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Cohomology with twisted coefficients of the classifying spae of a fusion
system

REMI MOLINIER

We study the cohomology with twisted coefficients of the getiun realization of a linking system
associated to a saturated fusion systém More precisely, we extend a result due to Broto, Levi and
Oliver to twisted coefficients. We generalize the notionfofstable elements tG°-stable elements in

a setting of cohomology with twisted coefficients by an atiid the fundamental group.We then study
the problem of inducing an idempotent from dncharacteristic §, S)-biset and we show that, if the
coefficient module is nilpotent, then the cohomology of tle®metric realization of a linking system
can be computed byF©-stable elements. As a corollary, we show that for any caefftcmodule,
the cohomology of the classifying space opdocal finite group can be computed by the&é-stable
elements.

55R40, 55N25, 55R35, 20J06, 20D20, 20J15

The notion of saturated fusion systems was introduced by iAuhe 90s in a context of modular represen-
tation theory. In topology, saturated fusion systems aeel isthe study op-completed classifying spaces
of groups. Ap-local finite groupis a triple §, F, £) whereSis a p-group, F a saturated fusion system
over S and £ an associated centric linking system. Fagp-docal finite group § F, £), the p-completed
nerve of £, |£|), is called itsclassifying space The theory ofp-local finite group has been studied in
detail by Broto, Levi, Oliver and others (seBL{O2], [OV1],[5a]] and [(ad). The linking system and its
geometric realization, even withoptcompletion, play here a fundamental and central role. ¢ far a
given saturated fusion system, the existence and unigsi@fes linking system associated to a saturated
fusion system were shown more recently by Chern@i [using the theory of partial groups). The proof
of this important conjecture highlights the deep link beswegroup theory and homotopy theory and the
importance of linking systems to stughylocal structures. We refer to Aschbacher, Kessar and (JiMEO]

for more details about fusion systems in general.

A well-known result of Cartan and Eilenberg (s€&H Chap XII, Theorem 10.1) expresses the cohomology
with mod p coefficients of a finite group as the submodulet@ibleelements in the cohomology of a Sylow
p-subgroup. This submodule of stable elements correspantie tinverse limit over the fusion system of
the group cohomology functor. One important result in theotl of p-local finite groups is an extension of
this theorem to anyp-local finite group which tells us that the cohomology of te®metric realization of a
linking system with trivial coefficients can be computed Bystable elements.

Theorem A ([BLOZ2], Theorem B) Let (S, F, L) be ap-local finite group. The inclusion dBS in |L]|
induces a natural isomorphism

H* (L1, Fp) 22 H* (L], Fp) —= H*(FS, Fp) == lim H*(—, Fyp).
]:C
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Here 7° denotes the full subcategory @ where the objects are the subgroupsSofhich are F-centric
(the analog op-centric in the group case). From that, the above result eaxtended to cohomology with
coefficients in anyZ,-moduleA (a proof is given in$aZ Lemma 6.12).

The Theorem of Cartan and Eilenberg actually applies witleiothoices of coefficients and especially with
twisted coefficients. One question asked by Oliver in hiskbadh Aschbacher and KessahKO] is the
understanding of the cohomology of| with twisted coefficients. Indeed, this cohomology appédars
example in the study of extensions@focal finite groups$ad and it can give more information about the
link between the fusion system and the homotopy typeCof

In this paper, cohomology with twisted coefficients meartweoology with locally constant coefficients. In
other words, given a spacg, the cohomology oK with twisted coefficients corresponds to the cohomology
of X with coefficients in & ;) [71(X)]-module. LetM be aZ,)[71(X)]-module, and suppose in addition that
X has a universal covering spake the cohomology oK with twisted coefficients irM is the cohomology
of the chain complex

C*(X; M) = Homy 1 (S.(X), M),

whereS,(X) is the usual singular chain complex Xf

In this paper we extend Theorefato twisted coefficients. Levi and Ragnarsson allready ctmnsihis
problem in LR]. As they pointed out ([R], Proposition 3.1), it is not possible to achieve a versién o
TheoremA for twisted coefficients in full generality and some regioics onF or on the coefficients are
necessary.

Theorem4.3 Let (S F, L) be ap-local finite group. IfM is an abeliarp-group with a nilpotent action of
m1(|L]), then the inclusion oBSin |L| induces a natural isomorphism,

H*(| L], M) = H*(F°, M).

Here, forp a prime, ap-group is a finite group op-power order. An important application of the above
result is the complete description of the cohomology of thsgifying space of a fusion system in terms of
FC¢-stable elements.

Corollary 5.4 Let(S F, L) be ap-local finite group. I is an abeliarp-group with an action of1(|£[}),
then there is a natural isomorphism

H*(IL[p, M) = H*(F¢, M).

One crucial tool in the proof of Theored3, as it was in the proof of Theorer, is to construct an
idempotent ofH*(S M) from an F-characteristic $ S)-biset which generalizes the construction of Broto,
Levi and Oliver in BLOZ2]. The action on the coefficients makes the constructiondessghtforward and
we need here to work with a finite module to guarantee thaidRimpotent exists.

Organization. We start with a review orp-local finite groups in Sectiod. In Section2, we introduce
our cohomology functor and we define properly the notionF&fstable elements. Secti@contains the
construction of an idempotent for aR-characteristic biset. As this section is rather long, diisded into



several subsections, each of which deals with a differgoécisor property of the idempotent. We prove
Theorem4.3in the Sectiod. Finally, in Section5, we give a result about the cohomology with twisted
coefficients ofp-good spaces and we apply it to get Coroll&ry.
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1 Background on p-local finite groups

We give here a very short introduction pelocal finite groups. We refer the reader interested in metait$
to Aschbacher, Kessar and Olivé&{O].

Roughly speaking, fusion systems encode the conjugatitan afaa finite group with respect to a choice
of a Sylow p-subgroup. ForG a finite group andg € G, we will denote bycy the homomorphism
x € G gxg ! € G. Given subgroup$,K < G, we shall denote by Hog(H, K) the set of all group
homomorphismgg for g € G such thatcg(H) < K.

Definition 1.1 Let S be a finitep-group. Afusion systenover Sis a small category?, where Obf) is
the set of all subgroups @& and which satisfies the following two properties forlIQ < S:

(@ Homg(P, Q) C Morx(P,Q) C Inj(P,Q);
(b) eachy € Morx(P, Q) is the composite of adF -isomorphism followed by an inclusion.

A fusion system isaturatedif it satisfies two more technical conditions called the sation axioms (we
refer the reader tojKO], Definition 1.2.1 for a proper definition).

The composition in a fusion system is given by compaositionhomomorphisms. We usually write
Homz(P, Q) = Morx(P, Q) to emphasize the fact that the morphimsJjnare actual group homomor-
phisms.

The typical example of saturated fusion system is the fusigstem Fs(G) of a finite group G over
Se€ Syl(G).

Definition 1.2 Let F be a saturated fusion system ovep-@roup S. A subgroupP < Sis F-centricif
Cs(Q) = Z(Q) for everyQ € P7. We will denote byF° the full subcategory ofF with set of objects all
the F-centric subgroups o%.

If F is the saturated fusion system associated to a finite g@wpith S as Sylowp-subgroup, then a
subgroupP < Sis F-centric if and only if P is p-centric, i.e. Z(P) is a Sylow p-subgroup ofCg(P).
Before defining the notion of centric linking system let ustfirecall a well-known result about saturated
fusion system.



Theorem 1.3 (Alperin’s Fusion Theorem)Let F be a saturated fusion system ovep-groupS. Then,
every morphism is a composite of restrictions of automapisi of F -centric subgroups.

In other words, a saturated fusion systémis generated byF®. In fact, Alperin’s Fusion Theorem is more
precise and says that we just need automorphisn&arfd F-essential subgroups & For more details,
we refer to Section 1.3 of Aschbacher, Kessar and OligddQ].

For F a fusion system over p-group, 7$(S) will denote the usual transporter category®fith set of
objects Obf®).

Definition 1.4 Let F be a fusion system over@agroup S. A centric linking systemassociated toF is a
finite categoryL together with a pair of functors

T§S L= F
satisfying the following conditions:

(A) ¢ isthe identity on objects, and is the inclusion on objects. For eaBhQ € Ob(£) such thatP is
fully centralized inF, Cg(P) acts freely on Mog(P, Q) via dp p and right composition, and

7p,Q - Morz(P, Q) —— Homz(P, Q)
is the orbit map for this action.
(B) ForeachP,Q < Ob(£) and eachy € Tg(P, Q), the applicationtp o sendsip o(g) € Mor.(P, Q) to
cg € Homz(P, Q).
(C) ForeachP,Q € Ob(L), all y» € Mor,(P, Q) and allg € P, the diagram
P—.0Q
6p(g)l léo(w(g))
P—".0Q
commutes inC.

A p-local finite groupis a triple §, F, £) whereSis ap-group, F a saturated fusion system ov@&rand £
is a linking system associated #. Theclassifying spacef (S, 7, £) is then given bﬁﬁ]ﬁ.

2 Cohomology and.F¢-stable elements

In this section we introduce our cohomology functor withgted coefficients defined af® and we define
the notion of 7¢-stable elements. We refer the reader\e] for all the necessary results on homological
algebra as well as the classicial notiondsfunctor. We also refer the reader 8/§], [Br], [CE] or [AM]

for details on group cohomology.

Before introducing the notion oF ©-stable elements, we need to understand the acti@wafaZ ) [71(|L£|)]-
module. For each pair oF -centric subgroup® < Q, set

12 = 53(1).



We denote by
e =m(|L],9

the fundamental group of the geometric realizatjgh with base point at the verte®. For G a discrete
group, letB(G) be the category with a unique object, and morphism set eqo& (hence,|3(G)| = BG).
Consider the functor

w: L——=B(rr)

which maps each object to the unique object in the target amdisseach morphism € Mor.(P, Q) to the
class of the loopg.¢.7p Whereip is the edgep followed in the opposite direction. In particular, every
Z)[mc]-module is naturally &)[S-module where the action is given by the following compiosit

B(S) = B(Morzg(S 9) —= £ —“~ B(rr) .

Let (S F, L) be ap-local finite group and leM be aZp)[rc]-module. As we work with an action of
m1(]L]), we can define a functor of using the bi-functoriality of group cohomology. Recall ttiggoup
cohomology defines a contravariant functor

H*(—,—-): D ——= Z(p)-MOd
whereD is the category of pairs@, M) with G a group andM a Z)[G]-module. A morphism irD from

(G,M) to (H,N) is a pair, (o, p) where ¢ : G——=H is a group homomorphism and: N——=M is
a linear map such that, for evenye N and everyg € G, gp(n) = p (p(g)n).

Given ¢ € Mor(L), we have f(y),w(£)) € Mor(D) and we define our cohomology functor as the
following.

H*(—, M) : L Zp)-Mod
P c Ob(L) H*(P, M)
¢ € Morz(P, Q)+ H*(p,M) = ¢* 1= H*(m (), w() ™).

For P, Q two subgroups ofS and ¢ € Mor,(P,Q), H*(p, M) can also be defined on the chain level as
follows:
HomZ(p)[Q] R,M) —— HOI’T}Z(p)[p] (R., M)

f s (w(p) "t of o7(p)s)

where R.) is a projective resolution of the trivial,)[S]-module Z;, . Finally, it can also be defined as the
morphism between the two derived functors ef® and )" induced by

X € MQ—— w(p)~Ix € MP.

By construction, it defines a morphism &ffunctors.

Proposition 2.1 Let (S F, L) be ap-local finite group. IfP,Q < S are F -centric andp € Mor,(P,Q),
then
H*(% _) : H*(Q> _) — H*(Pv _)

is @ morphism of -functors from(H*(Q, —), 6n+=(q,—)) to (H*(P, =), dn+(p,—)) -



By construction, this functor naturally extends the groapamology functor defined ofis(S).

H*(—,M
TS CW . 7)-Mod

\ /(:M)
L

In particular, for everyP < Sandg € P, H*(ép(g), M) = c. Moreover, it also factors through*® along

T L—— FC.
Proposition 2.2 Let o, 8 € Mor.(P,Q) with P,Q € L. If n(v) = w(6) thenH*(p, M) = H*(3,M).

Proof If w(p) = w(5), then there exists € Z(P) such thatp = 5 o dp(u) and thus
H*(¢, M) = H*(0p(u), M) o H*(3, M).

HoweverH*(dp(u), M) = H*((dp(u)), w(u)~1) = H*(cy, w(u)~1) = ¢ is the automorphism ofi*(P, M)
induced by the conjugation hy, and, asu € Z(P) < P, this is the identity. O

In particular, if () = inclS, thenH*(p, M) = H*(:2,M) = H*(incl3, Idy) = Res?. Hence,H*(—, M)
factors naturally througl¥*© along . For M a Z)[7c]-module, P, Q < Stwo F-centric subgroups and
¢ € Homz(P, Q) we write ¢* := H*(y», M) where) € Mor (P, Q) is such thatr(y) = ¢.

Definition 2.3 An elementx € H*(S M) is called F -centric stableor just F¢-stable if for all P € Ob(F°)
and allp € Homz(P, S),
¥ () = Res(x).

We denote byH*(F¢, M) C H*(S M) the submodule of alF¢-stable elements.

This submodule ofF¢-stable elements corresponds to the inverse limktf—, M) on the category©,
Moreover, ifM is a Z)-module with a trivial action ofr., then, by Alperin’s Fusion Theorem (Theorem
1.3), H*(F°, M) = H*(F, M) and the notion ofF¢-stable elements naturally extends the notiotFestable
elements.

In general, we cannot expect to define a cohomology functalloft. For example, every morphism of
L induces the identity on the trivial subgrode}. Thus, if the cohomology functor was defined on Al
every morphism inZ should act trivially onM = H°({e}, M), which is absurd. Instead we consider the
following construction.

Let (S F, £) be ap-local finite group. LetQ < S be aF-centric subgroup o8, Py < Q, ¥ € Aut,-(Q)
and denoteP; = 7m(¥)(Po) < Q. For M a Z[w.]-module, even ifPq is not F-centric, we can consider
the morphism H*(P1, M) —— H*(Pg, M) given by H*(w(¢)|§é,w(1p)). This can also be defined on the
chain level by,

HornZ(p)[Pl] (R'a M) HornZ(p)[PO] (R., M)

f———— (w@) ol o (xR )



where R) is a projective resolution of the trividgl)[J-module Z, .
This is well-defined because, by Definitiard (C),
M M

X — w(1)) " 1x

defines a linear map such that, for everg Py andx € M,

w(t) w (5g(p) X = w (So((P))) w(®) X

and thus (r(w)\gé,w(w)) € Mor(D). Notice that if P is F-centric, then this is jusH*(x, M). Note also
that, if the action ofu(y)) on M is trivial, this is just the usual morphism induced in cohdogy by w(w)\ﬁé.

Let P,Q < Sandy € Homz(P, Q). By Alperin’s Fusion Theorem.3, there existP = Py, Py,..., P =
©(P) subgroups ofS, Q,...,Q; F-centric subgroups of and ; € Aut:(Q;) for everyi such that
m(¢i)(Pi-1) = Pi and

o =m0 T )lp Lo 0wl

We then consider the following composite

H )l wli) ™) HA @@l wlin) ™))

H*(PHM) H*(PvM)

composed on the right bl§2e§r which gives us a morphism

Note that this morphism depends on the choice of the decdtiguosf ¢ into restrictions of automorphisms
of F-centric subgroups and not only gn As an example, we can again look at the trivial subgréap
in a given fusion systen¥F: each morphism inF° restricts to the identity ode}, but, if M is not a trivial
Zp[7c]-module, not everyp € Mor(F°) acts trivially onM = M€ = HO({e}, M).

Remark 2.4 By construction, a morphisnH*(Q, M) —— H*(P, M) obtained fromy by this process
defines a morphism af-functors.

3 Bisets and idempotents

An important result in Broto, Levi and OliveBLOZ2], and a crucial tool in the proof of Theore#, is
the existence of atF -characteristic § S)-biset which leads to an idempotentidf (S Fp) whose image is
H*(F,Fp).

This section is divided into several subsections. We starteballing some results about left-free bisets.
Next, we describe the interaction of bisets with cohomolaggh trivial coefficients. The third subsection
analyzes the relation of bisets with nontrivial coefficeentAfter that, we present the construction of an
idempotent from anF -characteristic biset. As an example, we consider in a fiftsssction the particular
case of constrained fusion systems. Finally, the last@ediives the link withy -functors.



3.1 Background on bisets

Let G,H be two finite groups. Transitive, H)-bisets (hereG acts on the left andH on the right) are
isomorphic to bisets of the form3(x H)/K for K a subgroup ofG x H. We can then use the Goursat
Lemma to describe all these subgroups. Here, we are just@téal in isomorphism classes @&, H)-bisets
where the action of5 is free. In this setting, the classes of transitive lefefi(&, H)-bisets are given by
pairs K, ), whereK is a subgroup oz andy € Hom(K, H) is a group homomorphism.

Notation For all (K, ¢), with K a subgroup ofc and¢ € Hom(K, H) a group homomorphism, we write
AK, ) = {(k, oK) ; ke K} <G xH.

For a G,H)-pair K, ), the set{K, ¢} = (G x H)/A(K, ) defines a G, H)-biset. Moreover, its
isomorphic class is determined by the conjugacy clas& @€, ) and we denote byK, (] this class.

We can also define a categaBy, often called théBurnside categorywhere the objects are the finite groups

and, for all finite groupsG and H, B(G,H) is the set of isomorphism classes @, H)-bisets. The

composition is given by the following construction.

Definition 3.1 Let G,H andK be finite groups{) a (G, H)-biset andA a (H, K)-biset. We define,
QoA=OQXypA=Qx A/~

where, for allx € Q,y € A andh € H, (x, hy) ~ (xh,y).

This construction is compatible with isomorphisms, andjoesved with the induced composition lavg,

defines a category.

As we work with left-free bisets, we consider the subcategdr C 5B where the objects are the same
but we restrict the morphisms to isomorphism classes ofileét bisets. This gives us a category and the
composition follows from the next lemma.

Lemma 3.2 LetG,H andK be finite groups. LefK, o] € A(G,H) and[L,v] € A(H,K). Then,

[KoglolLyl = J] [ M (eK)NxLx ™), o0ce10g].
x€p(K)\H/L

Proof We refer to that identity as the double coset formula anditdsect consequence @] Proposition
1. O

3.2 F-characteristic bisets and trivial coefficients

Let (S F, £) be ap-local finite group. When we work with trivial coefficients)e idea is to consider the
category A+ defined as follows. Ob{r) is the set of subgroups & and, forP,Q < S, Ax(P, Q) is the
set of isomorphism classes @f-generated left-freeR; Q)-bisets, i.e. theR, Q)-bisets union of transitive
bisets of the form R, o] with R < P and¢ € Homz(R, Q).



Then, forM a Z)-module, we construct a functor
M: Ar —— Z(p)-MOd

defined on objects bii(P) = H*(P, M) for everyP < Sand on morphisms as follows. For evé?tyQ < S,
R < P andy € Homz(P,Q), (p[R #lo)« = trk o »*. More generally, for everyF-generated left-free
(P, Q)-biset2 we definef2, by sum of its transitive components.

The existence of this functor will help us to construct amigetent ofH*(S M) with image H*(F¢, M).
For that, we also need the notion Bfcharacteristic $, S)-biset.
Definition 3.3 Let Q2 be a left-free §, 9 -biset.

(&) We say that) is F-generatedf it is the union of § S)-bisets of the form P, ©] with P € Ob(F)
andp € Homz(P, S).

(b) We say thaf is left-F -stableif for all P € Ob(F) andy € Homz(P, S), we have (s = pQls, i.€.
(P[P, ¢ls) o [2] = ([P, inclls) o [©].
(c) We say thaf isright- 7 -stableif for all P € Ob(F) andy € Homz(P, S), we haves(2, = s(2p, i.€.
[2] o (sle(P), o~ 'Ip) = [Q1 o ([P, 1d3]e) -

(d) We say that) is non degeneratéd |Q2|/|S # 0 modulop.
If Q satisfies all this four properties, we say tliats an F-characteristic § S)-biset.
The notion of F-characteristic biset was first motivated by unpublishedkvas Linckelmann and Webb.
They are the ones who first formulated these conditions aragrézed the importance of finding a biset

with these properties. Broto, Levi and Oliver proved thatlsa biset always exists if the fusion system is
saturated.

Proposition 3.4 ([BLOZ], Proposition 5.5) Let F be a fusion system ovenagroupsS. If F is saturated,
then there exists aik -characteristidS, S) -biset.

In fact, Ragnarsson and StancRf, Theorem A), and independently Puid{], Proposition 21.9), proved
that a fusion systen¥ is saturated if, and only if, there existsfacharacteristic §, S)-biset.
Let M be aZg)-module, anyF-characteristic biset induces an idempotentH5f(S M) with image

H*(F¢,M).

Proposition 3.5 (cf. [BLOZ2], Proposition 5.5) Let (S F, L) be ap-local finite group andl be aZ -

module (with a trivial action ofc ). If Q) is anF -characteristic biset, the%ﬁ* € EndH*(S M)) defines
an idempotent with imagel*(F¢, M).

Proof In[BLOZ], Proposition 5.5, this is proved fdl = [F,, but the general case works the same way.



3.3 Bisets and twisted coefficients

Let (S, F, £) be ap-local finite group. When we work with twisted coefficientsethas to be more careful.
Unlike the case of trivial coefficients, defining a functaorfr A r to Z;-Mod does not work in general.

In fact, for M a Z)[7.]-module, our cohomological functdfi*(—, M) cannot be defined oiF but only
on F¢ and thus, we can only considgi®-generated bisets.

Definition 3.6 Let P, Q be two F-centric subgroups ob. A left-free (P, Q)-biset isF°-generatedf it is
an union of transitive bisets of the forrmR[p] with R € Ob(F€) andy € Homz(R, Q).

Unfortunately, we can see from Lemr2that the set of isomorphism classes/f-generated bisets is not
stable with respect to composition. Hence, we can not, blogpavith Az, define a categoryd < where
the objects are th& -centric subgroups db and forP andQ two F-centric subgroups db, A (P, Q) is
the set of isomorphism classes.Bf-generated left-freeR; Q)-bisets.

Nevertheless, for all.p)[7-]-module M andP,Q < S, we have a map from the sé=(P, Q) of isomor-
phism classes af¢-generated left-freeR; Q)-bisets to Homif1*(P, M), H*(Q, M)).

ForP,Q,R e F¢with R< Qandy € Homg(R, P), we can associate to the,(Q)-pair {R, ¢} a morphism

(R ¢}, = tr 0 p* : H*(P,M) — H*(Q, M).

If we consider anotherR; Q)-biset{R, ¢’} isomorphic to{R, ¢} (this implies thatR’ is also.F-centric),
we obtain the same morphism. Then we can &et]. as the composite gro @* and it is well-defined.
Finally, for Q a left-free 7¢-generated R, Q)-biset, we defing, by the sum of its transitive components.

Remark 3.7 By Proposition2.1, for ¢ € Mor(F°), ¢* = H*(¢, —) is a morphism of-functors. Hence,
as (2, is a sum of composites of transfers, restrictions afdfor ¢ € Mor(F°), which are all morphisms
of §-functors, it is an endomorphism of thefunctor (H*(S, —), dn+(s-)) -

3.4 Idempotents and twisted coefficients

In general, anF-characteristic biset is naF°¢-generated. Hence, when we are working with twisted
coefficients, we cannot use directly d@fcharacteristic biset as in the trivial case. However, wedefine,
from an F-generated § S)-biset, an endomorphism &f*(S M) but not in a unique way. That is why we
introduce the notion of2-endomorphism.

Definition 3.8 Let (S F, £) be ap-local finite group. LetP < Sandy € Homz(P, S). Let

o =inclp) o ()5 o - o w(Wy) Rt

be a decomposition ap into automorphisms af -centric subgroups.
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Given aZg)[mc]-module M, a 4P, ¢]s-endomorphismis an endomorphism oH*(S M) given by the
following composition

trg o (H* (@)l w(@a) ™) o H* (r(wn)l 2, w(z) ™
o+ oH (r(@IED), ww) ™) oReS) )

More generally, we define af2-endomorphismfor 2 an F-generated§, S)-biset as a sum of the previous
morphisms given by the transitive component<of

Remark 3.9 If the action ofr, on M is trivial, every Q2-endomorphism corresponds b, and, if €2 is

F -characteristic, by Propositida5, %Q* is an idempotent with image*(F¢, M).

Let us look at the behavior d2-endomorphisms induced h¥ -characteristic § S)-bisets with 7¢-stable
elements.

Lemma 3.10 Let (S F,L) be ap-local finite group andM be aZy[nc]-module. IfQ is an F-

characteristic(S, S)-biset andw, is an 2-endomorphism, thed%w* € EndH*(S M)) restricted to
H*(F¢, M) is the identity.

Proof Let P be a subgroup o5, ¢ € Homz(P,S) and A\, a [P, ¢]s-endomorphism. For every €
H*(F¢, M),
I[P ¢l

S

A(X) = tr3 o Resp(x) = [S: Plx = X.
Hence, for everyk € H*(F¢, M),
€]

wi(X) = —=X.

S

]

Remark 3.11 Notice also that fo) an F-characteristic $ S)-biset, by construction and Remazld, an
Q-endomorphism defines a morphismdfunctors.

We remind the reader that in this article, eve@rgroup is finite. This turn out to be a crucial property in the
following result.

Proposition 3.12 Let (S F, L) be ap-local finite group and lek be an abeliamp-group with an action

of mp. Let() be anF -characteristidS, S)-biset andv, an{)-endomorphism. For evefly> 0, there is a

N
natural numbeN, v > 0 such that(%w@ o defines an idempotedt v of HK(S, M) and we have

HX(FC, M) C Im (@iwm).

11



Proof To simplify the notation, we writev = %wk. For anyk > 0, we have the following decreasing
family of subgroups oHX(S, M).

HYF M) C - CIm@") CIm@™) € -+ CIm(wh) € Im (°) = HK(S M).

As HX(S M) is a finite abelianp-group, this sequence stabilizes. Thus there isngn> 1 such that
forall n > ng Im(W") = Im(w"). In particular, w™|;m () is @ permutation of the finite set ')
and there is al such that L()”0||m(wno))| = ldim ). Thus, forNym = | x ng, the endomorphism
wkm = WM € EndHX(S, M) is an idempotent with image Imu{e) D HX(FC, M). O

Hence, we can define an idempotentbf(S, M) as follows. For everk > 0 and everyx € HX(S M),

H:(:o Ni,m
B = (%«) ).

Moreover, this definition only depends on theendomorphisnmu.

Definition 3.13 For © an F-characteristic § S)-biset andw, an 2-endomorphism, the idempotemt, _
of H*(S —) obtained by the previous process is called #fecharacteristic idempoterdssociated to..

Let M be an abeliarp-group with an action ofr, we denote by (M) C H*(S M) the image ofu, .
Remark 3.14 Notice that, by RemarB.9, if the action onM is trivial, thenl* (M) = H*(F°, M).

Proposition 3.15 Let (S, F, £) be ap-local finite group. I} is anF -characteristidS, S) -biset andv, an
Q2-endomorphism, thew, _, the F°-characteristic idempotent induced by, defines an endomorphism
of the 6 -functor (H*(S, —), dn=(s—)) -

Proof For M an abeliarp-group with an action ofr, andk > 0, we denote byNy » a natural number as
in Proposition3.12

We have first to show that, _, the F°-characteristic idempotent associatedutp, defines a natural
transformation from the functdd*(S —) to itself. For every pair of abeliap-groups M, N) with an action
of mz and everyp € Homy,1-,.1(M, N), let us consider, fok > O, the following diagram,

H&(S M) —9 HK(S M) —2- HK(S N) —9- HK(S N)

wkaMJ/ &k,M,NJJ dk,M,Nl \ka,N

Hk(S M) Td Hk(S M) o Hk(S N) T Hk(S> N)
wherewkm N = (wk)ﬂik:0 N XTI Ni . The middle square commutes@gy n is a finite iteration of%wk
andw, is an endomorphism af-functors by RemarB.11 The leftmost square commutes becausejias

Hikzo Ni,N
k,M

is an idempotent oHK(S, M), WkMN = W = wkm. Finally, the rightmost one commutes because,

H:;o Ni,M
k,N

aswyN is an idempotent oHK(S N), OkM,N = &) = Wk N - Hence, the exterior diagram commutes.

12



Now, to show that it defines a morphism &ffunctor, let us consider a short exact sequence of abelian
p-groups with an action ofr,, 0 L M N 0 . By the previous argument we just
have to show that, fok > 0, the following diagram commutes,

HA(S N) —~ H(S L)
] s
HX(S N) —= H“"L(S L)
whered = dy+(s—) corresponds to the connecting homomorphism. Considerthigefollowing diagram,

HX(S N) 9= HX(S N) —2= HKktY(S L) 9 Hk (S 1)

wk,Nl wk,L,Nl 51k+1.,|_,Nl lwkH,L

H (S N) —= HX(S N) ——= HK*Y(S L) —= HKHY(S L)

where ) )
1 1
OKLN = (wk)l_[iio Nicx TR N
and k+1 k+1
~ — izo NiLxTTiZg Nijn
wk+1,L7N g (wk-‘rl) i=0 "M i=0 "M .

The middle square commutes ag N and wky1, N are finite iterations ofoy and wyy1, andw, is an
endomorphism ofd-functors by Remark3.11 The leftmost square commutes becauseigg is an

k+1 np.
idempotent ofHX(S N), Gk LN = w::'ﬁl”“xni:o Nt @Wkn- The rightmost one commutes becausezps

. . - KL . .
is an idempotent oHX(S, L), Wk+1,LN = wll;[r'j"l_ N — Wk+1,L- Thus, the exterior diagram commutes. O

3.5 The idempotent for a constrained fusion system

When we work with a constrained fusion system, t8e5(-characteristic biset i&°-generated and, working
with a suitable category, it induces, for evefy,[7-]-module M, an idempotent oH*(S, M) with image
H*(F°, M). Let us first recall the notion of constrained fusion system

Definition 3.16 Let F be a fusion system overagroup S.

A subgroupQ < Sisnormal in F if Q < S, and for allP,R < Sand everyy € Homz(P,R), ¢ extends
to a morphisnip € Homz(PQ, RQ) such thatz(Q) = Q.

We write Op(F) for the maximal subgroup d& which is normal inF.

We say thatF is constrainedf Op(F) is F-centric.

Define, for 7 a fusion system over p-group S and Py a subgroup of5, Ar>p, as follow.
Ob(Ar>p,) = {Po < P < S} is the set of all subgroups & containingPg
and for allP, Q € Ob(Ar>p,),
Ar>p,(P,Q) = { F-generated left-freeR; Q)-bisets union of R, ¢] with R> Po}.

13



Ar>p, is notin general a subcategory df-. The problem comes from Lemn3a2 the set

Mor(Azs>p,) = |_| Ar>p,(P, Q)
P,QeOb(Ar>p,)

is not stable with respect to composition. But it is stablewthe subgroufPy < Sis weakly closedn F,
i.e. PF = {P}.

Lemma 3.17 Let F be a fusion system over@groupS. If Po < S is weakly closed inF, then Ar>p,,
with the composition defined i8.1, is a subcategory oA .
Proof As Py is weakly closed inF, for everyR P > Pp, s€ Sandy € Homz(R,S),
0 Y e(R) NsPs™) > pY(¢(Po) NsPys™t) = Py.
Thus, by Lemma&.2, Mor(Ar>p,) is stable with respect to composition asd->p, defines a subcategory

of Ar. O

For example, the subgrouPp(F) is normal in 7. Thus it is weakly closed inF and Ar>o,F) is a
subcategory ofd r.

When F is constrainedOp(F) is F-centric. Thus, every bise&l € Mor(Ar>o,7) is F°-generated.
Hence, if 7 is constrained, for ever¥,p[7c]-moduleM, we have, as in the trivial case, a functor

Ar>oyF) — Z(p-Mod
P H*(P,M)

p[R, ¢lo —— trE o ©*.

Moreover, if we look at theninimal F-characteristic $, S)-biset i.e. the smallesF-characteristic $ S)-
biset, we have the following.

Proposition 3.18 Let F be a constrained fusion system oveparoup S. If Q2 is the minimal F -
characteristic biset, thef € Ar>o,(F)-

Proof This is a direct corollary of GRH|, Proposition 9.11. Indeed, bycRHh, Proposition 9.11, every
[P, ¢] which appears in the decomposition @fsatisfiesP > Op(F). O

Hence, using the same argument as for Proposgisnwe have the following theorem.

Theorem 3.19 Let (S, F, L) be ap-local finite group and be aZ)[m]-module. Let) be the minimal
F -characteristic(S, S) -biset. If F is a constrained fusion system, th%%&)* € EndH*(S M)) is an
idempotent with image th&°-stable elementsl*(F¢, M).

Proof By Proposition3.18 Q € Ar>o0,(r), and the proof is the same as the proof of Proposién D
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3.6 A -functor

Let (S F, L) be ap-local finite group,f2 be anF -characteristic $, S)-biset, andv, an2-endomorphism.

ForM an abeliarp-group with an action ofrz, letw, — € EndH*(S, M)) be the associate#®-characteristic
idempotent.

Let us start with the behavior of-functors with idempotents. We recall thatyafunctor can be seen as
a functor from the categong 4 of short exact sequences j to Ch(B), the category ofZ-graded chain
complexes inB, which sends any short exact sequence to an acyclic chaiplerme refer the reader to
[We] for more details and properties.

Lemma 3.20 Let (M,,f.) = < BV VLR Mis1 AEEN ) be a long exact sequence in
|

€z
an abelian category. Leti, . (M., f.) — (M,,f.) be a morphism of long exact sequences such that, for all
| € Z, i is an idempotent of,. Then the sequence

R m ) S imy S m i)

is exact.

Proof Let| € Z andx € Im (i) such thatfi(x) = 0. By exactness ofM.,f.) in |, there isay € M|_1
such thatfi_1(y) = x. Thusx = ij(X) = ij o fi_1(y) = fi_1 o ij_1(y) and hence we obtain the exactness of
(Im(i,),f.) in degreel. O

Proposition 3.21 Let A, B be two abelian categories and ig*,6g) : A — B be ad-functor. If
i*: (F*,0r) — (F*,dg) is an idempotent of -functors, ther(Im(i*), og) defines & -functor.

Proof A o-functor can be seen as a functor from the categ®iyof short exact sequences i to Ch(3)
which sends any short exact sequence to an acyclic chainleemp morphism ofé-functors is then a
natural transformation in that setting. With this point @w, this is just a corollary of Lemma.20 O

Theorem 3.22 Let (S F, L) be ap-local finite group,Q) an F -characteristiqS, S)-biset andw, an {2 -
endomorphism. Then, the functi(—), with the connecting homomorphisén-(s —y, defines a -functor
from the category of finité. [ ] -modules tdZy)-Mod.

Proof This is a direct corollary of PropositioBi15and Propositior8.21 O

In the next section, we will show that if the action dhis nilpotent, therl (M) = H*(F¢, M). But this is
not clear at all in general. This raised the following qumsti

Conjecture 3.23 Let (S F, L) be ap-local finite group, {2 an F-characteristic $ S)-biset andw an
Q-endomorphism. IM is an abeliam-group with an action ofrl(]ﬁyg), then

H* (75, M) = 1(M).

We insist that, in view of the counterexamples given by Lewd &agnarsson I(R] Proposition 3.1), we
cannot expect’ (M) to be isomorphic tdH*(|]£|, M) in general. But it is natural to ask If,(M) always
corresponds to théc-stable elements.
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4 The cohomology of the geometric realization of a linking sgtem with
nilpotent coefficients

We give here a proof of the main theorem.

Lemma4.1l Let (S F,L) be ap-local finite group. The natural inclusiaig of B(S) in L induces, for any
Zp)lmc]-moduleM, a natural morphism in cohomology

H*(I£],M) — H*(F%, M) C H*(S M).
Proof This follows easily from the functoriality of the geometrigalization. O

Lemma 4.2 Let (S F, L) be ap-local finite group and lef) be anF -characteristidS, S)-biset. Let also
0— L — M — N — 0 be a short exact sequence of firiitg)[ 7] -modules. Ifés induces isomorphisms
H*(|£],L) = I5(L) andH*(|£|,N) = 1%(N), thends induces an isomorphism

H*(|£], M) = 15(M).
Proof Consider the exact sequences in cohomology induced by dreestact sequence
0 L M N 0
and look at the following diagram (whete, _ denote theF¢-characteristic idempotent associatedxp
- ——=H"Y(|L],N) —=H"(|£], L) —= H"(|£],M) — H"(|£[,N) — -
@n_1,N00% l @i, 00% L @ MO0% l W, NOO l
1Y) 18(L) 17,(M) 1B (N)

As H*(|L]|, —) is ad-functor and, by TheorerB.22 ¢, is also aj-functor, the two lines are exact and, as
by Propositiorn3.15the F-characteristic idempotent associatedXaefines a morphism of-functors, this
diagram is commutative. An application of the Five Lemmantfieishes the proof. O

We can now state the main theorem.
Theorem 4.3 Let (S F, L) be ap-local finite group. IfM is an abeliarp-group with a nilpotent action of
m1(|L]), thends induces a natural isomorphism

H*(|£], M) = H*(F°, M).

Proof As the action ofr. is nilpotent, there is a sequence
0=MoCMC---CMy=M

such that, for every X i < n, the action ofr on M;/M;_1 is trivial. We know, by Theorem and Remark
3.14 that for 1< i < n, ds induces an isomorphism

H*(1£], Mi/Mi_1) = H*(F°, M /Mi_1) = I§(Mi/M;_1).
By induction onn, and by Lemmat.2, we get thatH*(|£|, M) = 1(M). Finally we also have by Lemma
4.1that
ds(H*(|1£],M)) € H*(F4, M) C I5(M).

ThenH*(|£|, M) = H*(F¢, M) = 15(M). D

16



5 The cohomology with twisted coefficients op-good spaces

We finish with a result on the cohomology with twisted coeéfits of thep-completion of ap-good space
and we apply it, with Theorem.3, to compare the cohomology with twisted coefficients|6f and the
Fe¢-stable elements.

We refer the reader to Bousfield and K&8¥]] for more details aboup-completion. There is also a brief
introduction in Aschbacher, Kessar and OlivaK[O]. Here, forX a space,

Ax 2 X = X9
denote the structural natural transformation of preompletion and we recall that X is p-good, it induces

an isomorphism
H*(XQ,IE‘p) = H*(X, Fp).

Lemmab5.1 Let X be a space and I&— L — M — N — 0 be a short exact sequencemg)[wl(xg)] -
modules. IfAx induces isomorphismld*(xr/)\, L) = H*(X,L) andH*(Xr/)\, N) = H*(X,N), then\x induces
an isomorphism

H*(X2, M) 2 H*(X, M).

Proof This is a straightforward application of the Five Lemma. O
Proposition 5.2 Let X be a space anlill be an abeliap-group with an action ofrl(X()\). If X is p-good
andwl(XQ) is a finitep-group, them\x induces a natural isomorphism
H* (X', M) = H*(X, M).
Proof As X is p-good, A\x induces an isomorphian*(XQ,IE‘p) = H*(X,Fp). Moreover, asm(XIQ) is a
p-group quotient ofry(X), the action ofwl(XQ) on M is nilpotent: there is a sequence
{0} =MgCM; C---CM=M
such that, for any X i < n, Mj/M;_1 = [, is the trivial module. We conclude by induction onusing

Lemmas.1 D

Corollary 5.3 Let(S F, L) be ap-local finite group. IM is an abeliamp-group with an action oﬁ(!ﬁ]ﬁ),
Az| Induces an isomorphism
H*(I£]5, M) = H*(|£[, M).

Proof As |L|is ap-good space and1(|£|§) is a finite p-group (JAKO], Theorem 111.4.17), we can apply
Proposition5.2 O

Corollary 5.4 Let(S F, L) be ap-local finite group. IM is an abeliamp-group with an action oﬁ(!ﬁ]ﬁ),
then\ .| o 6§ induces a natural isomorphism

H*(I£[h, M) 2 H*(F°, M),

Proof By [AKO], Theorem I11.4.17,/£| is p-good andmy(|£[3) is ap-group. In particular, the action of
wl(]/;]Q) on M is nilpotent. Hence, this is just a corollary of TheordrBand Corollary5.3. O
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