithm 1: Curve Fit training algorithm
Data: Profiled VNF dataset
Result: P = (curve parameters | profiled configurations)

1 P← empty VNF profile;
2 split the profiled dataset per unique configuration;
3 for each profiled configuration do
4 Snon−saturated ← empty dataset;
5 Ssaturated ← empty dataset;
6 order the samples by increasing packet rate;
7 while sliding window over n samples do
8 standardize the samples in the sliding window;
9 CoVres ← covariance(CPU, packet_rate);

10 CoVper f ←

covariance(packet_loss, packet_rate);
11 if CoVper f > CoVres then
12 Ssaturated .append(remaining samples);
13 stop while loop;
14 end
15 Snon−saturated .append(current window samples);
16 move sliding window by 1 sample;
17 end
18 curve fit Snon−saturated;
19 curve fit Ssaturated;
20 calculate intersection/closest point;
21 P.append([fitted parameters, intersection point,

configuration parameters]);
22 end

Lines 4-14 describe how we split the samples in (non)saturated
regions. For each plot in Fig. 6 we calculate the covariance
between the workload (x-axis metric) and each of the two
y-axis metrics, in a sliding window. If the covariance with
the performance (right y-axis metric) is greater, we enter
the saturated (red) area. This can also be visually examined,
looking at Fig. 6:
• In the non-saturated region the resource metrics (CPU) vary

more than the performance metrics (blue samples). The blue
line shows the fitted function in this non-saturated region.

• In the saturated region the performance metrics (packet loss
and response time, red samples) show the most variation.
The CPU usage is saturated and remains more stable. The
red line shows the fitted function in this saturated region.
The resulting VNF profile P has a row for each profiled

configuration (one configuration is a unique combination of
resource allocation and workload settings). For the packet for-
warding VNFs (router, firewall and OVS) each configuration

is specified by (vCPU allocation, packetsize and number of
flows). Each configuration stores the fitted curve parameters
(a, b, c, d, e in Eq. 5 and 6) and the intersection point which
indicates the boundary where the (non)saturated curve should
be used.

For the Cache VNF, the metrics packet_loss and
packet_rate in Algorithm 1 are replaced by response_time
and concurrent_requests. Each Cache VNF configuration is
specified by (vCPU allocation, bandwidth allocation, filesize
and cache hit ratio). For the other tested VNFs, each configu-
ration is specified by (vCPU allocation, packetsize and number
of flows).

In order to predict the performance of an untrained con-
figuration, we first lookup the surrounding configurations in
the profiled dataset. Then we use the same method as used in
the Interpolation model (see IV-B) to interpolate between the
profiled fitted curves. This is exemplified in Fig. 5e (dashed
line), where a monotonic and smooth curve results from the
interpolation.

We implemented this method using the Python SciPy library
[25], which enables us to test and cross-validate this method in
the same way as done with existing modelling methods such
as kNN, ANN, etc.

D. Accuracy of the Used Models

We have reported different accuracy measurements for the
used methods in Table II:
• r2: R-squared is a statistical measure of how close the

data are to the fitted model. For a multivariate model it
is calculated as: Explained variation / Total variation. Most
of the models report a value near 100% which indicates
that the models explain most of the variability around their
mean. Seeing the low deltas between the reported r2’s, we
conclude that this is not a significant score to compare the
accuracy of the different models.

• MAE: Mean Average Error. This is the mean value of the
fitted residual errors.

• MAD: Median Average Deviation. This is the median value
of the fitted residual errors.

• RMSE: Root Mean Squared Error. When the residuals of the
fitted model are normally distributed, the RMSE depicts the
standard deviation of the residuals. However, the difference
between the MAE and MAD for most of the methods,
seems to suggest that the distribution of the residual errors is
skewed and larger errors are occurring at larger performance
values.
In Fig. 7 we plot the MAE of the different methods,

comparing only the performance (packet loss). We calculate
the MAE in different buckets of the measured loss, averaged
over all the packet forwarding VNFs (router, firewall and
OVS). This indeed shows that larger errors are occurring at
higher loss values, as suggested by the MAE and MAD values.
The Curve Fit method produces the smallest errors.

To have an even better understanding of the accuracy of the
different methods, we investigate the effect of decreasing the
size of the training set in Fig. 8. We measure again the MAE
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in the 0-2% packet loss bucket, using 5-fold cross-validation,
but now we stepwise decrease the number of configurations
used in the training set. At the right side of the graph, when
using large enough training sets, we see indeed that the Curve
Fit method has the smallest accuracy, which is in line with fig.
7 and Table II. At smaller training sets however, the Curve Fit
method shows a decreasing accuracy, becoming worse than the
other methods. The Curve Fit method appears to be the most
sensitive to the size of the training set. This emphasizes the
importance of a large enough dataset for training, and carefully
controlling the boundaries in which the trained model is valid.
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training set size.

E. Resource Allocation Recommendation

In this section we describe how the obtained VNF profile
can be used to give a recommendation for resource allocation.
We therefore look back at Eq. 4: f (wl, res) is modelled by the
Curve Fit model described earlier. We then use f (wl, res) to
calculate the maximum workload the VNF can process at each
profiled resource allocation, within specified workload settings
and KPI limits. Next, we can interpolate and extrapolate this
new dataset and predict the maximum workload the VNF can
process for other resource allocations outside of the profiled
set. This procedure is given in algorithm 2:
• Line 3 uses a modified nearest neighbour algorithm, based

on Euclidean distance, to find and prioritize near configu-
ration parameters at both sides (i.e. with larger and with
smaller parameters than Wltarget ). This helps the interpola-
tion method used further in the algorithm.

Algorithm 2: Resource recommendation algorithm
Data: VNF Profile, Per ftarget , Wltarget
Result: Recommended resource allocation

1 Pres ← empty dataset ;
2 for each profiled resource allocation res do
3 Find the profiled workloads surrounding Wltarget ;
4 P← empty dataset ;
5 for each found profiled workload do
6 Lookup using the VNF profile model:
7 Wlmax ← wl where f (wl, res) == Per ftarget ;
8 P.append([Wlmax , configuration parameters]);
9 end

10 Wlmax |res← interpolate in P the requested Wltarget
configuration;

11 Pres .append([Wlmax |res, configuration parameters]);
12 end
13 /* Pres now contains a predicted maximum workload for

each profiled resource allocation */
14 filter out resource allocations which bring no

improvement;
15 train a regression model: f (res) = Wlmax on Pres to

extrapolate Wlmax to untrained resource allocations;
16 recommendation ← find minimal res where

f (Wltarget, res) ≤ Per ftarget ;

• Line 6 uses the trained Curve Fit model to predict the VNF
performance as explained in Section IV-C. However, to find
Wlmax we must inverse the functions in Eq. 5 and 6.

• Line 10 represents again the Interpolation method as ex-
plained in IV-B.

• At the end, from line 13 onwards, we have a reduced
dataset Pres , filtered by our given performance and workload
targets. A simple regression can be used to model this
dataset, since we observe a linear trend between the amount
of allocated resources and the maximum workload (see Fig.
9). This corresponds to our intuitive understanding of a VNF
implementation, where more resources proportionally allow
more processed packets or requests.

• Line 15 is hence an Ordinary Least Squares regression
model with the allocated resources (res) as input and the
according maximum processable workload (Wlmax |res) as
output.

A more practical example might clarify this further:
For the forwarding-based VNFs (router, firewall, OVS) we
must specify following parameters in the SLA:
• workload target: (packetsize, number of flows)
• performance target: packet loss
Using the Curve Fit model we predict which packet rate is
expected at the targeted packet loss and configuration (line
5 in algorithm 2). We predict thus the maximum packet rate
the VNF can process (at the specified packet loss) for every
profiled resource allocation (line 10 in algorithm 2).
Similar, for the Cache VNF, we must specify following
parameters for algorithm 2:
• workload target: (filesize, cache hit ratio)
• performance target: response time of cached file requests
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(b) Router
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Fig. 9. VNF resource allocation recommendation. By regression, the performance trend of profiled resource configurations can be extrapolated.

In Fig. 9, we show the predicted workload (y-axis, Wlmax |res)
for a certain performance target in each profiled resource
allocation (x-axis, res). To get a recommendation for non-
profiled resource allocations, we must interpolate or extrapo-
late between the obtained sample points. which is done by
the regression model in Algorithm 2. This is the function
which is used by the service operator to determine an optimal
resource allocation, meeting the SLA specifications. Using the
graphs depicted in Fig. 9, a resource allocation can be chosen
to process the targeted packetrate or concurrent incoming
requests, constrained by a given packet loss or response time.

There is one special case illustrated by the router VNF in
Fig. 9b. This VNF does not show further improvement when
more than 2 vCPU are allocated. This should be detected, as
no resource recommendation should be given beyond 2vCPUs
for this router VNF (see also line 14 in Algorithm 2).

As a side note we can report that the lookup time of all the
samples of a VNF in Fig. 9 is in the order of 100ms. This
means that a delay of approx. 100ms is introduced in the or-
chestration procedure for recommending an adequate resource
allocation. Fast booting network functions (e.g. implemented
as unikernels) are however reported to boot in the order of

10ms. In this case the resource recommendation lookup will be
a bottleneck. A possible way to mitigate this is to implement
the network function in such a way that resource allocations
can be dynamically adjusted, without requiring a reboot.
Another possibility is that pre-trained regression models are
pro-actively made for a number of fixed performance and
configuration targets.

V. MORE USE-CASES FOR VNF PROFILES

In the previous sections we have explained how the VNF
profile can be constructed. Next, we see three immediate
benefits which VNF profiles can bring to the operational
framework of a service orchestration platform:
• At initial orchestration of the VNF, the profile helps to

calculate a sensible recommendation for resource allocation.
This is done in order to meet the performance specifications
in the SLA as soon as possible after the VNF has been
started, avoiding the need for additional scaling cycles.

• During operation of the VNF, fluctuations in the workload
can cause performance degradations. If the (long-term)
workload fluctuations can be predicted, the VNF profile
could map this to a resource allocation at which the VNF
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is able to keep up with the SLA/performance specification.
Elastic scaling methods can make use of the VNF profile to
calculate optimal resource allocation updates under changing
workloads.

• The obtained VNF profile can serve as a baseline behavior
model for the VNF. The operational performance and re-
source usage trends of the VNF can be compared against
the profile by a healing algorithm to detect any deviations.

In this paper we have focused on the first two cases. The
usefulness of the VNF profile becomes clear when we need
to find a mapping between targeted workload and allocated
resources, thus also when the VNF needs to scale. Referring
back to Fig. 6b, we can observe the following:
Suppose we target a response time of 50ms. According to the
profiled performance curve, the number of concurrent requests
can still increase while the VNF is operating in saturated
mode, before the targeted response time is reached. If we
would scale the VNF already at the point where the CPU
is saturated, we would always keep a very large margin to the
targeted performance limit, and continuously overprovision the
VNF.

In Fig. 10 we show how the VNF profile can improve the
scaling efficiency. We take the Cache VNF as an example. The
upper plot shows a sudden surge in the workload, the number
of requests suddenly increases. The middle plot shows how
different scaling strategies would react to this. Resource-based
scaling triggers have no idea how much resources to add to
bring performance again to an acceptable level, therefore mul-
tiple iterations can happen. Resource-based scaling algorithms
aim to bring the VNF below a certain resource usage threshold,
without any knowledge how the performance is related to
the resource usage. Using the VNF profile, we can lookup
which resource allocation meets the performance target for
the number of requests at the top of the surge. Therefore only
one single scaling iteration is executed. Profile-based scaling
algorithms can more optimally estimate how much resources
are required to meet a performance threshold. This example
shows also that the VNF profile can be used to pro-actively add
more resources if pre-defined workload surges are expected.
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Fig. 10. At a workload surge, the profile can be used to determine the needed
resources, resulting in less scaling iterations (less vCPU scaling steps in the
middle plot).

Regarding profile-based scaling, we can conclude the follow-
ing:
• Scaling triggers based on resource usages might be subopti-

mal, since also in saturated mode, the VNF performance can
be good enough. Default autoscale functions in Openstack
or Kubernetes for example operate this way.

• When using performance-based scaling triggers, we opti-
mally make use of the allocated resources. In this case we
can let VNF also operate in the saturated region.

• Without a VNF profile we can never predict for sure if a
certain resource allocation offers enough performance or not.
Another challenge is the performance fluctuation, inherent

to the cloud’s operational context. In a typical use-case, the
vendor supplies the application in a portable virtualized form
(like a virtual machine, container or unikernel). The operator
and infrastructure provider can choose themselves how to
optimally deploy the application. This means that the service
operator may implement different strategies regarding resource
isolation (isolated or shared resource mapping), inducing noisy
neighbour effects: To limit under-utilization and save power,
datacenter operators can overcommit their hardware by allow-
ing multiple VNFs on the same CPUs. This creates of course
starvation if each VNF is requesting its complete allocated
resource share [26]. Isolation between processes can also be
compromised on a higher level, e.g. containers sharing the
same kernel. Similarly, the service provider can route multiple
tenants to the same shared VNF, making it difficult to predict
the total workload.

Several measurement campaigns gave insight in the perfor-
mance fluctuations of multiple commercial cloud providers.
Empirical results show significant performance differences for
comparable instances on the public cloud [27]. One of the most
striking learnings from this research is that cloud-hosted VNF
performance can suffer from short-lived but frequent episodes
of very severe performance degradation. CPU, memory and
especially IO-bound workloads can vary greatly (double-digit
percentage fluctuations). Other measurements also show that
multi-tenancy has a dramatic impact on performance and
predictability [28].

The VNF profile can be used to tackle these fluctuations.
It allows to translate any foreseen resource fluctuations to
according performance fluctuations. If we take into account
these predicted performance fluctuations, we can take the
necessary counter actions to better guarantee the SLA.

VI. CONCLUSION AND SUMMARY

We have discussed the use-cases for VNF profiling and
investigated which methods work best to model VNF per-
formance. Using four different VNF implementations we
have quantified the accuracy of the investigated methods.
Although widely used in various domains, our results show
that regression, k-Nearest Neighbors, interoplation and Neural
Networks do not offer good accuracy when modelling the
typical performance trends of VNFs. This is related to the non-
linear relations between VNF parameters, noisy variation of
the performance measurements and a low quantity of profiled
data points due to time restrictions. These drawbacks are
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mitigated in our experiments, since we use curve fitting to
model the profiled data points and interpolate between the
fitted curves to achieve the highest prediction accuracy of
the VNF performance. Using this newly proposed modelling
approach, it is shown how the modelled VNF profile can assist
the service operator by providing resource recommendations
for a VNF. This allows performance specifications in the SLA
to be mapped to practical resource allocations. This is not
only useful at initial orchestration of the VNF, but also when
the VNF needs to scale to new resource allocations, due
to changing workloads or dynamic cloud-native performance
fluctuations. ACKNOWLEDGMENT
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