
HAL Id: hal-02280690
https://hal.science/hal-02280690

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On the coupling of a direct-forcing immersed boundary
method and the regularized lattice Boltzmann method

for fluid-structure interaction
Zhe Li, Wenjin Cao, David Le Touzé

To cite this version:
Zhe Li, Wenjin Cao, David Le Touzé. On the coupling of a direct-forcing immersed boundary method
and the regularized lattice Boltzmann method for fluid-structure interaction. Computers and Fluids,
2019, 190, pp.470-484. �10.1016/j.compfluid.2019.06.030�. �hal-02280690�

https://hal.science/hal-02280690
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


On the coupling of a direct-forcing immersed boundary method and the

regularized lattice Boltzmann method for fluid-structure interaction

Zhe Li∗, Wenjin Cao, David Le Touzé
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Abstract

The present paper provides an analysis of the force model effect on the regularization procedure based on

the Hermite expansion in regularized lattice Boltzmann method (RLBM). It is shown that, when using the

2nd-order accurate in time semi-implicit force model of Guo et al. [15] in RLBM, the reconstruction of the

non-equilibrium part of the distribution function has to start from the 1st-order Hermite polynomial, because

the new distribution function (after a change of variables) contains the body force effect. Based on this Hermite

regularization, an immersed boundary-regularized lattice Boltzmann (IB-RLB) coupling method is proposed

for simulating transient fluid-structure interactions (FSI) with rigid and deformable solid objects. The fluid

and solid solvers are coupled in a non-staggered way so that the stability and accuracy are well preserved.

The proposed IB-RLB coupling method is then validated with several numerical test-cases, such as impulsively

started plate, vortex-induced vibrations and 3D flapping flag, for which good agreements are found with the

references.

Keywords: Fluid-structure interaction, Immersed boundary method, Regularized lattice Boltzmann method,

Force model

1. Introduction

Fluid-structure interaction (FSI) problems are widely present in nature and engineering applications, such

as blood flows through the heart valves, wind-tall building interaction, etc. Hence it is of great interest and

importance to have an accurate and robust numerical tool for better understanding the underlying physics and

providing methods to industrial engineerings. Over the two decades, the lattice Boltzmann method (LBM)

emerged as a promising numerical method possessing attractive features, such as its kinetic origin making it

capable of simulating problems within a large range of Knudsen number (i.e. beyond just those obeying the

Navier-Stokes equations), high computational efficiency (highly parallelizable), etc.
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The standard LB (SLB) scheme [20, 40] is based on the single-relaxation-time (SRT) Bhatnagar-Gross-Krook

(BGK) [3] collision model. Although this SRT-BGK SLB scheme is widely used because of its simplicity and

efficiency, it was found to develop sometimes numerical instabilities, which might be induced by non-adapted

initial condition, geometric singularities or inaccurate numerical approximations [41], even at very moderate

Reynolds numbers. In this context, several stabilization techniques have been proposed in the literature, such as

the multi-relaxation-time (MRT) collision model [26], entropic LB method (ELBM) [1] and entropic stabilizer

[22], and the regularized LBM (RLBM) [27, 54]. In this paper, we will apply the regularization procedure as

stabilization technique for the numerical simulation of FSI problems.

The regularization procedure in LBM consists in filtering out the effect of the undesired ghost modes which

might generate numerical instabilities [45]. Different regularization techniques have been proposed and investi-

gated in the literature [5, 25, 27, 34, 36, 54]. For example, through the Chapman-Enskog analysis [4], Latt and

Chopard [27] proposed to reconstruct the non-equilibrium part of the pre-collision distribution function using

the gradient of the macroscopic fluid velocity. It is found that this regularization procedure can considerably

increase the maximal Reynolds number which can be simulated in a stable way for a given lattice size [27].

Based on this idea, Latt et al. [28] proposed a straight velocity boundary condition treatment. Besides, it is

also possible to reconstruct the non-equilibrium part by means of the Hermite polynomial expansion [14]. In

2006, Shan et al. [43] demonstrated that the lattice Boltzmann equation (LBE) can be systematically derived

from the Boltzmann equation, with the help of the Hermite polynomials. In the same year, Zhang et al. [54]

proposed a regularization procedure based on the projection of the non-equilibrium part of the pre-collision dis-

tribution function onto the Hilbert sub-space spanned by the Hermite polynomials. In fact, the regularization

formula of Latt and Chopard [27] can also be derived using Hermite polynomial expansion, as shown in Ap-

pendix. Here we adopt the regularization procedure based on the Hermite polynomial expansion for stabilizing

the FSI simulation, because of (i) its systematic link with the kinetic theory; (ii) the a priori and consistent

derivations of the distribution function (equilibrium and non-equilibrium parts) and of the body force term; and

(iii) its potential for straightforward extension to high-order LBM [6, 35], although only weakly-compressible

isothermal fluid flows are considered in the present paper.

As mentioned previously, the body force term in the LBE can also be obtained by means of the Hermite

polynomial expansion of the external acceleration in the continuous Boltzmann equation [33]. This force model

has been initially derived by Martys et al. [33] and then adopted by Zhang et al. [54] in their Hermite

regularization procedure. However, it can be shown that the time integration of the force term in [54] is treated

with an explicit 1st-order scheme. Indeed, as investigated by Guo et al. [15], this force model [33] does generate

some extra errors under the Chapman-Enskog analysis, compared with the one proposed by Guo et al. [15]

which is obtained in an a postepriori way [43] aiming at canceling the leading errors. In 2007, by using the
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Hermite polynomial expansion and a change of variables [18], Guo et al. [16] demonstrated that the force model

[15] can be derived in a systematic and a priori way. In [16] one can easily observe that the time integration of

the force term is treated with the 2nd-order accurate trapezoidal scheme. In the present paper, we adopt this

2nd-order force model [15, 16] and will discuss the force model effect on the regularization procedure in RLBM.

Indeed, accurately incorporating body force effects in LBM is important for simulating fluid flows in the

presence of external body force, such as the gravity, or for coupling with a direct-forcing immersed boundary

method (IBM) for FSI problems. In [54], it is suggested to start the regularization directly from the 2nd-

order Hermite polynomial, since the 0th- and 1st-order Hermite expansion coefficients are both equal to zero by

construction. However, this is true only with the 1st-order accurate in time explicit force model [33, 54]. When

using the 2nd-order semi-implicit force model of Guo et al. [15, 16], a change of variables is performed in order to

get the fully discrete LBE [18] in an equivalent but explicit form. We observe that the newly defined distribution

function that is streamed in the LB solver contains the effect of body force. As a result, the regularization has

to be started from the 1st-order Hermite polynomial instead of the 2nd-order one.

In the present paper, with the help of a systematic derivation of the force model of Guo et al. [15] using the

Hermite polynomial expansion, we demonstrate the effect of the choice of the force model on the regularization

procedure and the necessity of starting the reconstruction of the non-equilibrium part of the pre-collision dis-

tribution from the 1st-order Hermite expansion. To the best of our knowledge, this point has not been reported

in the literature of the Hermite RLBM mentioned above. Based on this regularization technique, we propose

to couple the RLBM with a direct-forcing IBM, in a non-staggered way, for the numerical simulation of FSI

problems in the presence of moving rigid/deformable solid structures. Through some numerical validations

we observe that this regularization procedure allows us to significantly enhance the numerical stability and

eliminate undesired spurious noises (see Figure 4) in these FSI problems.

The rest of the paper is organized as follows: Section 2 shows the effect of the force model on the regularization

procedure in RLBM. Some necessary details of the adopted IBM are then provided in Section 3. A non-

staggered IB-RLB coupling algorithm for FSI problems is proposed in Section 4. Several numerical validations

are presented in Section 5. Finally, the conclusions are drawn in Section 6.

2. Regularized lattice Boltzmann method

2.1. Lattice Boltzmann equation with force term

2.1.1. Discrete Boltzmann equation

The discrete Boltzmann equation based on the BGK collision model is written as [43]

∂fa
∂t

+ ξa ·
∂fa
∂x

= − 1

τ
(fa − feq

a ) + Fa, (1)
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where fa = fa(x, t) denotes the distribution function at the position x and time t, corresponding to the ath

discrete lattice velocity ξa, τ the relaxation time, feq
a = feq

a (x, t) the equilibrium distribution function and

Fa = Fa(x, t) the external force term.

The equilibrium distribution function feq
a can be obtained from the Hermite expansion of the Maxwell-

Boltzmann distribution function

feq
a = ρwa

(

1 +
ξa · v
c2s

+
(ξa · v)2

2c4s
− v · v

2c2s

)

, (2)

where wa is the weight coefficient, cs is the speed of sound. In addition, ρ = ρ(x, t) and v = v(x, t) denote

respectively the macroscopic fluid density and velocity, with the following definitions


















ρ =
∑

a

fa =
∑

a

feq
a ,

ρv =
∑

a

faξa =
∑

a

feq
a ξa.

(3)

Moreover, the force term Fa in Equation (1) can also be derived by means of the Hermite expansion [33]

Fa = wa

(

ξa − v

c2s
+

(ξa · v)
c4s

ξa

)

· F , (4)

where F = F (x, t) = ρ(x, t)g(x, t) is the external body force (per unit volume) exerted inside the fluid domain,

with g(x, t) being the acceleration in the Boltzmann equation. The first two moments of Fa are given as


















∑

a

Fa = 0,

∑

a

Faξa = F .
(5)

It is worth noting here that the equilibrium distribution function feq
a in Equation (2) and the force term Fa

in Equation (4) are both expanded with Hermite polynomials and truncated up to 2nd-order, which is sufficient

for describing weakly-compressible isothermal fluid flows [16].

2.1.2. Force model in lattice Boltzmann equation

In order to derive the lattice Boltzmann equation with 2nd-order accuracy, He et al. [18] proposed to integrate

the discrete Boltzmann equation (1) along the characteristic line (or the lattice velocity) over one time-step ∆t

as

fa(x+ ξa∆t, t+∆t)− fa(x, t) =
∆t

2

(

− 1

τ
(fa(x, t)− feq

a (x, t)) + Fa(x, t)

)

+

∆t

2

(

− 1

τ
(fa(x+ ξa∆t, t+∆t)− feq

a (x+ ξa∆t, t+∆t)) + Fa(x+ ξa∆t, t+∆t)

)

,

(6)

where the right hand side of Equation (1) is integrated over one time-step using the trapezoidal rule which

ensures the 2nd-order accuracy of this implicit lattice Boltzmann equation (6).
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By means of a change of variables [9, 18], an equivalent but explicit version of Equation (6) can be obtained

as

f̄a(x+ ξa∆t, t+∆t)− f̄a(x, t) = −∆t

τ̄

(

f̄a(x, t)− feq
a (x, t)

)

+∆t

(

1− ∆t

2τ̄

)

Fa(x, t), (7)

where τ̄ = τ + 0.5∆t is the new relaxation time and the new distribution function f̄a(x, t) is defined as

f̄a(x, t) =

(

1 +
∆t

2τ

)

fa(x, t)−
∆t

2τ
feq
a (x, t)− ∆t

2
Fa(x, t), (8)

of which the first two moments are given as


















∑

a

f̄a =
∑

a

fa −
∆t

2

∑

a

Fa = ρ,

∑

a

f̄aξa =
∑

a

faξa −
∆t

2

∑

a

Faξa = ρv − ∆t

2
F .

(9)

As indicated in [16], this lattice Boltzmann equation (7) with force term is just the same as the one proposed

in [15], in which the coefficients are determined via a posteriori matching [43] in order to eliminate the errors

related to the body force term.

Now, let us rewrite Equations (7)-(9) in a more general form for the force term by introducing a coefficient

θ, as follows

f̄a(x+ ξa∆t, t+∆t)− f̄a(x, t) = −∆t

τ̄

(

f̄a(x, t)− feq
a (x, t)

)

+∆t

(

1− θ
∆t

τ̄

)

Fa(x, t), (10)

where the new distribution function is defined as

f̄a(x, t) =

(

1 +
∆t

2τ

)

fa(x, t)−
∆t

2τ
feq
a (x, t)− θ∆tFa(x, t), (11)

of which the first two moments are calculated as


















∑

a

f̄a =
∑

a

fa −
∆t

2

∑

a

Fa = ρ,

∑

a

f̄aξa =
∑

a

faξa − θ∆t
∑

a

Faξa = ρv − θ∆tF .

(12)

In Equations (10)-(12) one may observe that adopting different values of θ leads to different integration

schemes for the force term:

(a) Explicit scheme (θ = 0): It is the force model firstly proposed by Martys et al. [33], which is adopted

by Zhang et al. [54] in their Hermite regularization procedure. We observe that the time integration of

the force term Fa(x, t) over one time-step is treated with a 1st-order explicit scheme. Since θ = 0, the

first two moments of f̄a, Equation (12), are the same as the ones of fa, hence there is no need to take

into account the body force effect when calculating the macroscopic velocity. However, by means of the

Chapman-Enskog analysis, Guo et al. [15] showed that this explicit scheme introduces some errors in the

presence of a time-varying non-uniform body force.
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(b) Semi-implicit scheme (θ = 0.5): It is the force model previously shown in Equations (7)-(8), which is

proposed by Guo et al. [15, 16]. As shown in Equation (6), the collision and force terms are both

integrated in time using a 2nd-order trapezoidal scheme [18]. Guo et al. [15] showed that this force model

introduces the lowest errors among the existing force models in the literature.

(c) Implicit scheme (θ = 1): The last case uses a fully implicit scheme for integrating the force term in time

along the characteristic line, which is however 1st-order accurate in time and also needs to consider the

body force effect in the computation of macroscopic velocity.

In the present work, we choose to adopt the semi-implicit force model (b) with θ = 0.5, proposed by Guo

et al. [15, 16], because: (i) it can be systematically derived from the discrete Boltzmann equation (1) with the

help of Hermite expansions; (ii) 2nd-order accuracy can be assured via a change of variables; (iii) based on the

Chapman-Enskog analysis on different force models in [15], it introduces less errors than the others, especially

when the body force is not constant in space and time; (iv) it splits the macroscopic velocity into two parts as

ρv =
∑

a f̄aξa +0.5∆tF , which is an advantage for coupling with a direct-forcing immersed boundary method.

2.2. Regularization procedure

2.2.1. Expansion based on the Hermite polynomials

The distribution function fa(x, t) (discrete in velocity space but continuous in configuration space and time)

can be expanded into a truncated series (up to N th-order) based on the Hermite polynomials [14, 43]

fa(x, t) ≃ f̂a(x, t) = wa

N
∑

n=0

1

n!
â
(n)(x, t) : H(n)(ξa), (13)

where ‘:’ denotes full contraction and the nth-order expansion coefficient â(n)(x, t) is computed as

â
(n)(x, t) = a(n)(x, t) =

∑

a

fa(x, t)H(n)(ξa). (14)

It is here worth noting that fa(x, t) and f̂a(x, t) have the same first N expansion coefficients, i.e. â(n)(x, t) ≡
a(n)(x, t), where ∀n ≤ N , because of the orthogonality of Hermite polynomials.

In addition, the first few Hermite polynomials are given as































H(0)
a = H(0)(ξa) = 1,

H(1)
a = H(1)(ξa) =

ξa
cs

,

H(2)
a = H(2)(ξa) =

ξa ⊗ ξa
c2s

− I.

(15)
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2.2.2. Hermite regularization of the non-equilibrium part of the distribution function

In the adopted force scheme presented in Section 2.1, the collision and streaming operations are carried out

with the distribution function f̄a. After each streaming step, at the instant t, a local position x possesses the

distribution function f̄a(x, t) streamed from the neighboring lattice nodes. Generally, this f̄a does not entirely lie

in the sub-space spanned by the first N leading Hermite basis [54], i.e. f̄a may contain higher-order components

that are not useful for recovering Navier-Stokes equation but might destabilize the numerical simulation of

LBM.

Splitting the distribution function f̄a into an equilibrium part feq
a and a non-equilibrium part f̄neq

a , we can

extract the non-equilibrium part as

f̄neq
a = f̄a − feq

a , (16)

where f̄neq
a is the part that contains undesired higher-order components, since feq

a is expanded with the Hermite

polynomials up to N th-order.

Following the idea proposed in [54], after each streaming step, we replace f̄neq
a by ˆ̄fneq

a which is a Hermite

expansion series truncated at N th-order

ˆ̄fneq
a = wa

N
∑

n=0

1

n!
â
(n)
neq : H(n)

a , (17)

with the nth-order (n ≤ N) expansion coefficient computed as

â
(n)
neq = a(n)

neq =
∑

a

f̄neq
a H(n)

a =
∑

a

(

f̄a − feq
a

)

H(n)
a . (18)

It is important to note here that, in [54], it is suggested to start the construction of f̂neq
a directly from the

2nd-order term, since the 0th-order and 1st-order terms are equal to zero by definition. However, this is true only

with the explicit scheme (θ = 0) for the force term in Equation (10). With the adopted semi-implicit scheme

(θ = 0.5), only the 0th-order expanding coefficient for f̄neq
a is equal to zero, i.e. a

(0)
neq = 0 but a

(1)
neq 6= 0. This is

due to the existence of the force term Fa in the definition (8) of f̄a. As a consequence, the construction of ˆ̄fneq
a

must start from the 1st-order term. In the present work, we choose to construct ˆ̄fneq
a up to the same order as

feq
a , i.e. N = 2, which gives

ˆ̄fneq
a = wa

(

a(1)
neq · H(1)

a +
1

2
a(2)
neq : H(2)

a

)

,

= wa

((

∑

b

(

f̄b − feq
b

) ξb
cs

)

· ξa
cs

+
1

2

(

∑

b

(

f̄b − feq
b

)

(

ξb ⊗ ξb
c2s

− I

)

)

:

(

ξa ⊗ ξa
c2s

− I

)

)

,

(19)

where b is another lattice index.

The importance of including the 1st-order term in the regularization procedure is illustrated in Figure 1

which shows the numerical solution of a body force-driven 2D Poiseuille flow, of which the analytical solution
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is u(y) = gy(H − y)/(2ν) with H being the width of the channel. In this comparison, it can be clearly observed

that the regularization including both the 1st-order and 2nd-order terms gives a numerical result superimposed

to the analytical solution. Whereas, the result obtained with the regularization starting directly from the 2nd-

order term appears much different from the analytical solution, due to the fact that the body force effect has

not been taken into account in the reconstruction of ˆ̄fneq
a .

Both the theoretical demonstration and the numerical example show that it is necessary to start the Hermite

regularization from the 1st-order term when using the semi-implicit scheme for the force term.

 0

 0.2
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 0.6
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 1

 0  0.2  0.4  0.6  0.8  1  1.2

y/
H

u/umax

1
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nd
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nd

-order
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Figure 1: Numerical solution of a Poiseuille flow using the Hermite regularization procedure.

Once the non-equilibrium part ˆ̄fneq
a (x, t) is constructed by means of the regularization procedure, we can

carry out the collision step in the lattice Boltzmann equation (7) as

f̄a(x+ ξa∆t, t+∆t) = feq
a (x, t) +

(

1− ∆t

τ̄

)

ˆ̄fneq
a (x, t) + ∆t

(

1− ∆t

2τ̄

)

Fa(x, t), (20)

in which the right hand side contains exclusively the expansion terms not higher than 2nd-order.

3. Direct-forcing immersed boundary method

In order to incorporate moving solid objects in fluid flows, we apply the direct-forcing immersed boundary

(IB) method proposed in [32], which enhances the no-slip boundary condition on the Lagragian solid points,

thanks to the computation of a local thickness for each IB-segment as shown in Figure 2.

After each spreading step in the LB method, the distribution function f̄a(x, t) is updated to the time instant

tn+1 = tn + ∆t, i.e. f̄n+1
a = f̄a(x, t

n+1) is known everywhere inside the fluid domain, which allows us to

calculate the fluid density ρ(x, tn+1). However, the macroscopic fluid velocity v(x, tn+1) cannot be determined

yet, since it depends not only on f̄a(x, t
n+1) but also on the body force F (x, tn+1), as shown in Equation (9).

8



Figure 2: Immersed boundary (IB) points in a D2Q9 lattice Boltzmann (LB) grid. The shaded area represents the supporting

domain Dk of the approximate Dirac delta function for the kth-IB point.

Given the motion (position and velocity) of a rigid solid wall at tn+1, the adopted IB method proceeds in

two stages [32]:

• Interpolation stage: Based on the interpolated definition of the macroscopic fluid velocity, the body force

on the kth-IB point is computed as

F n+1
k =

2

∆t

(

I
[

∑

a

f̄n+1
a

]

k

vn+1
s,k − I

[

∑

a

f̄n+1
a ξa

]

k

)

, (21)

where F n+1
k = F

(

xk

(

Xk, t
n+1
)

, tn+1
)

denotes the body force per unit volume exerted by the kth-IB point

at the time instant tn+1, with xk and Xk representing respectively the spatial and material coordinates

of the kth-IB point. In addition, vn+1
s,k is the solid velocity at the kth-IB point under the no-slip boundary

condition. Finally, I [•]k is the interpolation operator, which gives the value of a fluid variable φ(x, t)

interpolated from the LB nodes to the kth-IB point

I [φ(x, t)]k =
∑

j∈Dk

φ(xj , t)δ̃

( |xj − xk(t)|
∆x

)

δ̃

( |yj − yk(t)|
∆y

)

, (22)

where xj and yj denote the coordinates in x- and y-directions of the jth-LB node that is located inside the

support domain Dk of the kth-IB point, as shown in Figure 2. Moreover, δ̃(r) represents an approximate

Dirac delta function over the support domain Dk. In the present work, we adopt the approximate Dirac

delta function proposed by Roma et al. [42]

δ̃(r) =



























1

3

(

1 +
√

−3r2 + 1
)

0 ≤ r ≤ 0.5,

1

6

[

5− 3r −
√

−3(1− r)2 + 1
]

0.5 ≤ r ≤ 1.5,

0 otherwise.

(23)
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• Spreading stage: Once the body force is obtained at all solid IB points, it is spread from the IB points

onto the neighboring LB nodes by means of a spreading operation

F (xj , t
n+1) =

∑

k∈Dj

δ̃

( |xj − xn+1
k |

∆x

)

δ̃

( |yj − yn+1
k |

∆y

)

ǫn+1
k ∆sn+1

k

∆x∆y
F n+1

k , (24)

where ǫn+1
k and ∆sn+1

k denote the body force at the jth-LB node, the thickness and the length of the

kth-IB segment at the time instant tn+1, respectively. More details on the computation of ǫk can be found

in [12, 32].

Using the newly obtained body force F (x, tn+1), we can calculate the macroscopic fluid velocity v(x, tn+1)

defined in Equation (9), the equilibrium distribution function feq
a (x, tn+1) with Equation (2) and the body force

term Fa(x, t
n+1) with Equation (4), so that we can proceed the collision step for the next time-step.

4. Non-staggered IB-RLB coupling for FSI

4.1. Equation of rigid solid motion

The dynamical equilibrium equation for an elastically mounted rigid solid object with two degrees of freedom

can be written as

Msas(t) + Csvs(t) +Ksus(t) = F(t), (25)

where us(t), vs(t) and as(t) are the displacement, velocity and acceleration of the solid body in x- and y-

directions. Ms, Cs and Ks denote respectively the mass, the damping coefficient and the stiffness of this

mass-spring system. F(t) is the total force exerted from the surrounding fluid flow to the solid cylinder.

By integrating Equation (25) in time with the explicit Newmark scheme [37], we obtain































(

2Ms

∆t
+ Cs

)

vn+1
s −F

n+1 =
2Ms

∆t

(

vn
s +

∆t

2
an
s

)

−Ks

(

un
s +∆tvn

s +
∆t2

2
an
s

)

,

un+1
s = un

s +∆tvn
s +

∆t2

2
an
s ,

vn+1
s = vn

s +
∆t

2

(

an+1
s + an

s

)

,

(26)

where un+1
s = us(t

n+1), vn+1
s = vs(t

n+1) and an+1
s = as(t

n+1) denote the displacement, velocity and acceler-

ation of the solid body at the instant tn+1 with ∆t = tn+1 − tn.

4.2. Coupling strategy

As shown in Equation (26), without knowing F
n+1, one cannot update the solid state to t = tn+1 to obtain

un+1
s , vn+1

s and an+1
s . In this situation, in a staggered coupling algorithm [24], it is assumed that Fn+1 ≃ F

n

with F
n being already known from the previous time-step, or Fn+1 ≃ F

p with F
p denoting a predicted force.
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The drawback of staggered coupling methods is that the time-lag between the two sub-domains (fluid and solid)

might sometimes induce numerical instabilities, even though each individual sub-domain is numerically stable.

Using sub-iterations within each physical time-step may reduce the time-lag, however this leads to low numerical

efficiency, due to the extra sub-iterations, which may even lead to difficulties in converging for strongly coupled

FSI problems [19].

Inspired by the work in [31], we employ a non-staggered coupling strategy to solve this FSI problem. The

key is to obtain an equation relating the solid velocity vn+1
s and the total force F

n+1 with the help of the IB

method. Given the body force per unit volume at the kth-IB segment in Equation (21), the total force F
n+1

can be computed as

F
n+1 = −

∑

k

ǫn+1
k ∆sn+1

k F n+1
k ,

= − 2

∆t

∑

k

ǫn+1
k ∆sn+1

k

(

I
[

∑

a

f̄n+1
a

]

k

vn+1
s,k − I

[

∑

a

f̄n+1
a ξa

]

k

)

.

(27)

In the present case, because the rigid cylinder is allowed to move in x- and y-directions without rotation,

all the IB points have the same velocity, i.e. vn+1
s,k = vn+1

s , where ∀k ∈ [1, Ns] with Ns being the total number

of the IB points. As a consequence, Equation (27) can be rewritten as
(

2

∆t

∑

k

ǫn+1
k ∆sn+1

k I
[

∑

a

f̄n+1
a

]

k

)

vn+1
s +F

n+1 =
2

∆t

∑

k

ǫn+1
k ∆sn+1

k I
[

∑

a

f̄n+1
a ξa

]

k

, (28)

where one should note that only vn+1
s and F

n+1 are unknowns, since f̄n+1
a is obtained from the streaming step

of LB method, and ǫn+1
k and ∆sn+1

k depend on the new solid position un+1
s or geometry that has been updated

by means of the explicit Newmark time integrator using the second equation in the system (26).

Regrouping the first equation in the system (26) and Equation (28) gives




Ks −1

Kf 1









vn+1
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F
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gs

gf



 , (29)

where Ks, Kf , gs and gf are all known before solving the system (29) due to use of the explicit Newmark

scheme for the solid, which are
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∆t

∑

k

ǫn+1
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(30)
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Now, vn+1
s and F

n+1 can be simultaneously obtained by solving the system of equations (29) without any

sub-iteration procedure during each physical time-step from tn to tn+1. We can then use vn+1
s to get F n+1

k by

Equation (21), and thus F (xj , t
n+1) by Equation (24).

4.3. Overview of the present IB-RLB coupling algorithm

The present IB-RLB coupling algorithm can be summarized as follows:

Algorithm 1: IB-RLB coupling algorithm

Require: f̄a(x, t
n), ρ(x, tn), v(x, tn) and F (x, tn) from the previous time-step

1: Compute feq
a (x, tn) with Equation (2) and Fa(x, t

n) with Equation (4)

2: Extract f̄neq
a (x, tn) by Equation (16)

3: Compute a
(1)
neq(x, tn) and a

(2)
neq(x, tn) with Equation (18)

4: Obtain ˆ̄fneq
a (x, tn) using Equation (19)

5: Regularized LB-collision step in Equation (20)

6: Obtain f̄a(x, t
n+1) by means of LB-streaming step and thus ρ(x, tn+1) =

∑

a f̄a(x, t
n+1)

7: Compute un+1
s = un

s +∆tvn
s + 0.5∆t2an

s as shown in Equation (26)

8: Update the solid geometry and then compute ǫn+1
k using the method presented in [32]

9: IB-interpolation stage to get I
[
∑

a f̄
n+1
a

]

k
and I

[
∑

a f̄
n+1
a ξa

]

k

10: Solve the equations (26) and (28) to obtain vn+1
s and then an+1

s

11: Compute F n+1
k by Equation (21) using vn+1

k,s = vn+1
s

12: IB-spreading stage to obtain F (x, tn+1) at each LB node by Equation (24)

13: Compute v(x, tn+1) by the definition (9)

14: Goto 1 for next time-step

5. Numerical results and discussions

5.1. Taylor-Green vortex

The objective of this test-case is to verify numerically that the adopted regularization procedure does not

affect the convergence order of the LB method. We consider the Taylor-Green vortex in a square domain
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[0, L]× [0, L] with periodic boundary conditions, of which the analytical solution is given as



























vx(x, y, t) = −U0 cos(kx) sin(ky)e
−2k2νt,

vy(x, y, t) = U0 sin(kx) cos(ky)e
−2k2νt,

p(x, y, t) = p0

(

1− U2
0

4c2s
(cos(2kx) + cos(2ky)) e−4k2νt

)

,

(31)

where vx and vy denote the velocity components in x- and y-directions, p = ρc2s is the pressure, U0 and p0 are

the characteristic velocity and pressure, k = 2π/L and ν = U0L/Re the kinematic viscosity with the Reynolds

number chosen as Re = 100 in this test-case. The total time is set as T = L/U0.

To evaluate the convergence order, we measure the errors of the velocity fields obtained using four lattice

resolutions Nx ×Ny = 65× 65, 129× 129, 257× 257 and 513× 513, with Nx and Ny denoting respectively the

number of discretization points in x- and y-directions. For all four lattice resolutions, the relaxation time is

fixed at τ̄/∆t = 0.596. The error is evaluated as

Error =

√

√

√

√

1

NxNy

∑

j

∣

∣vnum
j − vana

j

∣

∣

2

U2
0

, (32)

where vnum
j = vnum(xj , T ) and vana

j = vana(xj , T ) denote the numerical and analytical velocity vector at the

jth-node and the final instant t = T . The numerical results are obtained with the standard LB (SLB) and the

regularized LB (RLB) methods for comparison.

Table 1 gives the numerical errors for different mesh resolutions and the CPU times consumed by the SLB

and RLB methods, in which the CPU times are all relative to the first (65× 65) SLB result. We find that the

RLB method gives a slightly smaller error than the SLB method, although the RLB method is computationally

more demanding than the SLB method. Based on these data in Table 1, Figure 3 shows the convergence order

of the SLB and RLB methods. We observe that both the SLB and RLB methods exhibit 2nd-order convergence,

which means that the regularization procedure does not degrade the convergence order of the LB method.

Table 1: Numerical errors in the Taylor-Green vortex test-case at Re = 100 with τ̄ /∆t = 0.596.

Mesh size
Error Relative CPU time

SLB RLB SLB RLB

65× 65 3.1473× 10−4 2.9025× 10−4 1.0 1.5

129× 129 7.8366× 10−5 7.1902× 10−5 13.4 21.4

257× 257 2.0171× 10−5 1.8588× 10−5 253.8 394.2

513× 513 4.9317× 10−6 4.5245× 10−6 3618.2 5812.1
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Figure 3: Convergence order of the SLB and RLB methods in the Taylor-Green vortex test-case.

5.2. Impulsively started plate

In this test-case, we consider a two-dimensional infinitely thin rigid plate of height h, which is suddenly

accelerated from rest to a constant velocity U0 in the direction normal to the plate surface. Initially, the

surrounding fluid is also at rest. The Reynolds number is fixed at Re = U0h/ν = 1000. This test-case is used in

[32] for validating the IB-SLB coupling method in which the standard BGK collision model is used. Despite the

good agreements with the references, it is observed that some spurious noise is generated around the slender

solid object, as shown in Figure 5-(a) in [32].

In the present numerical simulation using the proposed IB-RLB coupling method, the size of the fluid domain

is set as 15h × 9h and the rigid plate is discretized with 64 segments of the same length (∆s = ∆x = ∆y).

The vorticity contour lines are shown in Figure 4 at four different instants (t∗ = tU0/h = 0.1, 0.5, 1.0 and 2.0),

which are compared with ones obtained with the previous IB-SLB coupling method [32]. Since the fluid flow is

symmetric with respect to the central line, the upper half and lower half of each sub-figure drawn in Figure 4

show the vorticity contour lines obtained with the IB-SLB and IB-RLB models, respectively. It can be observed

that due to the sudden presence of the moving solid boundary, some spurious noise appears in the vorticity

field obtained with the IB-SLB method, whereas the IB-RLB method provides a much smoother vorticity field,

especially at time t∗ = 0.1 as shown in Figure 4-(a). As time evolves, the results of the IB-SLB and IB-RLB

methods become very close to each other. In addition, Figure 5 shows the time evolution of the dimensionless

length s/h of the recirculation pocket behind the moving plate, of which the shape is determined by the contour

line for vx = U0. In this comparison one can observe that the results given by the IB-SLB and IB-RLB methods
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are both in good agreement with the reference.
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Figure 4: Vorticity contour lines in the impulsively started plate test-case at four instants (t∗ = tU0/h = 0.1, 0.5, 1.0 and 2.0).

Hence, the adopted regularization procedure in the proposed IB-RLB coupling method can efficiently reduce

undesired noises, as shown in Figure 4-(a) and (b).

5.3. Vortex-induced vibrations (VIV)

In this part the proposed IB-RLB coupling method is validated with a series of two-way FSI test-cases,

in which an elastically mounted circular cylinder is allowed to move in either only y-direction or both x- and

y-directions, while interacting with a uniform fluid flow in x-direction. Figure 6 shows the configuration of

these test-cases. A rigid cylinder of diameter D is mounted on an elastic support and initially placed on the

horizontal central line of the computational fluid domain of height H . The distance from the cylinder to the

upstream (inlet) and downstream (outlet) boundaries are noted as Lu and Ld, respectively.
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Figure 5: Time evolution of the length of the recirculation bubble.

Figure 6: Configuration of the VIV test-cases.
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The boundary conditions are the same as the ones used by Prasanth and Mittal [39]. A velocity boundary

condition is imposed at the inlet: vx(−Lu, y, t) = U0 and vy(−Lu, y, t) = 0. At the outlet, the pressure or

density is fixed at the reference value: ρ(Ld, y, t) = ρ0. On the two lateral sides, we impose that vy(x, yB , t) = 0

and ∂vx/∂y(x, yB, t) = 0 with yB being equal to ±H/2.

Moreover, in order to compare with other results in the literature, we choose to adopt the same size of the

computational domain as the one used in [17, 44], which gives H = 20D, Lu = 10D and Ld = 25.5D.

5.3.1. Flow past a fixed circular cylinder at Re = 100 and Re = 185

Before considering two-way FSI problems, we first validate the present IB-RLB coupling method by means of

a test-case in which the cylinder is fixed in the surrounding fluid flow at Re = U0D/ν = 100. Table 2 shows the

numerical results of the averaged drag coefficient avg(CD), the root mean square of the lift coefficient rms(CL),

the amplitude of the lift coefficient amp(CL) and the Strouhal number St = fsD/U0 with fs being the vortex

shedding frequency, which are compared with references of the literature. A good agreement can be found in

this comparison and we observe that the lattice size with D = 40∆x provides a reasonably accurate solution.

In the following test-cases, we use this lattice resolution to validate the proposed IB-RLB coupling method in

a series of two-way FSI problems.

Table 2: Numerical results of the fluid flow past a fixed cylinder at Re = 100.

References avg(CD) rms(CL) amp(CL) St

Present

D = 40∆x 1.415 0.252 0.356 0.169
D = 80∆x 1.404 0.249 0.352 0.168
D = 120∆x 1.400 0.247 0.350 0.169

Zhang et al. [53] 1.425 0.250 – 0.173
Singh and Mittal [44] 1.310 0.250 – 0.163

He et al. [17] 1.377 0.251 0.355 0.169
Yang et al. [52] 1.393 – 0.335 0.165

Next, we consider a slightly higher Reynolds number Re = U0D/ν = 185, at which the fluid flow is still

two-dimensional and laminar. In LB simulations, in order to increase the Reynolds number, one can use a

greater characteristic velocity U0, or an increased diameter D of the cylinder, or a smaller viscosity ν leading to

a relaxation time τ̄ /∆t closer to 0.5. However, there exist some limitations: (i) U0 has to be kept small enough

comparing to the lattice speed of sound cs, because of the weakly-compressible hypothesis; (ii) a greater D/∆x

usually means a larger number of discretization points demanding more computational resources, which is not

always necessary, especially for fluid flows at low Re numbers; (iii) it is well known that when τ̄ /∆t becomes

too close to 0.5, LB simulations often encounter numerical instabilities, even at low Re numbers.
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In the present study, we increase the Reynolds number to Re = U0D/ν = 185 by only decreasing the

kinematic viscosity ν, while keeping the diameter of the cylinder D/∆x = 40 and the inlet velocity U0/cs =

0.05/(1/
√
3) ≃ 0.0866. This gives a relaxation time τ̄ /∆t ≃ 0.5324. Table 3 shows the numerical results obtained

with the proposed IB-RLB coupling method, in which a good agreement can be found with the references.

Table 3: Numerical results of the fluid flow past a fixed cylinder at Re = 185.

avg(CD) rms(CL) St

Present D = 40∆x 1.400 0.479 0.197

Vanella and Balaras [48] 1.377 0.461 –
Pinelli et al. [38] 1.430 0.423 0.196

It is here worth noting that the standard SRT-BGKmodel (IB-SLB coupling method) cannot provide a stable

numerical simulation at Re = 185 using the same parameters, i.e. with the same U0, D and τ̄ as previously

presented. A possible way to remedy the situation is to refine the lattice so that D/∆x is greater, which is, of

course, computationally more costly. This test-case shows clearly the importance of the regularization procedure

based on the Hermite expansion.

5.3.2. Flow past a y-oscillating cylinder

In this test-case, the cylinder is attached to a mass-spring system and allowed to oscillate transversely in

y-direction. We adopt the same physical parameters as the ones used in [10, 17], which lead to the following

dimensionless numbers: the mass ratio m∗ = 4Ms/(ρ0πD
2) ≃ 149.1, the damping ratio ζ = Cs/(2

√
MsKs) =

0.001237 and the Reynolds number Re = U0D/ν varies from Re = 90 to Re = 120, corresponding to reduced

velocities U∗ = U0/(fnD) from U∗ = 5.01 to U∗ = 6.68, where fn =
√

Ks/Ms/(2π) denotes the natural

vibration frequency of the mass-spring system. Notice that all the following cases with different Re or U∗ are

carried out separately, starting from the stabilized fixed cylinder result. Hence, no hysteresis phenomenon is

considered.

Figure 7 shows the time-varying positions of the center of the oscillating cylinder at Re = 90, 100 and 120,

corresponding to U∗ = 5.01, 5.57 and 6.68, respectively. In addition, the instantaneous vorticity contours in

the wake of the oscillating cylinder are also provided in Figure 7. By plotting the maximal amplitude and the

frequency of the oscillation as functions of Reynolds number Re, as shown in Figure 8, one can easily observe

the lock-in phenomenon [7, 50] in this VIV problem. As Re increases, from a critical value (Re ≃ 96), the

maximal amplitude of the oscillation Amax suddenly has a significant value. After that, Amax slightly decreases

when increasing Re. When Re becomes greater than a second critical value (Re ≃ 110), Amax quickly falls to

a small value and remains close to zero, as Re keeps increasing. Meanwhile, the vibration frequency fv of the
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Figure 7: The position of the center of the y-oscillating cylinder and the vorticity contour lines at three different Re values.
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cylinder continuously increases but remains constant (fv/fn ≃ 1) between the two critical Reynolds numbers

(96 ≤ Re ≤ 110).
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Figure 8: Lock-in phenomenon in the y-oscillating cylinder test-case.

As shown in the comparison with the references [10, 17] in Figure 8, the proposed IB-RLB coupling method

can correctly capture the frequency lock-in regime in this VIV problem. The critical Reynolds numbers and the

maximal vibration amplitude are in good agreement with the references which, based on ALE finite element

formulations using body-fitted meshes, adopt a monolithic coupling strategy (Dettmer & Perić [10]) and use a

loosely-coupled partitioned coupling method (He et al. [17]).

5.3.3. Flow past an xy-oscillating cylinder

Now, the cylinder is allowed to oscillate in both x- and y-directions. The mass-spring system has the same

properties in both directions. The dimensionless numbers are set as [44, 49]: Re = 100, m∗ = 10, ζ = 0 and

U∗ = 4.0 − 8.0. In the present study, we observe that it is necessary to increase the upstream distance to

Lu = 15D in order to eliminate the interference with the inlet boundary.

Figure 9 shows the trajectories of the cylinder center and the maximal oscillation amplitudes at different

reduced velocities U∗. Eight-shaped trajectories are obtained at reduced velocities U∗ = 5.0, 6.0 and 7.0, which

are very close to the ones presented in [49]. In addition, a good agreement is found with the references [44, 49]

for the maximal oscillation amplitude Amax
y in y-direction within the interval of reduced velocity U∗ ∈ [4.0, 8.0].

5.4. Fluid-deformable structure interaction in a 2D flow channel

Previously, we validated the proposed IB-RLB coupling method by means of several FSI test-cases, in which

only rigid solid bodies were considered. The present test-case is the widely adopted (see, e.g., recent works
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Figure 9: The xy-oscillating cylinder test-case (left: trajectories of the cylinder center at different reduced velocities; right: maximum

amplitudes in y-direction).

in [11, 23, 31]) benchmarking FSI problem in the presence of a deformable elastic solid structure, which was

initially proposed by Turek and Hron [47]. Figure 10 shows the configuration of this test-case: a deformable

solid bar, simulated by finite element method (FEM), is attached in the wake of a rigid cylinder in a 2D flow

channel at Re = 100 (FSI2) and Re = 200 (FSI3). The geometric, material and discretization parameters are

shown in Table 4. Here, the Hermite expansion-based regularization procedure for the LBM is expected to

improve the numerical stability in the FE-LB coupling framework [31]. Thus, the objective of this test-case

is to further validate the proposed IB-RLB coupling method in such a FSI problem with a deformable solid

structure. More details on the adopted FE-LB coupling scheme can be found in [31].

in
le

t

solid wall

solid wall

o
u

tle
t

Figure 10: Configuration of the fluid-deformable structure interaction (FSI2 and FSI3 [47]) test-cases.

Figure 11 gives the time history of the vertical displacement of the point A (see Figure 10) in the FSI2

test-case, which is compared with the one obtained with the previous IB-SLB method using standard BGK

collision model. We observe that the results of IB-SLB and IB-RLB methods are very close to each other, which

are both in good agreement with the reference [47]. Moreover, snapshots of the pressure field and streamlines

at four instants are shown in Figure 12, corresponding to four different positions of the point A.
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Table 4: Geometric, material and discretization parameters in the fluid-deformable structure interaction test-case.

Re = 100 Re = 200

Length of the flow channel 2.5 m 2.5 m

Height of the flow channel 0.41 m 0.41 m

Radius of the fixed cylinder 0.05 m 0.05 m

Length of the deformable solid bar 0.35 m 0.35 m

Thickness of the solid bar 0.02 m 0.02 m

Initial fluid density 103 kg/m3 103 kg/m3

Fluid kinematic viscosity 10−3 m2/s 10−3 m2/s

Initial solid density 104 kg/m3 103 kg/m3

Solid Poisson ratio 0.4 0.4

Solid Young’s modulus 1.4× 106 Pa 5.6× 106 Pa

Mean incoming fluid velocity 1 m/s 2 m/s

Solid-to-fluid density ratio 10 1

Grid spacing 2× 10−3 m 2× 10−3 m

Time-step 10−4 s 1.6× 10−5 s
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Figure 11: Evolution in time of the vertical displacement of the point A in the FSI2 test-case.
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Figure 12: Pressure fields and streamlines at four instants in the fluid-deformable structure interaction (FSI2) test-case.

Next, we consider the FSI3 test-case having a higher Reynolds number Re = 200 than in the FSI2. As shown

in Table 4, in this case the solid-to-fluid density ratio is equal to 1, which is more challenging than the previous

case, as the FSI effects become more important. Additionally, the time-step is decreased to ∆t = 1.6× 10−5 s,

which is due to the increased sound speed in the solid structure and the use of the explicit Newmark time

integrator in the FE solver. We carried out the simulations with the previous IB-SLB [31] and the present

IB-RLB coupling methods and we observed that the IB-SLB method failed to provide a stable simulation. The

FSI simulation diverged quickly after several hundred time-steps. We found that with the parameters in Table 4,

the value of τ̄ /∆t is equal to 0.512, which is too close to 0.5 for the SRT-LBM. Numerical instabilities developed

in the LBM simulation and finally affected the numerical stability of the IB-SLB coupling. As expected, the

Hermite expansion-based regularization procedure succeeded in improving the numerical stability of the IB-RLB

coupling with the same parameters as in the IB-SLB one. Figure 13 shows the vertical displacement of the

point A, as time evolves. In addition, the oscillation amplitude Am = (max(uA
y ) − min(uA

y ))/2, the Strouhal

number St = fAD/U0 with fA being the oscillation frequency, and the averaged drag coefficient avg(CD) are

given in Table 5, in which one may observe that the present results qualitatively agree with the references.

It is here worth noting that the previous IB-SLB may be stable with a τ̄ /∆t much greater than 0.5. However,

this requires a higher lattice resolution, as discussed previously in Section 5.3.1. In future works, the present
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IB-RLB coupling method may be tested with some more challenging problems with very small solid-to-fluid

density/mass ratios such as the ones adopted in [13, 51].
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Figure 13: Evolution in time of the vertical displacement of the point A in the FSI3 test-case at Re = 200.

Table 5: Numerical results in the fluid-deformable structure interaction test-case FSI3 at Re = 200.

Am/D St avg(CD)

Present IB-RLB 0.41 0.26 2.43

Tian et al. (2014) [46] 0.32 0.29 2.16

Bhardwaj and Mittal (2012) [2] 0.41 0.28 2.20

Turek and Hron (2006) [47] 0.36 0.26 2.30

5.5. 3D flapping flag in a uniform flow

At last, we consider a 3D test-case involving the interaction between an elastic flag and a uniform incoming

fluid flow. Figure 14 shows the initial configuration, where a square flag of length L is set in a fluid domain of

size [−L, 7L]× [−4L, 4L]× [−L,L], in x-, y- and z-directions, respectively. The flag is fixed at its leading edge,

of which the center O is the origin of the coordinate system. Initially, the flag is held at an angle of θ = 0.1π

from the x-z plane. At the inlet (x = −L) as well as the far-field boundaries (y = ±4L) of the fluid domain, a

uniform velocity condition is imposed as vx = U0 and vy = vz = 0. Periodic boundary condition is applied at

the lateral surfaces in the spanwise (z) direction. At the outlet, the pressure is fixed at p0 and the zero-gradient

condition is imposed for all velocity components.

This 3D flapping flag test-case, initially conducted by Huang and Sung [21], has been widely adopted in

several recent works [8, 11, 29, 46] for validating different numerical methods. In the present work, we first

consider the case with a Reynolds number Re = U0L/ν = 200. The mass ratio is chosen as ρsh/(ρfL) = 1,

where ρs and ρf denote the solid and fluid densities, respectively. In addition, as did in [46], the thickness
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Figure 14: Initial configuration of the 3D flapping flag test-case.

of the flag is set as h = 0.01L in the present 3D volumetric finite element modeling. For the solid structure,

the Poisson’s ratio is νs = 0.4 and the Young modulus Es is chosen such that the bending rigidity is equal to

Esh
3/(12(1− ν2s )ρfU

2
0L

3) = 0.0001.

The fluid computational domain is discretized using a uniform grid of size 401 × 401 × 101 lattice nodes

(D3Q19), in x-, y- and z-directions, respectively. We choose to use an inlet velocity in the LB solver as

U0 = 0.04∆x/∆t, which is sufficiently small to verify the weakly-compressible condition. Hence, given that

L = 50∆x, the relaxation time in the LB solver is equal to τ̄ /∆t = 0.5+(U0L/Re)/c2s = 0.53. The solid structure

is discretized with a mesh of size 50×50×2 elements. The common time-step is set as ∆t = 0.0008L/U0, which

satisfies the numerical stability condition for the explicit Newmark time integrator used in the FE solver.

Figure 15-(a) shows the time evolution of the position in y-direction of the middle point at the trailing

edge of the flag, which is compared with the result of Huang and Sung [21] and the one of Lee and Choi

[29]. A good agreement can be found with the references in this comparison. Moreover, the drag coefficient

Cd = F · ex/(0.5ρfU2
0L

2) is shown in Figure 15-(b), where F denotes the total force computed using Equation

(27) and T is the period of the flapping cycle. Once again, by comparing with the result (flag 2) of Tian et al.

[46] and the one of Dorschner et al. [11], one may observe a good agreement with the references. Additionally,

the flapping amplitude A/L and the Strouhal number St = fL/U0 with f = 1/T are also compared with the

results in several recent works in Table 6.

Finally, the proposed IB-RLB coupling method is applied to simulate the 3D flapping flag test-case at a

higher Reynolds number Re = 500 with τ̄/∆t = 0.512, while keeping all the other parameters the same as

in the previous case at Re = 200. Figure 16 shows the vortical structures in the fluid domain at the two
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Figure 15: Numerical results of the 3D flapping flag test-case at Re = 200: (a) the position in y-direction of the middle point at

the trailing edge of the flag; (b) the drag coefficient Cd.

Table 6: Numerical results of the 3D flapping flag test-case at Re = 200.

A/L St

Present IB-RLB 0.728 0.269
de Tullio & Pascazio [8] (2016) 0.795 0.265
Lee & Choi [29] (2015) 0.752 0.265
Tian et al. (flag 2) [46] (2014) 0.806 0.266
Huang & Sung [21] (2010) 0.780 0.260
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Reynolds numbers, which are visualized by using the iso-surface of the Q-criterion. The time histories of the

displacement in y-direction of the middle point at the trailing edge, obtained using four mesh resolutions, are

shown in Figure 17. Notice that the mesh spacings for the FE and LB solvers remain the same in this mesh

convergence study. In addition, the amplitude A and the St number of the flapping motion are summarized

in Table 7. One may observe that the numerical results are not very sensitive to the mesh size, especially for

the St number. However, we find that the St number in the present result is higher than the one in [21]. This

discrepancy may be possibly due to the different modelings of the structural material properties.

(a) (b)

Figure 16: Snapshots at tU0/L = 20 of the vortical structures visualized by means of the iso-surface of the Q-criterion in the 3D

flapping flag test-case at two Reynolds numbers: (a) Re = 200; (b) Re = 500.
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Figure 17: Time histories of the displacement in y-direction of the middle point at the trailing edge with four mesh resolutions in

the 3D flapping flag test-case at Re = 500.
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Table 7: Numerical results of the 3D flapping flag test-case at Re = 500 with four mesh resolutions.

Mesh of the flag A/L St

50× 50× 2 0.710 0.322
50× 50× 4 0.711 0.323
60× 60× 2 0.727 0.325
70× 70× 2 0.731 0.325

6. Conclusion

In the present paper, the force model effect on the Hermite regularization procedure in LBM is analyzed. It

is demonstrated that, with the 2nd-order semi-implicit force model [15], it is necessary to start from the 1st-order

term when reconstructing the non-equilibrium part of the distribution ˆ̄fneq
a . Based on this Hermite regularization

including both the 1st-order and 2nd-order terms, an immersed boundary-regularized lattice Boltzmann (IB-

RLB) coupling method is proposed for the numerical simulation of transient fluid-structure interaction (FSI)

problems. In the proposed coupling algorithm, the fluid and solid solvers are coupled in a non-staggered way

preserving the numerical stability as well as the accuracy of the numerical schemes used in each sub-domain.

The proposed IB-RLB coupling method is validated in several numerical test-cases, in which it is observed that:

• Adopting the Hermite regularization procedure [54] does not degrade the convergence order (2nd-order)

of LBM in the Taylor-Green vortex test-case.

• Due to the use of the regularization before the collision step, the regularized LBM demands approximately

50% more CPU time than the standard SRT-BGK LBM.

• The regularization can remarkably help reduce the spurious noise generated near an immersed moving

solid object, such as an impulsively started plate, while preserving the accuracy of the result.

• By means of the proposed IB-RLB non-staggered coupling method, the frequency lock-in phenomenon in

the vortex-induced vibrations of an elastically mounted cylinder can be correctly simulated.

• The proposed IB-RLB coupling method is also validated in some FSI test-cases in the presence of a

deformable solid structure, such as a 3D flapping flag. In the FSI3 test-case where the solid-to-fluid

density ratio is equal to one, the present method can give a stable numerical simulation.

As expected, the regularization based on the Hermite expansion [54] turns out to be a good candidate that can

efficiently stabilize the numerical simulation of FSI problems simulated with the IB-RLB coupling framework,

while preserving the accuracy of the numerical methods. As a result, the proposed IB-RLB coupling method
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allows one to carry out numerical simulations of FSI problems at higher Re numbers (still laminar flows) using

less discretization points, or in other words, with a small lattice viscosity corresponding to a relaxation parameter

τ̄ close to 0.5. This makes the proposed IB-RLB coupling method as accurate as, but much more robust and

effective than, the previous IB-SLB one [31, 32].
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Appendix

In 2006, Latt and Chopard [27] proposed a regularization procedure based on the computation of the gradient

of the macroscopic velocity. Here, we show that this regularization formula [27] can also be derived by means

of the Hermite expansion. Body force is not considered in this demonstration for the sake of simplicity.

In the Chapman-Enskog analysis [4] on the LBE, the distribution function and the derivative operators are

developed as


























f̄a = ε0f̄ (0)
a + ε1f̄ (1)
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(A.1)

where ε is the expansion parameter, t1 = εt, t2 = ε2t and x1 = εx. Thus, at each scale of ε, one has
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Based on Equation (A.2) and the equilibrium distribution function feq
a given in Equation (2), the 2nd-order

moment Π(1) of f̄
(1)
a can be obtained as [30]

Π(1) =
∑

a

ξa ⊗ ξaf̄
(1)
a ,

= −τ̄ρc2s

(

∇1v + (∇1v)
⊤
)

+ τ̄∇1 · (ρv ⊗ v ⊗ v) ,

(A.3)

in which the last term on the right hand side can be neglected in low Mach number limit, which is the case in

weakly-compressible flow. In addition, assuming f̄neq
a ≃ εf̄

(1)
a gives the 2nd-order moment Πneq of f̄neq

a as

Πneq =
∑

a

ξa ⊗ ξaf̄
neq
a ,

≃
∑

a
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(1)
a ,

≃ −ετ̄ρc2s
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∇1v + (∇1v)
⊤
)

,

= −τ̄ ρc2s

(

∇v + (∇v)⊤
)

.

(A.4)

Since, by definition, one has
∑

a f̄
neq
a = 0, Πneq can then be related with the 2nd-order expansion coefficient

a
(2)
neq of the Hermite expansion of f̄neq

a in the following way

a(2)
neq =

∑

a

(
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− I

)

f̄neq
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Πneq
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∇v + (∇v)
⊤
)

. (A.5)

Without the body force term, one has a
(0)
neq = 0 and a

(1)
neq = 0. As a consequence, the regularized non-

equilibrium part of the distribution function ˆ̄fneq
a can be reconstructed by means of the Hermite expansion

as

ˆ̄fneq
a = wa

2
∑

n=0

1

n!
a(n)
neq : H(n)

a ,

= wa

1
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− I

)

,

(A.6)

which is just the regularization formula proposed by Latt and Chopard [27] for weakly-compressible fluid flows

(dρ/ρ ≪ 1).
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