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Cohomology with twisted coefficients of the classifying space of a fusion
system

RÉMI MOLINIER

We study the cohomology with twisted coefficients of the geometric realization of a linking system
associated to a saturated fusion systemF . More precisely, we extend a result due to Broto, Levi and
Oliver to twisted coefficients. We generalize the notion ofF -stable elements toFc-stable elements in
a setting of cohomology with twisted coefficients by an action of the fundamental group.We then study
the problem of inducing an idempotent from anF -characteristic (S,S)-biset and we show that, if the
coefficient module is nilpotent, then the cohomology of the geometric realization of a linking system
can be computed byFc-stable elements. As a corollary, we show that for any coefficient module,
the cohomology of the classifying space of ap-local finite group can be computed by theseFc-stable
elements.

55R40, 55N25, 55R35, 20J06, 20D20, 20J15

The notion of saturated fusion systems was introduced by Puig in the 90s in a context of modular represen-
tation theory. In topology, saturated fusion systems are used in the study ofp-completed classifying spaces
of groups. Ap-local finite groupis a triple (S,F ,L) whereS is a p-group,F a saturated fusion system
over S andL an associated centric linking system. For ap-local finite group (S,F ,L), the p-completed
nerve ofL, |L|∧p , is called itsclassifying space. The theory ofp-local finite group has been studied in
detail by Broto, Levi, Oliver and others (see [BLO2], [OV1],[5a1] and [5a2]). The linking system and its
geometric realization, even withoutp-completion, play here a fundamental and central role. In fact, for a
given saturated fusion system, the existence and uniqueness of a linking system associated to a saturated
fusion system were shown more recently by Chermak [Ch] (using the theory of partial groups). The proof
of this important conjecture highlights the deep link between group theory and homotopy theory and the
importance of linking systems to studyp-local structures. We refer to Aschbacher, Kessar and Oliver [AKO]
for more details about fusion systems in general.

A well-known result of Cartan and Eilenberg (see [CE] Chap XII, Theorem 10.1) expresses the cohomology
with mod p coefficients of a finite group as the submodule ofstableelements in the cohomology of a Sylow
p-subgroup. This submodule of stable elements corresponds to the inverse limit over the fusion system of
the group cohomology functor. One important result in the theory of p-local finite groups is an extension of
this theorem to anyp-local finite group which tells us that the cohomology of the geometric realization of a
linking system with trivial coefficients can be computed byF -stable elements.

Theorem A ([BLO2], Theorem B) Let (S,F ,L) be ap-local finite group. The inclusion ofBS in |L|

induces a natural isomorphism

H∗(|L|∧p ,Fp) ∼= H∗(|L|,Fp)
∼= // H∗(Fc,Fp) := lim

←−
Fc

H∗(−,Fp).
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HereFc denotes the full subcategory ofF where the objects are the subgroups ofS which areF -centric
(the analog ofp-centric in the group case). From that, the above result can be extended to cohomology with
coefficients in anyZ(p) -moduleA (a proof is given in [5a2] Lemma 6.12).

The Theorem of Cartan and Eilenberg actually applies with other choices of coefficients and especially with
twisted coefficients. One question asked by Oliver in his book with Aschbacher and Kessar [AKO] is the
understanding of the cohomology of|L| with twisted coefficients. Indeed, this cohomology appearsfor
example in the study of extensions ofp-local finite groups [5a2] and it can give more information about the
link between the fusion system and the homotopy type of|L|.

In this paper, cohomology with twisted coefficients means cohomology with locally constant coefficients. In
other words, given a spaceX, the cohomology ofX with twisted coefficients corresponds to the cohomology
of X with coefficients in aZ(p)[π1(X)]-module. LetM be aZ(p)[π1(X)]-module, and suppose in addition that
X has a universal covering spaceX̃, the cohomology ofX with twisted coefficients inM is the cohomology
of the chain complex

C∗(X; M) = HomZ[π1(X)](S∗(X̃),M),

whereS∗(X̃) is the usual singular chain complex ofX̃.

In this paper we extend TheoremA to twisted coefficients. Levi and Ragnarsson allready consider this
problem in [LR]. As they pointed out ([LR], Proposition 3.1), it is not possible to achieve a version of
TheoremA for twisted coefficients in full generality and some restrictions onF or on the coefficients are
necessary.

Theorem4.3 Let (S,F ,L) be ap-local finite group. IfM is an abelianp-group with a nilpotent action of
π1(|L|), then the inclusion ofBS in |L| induces a natural isomorphism,

H∗(|L|,M) ∼= H∗(Fc,M).

Here, forp a prime, ap-group is a finite group ofp-power order. An important application of the above
result is the complete description of the cohomology of the classifying space of a fusion system in terms of
Fc-stable elements.

Corollary 5.4 Let (S,F ,L) be ap-local finite group. IfM is an abelianp-group with an action ofπ1(|L|∧p ),
then there is a natural isomorphism

H∗(|L|∧p ,M) ∼= H∗(Fc,M).

One crucial tool in the proof of Theorem4.3, as it was in the proof of TheoremA, is to construct an
idempotent ofH∗(S,M) from anF -characteristic (S,S)-biset which generalizes the construction of Broto,
Levi and Oliver in [BLO2]. The action on the coefficients makes the construction lessstraightforward and
we need here to work with a finite module to guarantee that thisidempotent exists.

Organization. We start with a review onp-local finite groups in Section1. In Section2, we introduce
our cohomology functor and we define properly the notion ofFc-stable elements. Section3 contains the
construction of an idempotent for anF -characteristic biset. As this section is rather long, it isdivided into
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several subsections, each of which deals with a different aspect or property of the idempotent. We prove
Theorem4.3 in the Section4. Finally, in Section5, we give a result about the cohomology with twisted
coefficients ofp-good spaces and we apply it to get Corollary5.4.

Acknowledgments. I first would like to thank Bob Oliver, my PhD supervisor, for his support during my
thesis and this work. I also would like to thank Radu Stancu for all the time we spent together on this
problem. I am grateful to the Center for Symmetry and Deformation for its hospitality and Jesper Grodal
and Sune Precht Reeh for many fruitful conversations.

Finally, I would like to thank the referee, Alex Gonzáles and Emilie Devijver for their careful reading of the
paper and their useful comments.

This work was supported by the Université Paris 13.

1 Background onp-local finite groups

We give here a very short introduction top-local finite groups. We refer the reader interested in more details
to Aschbacher, Kessar and Oliver [AKO].

Roughly speaking, fusion systems encode the conjugation data of a finite group with respect to a choice
of a Sylow p-subgroup. ForG a finite group andg ∈ G, we will denote bycg the homomorphism
x ∈ G 7→ gxg−1 ∈ G. Given subgroupsH,K ≤ G, we shall denote by HomG(H,K) the set of all group
homomorphismscg for g ∈ G such thatcg(H) ≤ K .

Definition 1.1 Let S be a finitep-group. A fusion systemover S is a small categoryF , where Ob(F) is
the set of all subgroups ofS and which satisfies the following two properties for allP,Q ≤ S:

(a) HomS(P,Q) ⊆ MorF (P,Q) ⊆ Inj(P,Q);

(b) eachϕ ∈ MorF (P,Q) is the composite of anF -isomorphism followed by an inclusion.

A fusion system issaturatedif it satisfies two more technical conditions called the saturation axioms (we
refer the reader to [AKO], Definition I.2.1 for a proper definition).

The composition in a fusion system is given by composition ofhomomorphisms. We usually write
HomF (P,Q) = MorF (P,Q) to emphasize the fact that the morphims inF are actual group homomor-
phisms.

The typical example of saturated fusion system is the fusionsystemFS(G) of a finite group G over
S∈ Sylp(G).

Definition 1.2 Let F be a saturated fusion system over ap-group S. A subgroupP ≤ S is F -centric if
CS(Q) = Z(Q) for every Q ∈ PF . We will denote byFc the full subcategory ofF with set of objects all
theF -centric subgroups ofS.

If F is the saturated fusion system associated to a finite groupG with S as Sylowp-subgroup, then a
subgroupP ≤ S is F -centric if and only ifP is p-centric, i.e. Z(P) is a Sylow p-subgroup ofCG(P).
Before defining the notion of centric linking system let us first recall a well-known result about saturated
fusion system.
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Theorem 1.3 (Alperin’s Fusion Theorem)Let F be a saturated fusion system over ap-group S. Then,
every morphism is a composite of restrictions of automorphisms ofF -centric subgroups.

In other words, a saturated fusion systemF is generated byFc. In fact, Alperin’s Fusion Theorem is more
precise and says that we just need automorphisms ofS andF -essential subgroups ofS. For more details,
we refer to Section I.3 of Aschbacher, Kessar and Oliver [AKO].

For F a fusion system over ap-group, T c
S (S) will denote the usual transporter category ofS with set of

objects Ob(Fc).

Definition 1.4 Let F be a fusion system over ap-group S. A centric linking systemassociated toF is a
finite categoryL together with a pair of functors

T c
S (S) δ // L

π // F

satisfying the following conditions:

(A) δ is the identity on objects, andπ is the inclusion on objects. For eachP,Q ∈ Ob(L) such thatP is
fully centralized inF , CS(P) acts freely on MorL(P,Q) via δP,P and right composition, and

πP,Q : MorL(P,Q) // HomF (P,Q)

is the orbit map for this action.

(B) For eachP,Q ∈ Ob(L) and eachg ∈ TS(P,Q), the applicationπP,Q sendsδP,Q(g) ∈ MorL(P,Q) to
cg ∈ HomF (P,Q).

(C) For eachP,Q ∈ Ob(L), all ψ ∈ MorL(P,Q) and allg ∈ P, the diagram

P

δP(g)
��

ψ
// Q

δQ(ψ(g))
��

P
ψ

// Q

commutes inL.

A p-local finite groupis a triple (S,F ,L) whereS is a p-group,F a saturated fusion system overS, andL
is a linking system associated toF . Theclassifying spaceof (S,F ,L) is then given by|L|∧p .

2 Cohomology andFc-stable elements

In this section we introduce our cohomology functor with twisted coefficients defined onFc and we define
the notion ofFc-stable elements. We refer the reader to [We] for all the necessary results on homological
algebra as well as the classicial notion ofδ -functor. We also refer the reader to [We], [Br], [CE] or [AM]
for details on group cohomology.

Before introducing the notion ofFc-stable elements, we need to understand the action ofSon aZ(p)[π1(|L|)]-
module. For each pair ofF -centric subgroupsP ≤ Q, set

ιQP = δQ
P (1).
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We denote by
πL = π1(|L|,S)

the fundamental group of the geometric realization|L| with base point at the vertexS. For G a discrete
group, letB(G) be the category with a unique object, and morphism set equals to G (hence,|B(G)| = BG).
Consider the functor

ω : L // B(πL)

which maps each object to the unique object in the target and sends each morphismϕ ∈ MorL(P,Q) to the
class of the loopιQ.ϕ.ιP where ιP is the edgeιP followed in the opposite direction. In particular, every
Z(p)[πL]-module is naturally aZ(p)[S]-module where the action is given by the following composition:

B(S) = B(MorT c
S (S)(S,S))

δS // L
ω // B(πL) .

Let (S,F ,L) be ap-local finite group and letM be aZ(p)[πL]-module. As we work with an action of
π1(|L|), we can define a functor onL using the bi-functoriality of group cohomology. Recall that group
cohomology defines a contravariant functor

H∗(−,−) : D // Z(p)-Mod

whereD is the category of pairs (G,M) with G a group andM a Z(p)[G]-module. A morphism inD from
(G,M) to (H,N) is a pair, (ϕ, ρ) where ϕ : G // H is a group homomorphism andρ : N // M is
a linear map such that, for everyn ∈ N and everyg ∈ G, gρ(n) = ρ (ϕ(g)n) .

Given ϕ ∈ Mor(L), we have (π(ϕ), ω(L)) ∈ Mor(D) and we define our cohomology functor as the
following.

H∗(−,M) : L // Z(p)-Mod

P ∈ Ob(L) ✤ // H∗(P,M)

ϕ ∈ MorL(P,Q) ✤ // H∗(ϕ,M) = ϕ∗ := H∗(π(ϕ), ω(ϕ)−1).

For P,Q two subgroups ofS and ϕ ∈ MorL(P,Q), H∗(ϕ,M) can also be defined on the chain level as
follows:

HomZ(p)[Q] (R•,M) // HomZ(p)[P] (R•,M)

f ✤ //
(
ω(ϕ)−1 ◦ f ◦ π(ϕ)∗

)

where (R•) is a projective resolution of the trivialZ(p)[S]-moduleZ(p) . Finally, it can also be defined as the
morphism between the two derived functors of (−)Q and (−)P induced by

x ∈ MQ ✤ // ω(ϕ)−1x ∈ MP.

By construction, it defines a morphism ofδ -functors.

Proposition 2.1 Let (S,F ,L) be ap-local finite group. IfP,Q ≤ S areF -centric andϕ ∈ MorL(P,Q),
then

H∗(ϕ,−) : H∗(Q,−) // H∗(P,−)

is a morphism ofδ -functors from
(
H∗(Q,−), δH∗(Q,−)

)
to

(
H∗(P,−), δH∗(P,−)

)
.
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By construction, this functor naturally extends the group cohomology functor defined onT c
S (S).

T c
S (S)

H∗(−,M)
//

δ
""❉

❉
❉❉

❉❉
❉❉

Z(p)-Mod

L
H∗(−,M)

;;✈✈✈✈✈✈✈✈✈

In particular, for everyP ≤ S andg ∈ P, H∗(δP(g),M) = c∗g . Moreover, it also factors throughFc along

π : L // Fc .

Proposition 2.2 Let ϕ, β ∈ MorL(P,Q) with P,Q ∈ L. If π(ϕ) = π(β) thenH∗(ϕ,M) = H∗(β,M).

Proof If π(ϕ) = π(β), then there existsu ∈ Z(P) such thatϕ = β ◦ δP(u) and thus

H∗(ϕ,M) = H∗(δP(u),M) ◦ H∗(β,M).

HoweverH∗(δP(u),M) = H∗(π(δP(u)), ω(u)−1) = H∗(cu, ω(u)−1) = c∗u is the automorphism ofH∗(P,M)
induced by the conjugation byu, and, asu ∈ Z(P) ≤ P, this is the identity.

In particular, if π(ϕ) = inclQP , thenH∗(ϕ,M) = H∗(ιQP ,M) = H∗(inclQP , IdM) = ResQP . Hence,H∗(−,M)
factors naturally throughFc alongπ . For M a Z(p)[πL]-module,P,Q ≤ S two F -centric subgroups and
ϕ ∈ HomF (P,Q) we writeϕ∗ := H∗(ψ,M) whereψ ∈ MorL(P,Q) is such thatπ(ψ) = ϕ.

Definition 2.3 An elementx ∈ H∗(S,M) is calledF -centric stable, or justFc-stable, if for all P ∈ Ob(Fc)
and allϕ ∈ HomF (P,S),

ϕ∗(x) = ResSP(x).

We denote byH∗(Fc,M) ⊆ H∗(S,M) the submodule of allFc-stable elements.

This submodule ofFc-stable elements corresponds to the inverse limit ofH∗(−,M) on the categoryFc,

H∗(Fc,M) ∼= lim
←−
Fc

H∗(−,M).

Moreover, if M is aZ(p) -module with a trivial action ofπL , then, by Alperin’s Fusion Theorem (Theorem
1.3), H∗(Fc,M) ∼= H∗(F ,M) and the notion ofFc-stable elements naturally extends the notion ofF -stable
elements.

In general, we cannot expect to define a cohomology functor onall F . For example, every morphism of
L induces the identity on the trivial subgroup{e}. Thus, if the cohomology functor was defined on allF ,
every morphism inL should act trivially onM = H0({e},M), which is absurd. Instead we consider the
following construction.

Let (S,F ,L) be ap-local finite group. LetQ ≤ S be aF -centric subgroup ofS, P0 ≤ Q, ψ ∈ AutL(Q)
and denoteP1 = π(ψ)(P0) ≤ Q. For M a Z(p)[πL]-module, even ifP0 is notF -centric, we can consider
the morphism H∗(P1,M) // H∗(P0,M) given by H∗(π(ψ)|P1

P0
, ω(ψ)). This can also be defined on the

chain level by,
HomZ(p)[P1] (R•,M) // HomZ(p)[P0] (R•,M)

f ✤ //
(
ω(ψ)−1 ◦ f ◦ (π(ψ)|P1

P0
)∗
)

6



where (R•) is a projective resolution of the trivialZ(p)[S]-moduleZ(p) .

This is well-defined because, by Definition1.4 (C),

M // M

x ✤ // ω(ψ)−1x

defines a linear map such that, for everyp ∈ P0 andx ∈ M ,

ω(ψ)−1ω
(
δQ(p)

)
x = ω

(
δQ(ψ(p))

)
ω(ψ)−1x

and thus (π(ψ)|P1
P0
, ω(ψ)) ∈ Mor(D). Notice that ifP is F -centric, then this is justH∗(ψ,M). Note also

that, if the action ofω(ψ) on M is trivial, this is just the usual morphism induced in cohomology by π(ψ)|P1
P0

.

Let P,Q ≤ S andϕ ∈ HomF (P,Q). By Alperin’s Fusion Theorem1.3, there existP = P0,P1, . . . ,Pr =

ϕ(P) subgroups ofS, Q1, . . . ,Qr F -centric subgroups ofS and ψi ∈ AutL(Qi) for every i such that
π(ψi)(Pi−1) = Pi and

ϕ = π(ψr )|
Pr
Pr−1

◦ π(ψr−1)|Pr−1
Pr−2

◦ · · · ◦ π(ψ1)|P1
P0
.

We then consider the following composite

H∗(Pr ,M)
H∗(π(ψ1)|

P1
P0
,ω(ψ1)−1)

// · · ·
H∗(π(ψr )|

Pr
Pr−1

,ω(ψr )−1)
// H∗(P,M)

composed on the right byResQPr
which gives us a morphism

H∗(Q,M) // H∗(P,M).

Note that this morphism depends on the choice of the decomposition of ϕ into restrictions of automorphisms
of F -centric subgroups and not only onϕ. As an example, we can again look at the trivial subgroup{e}
in a given fusion systemF : each morphism inFc restricts to the identity on{e}, but, if M is not a trivial
Z(p)[πL]-module, not everyϕ ∈ Mor(Fc) acts trivially onM = M{e} = H0({e},M).

Remark 2.4 By construction, a morphismH∗(Q,M) // H∗(P,M) obtained fromϕ by this process
defines a morphism ofδ -functors.

3 Bisets and idempotents

An important result in Broto, Levi and Oliver [BLO2], and a crucial tool in the proof of TheoremA, is
the existence of anF -characteristic (S,S)-biset which leads to an idempotent ofH∗(S,Fp) whose image is
H∗(F ,Fp).

This section is divided into several subsections. We start by recalling some results about left-free bisets.
Next, we describe the interaction of bisets with cohomologywith trivial coefficients. The third subsection
analyzes the relation of bisets with nontrivial coefficients. After that, we present the construction of an
idempotent from anF -characteristic biset. As an example, we consider in a fifth subsection the particular
case of constrained fusion systems. Finally, the last section gives the link withδ -functors.
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3.1 Background on bisets

Let G,H be two finite groups. Transitive (G,H)-bisets (here,G acts on the left andH on the right) are
isomorphic to bisets of the form (G × H)/K for K a subgroup ofG × H . We can then use the Goursat
Lemma to describe all these subgroups. Here, we are just interested in isomorphism classes of (G,H)-bisets
where the action ofG is free. In this setting, the classes of transitive left-free (G,H)-bisets are given by
pairs (K, ϕ), whereK is a subgroup ofG andϕ ∈ Hom(K,H) is a group homomorphism.

Notation For all (K, ϕ), with K a subgroup ofG andϕ ∈ Hom(K,H) a group homomorphism, we write

∆(K, ϕ) = {(k, ϕ(k)) ; k ∈ K} ≤ G× H.

For a (G,H)-pair (K, ϕ), the set{K, ϕ} := (G × H)/∆(K, ϕ) defines a (G,H)-biset. Moreover, its
isomorphic class is determined by the conjugacy class of∆(K, ϕ) and we denote by [K, ϕ] this class.

We can also define a categoryB , often called theBurnside category, where the objects are the finite groups
and, for all finite groupsG and H , B(G,H) is the set of isomorphism classes of (G,H)-bisets. The
composition is given by the following construction.

Definition 3.1 Let G,H andK be finite groups,Ω a (G,H)-biset andΛ a (H,K)-biset. We define,

Ω ◦ Λ = Ω×H Λ = Ω× Λ/ ∼

where, for allx ∈ Ω, y ∈ Λ andh ∈ H , (x,hy) ∼ (xh, y).

This construction is compatible with isomorphisms, and, endowed with the induced composition law,B
defines a category.

As we work with left-free bisets, we consider the subcategory A ⊆ B where the objects are the same
but we restrict the morphisms to isomorphism classes of left-free bisets. This gives us a category and the
composition follows from the next lemma.

Lemma 3.2 Let G,H andK be finite groups. Let[K, ϕ] ∈ A(G,H) and [L, ψ] ∈ A(H,K). Then,

[K, ϕ] ◦ [L, ψ] =
∐

x∈ϕ(K)\H/L

[ϕ−1(ϕ(K) ∩ xLx−1), ψ ◦ cx−1 ◦ ϕ].

Proof We refer to that identity as the double coset formula and it isa direct consequence of [Bo] Proposition
1.

3.2 F -characteristic bisets and trivial coefficients

Let (S,F ,L) be ap-local finite group. When we work with trivial coefficients, the idea is to consider the
categoryAF defined as follows. Ob(AF ) is the set of subgroups ofS and, forP,Q ≤ S, AF (P,Q) is the
set of isomorphism classes ofF -generated left-free (P,Q)-bisets, i.e. the (P,Q)-bisets union of transitive
bisets of the form [R, ϕ] with R≤ P andϕ ∈ HomF (R,Q).
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Then, forM a Z(p) -module, we construct a functor

M : AF // Z(p)-Mod

defined on objects byM(P) = H∗(P,M) for everyP ≤ Sand on morphisms as follows. For everyP,Q ≤ S,
R ≤ P andϕ ∈ HomF (P,Q), (P[R, ϕ]Q)∗ = trP

R ◦ ϕ∗ . More generally, for everyF -generated left-free
(P,Q)-bisetΩ we defineΩ∗ by sum of its transitive components.

The existence of this functor will help us to construct an idempotent ofH∗(S,M) with imageH∗(Fc,M).
For that, we also need the notion ofF -characteristic (S,S)-biset.

Definition 3.3 Let Ω be a left-free (S,S)-biset.

(a) We say thatΩ is F -generatedif it is the union of (S,S)-bisets of the form [P, ϕ] with P ∈ Ob(F)
andϕ ∈ HomF (P,S).

(b) We say thatΩ is left-F -stableif for all P ∈ Ob(F) andϕ ∈ HomF (P,S), we haveϕΩS
∼= PΩS, i.e.

(P[P, ϕ]S) ◦ [Ω] =
(

P[P, inclSP]S
)
◦ [Ω].

(c) We say thatΩ is right-F -stableif for all P ∈ Ob(F) andϕ ∈ HomF (P,S), we haveSΩϕ
∼= SΩP, i.e.

[Ω] ◦
(

S[ϕ(P), ϕ−1]P
)
= [Ω] ◦

(
S[P, IdS

P]P
)
.

(d) We say thatΩ is non degenerateif |Ω|/|S| 6= 0 modulop.

If Ω satisfies all this four properties, we say thatΩ is anF -characteristic (S,S)-biset.

The notion ofF -characteristic biset was first motivated by unpublished work of Linckelmann and Webb.
They are the ones who first formulated these conditions and recognized the importance of finding a biset
with these properties. Broto, Levi and Oliver proved that such a biset always exists if the fusion system is
saturated.

Proposition 3.4 ([BLO2], Proposition 5.5) Let F be a fusion system over ap-groupS. If F is saturated,
then there exists anF -characteristic(S,S)-biset.

In fact, Ragnarsson and Stancu ([RS], Theorem A), and independently Puig ([P7], Proposition 21.9), proved
that a fusion systemF is saturated if, and only if, there exists aF -characteristic (S,S)-biset.

Let M be a Z(p) -module, anyF -characteristic biset induces an idempotent ofH∗(S,M) with image
H∗(Fc,M).

Proposition 3.5 (cf. [BLO2], Proposition 5.5) Let (S,F ,L) be ap-local finite group andM be aZ(p) -

module (with a trivial action ofπL ). If Ω is anF -characteristic biset, then|S||Ω|Ω∗ ∈ End(H∗(S,M)) defines
an idempotent with imageH∗(Fc,M).

Proof In [BLO2], Proposition 5.5, this is proved forM = Fp but the general case works the same way.
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3.3 Bisets and twisted coefficients

Let (S,F ,L) be ap-local finite group. When we work with twisted coefficients, one has to be more careful.
Unlike the case of trivial coefficients, defining a functor from AF to Z(p)-Mod does not work in general.

In fact, for M a Z(p)[πL]-module, our cohomological functorH∗(−,M) cannot be defined onF but only
on Fc and thus, we can only considerFc-generated bisets.

Definition 3.6 Let P,Q be twoF -centric subgroups ofS. A left-free (P,Q)-biset isFc-generatedif it is
an union of transitive bisets of the form [R, ϕ] with R∈ Ob(Fc) andϕ ∈ HomF (R,Q).

Unfortunately, we can see from Lemma3.2that the set of isomorphism classes ofFc-generated bisets is not
stable with respect to composition. Hence, we can not, by analogy with AF , define a categoryAFc where
the objects are theF -centric subgroups ofS and forP andQ two F -centric subgroups ofS, AFc(P,Q) is
the set of isomorphism classes ofFc-generated left-free (P,Q)-bisets.

Nevertheless, for allZ(p)[πL]-module M andP,Q ≤ S, we have a map from the setAFc(P,Q) of isomor-
phism classes ofFc-generated left-free (P,Q)-bisets to Hom(H∗(P,M),H∗(Q,M)).

For P,Q,R∈ Fc with R≤ Q andϕ ∈ HomF (R,P), we can associate to the (P,Q)-pair {R, ϕ} a morphism

{R, ϕ}∗ = trQ
R ◦ ϕ∗ : H∗(P,M) // H∗(Q,M).

If we consider another (P,Q)-biset {R′, ϕ′} isomorphic to{R, ϕ} (this implies thatR′ is alsoF -centric),
we obtain the same morphism. Then we can set [R, ϕ]∗ as the composite trQ

R ◦ ϕ∗ and it is well-defined.
Finally, for Ω a left-freeFc-generated (P,Q)-biset, we defineΩ∗ by the sum of its transitive components.

Remark 3.7 By Proposition2.1, for ϕ ∈ Mor(Fc), ϕ∗ = H∗(ϕ,−) is a morphism ofδ -functors. Hence,
asΩ∗ is a sum of composites of transfers, restrictions andϕ∗ , for ϕ ∈ Mor(Fc), which are all morphisms
of δ -functors, it is an endomorphism of theδ -functor

(
H∗(S,−), δH∗(S,−)

)
.

3.4 Idempotents and twisted coefficients

In general, anF -characteristic biset is notFc-generated. Hence, when we are working with twisted
coefficients, we cannot use directly anF -characteristic biset as in the trivial case. However, we can define,
from anF -generated (S,S)-biset, an endomorphism ofH∗(S,M) but not in a unique way. That is why we
introduce the notion ofΩ-endomorphism.

Definition 3.8 Let (S,F ,L) be ap-local finite group. LetP ≤ S andϕ ∈ HomF (P,S). Let

ϕ = inclSϕ(P) ◦ π(ψ1)|ϕ(P)
Pr−1

◦ · · · ◦ π(ψ1)|P1
P

be a decomposition ofϕ into automorphisms ofF -centric subgroups.
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Given aZ(p)[πL]-module M , a S[P, ϕ]S-endomorphismis an endomorphism ofH∗(S,M) given by the
following composition

trS
P ◦

(
H∗(π(ψ1)|P1

P , ω(ψ1)−1) ◦ H∗(π(ψ1)|P2
P1
, ω(ψ2)−1)

◦ · · · ◦ H∗(π(ψ1)|ϕ(P)
Pr−1

, ω(ψr )
−1) ◦ ResSϕ(P)

)
.

More generally, we define anΩ-endomorphism, for Ω anF -generated (S,S)-biset as a sum of the previous
morphisms given by the transitive components ofΩ.

Remark 3.9 If the action ofπL on M is trivial, everyΩ-endomorphism corresponds toΩ∗ and, if Ω is
F -characteristic, by Proposition3.5, |S||Ω|Ω∗ is an idempotent with imageH∗(Fc,M).

Let us look at the behavior ofΩ-endomorphisms induced byF -characteristic (S,S)-bisets withFc-stable
elements.

Lemma 3.10 Let (S,F ,L) be a p-local finite group andM be a Z(p)[πL] -module. If Ω is an F -

characteristic(S,S)-biset andω∗ is an Ω-endomorphism, then|S||Ω|ω∗ ∈ End(H∗(S,M)) restricted to
H∗(Fc,M) is the identity.

Proof Let P be a subgroup ofS, ϕ ∈ HomF (P,S) and λ∗ a S[P, ϕ]S-endomorphism. For everyx ∈

H∗(Fc,M),

λ∗(x) = trS
P ◦ ResSP(x) = [S : P]x =

|[P, ϕ]|
|S|

x.

Hence, for everyx ∈ H∗(Fc,M),

ω∗(x) =
|Ω|

|S|
x.

Remark 3.11 Notice also that forΩ anF -characteristic (S,S)-biset, by construction and Remark2.4, an
Ω-endomorphism defines a morphism ofδ -functors.

We remind the reader that in this article, everyp-group is finite. This turn out to be a crucial property in the
following result.

Proposition 3.12 Let (S,F ,L) be ap-local finite group and letM be an abelianp-group with an action
of πL . Let Ω be anF -characteristic(S,S)-biset andω∗ anΩ-endomorphism. For everyk ≥ 0, there is a

natural numberNk,M > 0 such that
(
|S|
|Ω|ωk

)Nk,M
defines an idempotentωk,M of Hk(S,M) and we have

Hk(Fc,M) ⊆ Im (ωk,M).

11



Proof To simplify the notation, we writeω =
|S|
|Ω|ωk . For anyk ≥ 0, we have the following decreasing

family of subgroups ofHk(S,M).

Hk(Fc,M) ⊆ · · · ⊆ Im (ωr ) ⊆ Im (ωr−1) ⊆ · · · ⊆ Im (ω1) ⊆ Im (ω0) = Hk(S,M).

As Hk(S,M) is a finite abelianp-group, this sequence stabilizes. Thus there is ann0 ≥ 1 such that
for all n ≥ n0 Im (ωn) = Im (ωn0). In particular,ωn0|Im (ωn0) is a permutation of the finite set Im (ωn0)
and there is anl such that (ωn0|Im (ωn0))l

= IdIm (ωn0) . Thus, for Nk,M = l × n0, the endomorphism
ωk,M = ωNk,M ∈ End(Hk(S,M)) is an idempotent with image Im (ωn0) ⊇ Hk(Fc,M).

Hence, we can define an idempotent ofH∗(S,M) as follows. For everyk ≥ 0 and everyx ∈ Hk(S,M),

ωk,M(x) =

(
|S|
|Ω|

ωk

)∏k
i=0 Ni,M

(x).

Moreover, this definition only depends on theΩ-endomorphismω .

Definition 3.13 For Ω anF -characteristic (S,S)-biset andω∗ anΩ-endomorphism, the idempotentω∗,−
of H∗(S,−) obtained by the previous process is called theFc-characteristic idempotentassociated toω .

Let M be an abelianp-group with an action ofπL , we denote byI∗ω(M) ⊆ H∗(S,M) the image ofω∗,M .

Remark 3.14 Notice that, by Remark3.9, if the action onM is trivial, thenI∗ω(M) = H∗(Fc,M).

Proposition 3.15 Let (S,F ,L) be ap-local finite group. IfΩ is anF -characteristic(S,S)-biset andω∗ an
Ω-endomorphism, thenω∗,− , theFc-characteristic idempotent induced byω∗ , defines an endomorphism
of the δ -functor

(
H∗(S,−), δH∗(S,−)

)
.

Proof For M an abelianp-group with an action ofπL andk ≥ 0, we denote byNk,M a natural number as
in Proposition3.12.

We have first to show thatω∗,− , the Fc-characteristic idempotent associated toω∗ , defines a natural
transformation from the functorH∗(S,−) to itself. For every pair of abelianp-groups (M,N) with an action
of πL and everyϕ ∈ HomZ(p)[πL](M,N), let us consider, fork ≥ 0, the following diagram,

Hk(S,M) Id //

ωk,M

��

Hk(S,M)
ϕk //

ω̃k,M,N

��

Hk(S,N)

ω̃k,M,N

��

Id // Hk(S,N)

ωk,N

��

Hk(S,M)
Id

// Hk(S,M) ϕk
// Hk(S,N)

Id
// Hk(S,N)

whereω̃k,M,N = (ωk)
∏k

i=0 Ni,M×
∏k

i=0 Ni,N . The middle square commutes as ˜ωk,M,N is a finite iteration of |S||Ω|ωk

andω∗ is an endomorphism ofδ -functors by Remark3.11. The leftmost square commutes because, asωk,M

is an idempotent ofHk(S,M), ω̃k,M,N = ω
∏k

i=0 Ni,N

k,M = ωk,M . Finally, the rightmost one commutes because,

asωk,N is an idempotent ofHk(S,N), ω̃k,M,N = ω
∏k

i=0 Ni,M

k,N = ωk,N . Hence, the exterior diagram commutes.
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Now, to show that it defines a morphism ofδ -functor, let us consider a short exact sequence of abelian
p-groups with an action ofπL , 0 // L // M // N // 0 . By the previous argument we just
have to show that, fork ≥ 0, the following diagram commutes,

Hk(S,N) δ //

ωk,N

��

Hk+1(S,L)

ωk+1,L

��

Hk(S,N)
δ

// Hk+1(S,L)

whereδ = δH∗(S,−) corresponds to the connecting homomorphism. Consider thenthe following diagram,

Hk(S,N) Id //

ωk,N

��

Hk(S,N) δ //

ω̃k,L,N

��

Hk+1(S,L)

ω̃k+1,L,N

��

Id // Hk+1(S,L)

ωk+1,L

��

Hk(S,N)
Id

// Hk(S,N)
δ

// Hk+1(S,L)
Id

// Hk+1(S,L)

where
ω̃k,L,N = (ωk)

∏k+1
i=0 Ni,L×

∏k+1
i=0 Ni,N

and
ω̃k+1,L,N =

(
ωk+1

)∏k+1
i=0 Ni,L×

∏k+1
i=0 Ni,N .

The middle square commutes as ˜ωk,L,N and ω̃k+1,L,N are finite iterations ofωk and ωk+1, andω∗ is an
endomorphism ofδ -functors by Remark3.11. The leftmost square commutes because, asωk,N is an

idempotent ofHk(S,N), ω̃k,L,N = ω
Nk+1,N×

∏k+1
i=0 Ni,L

k,N = ωk,N . The rightmost one commutes because, asωk,L

is an idempotent ofHk(S,L), ω̃k+1,L,N = ω
∏k+1

i=0 Ni,N

k+1,L = ωk+1,L . Thus, the exterior diagram commutes.

3.5 The idempotent for a constrained fusion system

When we work with a constrained fusion system, the (S,S)-characteristic biset isFc-generated and, working
with a suitable category, it induces, for everyZ(p)[πL]-module M , an idempotent ofH∗(S,M) with image
H∗(Fc,M). Let us first recall the notion of constrained fusion system.

Definition 3.16 Let F be a fusion system over ap-groupS.

A subgroupQ ≤ S is normal inF if Q E S, and for allP,R≤ S and everyϕ ∈ HomF (P,R), ϕ extends
to a morphismϕ ∈ HomF (PQ,RQ) such thatϕ(Q) = Q.

We write Op(F) for the maximal subgroup ofS which is normal inF .

We say thatF is constrainedif Op(F) is F -centric.

Define, forF a fusion system over ap-groupS andP0 a subgroup ofS, AF≥P0 as follow.

Ob(AF≥P0) = {P0 ≤ P ≤ S} is the set of all subgroups ofS containingP0

and for allP,Q ∈ Ob(AF≥P0),

AF≥P0(P,Q) = {F -generated left-free (P,Q)-bisets union of [R, ϕ] with R≥ P0}.
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AF≥P0 is not in general a subcategory ofAF . The problem comes from Lemma3.2: the set

Mor(AF≥P0) =
⊔

P,Q∈Ob(AF≥P0
)

AF≥P0(P,Q)

is not stable with respect to composition. But it is stable when the subgroupP0 ≤ S is weakly closedin F ,
i.e. PF = {P}.

Lemma 3.17 Let F be a fusion system over ap-groupS. If P0 E S is weakly closed inF , thenAF≥P0 ,
with the composition defined in3.1, is a subcategory ofAF .

Proof As P0 is weakly closed inF , for everyR,P ≥ P0, s∈ S andϕ ∈ HomF (R,S),

ϕ−1(ϕ(R) ∩ sPs−1) ≥ ϕ−1(ϕ(P0) ∩ sP0s−1) = P0.

Thus, by Lemma3.2, Mor(AF≥P0) is stable with respect to composition andAF≥P0 defines a subcategory
of AF .

For example, the subgroupOp(F) is normal inF . Thus it is weakly closed inF and AF≥Op(F ) is a
subcategory ofAF .

When F is constrained,Op(F) is F -centric. Thus, every bisetΩ ∈ Mor(AF≥Op(F )) is Fc-generated.
Hence, ifF is constrained, for everyZ(p)[πL]-moduleM , we have, as in the trivial case, a functor

AF≥Op(F ) // Z(p)-Mod

P ✤ // H∗(P,M)

P[R, ϕ]Q
✤ // trP

R ◦ ϕ∗.

Moreover, if we look at theminimal F -characteristic (S,S)-biset i.e. the smallestF -characteristic (S,S)-
biset, we have the following.

Proposition 3.18 Let F be a constrained fusion system over ap-group S. If Ω is the minimalF -
characteristic biset, thenΩ ∈ AF≥Op(F ) .

Proof This is a direct corollary of [GRh], Proposition 9.11. Indeed, by [GRh], Proposition 9.11, every
[P, ϕ] which appears in the decomposition ofΩ satisfiesP ≥ Op(F).

Hence, using the same argument as for Proposition3.5, we have the following theorem.

Theorem 3.19 Let (S,F ,L) be ap-local finite group andM be aZ(p)[πL] -module. LetΩ be the minimal

F -characteristic(S,S)-biset. If F is a constrained fusion system, then|S||Ω|Ω∗ ∈ End(H∗(S,M)) is an
idempotent with image theFc-stable elementsH∗(Fc,M).

Proof By Proposition3.18, Ω ∈ AF≥Op(F ) , and the proof is the same as the proof of Proposition3.5.
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3.6 A δ-functor

Let (S,F ,L) be ap-local finite group,Ω be anF -characteristic (S,S)-biset, andω∗ anΩ-endomorphism.

ForM an abelianp-group with an action ofπL , letω∗,− ∈ End(H∗(S,M)) be the associatedFc-characteristic
idempotent.

Let us start with the behavior ofδ -functors with idempotents. We recall that aδ -functor can be seen as
a functor from the categorySA of short exact sequences inA to Ch(B), the category ofZ-graded chain
complexes inB, which sends any short exact sequence to an acyclic chain complex. We refer the reader to
[We] for more details and properties.

Lemma 3.20 Let (M∗, f∗) =

(
· · ·

fl−2
−−→ Ml−1

fl−1
−−→ Ml

fl
−→ Ml+1

fl+1
−−→ · · ·

)

l∈Z
be a long exact sequence in

an abelian categoryA. Let i∗ : (M∗, f∗) → (M∗, f∗) be a morphism of long exact sequences such that, for all
l ∈ Z, i l is an idempotent ofMl . Then the sequence

· · ·
fl−2
−−→ Im (i l−1)

fl−1
−−→ Im (i l )

fl
−→ Im (i l+1)

fl+1
−−→ · · ·

is exact.

Proof Let l ∈ Z and x ∈ Im (i l) such thatfl(x) = 0. By exactness of (M∗, f∗) in l , there is ay ∈ Ml−1

such thatfl−1(y) = x. Thusx = i l(x) = i l ◦ fl−1(y) = fl−1 ◦ i l−1(y) and hence we obtain the exactness of
(Im (i∗), f∗) in degreel .

Proposition 3.21 Let A,B be two abelian categories and let(F∗, δF) : A → B be a δ -functor. If
i∗ : (F∗, δF) → (F∗, δF) is an idempotent ofδ -functors, then(Im (i∗), δF) defines aδ -functor.

Proof A δ -functor can be seen as a functor from the categorySA of short exact sequences inA to Ch(B)
which sends any short exact sequence to an acyclic chain complex. A morphism ofδ -functors is then a
natural transformation in that setting. With this point of view, this is just a corollary of Lemma3.20.

Theorem 3.22 Let (S,F ,L) be ap-local finite group,Ω an F -characteristic(S,S)-biset andω∗ an Ω-
endomorphism. Then, the functorI∗ω(−), with the connecting homomorphismδH∗(S,−) , defines aδ -functor
from the category of finiteZ(p)[πL] -modules toZ(p)-Mod.

Proof This is a direct corollary of Proposition3.15and Proposition3.21.

In the next section, we will show that if the action onM is nilpotent, thenI∗ω(M) = H∗(Fc,M). But this is
not clear at all in general. This raised the following question.

Conjecture 3.23 Let (S,F ,L) be a p-local finite group,Ω an F -characteristic (S,S)-biset andω an
Ω-endomorphism. IfM is an abelianp-group with an action ofπ1(|L|∧p ), then

H∗(Fc,M) ∼= I∗ω(M).

We insist that, in view of the counterexamples given by Levi and Ragnarsson ([LR] Proposition 3.1), we
cannot expectI∗ω(M) to be isomorphic toH∗(|L|,M) in general. But it is natural to ask ifIω(M) always
corresponds to theFc-stable elements.
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4 The cohomology of the geometric realization of a linking system with
nilpotent coefficients

We give here a proof of the main theorem.

Lemma 4.1 Let (S,F ,L) be ap-local finite group. The natural inclusionδS of B(S) in L induces, for any
Z(p)[πL] -moduleM , a natural morphism in cohomology

H∗(|L|,M) // H∗(Fc,M) ⊆ H∗(S,M).

Proof This follows easily from the functoriality of the geometricrealization.

Lemma 4.2 Let (S,F ,L) be ap-local finite group and letΩ be anF -characteristic(S,S)-biset. Let also
0 → L → M → N → 0 be a short exact sequence of finiteZ(p)[πL] -modules. IfδS induces isomorphisms
H∗(|L|,L) ∼= I∗ω(L) andH∗(|L|,N) ∼= I∗ω(N), thenδS induces an isomorphism

H∗(|L|,M) ∼= I∗ω(M).

Proof Consider the exact sequences in cohomology induced by the short exact sequence

0 // L // M // N // 0

and look at the following diagram (whereω∗,− denote theFc-characteristic idempotent associated toΩ).

· · · // Hn−1(|L|,N) //

ωn−1,N◦δ
∗
S
��

Hn(|L|,L) //

ωn,L◦δ∗S
��

Hn(|L|,M) //

ωn,M◦δ∗S
��

Hn(|L|,N) //

ωn,N◦δ∗S
��

· · ·

· · · // In−1
Ω

(N) // In
Ω

(L) // In
Ω

(M) // In
Ω

(N) // · · ·

As H∗(|L|,−) is a δ -functor and, by Theorem3.22, I∗
Ω

is also aδ -functor, the two lines are exact and, as
by Proposition3.15theF -characteristic idempotent associated toΩ defines a morphism ofδ -functors, this
diagram is commutative. An application of the Five Lemma then finishes the proof.

We can now state the main theorem.

Theorem 4.3 Let (S,F ,L) be ap-local finite group. IfM is an abelianp-group with a nilpotent action of
π1(|L|), thenδS induces a natural isomorphism

H∗(|L|,M) ∼= H∗(Fc,M).

Proof As the action ofπL is nilpotent, there is a sequence

0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M

such that, for every 1≤ i ≤ n, the action ofπL on Mi/Mi−1 is trivial. We know, by TheoremA and Remark
3.14, that for 1≤ i ≤ n, δS induces an isomorphism

H∗(|L|,Mi/Mi−1) ∼= H∗(Fc,Mi/Mi−1) = I∗Ω(Mi/Mi−1).

By induction onn, and by Lemma4.2, we get thatH∗(|L|,M) ∼= I∗ω(M). Finally we also have by Lemma
4.1that

δS(H∗(|L|,M)) ⊆ H∗(Fc,M) ⊆ I∗ω(M).

ThenH∗(|L|,M) ∼= H∗(Fc,M) = I∗
Ω

(M).
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5 The cohomology with twisted coefficients ofp-good spaces

We finish with a result on the cohomology with twisted coefficients of thep-completion of ap-good space
and we apply it, with Theorem4.3, to compare the cohomology with twisted coefficients of|L| and the
Fc-stable elements.

We refer the reader to Bousfield and Kan [BK] for more details aboutp-completion. There is also a brief
introduction in Aschbacher, Kessar and Oliver [AKO]. Here, forX a space,

λX : X → X∧p

denote the structural natural transformation of thep-completion and we recall that ifX is p-good, it induces
an isomorphism

H∗(X∧p ,Fp) ∼= H∗(X,Fp).

Lemma 5.1 Let X be a space and let0 → L → M → N → 0 be a short exact sequence ofZ(p)[π1(X∧p )] -
modules. IfλX induces isomorphismsH∗(X∧p ,L) ∼= H∗(X,L) andH∗(X∧p ,N) ∼= H∗(X,N), thenλX induces
an isomorphism

H∗(X∧p ,M) ∼= H∗(X,M).

Proof This is a straightforward application of the Five Lemma.

Proposition 5.2 Let X be a space andM be an abelianp-group with an action ofπ1(X∧p ). If X is p-good
andπ1(X∧p ) is a finitep-group, thenλX induces a natural isomorphism

H∗(X∧p ,M) ∼= H∗(X,M).

Proof As X is p-good,λX induces an isomorphism,H∗(X∧p ,Fp) ∼= H∗(X,Fp). Moreover, asπ1(X∧p ) is a
p-group quotient ofπ1(X), the action ofπ1(X∧p ) on M is nilpotent: there is a sequence

{0} = M0 ⊆ M1 ⊆ · · · ⊆ Mn = M

such that, for any 1≤ i ≤ n, Mi/Mi−1
∼= Fp is the trivial module. We conclude by induction onn using

Lemma5.1.

Corollary 5.3 Let (S,F ,L) be ap-local finite group. IfM is an abelianp-group with an action ofπ1(|L|∧p ),
λ|L| induces an isomorphism

H∗(|L|∧p ,M) ∼= H∗(|L|,M).

Proof As |L| is a p-good space andπ1(|L|∧p ) is a finitep-group ([AKO], Theorem III.4.17), we can apply
Proposition5.2.

Corollary 5.4 Let (S,F ,L) be ap-local finite group. IfM is an abelianp-group with an action ofπ1(|L|∧p ),
thenλ|L| ◦ δ

∗
S induces a natural isomorphism

H∗(|L|∧p ,M) ∼= H∗(Fc,M).

Proof By [AKO], Theorem III.4.17,|L| is p-good andπ1(|L|∧p ) is a p-group. In particular, the action of
π1(|L|∧p ) on M is nilpotent. Hence, this is just a corollary of Theorem4.3and Corollary5.3.
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Universit́e Paris 13, Sorbonne Paris Cité, LAGA, UMR 7539 du CNRS, 99, Av. J.-B. Clément, 93430 Villetaneuse,
France.

molinier@math.univ-paris13.fr

https://www.math.univ-paris13.fr/~molinier/index.html

18

mailto:molinier@math.univ-paris13.fr
https://www.math.univ-paris13.fr/~molinier/index.html

	1 Background on Lg-local finite groups
	2 Cohomology and Lg-stable elements
	3 Bisets and idempotents
	3.1 Background on bisets
	3.2 Lg-characteristic bisets and trivial coefficients
	3.3 Bisets and twisted coefficients
	3.4 Idempotents and twisted coefficients
	3.5 The idempotent for a constrained fusion system
	3.6 A Lg-functor

	4 The cohomology of the geometric realization of a linking system with nilpotent coefficients
	5 The cohomology with twisted coefficients of Lg-good spaces
	Bibliography

