
HAL Id: hal-02280634
https://hal.science/hal-02280634v1

Submitted on 6 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Statistical Field Approach to Capital Accumulation
Pierre Gosselin, Aïleen Lotz, Marc Wambst

To cite this version:
Pierre Gosselin, Aïleen Lotz, Marc Wambst. A Statistical Field Approach to Capital Accumulation.
Journal of Economic Interaction and Coordination, 2021, 16 (5), �10.1007/s11403-021-00330-9�. �hal-
02280634�

https://hal.science/hal-02280634v1
https://hal.archives-ouvertes.fr


A Statistical Field Approach to Capital Accumulation

Pierre Gosselin∗ Aı̈leen Lotz† Marc Wambst‡

Mai 2019

Abstract

This paper presents a model of capital accumulation for a large number of heterogenous producer-
consumers in an exchange space in which interactions depend on agents’ positions. Each agent is described
by his production, consumption, stock of capital, as well as the position he occupies in this abstract space.

Each agent produces one differentiated good whose price is fixed by market clearing conditions.
Production functions are Cobb-Douglas, and capital stocks follow the standard capital accumulation
dynamic equation. Agents consume all goods but have a preference for goods produced by their closest
neighbors.

Agents in the exchange space are subject both to attractive and repulsive forces. Exchanges drive
agents closer, but beyond a certain level of proximity, agents will tend to crowd out more distant agents.

The present model uses a formalism based on statistical field theory developed earlier by the authors.
This approach allows the analytical treatment of economic models with an arbitrary number of agents,
while preserving the system’s interactions and complexity at the individual level.

Our results show that the dynamics of capital accumulation and agents’ position in the exchange
space are correlated. Interactions in the exchange space induce several phases of the system.

A first phase appears when attractive forces are limited. In this phase, an initial central position in
the exchange space favors capital accumulation in average and leads to a higher level of capital, while
agents far from the center will experience a slower accumulation process. A high level of initial capital
drives agents towards a central position, i.e. improve the terms of their exchanges: they experience a
higher demand and higher prices for their product. As usual, high capital productivity favors capital
accumulation, while higher rates of capital depreciation reduce capital stock.

In a second phase, attractive forces are predominant. The previous results remain, but an additional
threshold effect appears. Even though no restriction was imposed initially on the system, two types
of agents emerge, depending on their initial stock of capital. One type of agents will remain above the
capital threshold and occupy and benefit from a central position. The other type will remain below the
threshold, will not be able to break it and will remain at the periphery of the exchange space. In this
phase, capital distribution is less homogenous than in the first phase.
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Introduction

Field theory applied to economic models is useful to overcome the pitfalls of aggregation. This approach
developed in Gosselin, Lotz and Wambst (2017, 2018) preserves the microeconomic concepts of standard
economic models to describe fully or partly rational agents, while enabling the study of the transition from
individual to collective scale given by statistical physics. It provides an analytical treatment of a broad class
of economic models with an arbitrary number of agents, while keeping track of the system’s interactions and
complexity at the individual level.

Field theory describes an environment of an infinite number of interacting agents, from which various
phases or equilibria may emerge. It allows to study the agents’ behaviors, the way they are influenced by and
interact with their environment. Depending on the parameters of the system, the form of the ground state
may drastically change the description at the individual level. It is thus possible to compare the features of
the macro state of a system and those of the micro level, and their interactions. As such, it may confirm or
invalidate some aspects of the representative agent models and shed light on up-to-now discarded micro and
macro phenomena.

The present paper applies this field formalism to a model of capital accumulation for a large number of
heterogenous producer-consumers in an exchange space in which interactions depend on agents’ positions.
Each agent is described by his production, consumption, stock of capital, as well as the position he occupies
in an abstract space of exchanges. Each agent produces one differentiated good whose price is fixed by market
clearing conditions. Production functions are Cobb-Douglas, and capital stocks follow the standard capital
accumulation dynamic equation. Agents consume all goods but have a preference for goods produced by their
closest neighbors. Thus, demand depends not only on prices, but also on the distance between consumers
and producers in the exchange space. The closer the agents, the higher their propensity to exchange, the
higher the demand. Moreover, the position of each agent is itself dynamic. Agents in the exchange space
are subject both to aggregation and repulsion forces. Exchanges drive agents closer, but beyond a certain
level of proximity, closest agents will crowd out more distant agents: an increased proximity weakens more
distant exchanges.

The dynamic exchange space presented in this model allows to study the production, exchanges, market
shares and capital accumulation within a large group of agents. What are the patterns of accumulation across
agents? Is there a threshold effect leading some producers to accumulate at the expense of the others? Is
there a phase in which a better wealth distribution could be reached? All these questions can be addressed
within our formalism.

Translating standard economic models into a statistical field model is a two-step process. In a first step,
the usual model of optimizing agents is replaced by a probabilistic description of the system. In such a setting,
individual optimization problems are discarded. Each agent is described by a time-dependent probability
distribution centered around this agent’s classical optimization path. In a second step, the individual agents’
description is replaced by a more compact model of field theory that replicates the properties of the system
when N , the number of agents, is large (Gosselin, Lotz and Wambst 2017, 2018, and Kleinert 1989). This
modeling, although approximate, is compact enough to allow an analytical treatment of the system.

In our model, this formalism yields the probabilistic dynamics of individual agents through the com-
putation of so-called transitions functions. Given an initial stock of capital and an initial position in the
exchange space, each individual stochastic path can be found, and depends on parameters such as strength
in exchange interactions, rate of capital depreciation and uncertainty in economic variables. We show that,
depending on the interaction forces in the exchange space, two phases of the system appear. One corresponds
to a society in which the repulsion force is a large enough to compensate the attractive force resulting from
the exchange. We show that in that phase capital accumulation and mobility in the exchange space depend
highly on the initial capital stock. However, this phase presents a certain stability and allows, up to a point,
some capital accumulation for most agents. The second phase appears for an attractive force larger than the
repulsive one.

The first section details the literature review. Section two describes a classical model of capital accumu-
lation with N economic agents, translates it into a probabilistic framework and presents its associated field
formulation. In section three, we solve the dynamics of the system and present its various phases. Section
four interprets the results and section five concludes.
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1 Literature review

A large branch of the recent economic literature has been devoted to address the notion of representative
agent. Complex systems, Networks, Agent Based Systems or Econophysics are among the various paths that
have been explored to remedy its pitfalls.

By several aspects, our approach is related to the Multi-Agents System economic literature, notably
Agent Based Models (see Gaffard and Napoletano 2012) and Economic Networks (Jackson 2010). Both rely
on numerical simulation of Multi-Agents System but are often concerned with different types of model. Agent
Based Models deal with general macroeconomics models, whereas Network Models rather deal with lower
scale models, such as Contract Theory, Behavior Diffusion, Information Sharing or Learning. In both type
of settings, agents are typically defined by, and follow, various set of rules. These rules allow for equilibria
and dynamics that would otherwise remain inaccessible to the representative agent setup.

The Agent-Based approach is similar to ours in that it does not seek to aggregate all agents but considers
the interacting system in itself. It is however highly numerical, model-dependent, and relies on microeconomic
relations, such as ad-hoc reaction functions, that may be too simplistic. On the contrary, Statistical Field
Theory accounts for the impact of scale changes. Macroeconomic patterns do not emerge from the sole
dynamics of a large set of agents but are grounded on particular behaviors and interactions structures.
Describing these structures in terms of Field Theory allows to study the emergence of a phase at the macro
scale, and in turn its impact at the individual level.

Econophysics is closer to our approach (for a review, see Chakraborti, Muni Toke, Patriarca and Abergel
2011a, b and references therein). It often considers the set of agents as a statistical system. Moreover,
Kleinert (2009) has already used path integrals to model the stock prices’ dynamics. However, Econophysics
does not apply the full potentiality of Field Theory to economic systems. It focuses on empirical laws, but
the lack of micro-foundations casts some doubts on the robustness of these observed empirical laws, that are
prone, like ad-hoc macroeconomics, to the Lucas critique (see Lucas 1976). Our approach, in contrast, keeps
track of usual microeconomics concepts such as utility functions, expectations, forward looking behaviors.
It includes these behaviors in the analytical treatment of Multi-Agents Systems by translating the main
characteristics of a system of optimizing agents in terms of a statistical system.

Capital accumulation has been considered in several ways since the Solow growth model (Solow 1957)
and its subsequent developments (see Barro 1995 for an account). The closest approaches to this paper
stems from Economic Geography (Krugman 1999) and introduce several types of producers in a differenti-
ated geographical environment, ”core” and ”periphery”. This environment impacts the production of partly
differentiated goods, such as agricultural and manufactured goods (see Fujita and Thisse 2013 for a review).
There is a notion of space in these models, but the position of agents is static, whereas in our approach,
exchange position is dynamic and interacts with capital accumulation. Moreover, although conditions for
takeoff and convergence are studied for regional industrialization or multi countries growth models (Aghion
and Durlauf 2005), it is the fixed geographical parameters that determine the environment, notably trans-
portation costs and shares of immobile workers. The present approach, on the contrary, considers an evolutive
environment, that may be endogenized to interact with capital accumulation.

Also related to our purpose, a recent combination of evolutionary theory, complex systems and agent-
based model (Gintis 2007) has allowed a detailed study of a large number of producers’ capital dynamics
(Dosi and Nelson 2010; Dosi, Fagiolo and Roventini 2010; Dosi et al. 2015; Dawid et al. 2011, 2014),
(Ciarli et al. 2010; Mandel et al. 2010; Wolf et al. 2013). More refined models investigate how several
production sectors interact and compete, using neighbors’ output as inputs (Mandel et al. 2016; Mandel
2012). Competition and capital accumulation are driven by random changes in technology, and producers
progressively adapt their production via imitation, replacing parts of their inputs with newer, more efficient
technologies. In these models, the firms’ interactions dynamics are simulated numerically and track the
persistence of heterogenous production sectors and the computation of emergent macro quantities such as
total output, wages or unemployment. This focus on the evolution of independent sectors is close to our
purpose. However, we do not use numerical methods and consider an exchange space determining exchanges
between agents. Moreover, we do not focus on the evolution on technology, even if it could be included,
as in Gosselin, Lotz and Wambst (2018), but rather study the impact of the exchange dynamics on agents’
capital accumulation.
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2 Description of the model

This section describes a standard model of capital accumulation for a large number of agents. The usual
capital dynamics and production function are maintained, but here agents interact dynamically through an
exchange space.

2.1 Setup

There are N consumer-producer agents. Each agent is differentiated by his position on an exchange space,
denoted Xi (t) ∈ [−1, 1]. This exchange position is a dynamic variable that interacts with the other variables
of the model. It can be seen as a geographic space, but also as an abstract exchange space, in which the
central position X = 0 ensures higher exchanges.

Each agent produces a single differentiated good. Production functions are Cobb-Douglas. Each agent i
individual capital stock is denoted Ki (t). It is a fully liquid capital whose price is set to one. Since agents
are individual producers, labor can be discarded, and we further assume a constant technology factor A. So
that the individual production function is of the form AKα

i (t). The price of each good Pi (t) is determined
by market-clearing condition. Ultimately, the agent’s income is the product of his production and his price:

Yi (t) = Pi (t)AKα
i (t) (1)

Each agent consumes all the goods produced. We denote C
(j)
i (t) the consumption of good j by agent i at

time t. Three factors determine the agents’ consumption of each good. First, the quantity of each good that
an agent consumes is proportional to his income, with a proportionality factor to consume κ (0 < κ < 1).

Besides, the consumption of each good will also be a decreasing function of the good’s relative price, and
of the distance between its producer and consumer. We detail these two last conditions below.

Agents’ consumption depends on the relative price level of goods: we assume that agent’s i consumption
of good j is a decreasing function g (Ri,j (t)) with Ri,j (t) = Pj (t) /P̄i (t). The ratio Ri,j (t) is the relative
price of good j with respect to a general subjective price level for agent i. We chose a dependency of the type

g (Ri,j) ∼ (Ri,j)
−(1+γ)

. We define P̄i (t) = P 1−ε
K

(
P̂i (t)

)ε
, where 0 < ε < 1. Thus, the price level P̄i (t) is a

combination of the general price of capital PK and a subjective location-dependent consumption price index

P̂i (t). Since the price of capital is set to 1, P̄i (t) =
(
P̂i (t)

)ε
, and the ratio Ri,j (t) rewrites Pj (t) /

(
P̂i (t)

)ε
.

The index P̂i (t) is a weighted average of prices, where each weight is a function of the distance between the
consumer and producer. Thus, it depends on the agent’s exchange position at each moment of time, and
writes:

P̂i (t) =
1

d

∑
j

Pj (t) exp (−dij (t) /d)

with:
dij (t) = |Xi (t)−Xj (t)|

and d a constant parameter. The factor 1
d inside the exponential models the fact that agents interact in

average on an interval of length in the exchange space. The factor 1
d outside the exponential acts as a

normalization factor.

Agent’s consumption also depends on the distance between consumer and producers. We assume con-
sumption to be an exponentially decreasing function of the distance between consumer i and producer
j, |Xi (t)−Xj (t)|. Recall that Xi (t) and Xj (t) ∈ [−1, 1]. In analogy with the price level, we chose a
dependency of the form exp (−dij (t) /d) /d. This exponentially decreasing factor has only a relative value.
It may reflect the agents’ connections: the position in the exchange space only indicates the exchanges
agents establish within the exchange space. It could also account for transportation costs in a geographic
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interpretation. It also implies that an agent at the center of the exchange space will face a higher demand
for his good.

Under the previous hypotheses, consumption of good j by agent i writes:

C
(j)
i (t) =

κYi (t)

(Ri,j (t))
1+γ

exp (−dij (t) /d)

d
(2)

For the sake of simplicity we normalize (1 + γ) ε = 1 in the sequel, but this factor could be reintroduced
without impairing the results.

The consumption function of good j by agent i rewrites:

C
(j)
i (t) =

κ
dYi (t)

P 1+γ
j (t) /P̂i (t)

exp

(
−dij (t)

d

)
(3)

Remark that agent i propensity to consume depends on his relative price index, and thus is location.
More precisely, the dependence in Xi (t) of this propensity follows the pattern:

1

d2

∑
j

exp (−dij (t))

(∑
k

exp

(
−dik (t)

d

))
(4)

Replacing the summation by an integral, equation (4) is proportional to
(

1− cosh
(
|Xi(t)|
d

)
exp

(
− 1
d

))2

. All

things equal, the agent’s propensity to consume is maximal for Xi (t) = 0, minimal for Xi (t) = −1 and
Xi (t) = 1. The individual marginal propensity to consume is thus higher in the center of the exchange space
than at the periphery, reflecting the fact that exchanges are a decreasing function of the distance between
agents.

The above assumptions reflect the fact that exchanges are more frequent at the center of the exchange
space. Actually, this space can be seen as a scale of exchanges, in which the position of the agent measures
the intensity of his exchanges. Moves towards the center or the periphery depict respectively an improvement
or a deterioration of his terms of exchanges. We define the terms of exchanges of a producer as his ability
to sell his production at a given price within this exchange space - competitors and consumers, depending
on their capital, revenue, distance from the producer, etc.

To conclude this section, note that the proportionality factor κ should be determined by optimization of
an intertemporal utility function under the constraint of future flow of expected profits. However, assuming
some autonomous consumption proportional to the agent’s revenue, κ is constant in first approximation.
Agents consume an average ”minimal” necessary level of goods, given their position in the exchange space,
and reinvest the full amount of their remaining income. In our setting, the creation of trade relations
compensates the income loss due to a high production. This favors capital accumulation and ultimately,
through a better position in the exchange space, increases the producer price.

2.2 Classical description of the model

In this setting, each good’s price at each point in time is determined by market clearing conditions. The

global demand for good i at time t by all agents j,
∑
j C

(i)
j (t) matches the production of good i:∑

j

C
(i)
j (t) = AKα

i (t)

Using (3) and (1), this equation can be rewritten as:

κ

d2

∑
j,k

Pj (t)Kα
j (t)Pk (t) exp

(
−dij (t) + dkj (t)

d

)
= P 1+γ

i (t)Kα
i (t) (5)
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Capital accumulation dynamics follows a standard pattern. Capital depreciates at rate δ, and capital accu-
mulation is subject to a shock εi (t). We further assume that revenue saved is entirely reinvested in capital
at a price 1. In such a setting, the capital dynamic equation is:

Ki (t+ 1) = (1− δ)Ki (t) + Yi (t)−
∑
j

Pj (t)C
(j)
i (t) + εi (t) (6)

Using (3), we find:

Ki (t+ 1) ' (1− δ)Ki (t) + Yi (t)− κ

d2
Yi (t)

∑
j,k

Pk (t)

P γj (t)
exp

(
−dij (t) + dik (t)

d

)
+ εi (t) (7)

εi (t), ε
(1)
i (t), ε

(2)
i (t) variance σ2.

2.3 Probabilistic Description

Three dynamic variables Ki, Pi and Xi describe our model. Each agent dynamics is described by a path
within the space defined by these three variables: from an initial point in Ki, Pi and Xi, the agent reaches
a final point in this same space. Classically, up to some fluctuations, an optimal path does exist for each
agent.

For a large number of agents however, because of fluctuations, all possible paths may exist with varying
probabilities. So that, for a large number of agents, we must take into account the set - or space - of all paths,
and associate to this set a probability density centered around the classical optimal path1. This description
is a good approximation of standard descriptions and translates the fact that each agent experiments some
idiosyncratic shocks.

Once this probability density computed for an individual agent, the probability density for the set of
all agents is merely the product of the individual probability densities. This probability density for a
configuration of N arbitrary individual paths is called the statistical weight of a state of the system. By
construction, it is centered around one - or several in case of multiple equilibria - configuration of paths
that represent the classical equilibrium. Its shape need not be known, since we are working directly with
statistical weight.

In this section, we provide a probabilistic description of the model. To do so we build a statistical weight
for each equation of the model. Their product will be the probability description of the system. The two first
variables, K and P , are standard economic variables, and their weight will be derived from the equations
of the model, as proposed in Gosselin, Lotz, Wambst (2018). The last variable X is not a strictly standard
economic variable. We will depart from our methodology and ascribe to its dynamics an ad hoc form.

2.3.1 Probabilistic description for capital dynamics

We associate a probability to the dynamic accumulation of capital, centered around the average classical
capital dynamics solution, for each period of time t. To do so, note that (7) implies that the quantity:

Ki (t+ 1)− (1− δ)Ki (t) + Yi (t)− κ

d2
Yi (t)

∑
j,k

Pk (t)

P γj (t)
exp

(
−dij (t) + dik (t)

d

)
(8)

is a gaussian random variable εi (t) of variance σ2. In our context, equation (7) is replaced by the probability
density for Ki (t):

exp

− 1

2σ2

K̇i (t) + δKi (t)−APi (t)Kα
i (t)

1− κ

d2

∑
j,k

Pk (t) exp
(
−dij(t)+dik(t)

d

)
P γj (t)

2
 (9)

1We use the word probability density rather than probability, since due to the infinite number of possible paths, each
individual path has a null probability to exist, just like a gaussian defining the size of a population.
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To account for the dynamics over the whole timespan, we sum over t in the exponential. This associates
a density probability for a path of capital accumulation over the whole timespan. This will account for
stochastic paths Ki (t) that satisfy in average the classical dynamic accumulation equation.

Ultimately, to associate a statistical weight to the set of paths of capital accumulation for all agents, we
sum over i and t in the exponential of (9). The statistical weight associated to the capital accumulation of
the set of agents is thus:

exp

− 1

2σ2

∑
i

∫ K̇i (t) + δKi (t)−APi (t)Kα
i (t)

1− κ

d2

∑
j,k

Pk (t) exp
(
−dij(t)+dik(t)

d

)
P γj (t)

2

dt

 (10)

2.3.2 Probabilistic description for market clearing condition

The dynamics for Pi (t) can be replaced, as for capital dynamics, by a statistical weight derived from for the
market clearing condition. We assume that market clearing holds in average for a large number of agents,
but that fluctuations appear for individual agents. Thus (5) only holds up to some random noise, and must
be replaced by a probability for each agent i to deviate from (5).

exp

− 1

2σ2
1

P 1+γ
i (t)Kα

i (t)− κ
∑
j,k

Pj (t)Kα
j (t)Pk (t) exp

(
−dij (t) + dkj (t)

d

)2
 (11)

with σ2
1 normalized to σ2

Ā2 in the sequel where Ā2 is a constant. We consider market clearing as a more

binding condition than capital accumulation, so that Ā2 >> 1. As for the capital, we associate a statistical
weight for the system to the market clearing condition:

exp

− Ā2

2σ2

∑
i

∫ P 1+γ
i (t)Kα

i (t)− κ
∑
j,k

Pj (t)Kα
j (t)Pk (t) exp

(
−dij (t) + dkj (t)

d

)2

dt

 (12)

2.3.3 Probabilistic description of the exchange space dynamics

The exchange position X does not correspond to a usual economic variable. We could postulate its dy-
namic equations, along with its interactions with the other economic variables, and from there, deduce its
probabilistic description for an arbitrary number of agents. However choosing an ad hoc form is equivalent,
simpler and faster.

We postulate three types of forces governing agents’ dynamics within the exchange space and directly
write the associated statistical weights.

A first force applies to all agents whatever their position and attracts them towards the center of the
exchange space. Without this force the system would not exist or would tend to disintegrate. This force
could be a political or social structure assuring the cohesion and exchanges of the group. More broadly, it
can also represent the set of all factors insuring a minimal level of exchanges for each good. In the following,
we will refer to this force as the ”cohesion force”.

We postulate a second force induced by the exchanges existing between agents. We suppose that exchang-
ing agents create connections that will smooth their further exchanges, and get closer within the exchange
space.

Finally, we postulate a third force that counterweight the second force. We suppose that a small group
of agents, i.e. close and exchanging, tend to repell potential new entrants. This force can model exclusive
connections such as clientelism or various degrees of market openness.

Considering these three assumptions, we chose the following statistical weight for the all set of agents:

exp

−∑
i

∫ 
(
Ẋi (t)

)2

σ2
X

+ V0 (Xi (t)) +
∑
j

V1 (dij (t)) +
∑
j,k

V2 (dij (t) , dik (t) , djk (t))

 dt

 (13)
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where σ2
X is a constant parameter measuring the inertia of Xi. For σ2

X << 1, the variable Xi presents a
strong inertia, whereas, for σ2

X >> 1 the variable Xi adjusts freely.

This statistical weight describes a random dynamic for the variables Xi (t). The first term
(Ẋi(t))

2

σ2
X

represents the inertia of the variable Xi (t). The variation of Xi (t) over one period, measured by Ẋi (t), is
in average of order σX : the value of Xi (t) cannot be changed instantaneously.

The three other terms represent the forces acting on each individual agent, but also on groups of various
size.

The term V1 represents an attraction force between agents exchanging at the individual level.

V1 (dij (t)) = −κ1

4

Ki (t)Kj (t)

〈K〉Xi(t) 〈K〉Xj(t)
exp (−χ1dij (t)) (14)

Two exchanging agents have a tendency to get closer in an exchange space. χ1 is a parameter and 〈K〉Xi(t)
and 〈K〉Xj(t) are the average capital stock of agents at position Xi (t) and Xj (t). As (14) shows, V1 (dij (t))

is proportional to Ki (t)Kj (t) / 〈K〉Xi(t) 〈K〉Xj(t): the attraction force is proportional to agents’ exchanges,
revenues, and consequently capital stocks.

The term V2 describes some repulsive forces that occur in the interaction of small groups.

V2 (dij (t) , dik (t) , djk (t)) =
κ2

6
exp (−χ2 (dij (t) + dik (t) + djk (t)))

Here, we have chosen interactions within a group of three agents, but this could be generalized to k agents,
with k << N , where N is the total number of agents. The idea behind this force is that when several - more
than two - agents interact, the interactions they already have deter additional interaction.

The term χ2 is a parameter, and the last term, V0 is chosen to be:

V0 (Xi (t)) =
κ0

2σ2
X

(Xi (t)− 〈Xi (t)〉)2

with κ0 << 1 . This describes a ”weak” global force that tends to regroup all agents towards the center of
the exchange space, a cohesion force.

2.3.4 Probabilistic description of the system

Gathering the contributions (10), (12) and (13) leads to the probabilistic weight:

exp

(
− 1

2σ2

∑
i

∫
dt
(
K̇i (t) + δKi (t) (15)

−APi (t)Kα
i (t)

1− κ

d2

∑
j,k

Pk (t) exp
(
−dij(t)+dik(t)

d

)
P γj (t)

2


× exp

− Ā2

2σ2

∑
i

∫ P 1+γ
i (t)Kα

i (t)− κ
∑
j,k

Pj (t)Kα
j (t)Pk (t) exp

(
−dij (t) + dkj (t)

d

)2

dt


× exp

−∑
i

∫ 
(
Ẋi (t)

)2

σ2
X

+ V0 (Xi (t)) +
∑
j

V1 (dij (t)) +
∑
j,k

V2 (dij (t) , dik (t) , djk (t))

 dt


Appendix 0 rewrites this functional in an alternative form , more suitable to switch to the field theory
formalism.
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2.4 Statistical fields description

Describing the whole system by a statistical weight that accounts for a large number of stochastic paths has
allowed us to introduce the various interactions between agents directly inside the statistical weight.

Formally, this statistical weight could be used to study the evolution of the system. Equation (15) would
allow to compute the transition probability from an initial state for N agents to a final state. Yet this
approach, possible in some cases, is intractable for a large number of agents: it would imply to keep track
of the N agents’ probability transitions.

It is however a necessary first step (see Gosselin, Lotz and Wambst 2017, 2018) to turn to the more
compact field formalism. This formalism replaces the probabilistic description of N agents (15) by a collective
field formalism. Rather than tracking N variables, we define an abstract function, the field, that depends
only on one single set of variable, here K, P , X.

These variables are no more indexed by i, the label of individual agents, because field formalism, rather
than considering N copies of the same variables and defining a probability for the set of these N copies,
defines a probability density on the space of complex valued functions of the variables K, P , X.

These complex valued functions Ψ (K,P,X) replace the set of paths used in the previous paragraph.
Field formalism reduces the model described by (15) but preserves the essential information contained in
the probabilistic description (15) of the system with N agents. Switching to field formalism is a change of
perspective: rather than keeping track of agents 1, 2, ..., N , this formalism describes dynamics and interac-
tions as a collective thread of all possible anonymous paths. This thread is the environment that conditions
the dynamics of individual agents from one state to another.

To each function Ψ (K,P,X), we associate a statistical weight exp (−S (Ψ)) computing the density of
probability associated to the a particular configuration Ψ (K,P,X). The functional S (Ψ) is called the field
action. The form of S (Ψ) is directly derived from the probabilistic description of our model (15). Technical
details about the derivation of the field action S (Ψ) are given in Gosselin, Lotz and Wambst (2017) and a
detailed abstract can be found in Gosselin, Lotz and Wambst (2018). In the following, we briefly recall the
main steps and Appendix 1 provides some extensions adapted to our purposes.

2.4.1 Field theoretic formulation

The set of variables (Ki (t) , Pi (t) , Xi (t))i=1,...,N is replaced by a function Ψ (K,P,X, θ), where K,P,X
represent all the possible values of capital, price and exchange position for a non labelled agent. The
parameter θ is a counting variable and plays the role of time.

The statistical weight is replaced by a weight for this function Ψ (K,P,X, θ), and describes the probability
of a set of configurations (K,P,X, θ) for all agents. We will define Z = (K,P,X, θ) and Dij = |Xi −Xj |. By
convention, we will consider that, unless otherwise mentioned, the sign of integration

∫
refers to all variables

involved. The integrations ranges for K,P are R+ and for X, the interval [−1, 1]. The transformation from
the probabilistic description (52) to a field theoretic model is described in Gosselin, Lotz and Wambst 2017,
2018, and detailed in Appendix 1. The derivation of the results of this section is given in Appendix 2.

We show that the (K,P ) part of the field action is:

S1

(
Ψ̄
)

=

∫
Ψ̄† (Z, θ)

(
−σ2∇2

K − σ2
X∇2

X − ϑ2∇2
θ +

1

ϑ2
+ α

)
Ψ̄ (Z, θ) (16)

+

∫ 
(
δK −APKα

(
1− Û1

))2

σ2
+
Ā2
(
P 1+γKα + U2

)2
σ2

∣∣Ψ̄ (Z, θ)
∣∣2

with:

Û1 = κ

∫
P3 exp

(
−
(
D12+D13

d

))
P γ2

∣∣Ψ̄ (Z2, θ)
∣∣2 ∣∣Ψ̄ (Z3, θ)

∣∣2
U2 = −κ

∫
P2 (K2)

α
P3 exp

(
−
(
D12 +D23

d

))
|Ψ (Z2, θ)|2 |Ψ (Z3, θ)|2

9



In the sequel, we simplify the notation by replacing Ψ̄ by Ψ, but the change of variable will be accounted
for while computing the transition functions of the model.

The X part of the weight yields the field contribution:

S2 (Ψ) = σ2
X

∫
|∇Ψ (Z, θ)|2 +

∫
V0 (X) |Ψ (Z, θ)|2 +

∫
V1 (D12) |Ψ (Z1, θ)|2 |Ψ (Z2, θ)|2 (17)

+

∫
V2 (D12, D13, D23) |Ψ (Z1, θ)|2 |Ψ (Z2, θ)|2 |Ψ (Z3, θ)|2

where:

V0 (X) =
κ0

2σ2
X

(X − 〈X〉)2

V1 (|X − Y |) = −κ1

4

KK ′ exp (−χ1 |X − Y |)
〈K〉2

V2 (|X − Y | , |X − Z| , |Y − Z|) =
κ2

6
exp (−χ2 (|X − Y |+ |X − Z|+ |Y − Z|))

and the full following field action S (Ψ) = S1 (Ψ) + S2 (Ψ) becomes:

S (Ψ) =

∫
Ψ† (Z, θ)

(
−σ2∇2

K − σ2
X∇2

X − ϑ2∇2
θ +

1

ϑ2
+ α

)
Ψ (Z, θ) (18)

+

∫ V0 (X) +

(
δK −APKα

(
1− Û1

))2

σ2
+
Ā2
(
P 1+γKα + U2

)2
σ2

 |Ψ (Z, θ)|2

+

∫
V1 (D12) |Ψ (Z1, θ)|2 |Ψ (Z2, θ)|2 +

∫
V2 (D12, D13, D23) |Ψ (Z1, θ)|2 |Ψ (Z2, θ)|2 |Ψ (Z3, θ)|2

3 Resolution

Several results about the model can be derived from the field action S (Ψ) and its statistical weight exp (−S (Ψ)):
the phases of the system, that describe the collective background of the system, and the transition functions
of the system.

The phases of the system are defined by the field(s) Ψ0 (Z, θ) that maximize(s) the statistical weight
exp (−S (Ψ)), i.e. minimize(s) S (Ψ). The field Ψ0 (Z, θ) is the most likely configuration: it represents some
collective background field(s) that condition(s) the dynamics of individual agents.

The existence of a minimum for S (Ψ) (18) depends on the parameters of the system. For some values
of the parameters, only the trivial phase Ψ0 (Z, θ) = 0 exists, and amounts to a system linearized around a
static equilibrium. When non-trivial phases Ψ0 (Z, θ) 6= 0 exist, they reveal other types of equilibria. The
configuration Ψ0 (Z, θ) is the background state in which probability transitions and some average values can
be computed. Thus, the form of Ψ0 has direct implications on the system’s dynamics.

The transition functions, or Green functions, for k agents compute, for a given phase, the probability
for k agents to evolve from one initial state - the given values of capital, price and exchange position for
each of the k agents - to a final state in a certain time span. Thus, the field formalism recovers the random
description of one or any number of agents. We will see below that, in a given phase, the k agent transitions
functions can be recovered from the single agent transition probability.

To find the transition functions, we use the fact that exp (−S (Ψ)) represents itself a statistical weight
for the system. In fact, the second order expansion of S (Ψ) around Ψ0 (Z, θ) yields a quadratic action that
determines directly the Green functions of the system. The derivation of this point can be found in (Gosselin,
Lotz, Wambst 2018).

In this section, we study the conditions for the appearance of a non-trivial phase for the system described
by (18). We find that, depending on the parameters of the system, two potential phases arise. We then
compute for each possible phase an ”effective” quadratic action. This is a simplified version of (18) in which
the price variable can be replaced and the specificities of a given phase are taken into account. This quadratic
action is then used to compute the transition functions in each phase.
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3.1 Possibility of several phase

In this paragraph, inspecting the configurations Ψ0 (Z, θ) that minimize the action, we find the conditions
of appearance of a non-trivial phase for the system.

In the absence of any dynamics for X, since the potential for K,P is positive, the minimal configuration
is null. Thus, the possibility of non-trivial configuration depends on the X part of the action (17). Using a
first approximation for S2

(
Ψ̄
)

the minimization of (17) yields:

0 = −σ2
X∇2

XΨ (Z, θ) + V0 (X) Ψ (Z, θ) +

(∫
V1 (X −X2) |Ψ (Z2, θ)|2

)
Ψ (Z, θ)

+

(∫
V2 (X −X2, X −X3, D23) |Ψ (Z2, θ)|2 |Ψ (Z3, θ)|2

)
Ψ (Z, θ)

and we replace some quantities by their average:

〈X〉 = 0

|X −Xi| '
√〈

(X −Xi)
2
〉
'
√

2 〈X2〉 '
√

2κ
− 1

4
0 σX

V1 (|X −X2|) = −κ1

4

KK ′ exp (−χ1 |X −X2|)
〈K〉2

exp (−χ1 |X −X2|)

' −κ1

4

KK ′ exp (−χ1 |X −X2|)
〈K〉2

exp
(
−χ1

√
2κ
− 1

4
0 σX

)
≡ − κ̄1

4

and similarly:

V2 (X −X2, X −X3, D23) ' κ2

6
exp

(
−χ23

√
2κ
− 1

4
0 σX

)
≡ κ̄2

6

In the sequel, the parameters χ1, χ2 and κ0 will be considered relatively small. Since we are only concerned
with finding approximate conditions for the existence of a non-trivial phase, we can approximate κ̄1 ' κ1,
κ̄2 ' κ2 . We are thus left with an approximated equation:

0 = −σ2
X∇2

XΨ (Z, θ) +
κ0

σ2
X

X2Ψ (Z, θ) (19)

+κ1

(∫
|Ψ (Z2, θ)|2

)
Ψ (Z, θ) + κ2

(∫
|Ψ (Z2, θ)|2 |Ψ (Z3, θ)|2

)
Ψ (Z, θ)

We define ρ2 =
∫
|Ψ (Z, θ)|2, and assume a fundamental of the form Ψ0 (Z, θ) = Ψ0 (K) Ψ0 (P ) Ψ0 (X) Ψ0 (θ),

that we will justify later. Equation (19) rewrites:

0 = −σ2
X∇2

XΨ (Z, θ) +
κ0

σ2
X

X2Ψ (Z, θ) + κ1ρ
2Ψ (Z, θ) + κ2ρ

4Ψ (Z, θ)

The associated fundamental eigenvalue satisfies:

1

2
κ

1
2
0 − κ1ρ

2 + κ2ρ
4 = 0

Thus for κ2
1 − 2κ

1
2
0 κ2 < 0 the system has only one phase, the trivial phase ρ = 0, i.e. Ψ (Z, θ) = 0.

On the contrary, for κ2
1 − 2κ

1
2
0 κ2 > 0, there is a possibility of non-trivial phase with:

ρ '
κ1 +

√
κ2

1 − 2κ
1
2
0 κ2

2κ2

The value of ρ will be refined below.
As a consequence, the possibility of a non-trivial phase depends on the relative strength of the repulsive

force over the attractive one. A non-trivial phase is possible only for a strong enough repulsive force.
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3.2 Derivation of the effective action

For each phase, we derive a simpler form of the ”effective action” (18). Due to the binding market clearing
condition, the price P in (18) is not a dynamic variable: there are no derivatives in P , i.e. ∇P . We will show
that this variable can consequently be expressed in terms of K, X and the field. It is this simplification that
allows to find a quadratic effective action for a field depending on two variables K and X.

3.2.1 Phase 1: ρ = 0

We first inspect the case ρ = 0. Recall that we assume relatively small individual fluctuations around the
market clearing condition, so that Ā >> A. We also assume that σ2 < 1. The ratio A

Ā
will thus measure the

effect of these fluctuations on the system.
As a consequence, in the statistical weight exp (− (S (Ψ))) with S (Ψ) defined by (18), the potential term:

∫ 
(
δK −APKα

(
1− Û1

))2

σ2
+
Ā2
(
P 1+γKα + U2

)2
σ2

 |Ψ (Z, θ)|2 (20)

is predominant. It implies that exp (− (S (Ψ))) is peaked around fields minimizing (20). Since the
dependence of Ψ in P is static, i.e. no gradient in P appears in S (Ψ), we can consider that the fields
minimizing (20) have the form:

Ψ (Z, θ)→ δ (P − F (K,X)) Ψ (K,X, θ) (21)

In other words, the most likely fields are those of the form (21). Classically, the interpretation is straight-
forward: due to the market clearing condition, the price is a function F of (K,X).

Inserting (21) into the potential terms (20), the minimization equation of (20) becomes:

Ψ (K,P,X, θ)
(
−UAKα (δK −APKαU) + (1 + γ)P γĀ2Kα

(
P 1+γKα − V

))
Ψ† (K,P,X, θ) = 0 (22)

where U = 1− Û1. Appendix 2 shows that inserting (21) in (22) leads to identify:

P = F (K,X) = K−
α

1+γ f (X) (23)

where f is a trial function that must be identified in (22). We thus arrive to the following equation for f (X):

(f (X1))
1+γ

= κ

∫
(K2)

αγ
1+γ (K3)

− α
1+γ f (X3) f (X2) exp

(
−
(
D12 +D23

d

))
|Ψ (K3, X3)|2 |Ψ (K2, X2)|2

(24)
Appendix 2 shows that we obtain in first approximation:

f (X) = D exp

(
− |X|
d (1 + γ)

)
with:

D =

(
A

δ

(
1− h exp

(
− 1

2d

)(
1−

exp
(
− 1

2d

)
2

))) α
(1−α)(γ+1)

×

(
1 + γ (1− α)

(2− α) κ̄

((
2− α

1 + γ (1− α)

)2

− 1

)) 1+γ(1−α)

(1−γ2)(1−α)

Appendix 2 also shows that the average capital stock 〈K〉X for agents at position X in the exchange space
rewrites:

〈K〉X =

(
A

δ
f (X)

(
1− h exp

(
−|X|

d

)(
1−

cosh X
d

exp
(

1
d

)))) 1+γ
1+γ(1−α)

(25)
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where h and κ̄ are defined by:

κ̄ = κ

(
1− hA

2

Ā2

(
1− exp

(
−1

d

)))
(26)

h =
h̄(

1− A2

Ā2 h̄
(
1− exp

(
− 1
d

))) (27)

h̄ = (1 + γ (1− α))

(
1 + γ (1− α)

2 (2− α)

((
2− α

1 + γ (1− α)

)2

− 1

))(
3

2
− e−

1
d

2

)
(28)

Moreover, we also show in Appendix 2 that P , as a function of K and X, writes:

P =

(
1+γ(1−α)

(2−α)κ̄

((
2−α

1+γ(1−α)

)2

− 1

)) 1
1−γ

exp
(
− (1−α)|X|
d(1+γ(1−α))

)
(

K
〈K〉X

) α
1+γ


 1−h exp(− |X|d )

(
1−

cosh X
d

exp( 1
d )

)

1−h exp(− 1
2d )

(
1−

exp(− 1
2d )

2

)



α
1+γ(1−α)

(29)

Once the price level associated to K and X is found, the potential (20) becomes:

ω2

σ2

∫
Ψ† (K,X, θ) (K − 〈K〉X)

2
Ψ (K,X, θ) (30)

with:

ω = σ

√√√√δ2 +
Ā2A2(

A2
(
1− h

(
1− exp

(
− 1
d

)))2
+ Ā2

)2

and the effective action, is now equal to:

S (Ψ) =

∫
Ψ† (K,X, θ)

(
−σ2∇2

K − σ2
X∇2

X − ϑ2∇2
θ +

ω2

σ2
(K − 〈K〉X)

2
+

1

ϑ2
+ α

)
Ψ (K,X, θ) (31)

+

∫
(V0 (X)) |Ψ (K,X, θ)|2 +

∫
V1 (D12) |Ψ (K1, X1, θ)|2 |Ψ (K2, X2, θ)|2

+

∫
V2 (D12, D13, D23) |Ψ (K1, X1, θ)|2 |Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2

This simplified form will be useful to compute the transition functions of the agents in the system.
We can now interpret these first set of results. From the above, we can see that the average level of capital

is a function of the variable X and the parameter d. The average level of capital of an agent (25) decreases
exponentially as a function of his distance from the center X. Indeed, an agent at the center has more
opportunities to exchange. He faces a higher demand, has a higher price, a higher income, and accumulates
more capital. Our results show that capital accumulation is an increasing function of parameter d, the
average distance of interactions with other agents. Recall that agents exchange with all other agents, but
that due to the exponential form of consumption an agent exchanges mainly with the agents on an interval
of length d, centered around his position. The more the agent can exchange - the better the infrastructures
for instance - the higher capital accumulation. Besides, inspection of (27) shows that the fluctuations of
prices around the market clearing condition deteriorate the average level of capital stock.

Finally, and as expected, equation (25) shows that high capital productivity favors capital accumulation
while higher rates of capital depreciation reduce capital stock.

Moreover, the above results show that the level of prices is a function of the variables K, X, and the
parameter d. The price (29) of a good produced by an agent in a specific position X is a decreasing function
of the ratio between the level of capital and the level of average capital in X. We retrieve the result that
the higher the level of capital, the more agents produce and sell at lower prices. However, this dependence
to the level of capital is relative. Rather, it is the ratio of the agent’s level of capital to the average level of
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capital that is determinant. The price (29) is also an exponentially decreasing function of position X. Given
a constant level of capital, an agent at the periphery faces a lower demand and has lower prices than at
the center of the exchange space. Ultimately, the price of a good produced is an increasing function of the
parameter d. The higher d, the higher the volume of echanges, and the higher the prices.

3.2.2 Phase 2: ρ > 0

In phase 2, computations are similar to phase 1 but expectations are computed for a field Ψ0 (Z, θ)+Ψ (Z, θ).
We thus compute the corrections to phase 1 due to the non-trivial Ψ0 (Z, θ).

Appendix 3 shows that the previous equations defining the potential (20), P (22) and 〈K〉X are still
valid:

P = F (K,X) = K−
α

1+γ f (X) (32)

However, now the trial function f satisfies:

(f (X1))
1+γ

= κ

∫
(K2)

αγ
1+γ (K3)

− α
1+γ f (X3) f (X2) exp

(
−
(
D12 +D23

d

)) ∣∣Ψ̄ (K3, X3)
∣∣2 ∣∣Ψ̄ (K2, X2)

∣∣2
(33)

with Ψ̄ (K,X, θ) = Ψ0 (K,X, θ) + Ψ (K,X, θ). Equation (33) is actually equation (24), but evaluated now
for a ”translated field”, since the properties of f (X1) are modified by the non-trivial fundamental state. As
explained above, this reflects the particular features of the non-trivial phase and the collective contribution
of the environment created by the set of all agents.

Appendix 3 computes the function f in two steps corresponding to the decomposition Ψ̄ (K,X, θ) =
Ψ0 (K,X, θ) + Ψ (K,X, θ). We find:

f (X) = D exp

(
− |X|

1 + γ

)
with:

D =

(
A

δ

(
1− h exp

(
− 1

2d

)(
1−

exp
(
− 1

2d

)
2

))) α
(1−α)(γ+1)

×

(
1 + γ (1− α)

(2− α) κ̄ρ4

((
2− α

1 + γ (1− α)

)2

− 1

)) 1+γ(1−α)

(1−γ2)(1−α)

and where h is defined as in (27). The associated average capital stock is given by:

〈K〉X =

(
A

δ
f (X)

(
1− h exp

(
−|X|

d

)(
1−

cosh X
d

exp
(

1
d

)))) 1+γ
1+γ(1−α)

(34)

with h is defined as in (27). Moreover, we also show in Appendix 3 that P , as a function of K and X, writes:

P =

(
1+γ(1−α)
(2−α)κ̄ρ4

((
2−α

1+γ(1−α)

)2

− 1

)) 1
1−γ

exp
(
− (1−α)|X|
d(1+γ(1−α))

)
(

K
〈K〉X

) α
1+γ


 1−h exp(− |X|d )

(
1−

cosh X
d

exp( 1
d )

)

1−h exp(− 1
2d )

(
1−

exp(− 1
2d )

2

)



α
1+γ(1−α)

(35)

Having found 〈K〉X , appendix 3 shows that the potential part involving K has the same form as in the first
phase (30):

ω2

σ2

∫
Ψ† (K,X, θ) (K − 〈K〉X)

2
Ψ (K,X, θ) (36)

These results are similar to those of phase 1. The patterns of (35) and (34) as a function of K, X and
d, are the same as those of (29) et (25). Only their magnitudes differ. This is due to ρ2, the norm of the
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fundamental state Ψ0, a parameter specific to phase 2. The two phases will be compared in our interpretation
of the results. The formula for the effective action in phase 2 is also the same as (31). Yet again, in phase
2, these formulas depend explicitly on the value of ρ2. We previously found an approximative value for ρ.
With the results now at hand, the value of ρ can be found more precisely by writing the equation for the
state Ψ0 (K,X, θ). Appendix 3 shows that:

ρ2 =
κ1 +

√
κ2

1 − 2κ2

(
2α+

√
κ0 + σδ

)
2κ2

and the precise form of Ψ0 (K,X, θ) is given by:

Ψ0 (K,X, θ) = ρNΨ0 (K) Ψ0 (X)

where:

N =
1

2π

√
κ
− 1

2
0 σ

√
δ2 + Ā2A2(

A2(1−h(1−exp(− 1
d )))

2
+Ā2

)2

ρ2 =
κ1 +

√
κ2

1 − 2κ2

(
2α+ 2

ϑ2 +
√
κ0 + σδ

)
2κ2

Ψ0 (K) = exp

−
√
δ2 + Ā2A2(

A2(1−h(1−exp(− 1
d )))

2
+Ā2

)2 (K − 〈K〉X)
2

2σ


Ψ0 (X) = exp

(
−κ
− 1

2
0 (X + δX)

2

2

)
H (x) + exp

(
−κ
− 1

2
0 (X − δX)

2

2

)
H (−x)

δX =

(
χ1κ1

K

2 〈K〉
ρ2 − χ2κ2ρ

4

)
3.3 Transition probabilities

In the previous paragraph, replacing P as a function of K, X and the field has reduced the system to a field
theory of the two variables K and X with quadratic potentials (30) and (36). This simplification allows to
compute the transition probabilities for the system in both phases, i.e. the probabilities for agents to evolve
from one initial state of K, X, and P towards a final state during a certain time-span, given the environment
created by the set of N agents (see Gosselin, Lotz, Wambst 2018). To do so, we first simplify in each phase
the part of the action dependent on X.

3.3.1 Phase 1: ρ = 0

Using the effective action (31), we can isolate the part of the action dependent on X:

S2 (Ψ) = σ2
X

∫
|∇Ψ (Z, θ)|2 +

∫
V0 (X) |Ψ (Z, θ)|2 +

∫
V1 (D12) |Ψ (Z1, θ)|2 |Ψ (Z2, θ)|2 (37)

+

∫
V2 (D12, D13, D23) |Ψ (Z1, θ)|2 |Ψ (Z2, θ)|2 |Ψ (Z3, θ)|2

This action S2 (Ψ) can be evaluated replacing the interaction potentials by their average in phase 1:

−
∫
κ1

2
|Ψ (K,X, θ)|2 KK

′ exp (−χ1 |x− y|)
〈K〉2

|Ψ (K ′, Y, θ)|2

→ −κ1

∫ 〈
KK ′ exp (−χ1 |x− y|)

〈K〉2
|Ψ (K ′, Y, θ)|2

〉
|Ψ (K,X, θ)|2
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and: ∫
κ2

3
|Ψ (K,X, θ)|2 exp (−χ2 |X − Y | − χ2 |X − Z| − χ2 |Y − Z|) |Ψ (K ′, Y, θ)|2

∣∣∣Ψ(K ′′ , Z, θ)∣∣∣2
→ κ2

∫
|Ψ (K,X, θ)|2

〈
exp (−χ2 |X − Y | − χ2 |X − Z| − χ2 |Y − Z|) |Ψ (K ′, Y, θ)|2

∣∣∣Ψ(K ′′ , Z, θ)∣∣∣2〉
The computations, performed in Appendix 4, lead to an approximation:

S2 (Ψ) = −σ2
XΨ† (x)∇2

XΨ (x) + ωXΨ† (x)X2Ψ (x) + αXΨ† (x) Ψ (x)

with:

ωX = κ0 + κ1
K

〈K〉
exp (−χ1)χ1 − κ2 exp (−χ2)χ2 (38)

αX = α− κ1
K

〈K〉
2 (1− exp (−χ1))

χ1
+ κ2

2 (1− exp (−χ2))

χ2

Gathering the part of the effective action depending on K and our simplification for S2 (Ψ), the system is
thus described by an overall action:

S (Ψ) = Ψ† (K,X, θ)

(
−σ2∇2

K − ϑ2∇2
θ − σ2

X∇2
X +

ω2

σ2
(K − 〈K〉X)

2
+ ωXX

2 +
1

ϑ2
+ αX

)
Ψ (K,X, θ)

(39)
The equation (39) describes a system that looks like a three-variable system with quadratic potential. An
important difference however is that each variable of the system influences the other non-linearly.

To get a better insight on the dynamics, we will simplify the mechanism at hand, and consider that when
an agent moves from K,X towards K ′, X

′
, we will average along the path the influence of one variable on

the other. To do so, we first set for two values X and X ′:

〈K〉 =
〈K〉X + 〈K〉X′

2
(40)

where 〈K〉 is an average of capital for agents whose trajectory in the exchange space starts from X to
reach X ′. This represents the average influence of X on the capital stock within the dynamics.

Similarly, we define average values for ωX and αX along a path of capital from K to K ′.

ω̄X = κ0 + κ1
κ1

2

(
K

〈K〉X
+

K ′

〈K〉Y

)
exp (−χ1)χ1 − κ2 exp (−χ2)χ2 (41)

ᾱX = α− κ1
κ1

2

(
K

〈K〉X
+

K ′

〈K〉Y

)
2 (1− exp (−χ1))

χ1
+ κ2

2 (1− exp (−χ2))

χ2

Once (39) found and given (40) and (41), the transition probability for one agent in the first phase can
be computed. Recall that this is the probability for an agent to evolve from an initial state to a final state
during a certain timespan. Appendix 4 shows that:
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G (K,K ′, P, P ′, X,X ′, θ, θ′)

= exp

−
 (K − 〈K〉X)

2

2σ2

(K′,X′)

(K,X)

(K′,X′)

(K,X)

 (42)

×
√

ω̄X
2π sinh (ω̄Xt)

exp

− ω̄X
((
X2 + (X ′)

2
)

cosh (ω̄Xt)− 2XX ′
)

2 sinh (ω̄Xt)


×
√

ω

2πσ2 sinh (ωt)
exp

−ω
((

(K − 〈K〉)2
+ (K ′ − 〈K〉)2

)
cosh (ωt)− 2 (K − 〈K〉) (K ′ − 〈K〉)

)
2σ2 sinh (ωt)



×δ

P −
(

1+γ(1−α)

(2−α)κ
(

1−hA2

Ā2 (1−exp(− 1
d ))
)
d

((
2−α

1+γ(1−α)

)2

− 1

)) 1
1−γ

exp
(
− (1−α)|X|

1+γ(1−α)

)
(

K
〈K〉X

) α
1+γ (

1− h exp (− |X|)
(
1− coshX

e

)) α
1+γ



×δ

P ′ −
(

1+γ(1−α)

(2−α)κ
(

1−hA2

Ā2 (1−exp(− 1
d ))
)
d

((
2−α

1+γ(1−α)

)2

− 1

)) 1
1−γ

exp

(
− (1−α)|X′|

1+γ(1−α)

)
(

K′

〈K〉X′

) α
1+γ (

1− h exp (− |X ′|)
(
1− coshX′

e

)) α
1+γ

H (θ − θ′)

where δ (u) is the Dirac function. A Dirac function is a function which is null for all u 6= 0 and peaked at
u = 0.

Equation (42) computes the probability for an agent starting at (K,P,X, θ) to reach (K ′, P ′, X ′, θ′)
during a timespan θ − θ′.

This formula also allows to compute the probability for k agents with initial state (Ki, Pi, Xi, θ)i=1,...,N

to reach the state (K ′i, P
′
i , X

′
i, θ
′)i=1,...,N . Formula (42) is the product of Green functions:

k∏
i=1

G (Ki,K
′
i, Pi, P

′
i , Xi, X

′
i, θ, θ

′)

This probability is a product of independent probabilities. Indeed, recall that in this set up interactions
have been absorbed in the Green function parameters. This illustrates the fact that the transition functions
of agents are shaped by the global environment, and not by some specific interactions.

Formula (42) allows to understand the main features of individual agents’ dynamics.
Consider an agent starting from K ′, X ′ and arriving at a final point K, X after some time. This final

point is partly random, but due to the parameters of the system some values of K, X are more likely, and
some dynamic patterns appear.

We will in turn examine each of the terms of this equation (42).
The first exponential in (42) is trivial: it merely translates the fact that the capital stock of agents in

position X is bounded around the average stock 〈K〉X .
The second exponential in Formula (42) describes the dynamics on X. It has the form of a stochastic

harmonic oscillator, with one important difference: the frequency ω̄X is not constant and satisfies (41). This
exponential can be rewritten:

exp

− ω̄X
((

(X −X ′)2
)

+ (cosh (ω̄Xt)− 1)
(
X2 + (X ′)

2
))

2 sinh (ω̄Xt)

 (43)
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The first term in the exponential (X −X ′)2
represents a Brownian random walk: any agent starting at X ′

could move randomly with a standard deviation of
√

sinh(ω̄Xt)
ω̄X

.

The additional term however, (cosh (ω̄Xt)− 1)
(
X2 + (X ′)

2
)

, favors a final X closer from the center

X = 0: the cohesion force drives agents toward the center of the exchange space.
The parameter ω̄X is a rough estimator of the speed of this move towards the center.
For ω̄X << 1, the weight (43) is dampened for all final value of X, which means that all final points X

is equally probable. The driving force is weak, and the convergence very slow.
Inspection of (41) shows that this speed ω̄X depends on the agent’s initial level of capital. As expected,

this speed also depends positively on κ0, the magnitude of the cohesion force, and negatively on κ2, the
magnitude of the repulsive force.

Most importantly κ1, the magnitude of the attractive force is dampened by the ratio of the agent’s
current capital stock to 〈K〉X . Recall that 〈K〉X is the average capital stock of agent’s current - transitory
- exchange position. Since 〈K〉X increases as the agent moves towards the center of the exchange space (
X → 0), the closer the agent gets to the center, the more he decelerates. A strong enough repulsive force
and a relatively low initial level of capital may prevent the agent to ever reach the center of the exchange
space. The attractive force towards the center is thus inequal among agents. It favors those endowed with
a higher initial capital.

The third exponential in (42) determines the dynamics on K. It can be rewritten:

exp

−ω
((

(K −K ′)2
)

+ (cosh (ωt)− 1)
(

(K − 〈K〉)2
+ (K ′ − 〈K〉)2

))
2σ2 sinh (ωt)

 (44)

where 〈K〉 is defined by (40). For a relatively stable X, an agent’s capital stock is in average driven towards

the average stock of his exchange position. The quadratic term (K −K ′)2
represents a random Brownian

walk around this trend.
Equation (25) shows that as long as an agent moves towards the center his average capital stock will

increase in average.
As a matter of fact, the two dynamics of X and K interact and can create a virtuous circle. A move

towards the center tends to increase capital, and an increase of capital tends to accelerate the move towards
the center. This positive interaction will only stop when the repulsive force will overcome the attractive
forces. Given (41), this occurs when initial capital is insufficient. The attractive force depends on the ratio
of initial over average capital. It may also occur if an adverse shock reduces the stock of capital. The agent
can then be driven back towards the periphery.

The fourth term in equation (42) describes the market clearing conditions given X and K. The Dirac
function in the last line of (42) implements (29). For a given level of capital K, prices are higher towards
the center of the exchange space, and for a given position in the exchange space X, prices are a decreasing
function of K.

3.3.2 Phase 2: ρ > 0

As in the non-trivial phase, we isolate in the effective action (31) the part dependent on X. Appendix 4
shows that in phase 2 its second order approximation is:

S2 (Ψ) = Ψ† (K,X, θ)

(
−∇2

X + κ0

(
1− χ2

1κ1ρ
2

2
+ 2χ2κ2ρ

4

)
(X + sgn (X) δX)

2

)
Ψ (K,X, θ) (45)

+
(
ρ4κ2 − ρ2κ1 − (δX)

2
)
|Ψ (K,X, θ)|2

with:

ρ2 =
κ1 +

√
κ2

1 − 2κ2

(
2α+

√
κ0 + σδ

)
2κ2

(46)
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and:

δX = χ1κ1
K

2 〈K〉
ρ2 − χ2κ2ρ

4 (47)

Thus, the full action for the system is:

S (Ψ) =

∫
Ψ† (K,X, θ)

(
−σ2∇2

K − ϑ2∇2
θ − σ2

X∇2
X +

ω2

σ2
(K − 〈K〉)2

)
Ψ (K,X, θ) (48)

+κ0

∫ ((
X + χsgn (X)

(
κ1

K

2 〈K〉
ρ2 − κ2ρ

4

))2

+ αX

)
|Ψ (K,X, θ)|2

+
(
2ρ2κ2 − κ1

) ∣∣∣∣∫ Ψ† (K,X, θ) Ψ0 (K,X, θ)

∣∣∣∣2
where:

ω = σ

√
δ2 +

Ā2A2(
A2U2 + Ā2

)2
αX = −1

2
κ

1
2
0

√
1− χ2

1κ1ρ2

2
+ 2χ2

2κ2ρ4 −
σ
√
δ2 + Ā2A2

(A2U2+Ā2)
2

2

Given (48), the transition function in the phase ρ 6= 0:

G (K,K ′, P, P ′, X,X ′, θ, θ′)

= exp

−
 (K − 〈K〉X)

2

2σ2

(K′,X′)

(K,X)

(K′,X′)

(K,X)

×GK+K′
2

(X,X ′) (49)

×

√
ω̄/2πσ2

sinh (ω̄ (θ − θ′))
exp

− ω̄
((

(K − 〈K〉)2
+ (K ′ − 〈K〉)2

)
cosh (ω̄ (θ − θ′))− 2 (K − 〈K〉) (K ′ − 〈K〉)

)
2σ2 sinh (ω̄ (θ − θ′))



×δ

P −
(

1+γ(1−α)

(2−α)κ
(

1−hA2

Ā2 (1−exp(− 1
d ))
)
ρ4d

((
2−α

1+γ(1−α)

)2

− 1

)) 1
1−γ

exp
(
− (1−α)|X|

1+γ(1−α)

)
(

K
〈K〉X

) α
1+γ (

1− h exp (− |X|)
(
1− coshX

e

)) α
1+γ



×δ

P ′ −
(

1+γ(1−α)

(2−α)κ
(

1−hA2

Ā2 (1−exp(− 1
d ))
)
ρ4d

((
2−α

1+γ(1−α)

)2

− 1

)) 1
1−γ

exp

(
− (1−α)|X′|

1+γ(1−α)

)
(

K′

〈K〉X′

) α
1+γ (

1− h exp (− |X ′|)
(
1− coshX′

e

)) α
1+γ

H (θ − θ′)

where:

GK (X,X ′) = Ḡ (X + δX,X ′ + δX)H (X)H (X ′) + Ḡ (X − δX,X ′ − δX)H (−X)H (−X ′) (50)

+Ḡ (X + δX,X ′ − δX)H (X)H (−X ′) + Ḡ (X − δX,X ′ + δX)H (−X)H (X ′)

with:

Ḡ (X,X ′) =

√
κ0

2πσ2
X sinh (κ0t)

exp

((
− κ0

2σ2
X sinh (κ0t)

)(
(X −X ′)2

+ (cosh (κ0t)− 1)
(
X2 + (X ′)

2
)))

(51)
where H (X) is the Heaviside function defined by H (X) = 1 for X > 0 and 0 otherwise. As in phase 1, and
for the same reasons, the definition of 〈K〉 is given by (40). The quantity δX is defined in (47).
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Here again, the first exponential in (49) is trivial: it merely translates the fact that the capital stock of
agents in position X is bounded to be around the average stock 〈K〉X .

The second exponential in formula (49) describes the dynamics on X. Given the formulas (49) and (50),
this dynamic is different from that of phase 1. Equation (48) shows that an individual variable attraction
point appears for each agent, along with X = 0. This point depends both on the agent’s initial position and
capital.

The Green function GK+K′
2

(X,X ′) in (50) commands the dynamics of the exchange position. Assume

X and X ′ are positive. Using (51), one has:

GK+K′
2

(X,X ′) =

√
κ0

2πσ2
X sinh (κ0t)

× exp

((
− κ0

2σ2
X sinh (κ0t)

)(
(X −X ′)2

+ (cosh (κ0t)− 1)
(

(X + δX)
2

+ (X ′ + δX)
2
)))

As in phase 1, the quadratic term (X −X ′)2
represents a random Brownian walk around the starting point

X ′. The second quadratic term:

(cosh (κ0t)− 1)
(

(X + δX)
2

+ (X ′ + δX)
2
)

drives the position X towards the position −δX. Thus, the attraction point is shifted from 0 to −δX.
For a large level of capital, equation (47) shows that the attraction point appears on the agent’s opposite

side of the center X = 0. This variable attraction point quickly drives the agent towards X = 0. When
X = 0 is reached, the agent does not cross this point in average. Were he to cross it randomly, he would be
driven back towards X = 0. Actually, when X ′ < 0 and X < 0, i.e. when an agent has crossed the center
X = 0, equations (50) and (51) show that the agent is driven back toward the variable attraction point
δX > 0, which in turn drives back the agent toward 0. The whole oscillatory process reveals that X = 0 is
indeed an attractive point.

For a low level of initial capital, the dynamics is different. The variable attraction point appears on the
initial position side. The agent is driven towards this point, even if he was closer to the center X = 0. This
implies an eviction mechanism from the center for agents with low capital.

At first sight, the dynamics of capital accumulation should be identical to phase 1, since the third
exponential in (49) is similar to (42). Up to some random fluctuations, agents are driven to the average level
of capital of their current exchange position. However, since capital accumulation and exchange position are
interacting, the features of the dynamics of X in phase 2 impact capital accumulation.

In phase 1, a positive shock in capital could drive the agent towards the center, in turn increasing his
capital stock.

Here, due to the presence of the variable attraction point, a small positive capital shock may not initiate
a move towards the center. An agent with a low level of capital will be driven back towards his variable
attraction point, possibly farther from the center.

The fourth term in equation (49) describes the market clearing conditions given X and K. Actually,
the Dirac function in the last line of (49) implements (35). For a given level of capital K, prices are higher
towards the center of the exchange space, and for a given position in the exchange space X, prices are a
decreasing function of K.

A last effect which is a direct consequence of the non-trivial phase cannot be read from the Green function
(49) but can be tracked back to the last term of (48):

(
2ρ2κ2 − κ1

) ∣∣∣∣∫ Ψ† (K,X, θ) Ψ0 (K,X, θ)

∣∣∣∣2
The effective action in phase 2 includes a positive term, since now ρ2 is greater than κ1

2κ2
. Appendix 5 shows

that this term induces a barrier between agents in position X. Agents with an initial capital stock below
〈K〉X will find it harder to accumulate above 〈K〉X and thus improve their exchange position while agents
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with K > 〈K〉X will more likely remain above this threshold. Therefore, in phase 2, a threshold effect
appears at each point on the exchange space. Agents with high initial capital will more likely overcome
barriers and accumulate, while the others will be evicted from positions in the exchange space for which
their initial stock of capital is too low.

4 Synthesis and discussion

To interpret the previous results, recall that this model considers loosely defined variables. The exchange
space for instance can be seen both as a geographical space, such as national markets or individual sectors,
and as scale of terms of exchanges.

Three forces characterize this exchange space. The cohesion force is the only force that attracts all agents
towards the center of the exchange space. The attractive and repulsive forces bring agents together or apart
on the X axis, respectively. Since exchanges are proportional to the distance between agents, the attractive
forces facilitate exchanges between agents, whereas the repulsive force reduces competition, by preventing
new entrants or more distant agents to establish or strengthen exchanges with consumers. These two forces,
attractive and repulsive, always exist within a market, yet our work stresses that it is r = κ2/κ1, the relative
magnitude of the repulsive force with respect to the attractive force, that matters. This ratio commands the
occurrence of the two phases of the dynamics.

In phase 1, r is high and free exchange is limited. Markets are relatively protected, or exchanges may
be prevented for other reasons, such as distance, lack of infrastructure, regulation, etc. The cohesion force
improves in average the terms of exchange across all agents and contributes to homogenizing the agents.
This tendency impacts all agents, even though agents with high initial capital are favored in the process.
On the contrary, in phase 2, the repulsive force is relatively weaker, and r is low. The agent will experience
higher mobility within the exchange space.

The two phases present similarities. In both, the price of the producer and the average capital stock of
agents decrease exponentially with the distance to the center. Agents at the periphery produce less and sell
at a lower price than central agents. Yet dynamically the two phases are different. Phase 1 displays stability
in exchanges, lower competition, a broad based although slow improvement in the terms of exchanges. In
this phase, random shocks can redistribute capital and initiate a virtuous circle of capital accumulation.

In phase 2, the weakness of the repulsive force induces greater instability in trade relations, but also
greater competition among agents. Increased mobility favors capital accumulation for producers with high
initial level of capital. Producers with a low level of initial capital will experience eviction from the exchange
space and a deterioration in their prices and revenues. This is due to an indirect effect: increased exchanges
induce greater competition and increased inequality in wealth distribution. Actually, removing the repulsive
force opens market to agents with higher level of capital. Selling their products at a relatively low price, these
agents gain market shares over their competitors. A producer that has penetrated a market experiences a
higher demand, higher prices, a higher revenue, and in turn higher capital. This same mechanism, repeated
over time, may drive him along the exchange space to a relatively dominant position.

On the contrary producers with low capital on an existing market will be progressively evicted. To them,
market liberalization is an increase in neighboring competitors. They will face a lower demand, lose market
shares and experience a decrease in income that will push them towards the periphery, and exclude them
from their market. Such mechanisms are at play within sectors where liberalization favors agents with high
concentration of capital. The arrival of big agricultural producers in Africa evicted local producers, that
ended up selling their work force to their previous competitors, and in some cases, lead them to migrate.

Phase 2 displays a seemingly counter-intuitive result: except under mild market liberalization, i.e. when
r is in some range, average capital is lower in phase 2 than in phase 1. This result is mainly due to our
assumption of constant technology. Because of this assumption, our model is only valid within a relatively
short period of time. Therefore, our conclusions do not contradict the standard accounts of industrial
revolution. The short periods of liberalization during the technological boost of the nineteenth century did
not lead decisively to higher accumulation, and freedom of exchanges has been at times contemporaneous of
a crisis. Thus, our model sheds a nuanced light on free exchange dynamics. In our context, a high disparity
in capital and thus in revenue does not imply an average improvement of wealth. Disparities in capital
accumulation are directly related to a collapse in global demand and a lower average wealth.
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Our model has a last implication. In our setting, capital must be renewed to produce: when an agent
cannot do so, he disappears as a producer within his market. This mechanism repeated over time may leave
the agent with the sole capital he may renew, namely his labor force. Thus, phase 2 of our model also
describes the evolution from a society with a large number of small producers towards a society with few
capitalistic producers and a large number of workers: it accounts for de-homogenization of society.

5 Conclusion

In this paper, we have developed a model of capital accumulation with a large number of heterogeneous
agents. This model keeps some features of the classical economic models - a standard equation of capital
accumulation, production function, and market clearing condition. However, it includes an exchange space
that dynamically interacts with capital accumulation. Besides, the classical description of the model is
replaced by field theory techniques. Our results show that, depending on the parameters of the model,
the system displays various phases, each describing different accumulation processes. Depending on the
parameters of the model, capital accumulation is not necessarily favored by greater market liberalization.
Besides, capital accumulation highly depends on each agent’s initial conditions, and shows that the capital
dynamics cannot be reduced to simple aggregates. Various dynamic patterns appear depending on agents.
Yet our model enlightens the fact that by its dynamic divergences, a society of atomic producers can divide
between groups of accumulating producers, and agents progressively losing their capital. Our results show
a dynamic that can produce a society divided in two classes, the first one accumulating capital, the other
one losing its capital, up to the point where its only capital left will be its labor. This model shows the
advantages of field theory modeling in economics. It leads to a finer description of the agents’ dynamics,
both at a global level and individual level, the two descriptions interacting permanently. Our future work
will continue to explore this approach to other fields of economics.
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6 Appendices

6.1 Appendix 0

It will be useful for the description in term of field theory to rewrite the weight (15) in a different form. We
introduce a variable X̃i (t) so that (15) is equal to:

exp

(
−
∑
i

(∫
1

2σ2

(
K̇i (t) + δKi (t)−APi (t)Kα

i (t) + X̃i (t)
)2

− Ā2

2σ2

(
P 1+γ
i (t)Kα

i (t)− U2,i

)2

+ δ
(
X̃i (t)− U1,i

)))
where δ

(
X̃i (t)− U1,i

)
is the delta function and:

U1i = κAPi (t)Kα
i (t)

∑
j,k

Pk (t)

P γj (t)
exp

(
−dij (t) + dik (t)

d

)

U2,i = κ
∑
j,k

Pj (t)Kα
j (t)Pk (t) exp

(
−dij (t) + dkj (t)

d

)
The full weight of the system is thus:

exp

−
(
K̇i (t) + δKi (t)−APi (t)Kα

i (t) + X̃1

)2

2σ2
−
Ā2
(
P 1+γ
i (t)Kα

i (t)− U2

)2

2σ2
+ δ

(
X̃1 − U1

)(52)

× exp

−
∑

i


(
Ẋi (t)

)2

σ2
X

+ V0 (Xi (t))

+
∑
i,j

V1 (dij (t)) +
∑
i,j,k

V2 (dij (t) , dik (t) , djk (t))




6.2 Appendix 1

We use the techniques defined in Gosselin, Lotz and Wambst (2017, 2018) to switch from the probabilistic
description of the model to the field theoretic formalism. A presentation can found in Gosselin, Lotz and
Wambst (2018), but we recall here what is needed for our purpose.

The idea is the following. For a large number of agents, the system described by (52), involves a large
number of variables X (t) that are difficult to handle. We consider the space H of complex functions
defined on the space of a single agent’s actions. The space H describes the collective behavior of the
system. Each function Ψ of H encodes a particular state of the system. Then, to each function Ψ of H,
we associate a statistical weight, i.e. a probability describing the state encoded in Ψ. This probability is
written exp (−S (Ψ)), where S (Ψ) is a functional, i.e. a function of the function Ψ. The form of S (Ψ) is
derived directly from the form of (52).

The weight considered in this work is a particular case of those presented in Gosselin, Lotz and Wambst
(2018), plus some adaptation. In Gosselin, Lotz and Wambst (2018), we showed that for a weight describing
interaction between individual agents:

∑
i

∫ T

0

(
1

σ2

∫ T

0

(
d

ds
Xi (s)

)2

+ V1

(
X(i)
s

))
ds+

1

η2

∑
i

∫ T

0

(
d

dt
Xi (t)−H (Xi (t))

)2

dt (53)

+
∑
k>2

∑
i1,...,ik

∫ T

0

∫ T

0

Vk

(
X

(i1)
s1 , ..., X

(ik)
sk

)
θ2

ds1...dsk
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the following field action functional contains the same information about the system:

S (Ψ) =

∫ (
Ψ† (X)

(
−σ2∇2 + V1 (X) + α

)
Ψ (X)

)
dX −

∑
i

∫
Ψ† (X)

(
η2∇2 +∇.H (x)

)
Ψ (X) dX

+
1

θ2

∑
k>2

∑
k>2

∫
Ψ (X1) ...Ψ (Xk)Vk (X1...Xk) Ψ† (X1) ...Ψ† (Xk) dX1...dXk

where α is the parameter arising in the Laplace transform of the statistical weight (53), (see Gosselin, Lotz,
Wambst 2017) and where Ψ† (x) denotes the complex conjugate of Ψ (x). The operator ∇ is the gradient

operator, a vector whose i-th coordinate is the first derivative ∂
∂xi

: ∇ =
(

∂
∂Xi

)
. The operator ∇2 denotes

the Laplacian:

∇2 =
∑
i

∂2

∂X2
i

where the sum runs over the coordinates xi of the vector x. Applying this to our previous example, where

Ψ (X) = Ψ (c, k), we get ∇2 = ∂2

∂c2 + ∂2

∂k2 .
Coming back to the model at stake here, and discarding for the moment the weight associated to the

position in the exchange space, the statistical weight for the Price plus Capital part was (52):

exp

(
− 1

2σ2

(
K̇i (t) + δKi (t)−APi (t)Kα

i (t) + U1i

)2

− Ā2

2σ2

(
P 1+γ
i (t)Kα

i (t)− U2,i

)2
)

(54)

with:

U1i = κAPi (t)Kα
i (t)

∑
j,k

Pk (t)

P γj (t)
exp

(
−|Xi (t)−Xj (t)|

d
− |Xi (t)−Xk (t)|

d

)

U2i = κ
∑
j,k

Pj (t)Kα
j (t)Pk (t) exp

(
−|Xi (t)−Xj (t)|

d
− |Xk (t)−Xj (t)|

d

)

The difference with (53) is that, here, the interactions between different agents (terms involving sums over
different agents j, k, ..., are local, i.e. the quantities involved in these terms are considered at the same time,
whereas it is not required in (53). As explained in Gosselin, Lotz and Wambst (2017), the introduction of
local interactions can be done by introducing for each agent i, a counting variable Θi (s) which is roughly
equal to s apart some random fluctuation. A statistical weight has to be introduced for this counting variable
Θi (s) and then, one has to replace this weight by its field counterpart:

∫
exp

−∫
(

Θ̇i (s)− 1
)2

2ϑ2

DΘi (s)→ Ψ†
(
K,P, P̂ ,X, θ

)
∇θ.

(
ϑ2∇θ − 2

)
Ψ
(
K,P, P̂ ,X, θ

)

We will now show that the overall action for the Price + Capital part associated to (52) writes:

Ψ† (K,X, θ)

−σ2∇2
K +

(
δK −APKα

(
1− Û1

))2

σ2
+ σ2

P

(
AKα+1

σ2 (α+ 1)

)2

+
Ā2
(
P 1+γKα + U2

)2
σ2

(55)

−
(
σ2
P∇2

P + σ2
X∇2

X

)
− ϑ2∇2

θ +
1

ϑ2
+ α

)
Ψ (K,X, θ)

' Ψ† (K,X, θ)

−σ2∇2
K +

(
δK −APKα

(
1− Û1

))2

σ2
+
(
P 1+γKα + U2

)2 − σ2
X∇2

X − ϑ2∇2
θ +

1

ϑ2
+ α

Ψ (K,X, θ)
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which is in first approximation:

Ψ† (K,X, θ)

−σ2∇2
K +

(
δK −APKα

(
1− Û1

))2

σ2
+
(
P 1+γKα + U2

)2 − σ2
X∇2

X − ϑ2∇2
θ +

1

ϑ2
+ α

Ψ (K,X, θ)

with:

Û1 = κ

∫
P3 exp

(
−
(
D12+D13

d

))
P γ2

∣∣Ψ̄ (Z2, θ)
∣∣2 ∣∣Ψ̄ (Z3, θ)

∣∣2
U2 = −κ

∫
P2 (K2)

α
P3 exp

(
−
(
D12 +D23

d

))
|Ψ (Z2, θ)|2 |Ψ (Z3, θ)|2

To prove this result, we first start with an arbitrary weight with interactions between agents and including
the counting variable Θ (s). Such a weight includes our model as a particular case.

exp

−∫
(
Ẋi (t) +G (Xi (t))−

∑
j V (Xi (t) , Xj (t))

)2

2σ2

 (56)

This form describes the first part of (54) if we set:

G (Xi (t)) = δKi (t)−APi (t)Kα
i (t) (57)

V (Xi (t) , Xj (t)) = −U1

The second part of (54):

− Ā2

2σ2

(
P 1+γ
i (t)Kα

i (t)− U2,i

)2

has a direct equivalent in term of field theory:

Ψ† (K,X, θ)
((
P 1+γKα + U2

)2)
Ψ (K,X, θ) (58)

so we skip it from the following argument and reintroduce it at the end of the proof.
Then, as in Gosselin, Lotz and Wambst (2017), we replace in V (Xi (t) , Xj (t)), the time by two indepen-

dent parameters ti and tj , and impose the equality of the counting variables associated to these parameters:
θj (tj)− θi (ti) = 0. Then the weight (54) rewrites:

→ exp

−
(
Ẋi (ti) +G (Xi (ti))−

∑
j

∫
V (Xi (ti) , Xj (tj)) δ (θj (tj)− θi (ti))

)2

2σ2


To simplify the notations, and include possible generalizations, we will also replace:∫

V (Xi (ti) , Xj (tj)) δ (θj (tj)− θi (ti)) →
∫
V (Xi (ti) , θi (ti) , Xj (tj) , θj (tj))

=

∫
V (Yi (ti) , Yj (tj))

where we set:
Yi (ti) = (Xi (ti) , θi (ti))

That is, the δ factor of the potential is replaced by an arbitrary function of the counting variables θi (ti),
θj (tj). Then, we introduce an auxiliary variable X̃i (ti), equal up to a random error of small square deviation
σ2

2 , to
∑
j

∫
V (Yi (ti) , Yj (tj)) and the weight (56) becomes:
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exp

−
(
Ẋi (ti) +G (Xi (ti))−

∑
j

∫
V (Yi (ti) , Yj (tj))

)2

2σ2


= exp

−
(
Ẋi (t) +G (Xi (ti))− X̃i (ti)

)2

2σ2
−

(
X̃i (ti)−

∑
j

∫
V (Yi (ti) , Yj (tj))

)2

2σ2
2


= exp

−
(
Ẋi (t) +G (Xi (ti))− X̃i (ti)

)2

2σ2

−

(
X̃2
i (ti)

)2

− 2X̃i (ti)
∑
j

∫
V (Yi (ti) , Yj (tj)) +

∑
j

∫
V (Yi (ti) , Yj (tj))

∑
j

∫
V (Yi (ti) , Yj (tj))

2σ2
2


We also assume that:

σ2
2 << σ2

This weight has the required form to apply the techniques developped in Gosselin, Lotz and Wambst (2017),
and the corresponding field theory action writes:

Ψ†
(
Y, X̃

)(
−∇θ

(
ϑ2∇θ − 2

)
− 1

2
∇X

(
σ2∇X +G (X) + X̃

)
+G′ (X)− 1

2
ε2∇2

X̃
− 1

2
ωX̃2

)
Ψ
(
Y, X̃

)
+

∫
X̃2

2σ2
2

∣∣∣Ψ(Y, X̃)∣∣∣2 − ∫ X̃V
((
Y, X̃

)
,
(
Y ′, X̃ ′

))
σ2

2

∣∣∣Ψ(Y, X̃)∣∣∣2 ∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2
+

∫ V
((
Y, X̃

)
,
(
Y ′, X̃ ′

))
V
((
Y, X̃

)
,
(
Y ”, X̃”

))
2σ2

2

∣∣∣Ψ(Y, X̃)∣∣∣2 ∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2 ∣∣∣Ψ(Y ”, X̃”
)∣∣∣2

We apply the transformation on the field

Ψ
(
Y, X̃

)
= exp

(
−
∫ (

G (X) + X̃
))

Ψ̄
(
Y, X̃

)
(59)

and change of notation for the sake of simplicity:

Ψ̄
(
Y, X̃

)
→ Ψ

(
Y, X̃

)
For an action:

Ψ†
(
Y, X̃

)(
−∇θ

(
ϑ2∇θ − 2

)
− 1

2
∇2
X +

(
G (X) + X̃

)2

− 1

2
ε2∇2

X̃
− 1

2
ωX̃2

)
Ψ
(
Y, X̃

)
+

∫
X̃2

2σ2
2

∣∣∣Ψ(Y, X̃)∣∣∣2 − ∫ X̃V
((
Y, X̃

)
,
(
Y ′, X̃ ′

))
σ2

2

∣∣∣Ψ(Y, X̃)∣∣∣2 ∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2
+

∫ V
((
Y, X̃

)
,
(
Y ′, X̃ ′

))
V
((
Y, X̃

)
,
(
Y ”, X̃”

))
2σ2

2

∣∣∣Ψ(Y, X̃)∣∣∣2 ∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2 ∣∣∣Ψ(Y ”, X̃”
)∣∣∣2

For potential satisfying: V
((
Y, X̃

)
,
(
Y ′, X̃ ′

))
= V (Y, Y ′), which is the case considered in this work, it
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simplifies as:

Ψ†
(
Y, X̃

)(
−∇θ

(
ϑ2∇θ − 2

)
− 1

2
∇2
X +

(
G (X) + X̃

)2

− 1

2
ε2∇2

X̃
− 1

2
ω

)
Ψ
(
Y, X̃

)
+

∫
X̃2

2σ2
2

∣∣∣Ψ(Y, X̃)∣∣∣2 − ∫ X̃V (Y, Y ′)

σ2
2

∣∣∣Ψ(Y, X̃)∣∣∣2 ∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2
+

∫
V (Y, Y ′)V

(
Y, Y ”

)
2σ2

2

∣∣∣Ψ(Y, X̃)∣∣∣2 ∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2 ∣∣∣Ψ(Y ”, X̃”
)∣∣∣2

and this is equal to:

Ψ†
(
Y, X̃

)(
−∇θ

(
ϑ2∇θ − 2

)
− 1

2
∇2
X +

(
G (X) + X̃

)2

− 1

2
ε2∇2

X̃
− 1

2
ω

)
Ψ
(
Y, X̃

)

+

∫ (
X̃ −

∫
V (Y, Y ′)

∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2)2

2σ2
2

∣∣∣Ψ(Y, X̃)∣∣∣2 (60)

Now, given our assumptions: ε2 << 1, σ2
2 << 1, we can consider that: ε2∇2

X̃
→ 0. As a consequence, the

condition

0 =

∫
Ψ†
(
Y, X̃

)(
X̃ −

∫
V (Y, Y ′)

∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2)2

Ψ
(
Y, X̃

)
imposed by σ2

2 in (60) is obtained for a function of the type:

Ψ
(
Y, X̃

)
= δ

(
X̃ −

∫
Ψ† (Y ′)V (Y, Y ′) Ψ (Y ′)

)
Ψ (Y )

The δ
(
X̃ −

∫
Ψ† (Y ′)V (Y, Y ′) Ψ (Y ′)

)
is gaussian of norm equal to 1 peaked around

∫
Ψ† (Y ′)V (Y, Y ′) Ψ (Y ′).

As a consequence:

∫
Ψ†
(
Y, X̃

)(
G (X) + X̃

)2

Ψ
(
Y, X̃

)
=

∫
Ψ†
(
Y, X̃

)(
G (X) +

∫
V (Y, Y ′)

∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2)2

Ψ
(
Y, X̃

)
−2

∫
Ψ†
(
Y, X̃

)(
G (X) +

∫
X̃V (Y, Y ′)

∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2)
×
(
X̃ −

∫
V (Y, Y ′)

∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2)Ψ
(
Y, X̃

)
+

∫
Ψ†
(
Y, X̃

)(
X̃ −

∫
V (Y, Y ′)

∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2)2

Ψ
(
Y, X̃

)
=

∫
Ψ†
(
Y, X̃

)(
G (X) +

∫
V (Y, Y ′)

∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2)2

ΨY, X̃

−2

∫
Ψ†
(
Y, X̃

)(
G (X) +

∫
V (Y, Y ′)

∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2)
×
(
X̃ −

∫
Ψ†
(
Y ′, X̃ ′

)
V (Y, Y ′) Ψ

(
Y ′, X̃ ′

))
Ψ
(
Y, X̃

)
This last quantity is negligible since:∣∣∣∣∫ Ψ†

(
Y, X̃

)(
G (X) +

∫
X̃V (Y, Y ′)

∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2)(X̃ − ∫ ∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2 X̃V (Y, Y ′)

)
Ψ
(
Y, X̃

)∣∣∣∣
6

∥∥∥∥Ψ†
(
Y, X̃

)(
G (X) +

∫
X̃V (Y, Y ′)

∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2)∥∥∥∥∥∥∥∥(X̃ − ∫ ∣∣∣Ψ(Y ′, X̃ ′)∣∣∣2 X̃V (Y, Y ′)

)
Ψ
(
Y, X̃

)∥∥∥∥(61)
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and the norm of the last factor in (83) is close to zero, since:∥∥∥∥(X̃ − ∫ Ψ†
(
Y ′, X̃ ′

)
V (Y, Y ′) Ψ

(
Y ′, X̃ ′

))
Ψ
(
Y, X̃

)∥∥∥∥2

=

∫
Ψ†
(
Y, X̃

)(
X̃ −

∫
Ψ†
(
Y ′, X̃ ′

)
V (Y,X ′) Ψ

(
Y ′, X̃ ′

))2

Ψ
(
Y, X̃

)
→ 0

Thus, the potential (60) simplifies as:

Ψ†
(
Y, X̃

)(
−∇θ

(
ϑ2∇θ − 2

)
− 1

2
∇2
X

)
Ψ
(
Y, X̃

)
+

∫
Ψ†
(
Y, X̃

)(
G (X) +

∫
Ψ†
(
Y ′, X̃ ′

)
V (Y, Y ′) Ψ

(
Y ′, X̃ ′

))2

Ψ
(
Y, X̃

)
= Ψ† (Y )

(
−σ

2

2
∇2
X +

(
G (X) +

∫
Ψ† (Y ′)V (Y, Y ′) Ψ (Y ′)

)2
)

Ψ (Y )

We can now come back to the initial variables, by letting Y → (X, θ), and this yields:

Ψ† (X, θ)

(
−∇θ

(
ϑ2∇θ − 2

)
− σ2

2
∇2
X +

(
G (X) +

∫
V (X,X ′) δ (θ − θ′) |Ψ (X ′, θ′)|2

)2
)

Ψ (X, θ)

= Ψ† (X, θ)

(
−∇θ

(
ϑ2∇θ − 2

)
− σ2

2
∇2
X +

(
G (X) +

∫
V (X,X ′) |Ψ (X ′, θ′)|2

)2
)

Ψ (X, θ)

We also change of variable for the dependence in the counting variable:

Ψ (X, θ) = exp

(
θ

ϑ2

)
Ψ̄ (X, θ)

and reset again:
Ψ̄ (X, θ)→ Ψ (X, θ)

Given our choice for G and V (57), and adding (58), the field theoretic version of (54), one obtains (55).
To close this section, we note that due to the change of variable (59) the source terms have to be

included as they participate to the action. One thus has the action plus source terms:

Ψ†
(
X, X̃

)(
−ϑ2∇2

θ +
1

ϑ2
− 1

2
∇2
X

)
Ψ
(
X, X̃

)
+

∫
Ψ†
(
X, X̃

)(
G (X) +

∫
Ψ†
(
X ′, X̃ ′

)
V (X,X ′) Ψ

(
X ′, X̃ ′

))2

Ψ
(
X, X̃

)
+

∫
J (X) exp

(
−
∫ (

G (X) + X̃
))

Ψ
(
X, X̃

)
+ J† (X) exp

(∫ (
G (X) + X̃

))
Ψ†
(
X, X̃

)
= Ψ† (X)

(
−ϑ2∇2

θ +
1

ϑ2
− σ2

2
∇2
X +

(
G (X) +

∫
Ψ† (X ′)V (X) Ψ (X ′)

)2
)

Ψ (X)

+

∫
J (X) exp

(
−
∫ (

G (X) + X̃
))

Ψ (X) + J† (X) exp

(∫ (
G (X) + X̃

))
Ψ† (X)

for an action including the source terms:

Ψ† (X)

(
−ϑ2∇2

θ +
1

ϑ2
− 1

2
∇2
X

)
Ψ (X) +

∫
Ψ† (X)

(
G (X) +

∫
Ψ† (X ′)V (X,X ′) Ψ (X ′)

)2

Ψ (X)

+

∫
J (X) exp

(
−
∫ X

G (X) +XX̃ (X)

)
Ψ (X) +

∫
J† (X) exp

(∫ X

G (X) +XX̃ (X)

)
Ψ† (X)
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The Green function are thus computed through the following formula:

G (X,Y ) =

〈
exp

(
−

(∫ X

G (X) +X

∫
Ψ† (X ′)V (X,X ′) Ψ (X ′)

))

× Ψ (X) Ψ† (Y ) exp

((∫ Y

G (X) + Y

∫
Ψ† (X ′)V (Y,X ′) Ψ (X ′)

))〉

=

〈
exp

(
−

(∫ X

Y

G (X) +

∫
Ψ† (X ′) (XV (X,X ′)− Y V (Y,X ′)) Ψ (X ′)

))
Ψ (X) Ψ† (Y )

〉

6.3 Appendix 2

We inspect the case ρ = 0.
As said in the text we look for a configuration that satisfies the market clearing condition. That is for

Ā >> A we replace
Ψ (K2, P2, X2, θ)→ δ (P −H (K,X, θ)) Ψ (K2, X2, θ)

As in the text we set Z = (K,P,X, θ). At zeroth order in A
Ā

the potential becomes:δK −APKα

1− κ

d2

∫ P3 exp
(
−
(
|X−X2|

d + |X−X3|
d

))
P γ2

|Ψ (Z2, θ)|2 |Ψ (Z3, θ)|2
2

with constraint:

P 1+γKα =
κ

d2

∫
P2 (K2)

α
P3 exp

(
−
(
|X −X2|

d
+
|X2 −X3|

d

))
|Ψ (Z2, θ)|2 |Ψ (Z3, θ)|2

The constraint is solved by looking for a field configuration (projection)

Ψ (K,P,X, θ) = δ (P −H (K,X)) Ψ (K,X, θ)

for a function P
P = H (K,X) = (K)

− α
1+γ f (X)

and replacing in the constraint, leads to:

(f (X))
1+γ

= κ

∫
P2 (K2)

α
P3 exp

(
−
(
|X −X2|

d
+
|X2 −X3|

d

))
|Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2 (62)

in average.
The potential for K becomes:δK −A (K)

αγ
1+γ f (X)

1− κ
∫ (K3)

− α
1+γ f (X3) exp

(
−
(
|X−X2|+|X−X3|

d

))
|Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2(

(K2)
− α

1+γ f (X2)
)γ

2

=

(
δK −A (K)

αγ
1+γ f (X)

(
1− κ

∫
(K2)

αγ
1+γ (K3)

− α
1+γ f (X3) (f (X2))

−γ

× exp
(
−
(
|X−X2|

d + |X−X3|
d

))
|Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2

))2

for αγ << 1, (K)
αγ
1+γ ' 〈K〉

αγ
1+γ

X , and this describes, for a given X, an harmonic oscillator of average
〈K〉X that satisfies:

δ 〈K〉X −A (〈K〉X)
αγ
1+γ f (X)

(
1− κ

∫
(K2)

αγ
1+γ (K3)

− α
1+γ f (X3) (f (X2))

−γ ×
× exp

(
−
(
|X−X2|

d + |X−X3|
d

))
|Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2

)
= 0 (63)
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with solution:

〈K〉X =

(
A

δ
f (X)

) 1+γ
1+γ(1−α)

(
1− κ

∫
(K2)

αγ
1+γ (K3)

− α
1+γ f (X3) (f (X2))

−γ ×
× exp

(
−
(
|X−X2|

d + |X−X3|
d

))
|Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2

) 1+γ
1+γ(1−α)

(64)
This expression can thus be used in (??), to identify f (X):

(f (X))
1+γ

= κ

∫
(K2)

αγ
1+γ (K3)

− α
1+γ f (X3) f (X2) (65)

exp

(
−
(
|X −X2|

d
+
|X2 −X3|

d

))
|Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2

At the lowest order of perturbation theory (65) becomes:

(f (X))
1+γ ' κ

∫
G ((K3, X3, θ) , (K2, X2, θ))G ((K2, X2, θ) , (K3, X3, θ)) (K2)

αγ
1+γ (K3)

− α
1+γ

×f (X3) f (X2) exp

(
−
(
|X −X2|

d
+
|X2 −X3|

d

))
In Appendix 3, we will derive the Green functions. It appears that for θ′ ' θ, The Green functions are those
of harmonic oscillators for a propagation time of order ϑ2 that we will write G ((K3, X3) , (K2, X2)). We
thus have:

(f (X))
1+γ ' κ

∫
G ((K3, X2) , (K2, X2))G ((K2, X2) , (K3, X3)) (K2)

αγ
1+γ (K3)

− α
1+γ (f (X2))

2
exp

(
−|X −X2|

d

)
We also assume that the dynamic for K is ”faster” than the dynamics for X, so that the Green functions
have the form:

G ((K3, X3) , (K2, X2)) = GX2
(K3,K2)G (X2, X2)

As a consequence, the integrals over K2 and K3:∫
GX2 (K3,K2) (K2)

αγ
1+γ (K3)

− α
1+γ GX3 (K3,K2) dK2dK3

compute the average of (K2)
αγ
1+γ (K3)

− α
1+γ for a transition from state X2 to state X3. As a consequence:∫

G ((K3, X3) , (K2, X2)) (K2)
αγ
1+γ (K3)

− α
1+γ G ((K2, X2) , (K3, X3)) dK2dK3

' G (X2, X3)G (X3, X2) 〈K〉
αγ
1+γ

X2
〈K〉−

α
1+γ

X3

where 〈K〉X2
is the average level of capital for agent with X = X2 is computed below by identification.

As a consequence:

(f (X))
1+γ ' κ

d2

∫
G (X2, X3)G (X3, X2) 〈K〉

αγ
1+γ

X2
〈K〉−

α
1+γ

X3
f (X3) f (X2) exp

(
−
(
|X −X2|

d
+
|X2 −X3|

d

))
The potential for X is harmonic in zeroth order in κ with low frequency and then we can assume that the

integral is distributed around X2 −X3 ' 0 and replace exp
(
−
(
|X2−X3|

d

))
by d times a delta function. As

a consequence:

(f (X))
1+γ ' κ

d

∫
〈K〉

α(γ−1)
1+γ

X2
(f (X2))

2
G (X2, X2) exp

(
−
(
|X −X2|

d

))
If the exchange positions are homogenously spread on [−1, 1], one can replace the probability G (X2, X2) by
a constant density, here 1

2 in first approximation, to normalize the probability of the interval [−1, 1] to 1.
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(f (X))
1+γ ' κ

2d

∫
〈K〉

α(γ−1)
1+γ

X2
(f (X2))

2
exp

(
−|X −X2|

d

)
Thus, using (64) one can express 〈K〉X as a function of X:

〈K〉X =

(
A

δ
f (X)

) 1+γ
1+γ(1−α)

(
1− κ

4d2

∫
(K2)

αγ
1+γ (K3)

− α
1+γ f (X3) (f (X2))

−γ ×
× exp

(
−
(
|X−X2|

d + |X−X3|
d

))
|Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2

) 1+γ
1+γ(1−α)

(66)

'
(
A

δ
f (X)

) 1+γ
1+γ(1−α)

(
1− κ

4d2

∫
〈K〉

αγ
1+γ

X2
〈K〉−

α
1+γ

X3
f (X3) (f (X2))

−γ
exp

(
−
(
|X −X2|

d
+
|X −X3|

d

)))
for γ << 1. The factor 1

4 appears again to normalize the probability each interval [−1, 1] to 1. We thus
postulate the following form for 〈K〉X :

〈K〉X =

(
A

δ
f (X)

(
1− h exp

(
−|X|

d

)(
1−

cosh X
d

exp
(

1
d

)))) 1+γ
1+γ(1−α)

(67)

with h to be determined. In (66), we can replace for the sake of simplicity, 1− h exp
(
− |X|d

)(
1− cosh X

d

exp( 1
d )

)
by its average which is approximatively equal to 1 − h exp

(
− 1

2d

) (
1− exp

(
− 1

2d

))
, (h < exp

(
1
2d

)
), so that

(66) rewrites:

〈K〉X '
(
A

δ
f (X)

) 1+γ
1+γ(1−α)

(
1− κ

4d2

∫ (
A
δ f (X2)

(
1− h exp

(
− 1

2d

) (
1− exp

(
− 1

2d

)))) αγ
1+γ(1−α)

×
(
A
δ f (X3) (1− h)

)− α
1+γ(1−α) f (X3) (f (X2))

−γ
exp

(
−
(
|X−X2|

d + |X−X3|
d

)) )

'
(
A

δ
f (X)

) 1+γ
1+γ(1−α)

 1− κ
4d2

(
A
δ

(
1− h exp

(
− 1

2d

) (
1− exp

(
− 1

2d

))))− α(1−γ)
1+γ(1−α)

×
∫

(f (X3))
(1−α)(1+γ)
1+γ(1−α) (f (X2))

−γ (1−α)(1+γ)
1+γ(1−α) exp

(
−
(
|X−X2|

d + |X−X3|
d

)) 
and the equation for f (X) becomes:

(f (X))
1+γ ' κ

2d

∫
〈K〉

α(γ−1)
1+γ

X2
(f (X2))

2
exp

(
−|X −X2|

d

)

' κ

2d

(
A

δ

) α(γ−1)
1+γ(1−α)

∫ (
1− h exp

(
−|X|

d

)(
1−

cosh
(
X
d

)
exp

(
1
d

) )) α(γ−1)
1+γ(1−α)

× (f (X2))
2+

α(γ−1)
1+γ(1−α) exp

(
−|X −X2|

d

)

Again, we can replace for the sake of simplicity, 1 − h exp
(
− |X|d

)(
1− cosh(Xd )

exp( 1
d )

)
by its average ' 1 −

h exp
(
− 1

2d

)(
1− exp(− 1

2d )
2

)
, (h < exp

(
1
2d

)
). We look for a solution:

f (X) = D exp

(
−c |X|

d

)
and the identification becomes for γ << 1 :

exp

(
− (1 + γ) c

|X|
d

)
' κ

2d

(
A

δ

) α(γ−1)
1+γ(1−α)

D
(1−γ2)(1−α)

1+γ(1−α)

((
1− h exp

(
− 1

2d

)(
1−

exp
(
− 1

2d

)
2

))) α(γ−1)
1+γ(1−α)

×
∫

exp

(
−c (1 + γ) (2− α)

1 + γ (1− α)

|X2|
d

)
exp

(
−|X −X2|

d

)
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The integral can be estimated as (X > 0):

∫ 0

−1

exp

(
2aX2

d

)
exp

(
− (X −X2)

d

)
+

∫ X

0

exp

(
−2aX2

d

)
exp

(
− (X −X2)

d

)
+

∫ 1

X

exp

(
−2aX2

d

)
exp

(
(X −X2)

d

)

= d

exp
(
−Xd

) (
1− exp

(
− (2a+1)

d

))
2a+ 1

+

(
exp

(
− 2aX

d

)
− exp

(
−Xd

)
1− 2a

)
+

exp
(
− 2aX

d

)
− exp

(
X−(2a+1)

d

)
2a+ 1


' d

4a exp
(
−Xd

)
− 2 exp

(
− 2aX

d

)
4a2 − 1

and the identification for f (X) becomes:

exp

(
− (1 + γ) c

|X|
d

)
=

κ

2

(
A

δ

) α(γ−1)
1+γ(1−α)

D
(1−γ2)(1−α)

1+γ(1−α)

((
1− h exp

(
− 1

2d

)(
1− exp

(
− 1

2d

)))) α(γ−1)
1+γ(1−α)

×

(
4a exp

(
−Xd

)
− 2 exp

(
−2aXd

)
4a2 − 1

)

For γ < 1, one has:

c ' 1

1 + γ

2a =
(1 + γ) (2− α)

1 + γ (1− α)

1

1 + γ

=
2− α

1 + γ (1− α)
> 1

That yields the identification for D:

κ

2

(
A

δ

) α(γ−1)
1+γ(1−α)

D
(1−γ2)(1−α)

1+γ(1−α)

2(2−α)
1+γ(1−α)(
2−α

1+γ(1−α)

)2

− 1

((
1− h exp

(
− 1

2d

)(
1−

exp
(
− 1

2d

)
2

))) α(γ−1)
1+γ(1−α)

= 1

whose solution is:

D '

1 + γ (1− α)

(2− α)κ

((
2− α

1 + γ (1− α)

)2

− 1

)(
A

δ

(
1− h exp

(
− 1

2d

)(
1−

exp
(
− 1

2d

)
2

))) α(1−γ)
1+γ(1−α)


1+γ(1−α)

(1−γ2)(1−α)

and we are lead ultimately to:

f (X) = D exp

(
− |X|

(1 + γ) d

)
(68)

=

(
A

δ

(
1− h exp

(
− 1

2d

)(
1−

exp
(
− 1

2d

)
2

))) α
(1−α)(γ+1)

×

(
1 + γ (1− α)

(2− α)κ

((
2− α

1 + γ (1− α)

)2

− 1

)) 1+γ(1−α)

(1−γ2)(1−α)

exp

(
− |X|
d (1 + γ)

)
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and using (67):

〈K〉X =

(
1 + γ (1− α)

(2− α)κ

((
2− α

1 + γ (1− α)

)2

− 1

)) 1
(1−γ)(1−α)

×

((
1− h exp

(
− 1

2d

)(
1−

exp
(
− 1

2d

)
2

))) α
(1−α)(1+γ(1−α)) (

A

δ

)− 1
(1−α)

× exp

(
− |X|

(1 + γ (1− α)) d

)((
1− h exp

(
−|X|

d

)(
1−

cosh
(
X
d

)
exp

(
1
d

) ))) 1+γ
1+γ(1−α)

Then we can use the condition (66) on 〈K〉X and compute g and h (we consider γ << 1):

U = 1− κ

4d2

(
A

δ

(
1− h exp

(
− 1

2d

)(
1−

exp
(
− 1

2d

)
2

)))− α(1−γ)
1+γ(1−α) ∫

(f (X3))
(1−α)(1+γ)
1+γ(1−α) (f (X2))

−γ (1−α)(1+γ)
1+γ(1−α)

× exp

(
−
(
|X −X2|

d
+
|X −X3|

d

))
' 1− 1

4d2

(
1 + γ (1− α)

(2− α)

((
2− α

1 + γ (1− α)

)2

− 1

))

×
∫

exp

(
− (1− α)

1 + γ (1− α)

|X3|
d

)
exp

(
−γ (1− α)

1 + γ (1− α)

|X2|
d

)
exp

(
−
(
|X −X2|

d
+
|X −X3|

d

))
' 1− 1

4d2

(
1 + γ (1− α)

(2− α)

((
2− α

1 + γ (1− α)

)2

− 1

))

×
∫

exp

(
− (1− α)

1 + γ (1− α)

|X3|
d

)
exp

(
−
(
|X −X2|

d
+
|X −X3|

d

))
' 1− 1

2d2

1 + γ (1− α)

(2− α)

((
2− α

1 + γ (1− α)

)2

− 1

)∫
exp

(
− (1− α)

1 + γ (1− α)

|X3|
d

)
exp

(
−|X −X3|

d

)

= 1− 1

2d

1 + γ (1− α)

(2− α)

((
2− α

1 + γ (1− α)

)2

− 1

)∫
exp

(
− (1− α)

1 + γ (1− α)

|X3|
d

)(
1−

cosh
(
X
d

)
exp

(
1
d

) )
since: ∫

exp

(
−
(
|X −X2|

d

))
= 2d

(
1−

cosh
(
X
d

)
exp

(
1
d

) )
Then g and h will be found by computing the following integral (for X > 0, the general case being obtained
by replacing X with |X|:

∫
exp

(
− (1− α)

1 + γ (1− α)

|X3|
d

)
exp

(
−|X −X3|

d

)
'

∫
exp

(
− (1− α)

|X3|
d

)
exp

(
−|X −X3|

d

)
dX3∫ 0

−1

exp

(
(1− α)

u

d
− X − u

d

)
du+

∫ 1

X

exp

(
− (1− α)

u

d
+
X − u
d

)
du

+

∫ X

0

exp

(
− (1− α)

u

d
− X − u

d

)
du

= d

(
eα

X
d − 1

α
e−

X
d +

e
X+α−2

d − eXd (α−1)

α− 2
− e−Xd 1− eα−2

d

α− 2

)
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which can be approximated at the zeroth order in α:

' d

(
1

2
e−

X
d − 1

2
e
X−2
d − e−Xd

(
1

2
e−

2
d − 1

2

)
+Xe−

X
d

)
' d

(
X

d
+ 1− 1

2
e

2X−2
d

)
e−

X
d

The correction terms of order α are negligible in the neighborhood of d = 1. In average, the previous
formula is equal to d

(
3
2d −

1
2e
−1
)
e−

X
d . Restoring the absolute value, one finds for d close to 1:

h ' 1 + γ (1− α)

2 (1− α)

(
1 + γ (1− α)

(2− α)

((
2− α

1 + γ (1− α)

)2

− 1

))(
3

2
− e−

1
d

2

)
As a consequence of the previous computations, the potential becomes:

δ2 (K − 〈K〉X)
2

which justifies the assumption of harmonic oscillations.
The price can be rewritten as a function of 〈K〉X using (67):

P = H (K,X) = (K)
− α

1+γ f (X)(
K

〈K〉X

)− α
1+γ f (X)(

A
δ f (X)

(
1− h exp

(
− |X|d

)(
1− cosh X

d

exp( 1
d )

))) α
1+γ(1−α)

=

(
K

〈K〉X

)− α
1+γ (f (X))

(1+γ)(1−α)
1+γ(1−α)(

A
δ

(
1− h exp

(
− |X|d

)(
1− cosh X

d

exp( 1
d )

))) α
1+γ(1−α)

and thus, (67):

P =

(
1+γ(1−α)

(2−α)κ

((
2−α

1+γ(1−α)

)2

− 1

)) 1
1−γ

exp
(
− (1−α)|X|
d(1+γ(1−α))

)
(

K
〈K〉X

) α
1+γ


 1−h exp(− |X|d )

(
1−

cosh X
d

exp( 1
d )

)

1−h exp(− 1
2d )

(
1−

exp(− 1
2d )

2

)



α
1+γ(1−α)

(69)

Having found the price for Ā→∞, we can now consider the corrections due to A:
Ā >> A: once again we consider fields of the form: Ψ (K,P,X, θ)→ δ (P − F (K,X, θ)) Ψ (K,X, θ).

The potential considered is now:(
δK −APKα

(
1− κ

∫
P3 exp (− (|X1 −X2|+ |X1 −X3|))

P γ2
|Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2

))2

+Ā2

(
P 1+γKα − κ

∫
P2 (K2)

α
P3 exp (− (|X1 −X2|+ |X2 −X3|)) |Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2

)2

= (δK −APKαU)
2

+ Ā2
(
P 1+γKα − V

)2
with:

U =

(
1− κ

∫
P3 exp (− (|X1 −X2|+ |X1 −X3|))

P γ2
|Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2

)
V = κ

∫
P2 (K2)

α
P3 exp (− (|X1 −X2|+ |X2 −X3|)) |Ψ (K2, X2, θ)|2 |Ψ (K3, X3, θ)|2
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The price is found through the minimization of the sum:

(δK −APKαU)
2

+ Ā2
(
P 1+γKα − V

)2
That yields the condition:

−UAKα (δK −APKαU) + (1 + γ)P γĀ2Kα
(
P 1+γKα − V

)
= 0 (70)

A first order approximation in γ of (70) is:

−AKα (δK −APKα) + (1 + γ)P γĀ2Kα
(
P 1+γKα − V

)
' 0 (71)

We we then use (71) at first order in γand in A2

Ā2 to compute P 1+γKα:

P 1+γKα = V +
A (δK −APKα)

Ā2 (1 + γ)P γ
' V +

A (δK −APKα)

Ā2

' V +
AKα (δK −AV )

Ā2Kα

Now, we compute P 1+γKα at first order in A2

Ā2 :

P 1+γKα −AδK −AV
A2 + Ā2

= V (72)

P 1+γKα − δAK

A2 + Ā2
=

Ā2V

A2 + Ā2

P 1+γKα = V

(
1 +A

δK −AV
V
(
A2 + Ā2

))
For this value, the potentials become:

(δK −APKαU)
2

+ Ā2
(
P 1+γKα − V

)2
(73)

' (δK −APKαU)
2

+ Ā2A2

(
δK −AUV(
A2U2 + Ā2

))2

= δ2

(
1 +

Ā2A2(
A2U2 + Ā2

)2
)K − APKαU + Ā2A2

(A2U2+Ā2)
2AUV

δ

(
1 + Ā2A2

(A2U2+Ā2)
2

)


2

+
Ā2A2 (APKαU −AUV )

2

Ā2A2 +
(
A2U2 + Ā2

)2
Equations (72) and (73) can be simplified. Since we are looking for first order corrections in A2

Ā2 , in (72)
we can replace we can replace δK − AV by its lowest order approximation, that is, given that we have
assumed γ << 1:

δK −AV = δK −AP 1+γKα ' δK −APKα

To this order of approximation, one can also replace K by 〈K〉X and using (63):

δ 〈K〉X = AP 〈K〉αX U

and (67):

δK −AV
V

' A
δ 〈K〉X −AP 〈K〉

α
X

AP 〈K〉αX

' A
δ 〈K〉X −AP 〈K〉

α
X

AP 〈K〉αX

= A (U − 1) ' A (〈U〉 − 1) ' −hA
(

1− exp

(
−1

d

))
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and (72) becomes:

P 1+γKα = V

(
1 +

A2

Ā2
(〈U〉 − 1)

)
'
(

1− hA
2

Ā2

(
1− exp

(
−1

d

)))
V

Similarly, in (73) we can replace APKαU −AUV by its lowest order approximation, that is

APKαU −AUV = AU
(
PKα − P 1+γKα

)
The correction associated to this term is of order γA

2

Ā2 and can be neglected. Moreover, by the same argument,

up to corrections of order γA
2

Ā2 , one has :

APKαU + Ā2A2

(A2U2+Ā2)
2AUV

δ

(
1 + Ā2A2

(A2U2+Ā2)
2

) ' AU
PKα + Ā2A2

(A2U2+Ā2)
2PKα

δ

(
1 + Ā2A2

(A2U2+Ā2)
2

) = AUPKα

and the potential is:

δ2

(
1 +

Ā2A2(
A2U2 + Ā2

)2
)(

K − AUPKα

δ

)2

In these formula, U can be estimated by 1 − h exp
(
− 1

2d

)(
1− exp(− 1

2d )
2

)
. As a consequence, the equation

for P is the same as before with an additional factor U , and the equation for 〈K〉X is unchanged. We can
then use a similar trial function:

P ' (K)
− α

1+γ f (X) (74)

and these equations become:

(f (X))
1+γ

= κ̄

∫
P2 (K2)

α
P3 exp (− (|X −X2|+ |X2 −X3|)) |Ψ (K3, P3, X3, θ)|2 |Ψ (K2, P2, X2, θ)|2

with:

κ̄ = κ

(
1− hA

2

Ā2

(
1− exp

(
−1

d

)))
(75)

〈K〉X '
(
A

δ
f (X)

) 1+γ
1+γ(1−α)

(
1− κ

4d2

∫
〈K〉

αγ
1+γ

X2
〈K〉−

α
1+γ

X3
f (X3) (f (X2))

−γ
exp

(
−
(
|X −X2|

d
+
|X −X3|

d

)))
And the resolution is identical to the case A→ 0. We thus find:

f (X) = D exp

(
− |X|

(1 + γ) d

)
with:

D =

1 + γ (1− α)

(2− α) κ̄

((
2− α

1 + γ (1− α)

)2

− 1

)(
A

δ

(
1− h exp

(
− 1

2d

)(
1−

exp
(
− 1

2d

)
2

))) α(1−γ)
1+γ(1−α)


1+γ(1−α)

(1−γ2)(1−α)

and for 〈K〉X :

〈K〉X =

(
A

δ
f (X)

(
1− h exp

(
−|X|

d

)(
1−

cosh X
d

exp
(

1
d

)))) 1+γ
1+γ(1−α)

with:

h =
h̄(

1− A2

Ā2 h̄
(
1− exp

(
− 1
d

)))
h̄ = (1 + γ (1− α))

(
1 + γ (1− α)

2 (2− α)

((
2− α

1 + γ (1− α)

)2

− 1

))(
3

2
− e−

1
d

2

)

36



to the first order in A2

Ā2 . Formula (69) for the price becomes:

P =

(
1+γ(1−α)

(2−α)κ̄

((
2−α

1+γ(1−α)

)2

− 1

)) 1
1−γ

exp
(
− (1−α)|X|
d(1+γ(1−α))

)
(

K
〈K〉X

) α
1+γ


 1−h exp(− |X|d )

(
1−

cosh X
d

exp( 1
d )

)

1−h exp(− 1
2d )

(
1−

exp(− 1
2d )

2

)



α
1+γ(1−α)

6.4 Appendix 3

For ρ > 0, the contribution of the mean cnfgrtn added to the fluctuations. Previous computations are valid,
but average values have to be computed in states including the fundamental’s contribution in the state
Ψ0 + Ψ. We first consider the state Ψ0 (K,P,X, θ) only, and in this state, we replace P , find the equations
for f (X) and 〈K〉X . Then, we compute the form of fundamental Ψ0 and the value of ρ. We then compute
the correction due to Ψ (K,P,X, θ) and find the effective action.

6.4.1 Equations for P , f (X) and 〈K〉X in the state Ψ0

In the state Ψ0 (K,P,X, θ), the previous equations defining the potential, P and 〈K〉X are the same as

before. We will include directly the first order corrections in A2

Ā2 since it amounts, as in Appendix 2, to
replace κ by κ̄ (see 75) in the equation for f (X).

Now, to compute f (X) we first find the average of K, denoted 〈K〉X computed in a state ρΨ0 (K,X),
which amounts to replace now, given our order of approximations, for Ψ0 (K,X)

κ→ κρ4

One sets again:
P = (K)

− α
1+γ f (X)

The equation for f (X) is the same as before

f1+γ (X) = κ̄ρ4

∫
P2 (K2)

α
P3 exp (− (|X −X2|+ |X2 −X3|)) |Ψ0 (K2, P2, X2, θ)|2 |Ψ0 (K3, P3, X3, θ)|2

where:

κ̄ = κ

(
1− hA

2

Ā2

(
1− exp

(
−1

d

)))
includes the first order corrections in A2

Ā2 . The equation for 〈K〉X is still valid in first approximation:

〈K〉X =

(
A

δ
f (X)

) 1+γ
1+γ(1−α)

(
1− κρ4

∫
(K2)

αγ
1+γ (K3)

− α
1+γ f (X3) (f (X2))

−γ ×
× exp

(
−
(
|X−X2|

d + |X−X3|
d

))
|Ψ0 (K2, P2, X2, θ)|2 |Ψ0 (K3, P3, X3, θ)|2

) 1+γ
1+γ(1−α)

For the same reasons as in Appendix 2, the state Ψ†0 (K,X) is centered around 〈K〉X . Thus, the equation
for f (X) is thus:

(f (X))
1+γ ' κ̄ρ4

∫
〈K〉

α(γ−1)
1+γ

X2
(f (X2))

2
G (X2, X2) exp

(
−
(
|X −X2|

d

))
Moreover, in first approximation, the defining equation for the X part of Ψ0 (K,X) is an oscillator with

κ0 << 1. The distribution for X can thus be considered as uniform. The equations for f (X) and for K are
thus similar to that obtained in Appendix 2, apart from a ρ4 factor and write:

(f (X))
1+γ ' κ̄ρ4

2

∫
〈K〉

α(γ−1)
1+γ

X2
(f (X2))

2
exp

(
−|X −X2|

d

)
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〈K〉X '
(
A

δ
f (X)

) 1+γ
1+γ(1−α)

(
1− κρ4

4

∫
〈K〉

αγ
1+γ

X2
〈K〉−

α
1+γ

X3
f (X3) (f (X2))

−γ
exp

(
−
(
|X −X2|

d
+
|X −X3|

d

)))
Again, the form for 〈K〉X is postulated:

〈K〉X =

(
A

δ
f (X)

(
1− h exp

(
−g |X|

d

)(
1−

cosh X
d

exp
(

1
d

)))) 1+γ
1+γ(1−α)

the resolution is thus similar to Appendix 2 and one finds:

f (X) = D exp

(
− |X|

1 + γ

)

=

(
A

δ

(
1− h exp

(
− 1

2d

)(
1−

exp
(
− 1

2d

)
2

))) α
(1−α)(γ+1)

×

(
1 + γ (1− α)

(2− α) κ̄ρ4

((
2− α

1 + γ (1− α)

)2

− 1

)) 1+γ(1−α)

(1−γ2)(1−α)

exp

(
− |X|
d (1 + γ)

)

where:

h =
h̄(

1− A2

Ā2 h̄
(
1− exp

(
− 1
d

)))
h̄ = (1 + γ (1− α))

(
1 + γ (1− α)

2 (2− α)

((
2− α

1 + γ (1− α)

)2

− 1

))(
3

2
− e−

1
d

2

)

And for the price:

P =

(
1+γ(1−α)
(2−α)κ̄ρ4

((
2−α

1+γ(1−α)

)2

− 1

)) 1
1−γ

exp
(
− (1−α)|X|
d(1+γ(1−α))

)
(

K
〈K〉X

) α
1+γ


 1−h exp(− |X|d )

(
1−

cosh X
d

exp( 1
d )

)

1−h exp(− 1
2d )

(
1−

exp(− 1
2d )

2

)



α
1+γ(1−α)

6.4.2 Computation of ρ and Ψ0

The value of ρ can now be computed. As said before, this phase is possible approximatively for:

κ2
1 − 2κ

1
2
0 κ2 > 0

In this phase, taking into account only the contribution in X, then ρ can be found approximatively by:

ρ '
κ1 +

√
κ2

1 − 2κ
1
2
0 κ2

2κ2

with ∂2S
∂ρ2 > 0. The value of ρ is found more precisely by writing the equation for the state Ψ0 (K,X). For

the part in X:

σ2
X (∇Ψ (x))

2
+
κ0

σ2
X

Ψ† (x) (x− 〈x〉)2
Ψ (x) +

(
Ψ† (x) Ψ (x)

)
V1 (|x− y|)

(
Ψ† (y) Ψ (y)

)
+
(
Ψ† (x) Ψ (x)

)
V2 (|x− y| , |x− z| , |y − z|)

(
Ψ† (y) Ψ (y)

) (
Ψ† (z) Ψ (z)

)
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where:

V1 (|x− y|) = −κ1
KK ′ exp (−χ1 |x− y|)

〈K〉x 〈K〉y
V2 (|x− y| , |x− z| , |y − z|) = κ2 exp (−χ2 |x− y| − χ2 |x− z| − χ2 |y − z|)

Considering the X part of δ
δΨ(x) :

−σ2
X∇2Ψ (x)+

κ0

σ2
X

(x− 〈x〉)2
Ψ (x)+V1 (|x− y|) |Ψ (y)|2 Ψ (x)+V2 (|x− y| , |x− z| , |y − z|) |Ψ (y)|2 |Ψ (z)|2 Ψ (x)

It can be approximated by computing the potentials V1 (|x− y|) and V2 (|x− y| , |x− z| , |y − z|) in the
fundamental: ∫

κ1
KK ′ exp (−χ1 |x− y|)

〈K〉x 〈K〉y
|Ψ (K ′, y)|2 dy

→
∫
κ1
KK ′ exp (−χ1 |x− y|)

〈K〉x 〈K〉y
|Ψ0 (K ′, y)|2 dy

' κ1 exp (−χ1 |x|)
K

〈K〉x
ρ2

' κ1 exp (−χ1 |x|) ρ2

Similarly, the second part of the potential is replaced by:

κ2 exp (−χ2 |x− y| − χ2 |x− z| − χ2 |y − z|) |Ψ (K ′, y)|2 |Ψ (K”, z)|2

→
∫
κ2 exp (−χ2 |x− y| − χ2 |x− z| − χ2 |y − z|) |Ψ0 (K, y)|2 |Ψ0 (K, z)|2 dydz

' κ2 exp (−2χ2 |x|) ρ4

Moreover in first approximation, we can find the fundamental by taking the expectation values of the variable
x:

〈x〉 = 0

for an overall expression:

−σ2
X∇2Ψ (x) + κ0x

2Ψ (x)− κ1
K

〈K〉x
exp (−χ1 |x|) Ψ (K,x) ρ2 + κ2 exp (−2χ2 |x|) Ψ (K,x) ρ4 + αΨ (x)

Adding the K a part of the action, and considering χ1 << 1, χ2 << 1, at the lowest order in χ1 and χ2, the
fundamental equation is:

0 =
(
−σ2

X∇2
X − σ2∇2

K − ϑ2∇2
θ

)
Ψ0 (K,X, θ)

+

((
δ2 +

Ā2A2(
A2U2 + Ā2

)2
)

(K − 〈K〉X)
2

+ κ0x
2 +

(
ρ4κ2 − ρ2κ1 +

1

ϑ2
+ α

))
Ψ0 (K,X, θ)

The fourier transform in θ shows that the fundamental does not depend on θ. Eigenstates of the operator
leads to look for a fundamental of the form NΨ0 (X) Ψ0 (K). We assume θ < Θ with Θ >> 1, so that the
integral over θ exists.

The normalization factor N ensures that NΨ0 (X) Ψ0 (K) has norm ρ2. Then Ψ0 (X) and Ψ0 (K) can
be searched as fundamental states of oscillators with eigenstates

κ
1
2
0 and σ

√
δ2 +

Ā2A2(
A2U2 + Ā2

)2
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and this leads to the relation:

0 = α+
1

ϑ2
+

1

2
κ

1
2
0 − κ1ρ

2 + κ2ρ
4 +

σ
√
δ2 + Ā2A2

(A2U2+Ā2)
2

2

with:

U =

(
1−D1+γ

∫
exp

(
− |X3|

(1 + γ)

)
exp

(
γ |X2|
(1 + γ)

)
exp (− (|X −X2|+ |X −X3|))

)
' 1− h

(
1− exp

(
−1

d

))
whose solution, with with ∂2

∂ρ2 > 0, is:

ρ2 =

κ1 +

√√√√κ2
1 − 2κ2

(
2α+ 2

ϑ2 +
√
κ0 + σ

√
δ2 + Ā2A2

(A2U2+Ā2)
2

)
2κ2

(76)

and the eigenstate:

Ψ0 (K,X) = N exp

(
−κ
− 1

2
0 X2

2

)
exp

−
√
δ2 + Ā2A2

(A2U2+Ā2)
2 (K − 〈K〉X)

2

2σ

 (77)

where N is the normalisation factor:

N =
ρ

2π

√
Θκ
− 1

2
0 σ

√
δ2 + Ā2A2

(A2U2+Ā2)
2

(78)

which completes the computations for P , 〈K〉, and the potential.

For later purpose, we also derive the corrections to these results at the second order in χ1 and χ2. At
this order, expanding the exponentials in χ1 and χ2 yields the potential of the X part of the action:

1

2
κ0x

2 + κ1χ1 |x|
K

〈K〉x
ρ2 − 2κ2χ2 |x| ρ4 − κ1

2
χ2

1x
2

(
K

〈K〉x
ρ2

)2

+ 2κ2χ
2
2x

2ρ8

→ 1

2
κ0

(
x+

sgn (x)

κ0

(
χ1κ1

K

2 〈K〉x
ρ2 − 2χ2κ2ρ

4

))2

− 1

2κ0

(
χ1κ1

K

2 〈K〉x
ρ2 − 2χ2κ2ρ

4

)2

+

(
−κ1χ

2
1ρ

2

2
+ 2χ2

2κ2ρ
4

)
x2

' 1

2

(
κ0 +

(
−κ1χ

2
1ρ

2

2
+ 2χ2

2κ2ρ
4

))(
x+

sgn (x)

κ0

(
χ1κ1

K

2 〈K〉x
ρ2 − 2χ2κ2ρ

4

))2

(79)

− 1

2κ0

(
χ1κ1

K

2 〈K〉x
ρ2 − 2χ2κ2ρ

4

)2
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so that, the fundamental equation becomes:

0 =
(
−σ2

X∇2
X − σ2∇2

K − ϑ2∇2
θ

)
Ψ0 (K,X, θ)

+κ0

(
1− χ2

1κ1ρ
2

2κ0
+ 2χ2

κ2

κ0
ρ4

)(
x+ sgn (x)

(
χ1κ1

K

2 〈K〉x
ρ2 − χ2

2κ2ρ
4

))2

Ψ0 (K,X, θ)

+

((
δ2 +

Ā2A2(
A2U2 + Ā2

)2
)

(K − 〈K〉X)
2

)
Ψ0 (K,X, θ)

+

(
ρ4κ2 − ρ2κ1 −

(
χ1κ1

K

2 〈K〉x
ρ2 − χ2κ2ρ

4

)2

+
1

ϑ2
+ α

)
Ψ0 (K,X, θ)

Again, we look for a fundamental of the form NΨ0 (X) Ψ0 (K). The operators in X and K are harmonic
oscillators with frequencies:

κ
1
2
0

√
1− χ2

1κ1ρ2

2κ0
+ 2χ2

2

κ2

κ0
ρ4 and σ

√
δ2 +

Ā2A2(
A2U2 + Ā2

)2

Ψ0 (X) = exp

−κ−
1
2

0

(
X +

(
χ1κ1

K
2〈K〉X

ρ2 − χ2κ2ρ
4
))2

2

H (x) (80)

+ exp

−κ−
1
2

0

(
X −

(
χ1κ1

K
2〈K〉X

ρ2 − χ2κ2ρ
4
))2

2

H (−x)

≡ Ψ̄0

(
X +

(
χ1κ1

K

2 〈K〉X
ρ2 − χ2κ2ρ

4

))
H (X) + Ψ̄0

(
X −

(
χ1κ1

K

2 〈K〉X
ρ2 − χ2κ2ρ

4

))
H (−X)

Ψ0 (K) = exp

−
√
δ2 + Ā2A2

(A2U2+Ā2)
2 (K − 〈K〉X)

2

2σ

 (81)

and the fundamental state writes:

Ψ0 (K,X) = ρN
[
Ψ̄0 (X + δX)H (X) + Ψ̄0 (X − δX)H (−X)

]
(82)

× exp

−
√
δ2 + Ā2A2

(A2U2+Ā2)
2 (K − 〈K〉X)

2

2σ


where N is a normalisation factor:

N =
1

2π

√
κ
− 1

2
0 σ

√
δ2 + Ā2A2

(A2U2+Ā2)
2

(83)

and:

δX =

(
χ1κ1

K

2 〈K〉
ρ2 − χ2κ2ρ

4

)
(84)
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with ρ satisfying the condition:

0 = α+
1

ϑ2
+

1

2
κ

1
2
0

√
1− χ2

1κ1ρ2

2
+ 2χ2

2κ2ρ4

−κ1ρ
2 + κ2ρ

4 −
(
χ1κ1

K

2 〈K〉X
ρ2 − χ2κ2ρ

4

)2

+

σ
√
δ2 + Ā2A2

(A2U2+Ā2)
2

2
(85)

6.4.3 Contribution of Ψ

Now, the replacement Ψ (K3, P3, X3, θ)→ Ψ0 (K3, P3, X3, θ) + δΨ (K3, P3, X3, θ) for V can be performed in

the following way. For any quantity, (K)
− α

1+γ , f (X) the expectations:(
Ψ†0 (K3, P3, X3, θ) + δΨ† (K3, P3, X3, θ)

)(
(K)

− α
1+γ

f (X)

)
(Ψ0 (K3, P3, X3, θ) + δΨ (K3, P3, X3, θ))

are approximatively:

Ψ†0 (K3, P3, X3, θ)

(
(K)

− α
1+γ

f (X)

)
Ψ0 (K3, P3, X3, θ) + δΨ† (K3, P3, X3, θ)

(
(K)

− α
1+γ

f (X)

)
δΨ (K3, P3, X3, θ)

since, given their form, (K)
− α

1+γ and f (X) can be considered as close to their average 〈K〉−
α

1+γ and f (〈X〉)
and thus 〈

Ψ†0 (K3, P3, X3, θ)

(
(K)

− α
1+γ

f (X)

)
, δΨ (K3, P3, X3, θ)

〉
' 0

for a perturbation δΨ (K,X) orthogonal to Ψ0 (K,X). As a consequence the second order development of
the potential terms are:

Ψ†0 (K,X)

(
f1+γ (X)− κ

∫
P2 (K2)

α
P3 exp

(
−|X −X2|+ |X2 −X3|

d

)
|Ψ0 (K2, X2)|2 |Ψ0 (K3, X3)|2

)2

+δΨ† (K,X)

(
f1+γ (X)− κ

∫
P2 (K2)

α
P3 exp

(
−|X −X2|+ |X2 −X3|

d

)
|Ψ0 (K2, X2)|2 |Ψ0 (K3, X3)|2

)
δΨ (K,X)

−2κΨ†0 (K,X)

(∫
Ψ†0 (K3, X3) δΨ† (K2, X2)P2 (K2)

α
P3 exp

(
−|X −X2|+ |X2 −X3|

d

)
δΨ (K2, X2) Ψ0 (K3, X3)

+

∫
Ψ†0 (K2, X2) δΨ† (K3, X3)P2 (K2)

α
P3 exp

(
−|X −X2|+ |X2 −X3|

d

)
δΨ (K3, X3) Ψ0 (K2, X2)

)
×
(
f1+γ (X)− κ

∫
P2 (K2)

α
P3 exp

(
−|X −X2|+ |X2 −X3|

d

)
|Ψ0 (K2, X2)|2 |Ψ0 (K3, X3)|2

)
Ψ0 (K,X)

where, as before, we define f (X) = PK−
α

1+γ . The first term is the action part for Ψ0 (K,X), it can be
discarded (and in fact is equal to zero given the constraint).

Given that both for Ψ0 and δΨ, K is centered around 〈K〉X,0 and 〈K〉X , and that for both state we may
consider the X ditribution as uniform and, as a first approximation, we set:

G0 (Xi, Xi) = ρ2Ψ†0

(
〈K〉Xi,0 , Xi

)
Ψ0

(
〈K〉Xi,0 , Xi

)
G (Xi, Xi) = G

((
〈K〉Xi , Xi

)
,
(
〈K〉Xj , Xj

))
and:

f0 (X) =

∫
PK−

α
1+γ |Ψ0 (K,X)|2 dK ' PK−

α
1+γ

∣∣∣Ψ0

(
〈K〉X,0 , X

)∣∣∣2
f1+γ

0 (X) =

∫
PK−

α
1+γ |Ψ0 (K,X)|2 dK ' P 1+γK−α

∣∣∣Ψ0

(
〈K〉X,0 , X

)∣∣∣2
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so that the last term rewrites:

−κ
∫
G0 (X2, X2)G (X3, X3) 〈K〉

αγ
1+γ

X2,0
〈K〉−

α
1+γ

X3
f (X3) f0 (X2) exp

(
−|X −X2|+ |X2 −X3|

d

)
×
(

(f0 (X))
1+γ − κ

∫
G0 (X2, X2)G0 (X3, X3) 〈K〉

αγ
1+γ

X2,0
〈K〉−

α
1+γ

X3,0
f0 (X3) f0 (X2) exp

(
−|X −X2|+ |X2 −X3|

d

))
×G0 (X,X)

−κ
∫
G (X2, X2)G0 (X3, X3) 〈K〉

αγ
1+γ

X2
〈K〉−

α
1+γ

X3,0
f0 (X3) f (X2) exp

(
−|X −X2|+ |X2 −X3|

d

)
×
(

(f0 (X))
1+γ − κ

∫
G0 (X2, X2)G0 (X3, X3) 〈K〉

αγ
1+γ

X2,0
〈K〉−

α
1+γ

X3,0
f0 (X3) f0 (X2) exp

(
−|X −X2|+ |X2 −X3|

d

))
×G0 (X,X)

As in Appendix 2, we can approximate the integrals by their estimations on the diagonal, and consider in
first approximation a uniform distribution for X so that this term rewrites:

−κ
∫ (
〈K〉

αγ
1+γ

X2,0
〈K〉−

α
1+γ

X2
+ 〈K〉

αγ
1+γ

X2
〈K〉−

α
1+γ

X2,0

)
f (X2) f0 (X2)

×
∫

exp

(
−
(
|X −X2|

d

))(
(f0 (X))

1+γ − κ
∫
〈K〉

α(γ−1)
1+γ

X2,0
(f0 (X2))

2
exp

(
−
(
|X −X2|

d

)))
where we used that the K part of Ψ0 is peaked around 〈K〉X,0, and that the X part is assumed distributed
uniformly.

' −κ
∫ (
〈K〉

αγ
1+γ

X,0 〈K〉
− α

1+γ

X + 〈K〉
αγ
1+γ

X 〈K〉−
α

1+γ

X,0

)
f (X) f0 (X)

×
(

(f0 (X))
1+γ − κ

∫
〈K〉

α(γ−1)
1+γ

X2,0
(f0 (X2))

2
exp

(
−
(
|X −X2|

d

)))
' 0

since the equality

(f0 (X))
1+γ − κ

∫
〈K〉

α(γ−1)
1+γ

X2,0
(f0 (X2))

2
exp

(
−
(
|X −X2|

d

))
= 0

holds on X. Thus the constraint becomes to the second order:

δΨ†
(
P 1+γKα − κ

∫
G0 (X2, X2)G0 (X3, X3) 〈K〉

αγ
1+γ

X2,0
〈K〉−

α
1+γ

X3,0
f0 (X3) f0 (X2) exp

(
−|X −X2|+ |X2 −X3|

d

))2

δΨ

(86)
The identification for 〈K〉X :

Ψ†

δK −APKα

1− κ
∫ P3 exp

(
− |X1−X2|+|X1−X3|

d

)
P γ2

|Ψ0 (K2, X2)|2 |Ψ0 (K3, X3)|2
2

Ψ

becomes at the second order:
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Ψ†0 (K,X)

δK −APKα

1− κ
∫ P3 exp

(
− |X−X2|+|X2−X3|

d

)
P γ2

|Ψ0 (K2, X2)|2 |Ψ0 (K3, X3)|2
2

Ψ0 (K,X)

+δΨ† (K,X)

δK −APKα

1− κ
∫ P3 exp

(
− |X−X2|+|X2−X3|

d

)
P γ2

|Ψ0 (K2, X2)|2 |Ψ0 (K3, X3)|2
2

δΨ (K,X)

+Ψ†0 (K,X)

∫ exp
(
− |X−X2|+|X2−X3|

d

)
P γ2

P3 |δΨ (K2, X2)|2 |Ψ0 (K3, X3)|2

+

∫ exp
(
− |X−X2|+|X2−X3|

d

)
P γ2

P3 |δΨ (K3, X3)|2 |Ψ0 (K2, X2)|2


×

δK −APKα

1− κ
∫ P3 exp

(
− |X−X2|+|X2−X3|

d

)
P γ2

|Ψ0 (K2, X2)|2 |Ψ0 (K3, X3)|2
Ψ0 (K,X)

As before, the first term is the potential in state Ψ0 and can be discarded. Under our asumptions, the
last term rewrites:

+

∫ (∫
G0 (X3, X3)G (X2, X2) (〈K〉X)

αγ
1+γ

(
〈K〉X,0

)− α
1+γ

f (X3) (f (X2))
−γ

exp

(
−|X −X2|+ |X2 −X3|

d

)
+

∫
G0 (X2, X2)G (X3, X3)

(
〈K〉X,0

) αγ
1+γ

(〈K〉X)
− α

1+γ exp

(
−|X −X2|+ |X2 −X3|

d

))
×
(
δ 〈K〉X,0 −AP 〈K〉

α
X,0

(
1− κ

∫
〈K〉

αγ
1+γ

X2,0
〈K〉−

α
1+γ

X3,0
f (X3) (f (X2))

−γ
exp

(
−|X −X2|+ |X2 −X3|

d

)))
×G0 (X,X)

and is nul in first approximation since:

0 = δ 〈K〉X,0 −AP 〈K〉
α
X,0

(
1− κ

∫
〈K〉

αγ
1+γ

X2,0
〈K〉−

α
1+γ

X3,0
f (X3) (f (X2))

−γ
exp

(
−|X −X2|+ |X2 −X3|

d

))
(87)

holds for all X. Thus, the second order expansion becomes:

δΨ† (K,X)

(
δK −APKα

(
1− κ

∫
〈K〉

αγ
1+γ

X2,0
〈K〉−

α
1+γ

X3,0
f (X3) (f (X2))

−γ
exp

(
−|X −X2|+ |X2 −X3|

d

)))2

δΨ (K,X)

(88)
Along with the constraint, we deduce that f (X) ' f0 (X) and 〈K〉X ' 〈K〉X,0, the values computed in

state Ψ0 previously in this Appendix. Thus, the potential becomes:

δΨ†
(
δK −APKα

(
1− κ

∫
〈K〉

αγ
1+γ

X2,0
〈K〉−

α
1+γ

X3,0
f (X3) (f (X2))

−γ
exp

(
−|X −X2|+ |X2 −X3|

d

)))2

δΨ

= δΨ†δ2
(
K − 〈K〉X,0

)2

δΨ

as a consequence of (87).

As in the case of the first phase, we can include the first order corrections in A2

Ā2 . Since the terms
appearing in the second order expansion are (86) and (88), the potential becomes:

δ2

(
1 +

Ā2A2(
A2U2 + Ā2

)2
)
δΨ†

(
δK − 〈K〉X,0

)2

δΨ
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6.5 Appendix 4

In this section, we compute the Green functions in both phases.

6.5.1 Case ρ = 0

For ρ = 0, without the X contribution:

Ψ† (K,P,X, θ)

(
−σ2∇2

K − ϑ2∇2
θ +

(
δ2 +

Ā2A2(
A2U2 + Ā2

)2
)

(K − 〈K〉)2
+

1

ϑ2
+ α

)
Ψ (K,P,X, θ)

whose Green function is given by:

G0 (K,K ′, θ, θ′, t) =

√
ω

2πσ2 sinh (ωt)
exp

((
− ω

2σ2 sinh (ωt)

)((
K2 + (K ′)

2
)

cosh (ωt)− 2KK ′
))

×
√

1

2πϑ2t
exp

(
− (θ − θ′)2

ϑ2t

)

with:

ω = δ2 +
Ā2A2(

A2U2 + Ā2
)2

To include the Ψ (x) part of the action:

Ψ† (x)
(
−σ2

X∇2
X + κ0x

2
)

Ψ (x)− κ1

2

(
Ψ† (K,x) Ψ (K,x)

) KK ′ exp (−χ1 |x− y|)
〈K〉x 〈K〉y

(
Ψ† (K ′, y) Ψ (K ′, y)

)
+
κ2

3

(
Ψ† (K,x) Ψ (K,x)

)
exp (−χ2 |x− y| − χ2 |x− z| − χ2 |y − z|)

(
Ψ† (K ′, y) Ψ (K ′, y)

) (
Ψ† (K”, z) Ψ (K”, z)

)
and its contribution to the Green function, we can replace the interaction potential by its average in variables
y and z:

−κ1

2
|Ψ (K,x)|2 KK

′ exp (−χ1 |x− y|)
〈K〉x 〈K〉y

|Ψ (K ′, y)|2

→ −κ1

〈
KK ′ exp (−χ1 |x− y|)

〈K〉x 〈K〉y
|Ψ (K ′, y)|2

〉
|Ψ (K,x)|2

κ2

3
|Ψ (K,x)|2 exp (−χ2 |x− y| − χ2 |x− z| − χ2 |y − z|) |Ψ (K ′, y)|2 |Ψ (K”, z)|2

→ κ2 |Ψ (K,x)|2
〈

exp (−χ2 |x− y| − χ2 |x− z| − χ2 |y − z|) |Ψ (K ′, y)|2 |Ψ (K”, z)|2
〉

Given that at the lowest order:〈
KK ′ exp (−χ1 |x− y|)

〈K〉x 〈K〉y
|Ψ (K ′, y)|2

〉
'
∫
KK ′ exp (−χ1 |x− y|)

〈K〉x 〈K〉y
G ((K,x) , (K ′, y))G ((K ′, y) , (K,x)) dy

Under the same hypothesis as in appendix 2, that is K ′ is spread around 〈K〉y and the X part of the Green
function is approximatively uniformly distributed on the interval [−1, 1], we are left with:〈

KK ′ exp (−χ1 |x− y|)
〈K〉x 〈K〉y

|Ψ (K ′, y)|2
〉
' K

2 〈K〉x

∫
exp (−χ1 |x− y|) dy
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This last integral is: ∫ 1

−1

exp (− (χ1) |x− y|) dy

=

∫ 1−x

−1−x
exp (−χ1 |u|) du =

∫ 0

−1−x

exp (χ1u)√
α

du+

∫ 1−x

0

exp (−χ1u)√
α

du

=
(2− exp (−χ1 (1 + x))− exp (−χ1 (1− x)))

χ1

=
2 (1− exp (−χ1) cosh (χ1x))

χ1

=
2 (1− exp (−χ1))

χ1
+

2 (exp (−χ1)) (1− cosh (χ1x))

χ1

' 2 (1− exp (−χ1))

χ1
− exp (−χ1)χ1x

2

By the same token, we find the evaluation of the second part of the potential:∫
κ2

〈
exp (−χ2 |x− y| − χ2 |x− z| − χ2 |y − z|) |Ψ (x)|2 |Ψ (y)|2 |Ψ (z)|2

〉
→

∫
κ2 exp (−χ2 |x− y| − χ2 |x− z| − χ2 |y − z|)G (x, y)G (y, z)G (z, x) dydz

'
∫
κ2 exp (−χ2 (|x− y|+ |x− z|+ |y − z|)) dydz

'
∫
κ2 exp (−χ2 (|x− y|+ |y − x|)) dy ' κ2

2 (1− exp (−χ2))

χ2
− κ2 exp (−χ2)χ2x

2

Under these approximations, the X part of the action becomes:

(∇Ψ (x))
2

+ ωXΨ† (x)x2Ψ (x) + αXΨ† (x) Ψ (x)

where:

ωX = κ0 + κ1
K

〈K〉X
exp (−χ1)χ1 − κ2 exp (−χ2)χ2

and:

αX = α− κ1
K

〈K〉X
2 (1− exp (−χ1))

χ1
+ κ2

2 (1− exp (−χ2))

χ2

As a consequence, the overall second order action becomes:

Ψ† (K,X, θ)

(
−σ2∇2

K − ϑ2∇2
θ − σ2

X∇2
X +

(
δ2 +

Ā2A2(
A2U2 + Ā2

)2
)

(K − 〈K〉)2
+ ωXx

2 +
1

ϑ2
+ αX

)
Ψ (K,X, θ)

(89)
Ultimately, the Green function are modified by the change of variable (59) including a factor:

exp

(
−
∫ (

(δK −APKα + V1)

σ2

))
Ψ (K,P,X, θ)

with:

V1 = κAPKα

∫
P3 exp (− (|X1 −X2|+ |X1 −X3|))

P γ2
|Ψ (K2, P2, X2, θ)|2 |Ψ (K3, P3, X3, θ)|2

Given that:∫
APKα − V1

'
∫
APKα

(
1− κ

〈∫
P3 exp (− (|X1 −X2|+ |X1 −X3|))

P γ2
|Ψ (K2, P2, X2, θ)|2 |Ψ (K3, P3, X3, θ)|2

〉)
=

∫
κAPKαU
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the exponential factor rewrites:

exp

(
−
∫ (

(δK −APKα + V1)

σ2

))
= exp

(
−
∫ (

(δK −APKαU)

σ2

))

= exp

−∫

(
δK −A (K)

αγ
1+γ f (X)U

)
σ2


We have seen in Appendix 2 that:

δ 〈K〉X −A (〈K〉X)
αγ
1+γ f (X)U = 0

so that we can rewrite the term in the exponential as:

δ

σ2

∫ (
K −

(
K

〈K〉X

) αγ
1+γ

〈K〉X

)
' δ

σ2

∫
(K − 〈K〉X)

=
(K − 〈K〉X)

2

2σ2

for γ << 1. The action (89) is now quadratic, but the variables K and X are entangled through ω and
ωX . To find the Green function between K,X and K ′, X ′ one can simplify the problem by replacing K,X
in ω and ωX by their average trajectory values. In first approximation this means to replace K,X with
〈K〉X+〈K〉X′

2 , X+X′

2 . Then we set:

〈K〉 =
〈K〉X + 〈K〉X′

2

ω̄X = κ0 +
κ1

2

(
K

〈K〉X
+

K ′

〈K〉Y

)
exp (−χ1)χ1 − κ2 exp (−χ2)χ2

ᾱX = α+
1

ϑ2
− κ1

2

(
K

〈K〉X
+

K ′

〈K〉Y

)
2 (1− exp (−χ1))

χ1
+ κ2

2 (1− exp (−χ2))

χ2

Ū =

1− (γ + 1)
2

(γ + 2) (2γ + 1)

(
1 + γ

4

((
2

1 + γ

)2

− 1

)) 1+γ
1−γ

exp

(
−
∣∣∣∣X +X ′

2

∣∣∣∣)


ω̄ = δ2 +
Ā2A2(

A2Ū2 + Ā2
)2

and the Green function of the action (89) is the Laplace transform with parameter ᾱX ' α for small coupling
parameters, of the following temporal transition function :

G (K,K ′, P, P ′, X,X ′, θ, θ′, t)

= exp

−[ (K − 〈K〉X)
2

2σ2

](K′,X′)

(K,X)


×
√

ω̄

2πσ2 sinh (ω̄t)
exp

− ω̄
((

(K − 〈K〉)2
+ (K ′ − 〈K〉)2

)
cosh (ω̄t)− 2 (K − 〈K〉) (K ′ − 〈K〉)

)
2σ2 sinh (ω̄t)


×
√

ω̄X
2π sinh (ω̄Xt)

exp

− ω̄X
((
X2 + (X ′)

2
)

cosh (ω̄Xt)− 2XX ′
)

2 sinh (ω̄Xt)



×
√

1

2πϑ2t
exp

(
− (θ − θ′ − t)2

2ϑ2t

)
× δ

P − D exp
(
− |X|1+γ

)
(K)

α
1+γ

 δ

P ′ − D exp

(
−|X

′|
1+γ

)
(K ′)

α
1+γ
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For ϑ2 << 1, The variable t can be replaced by θ − θ′, for θ > θ′. Actually, due to the term:

exp

(
− (θ − θ′ − t)2

2ϑ2t

)
(90)

the Green function is non nul for values of θ and θ′ such that θ − θ′ − t = 0. Since t > 0, this implies that
the replacement is only valid for θ > θ′, otherwise the Green function is equal to 0. As a consequence, we
can remove the time dependence in the Green function and we obtain:

G (K,K ′, P, P ′, X,X ′, θ, θ′)

= exp

−[ (K − 〈K〉X)
2

2σ2

](K′,X′)

(K,X)


×
√

ω̄

2πσ2 sinh (ω̄ (θ − θ′))
exp

− ω̄
((

(K − 〈K〉)2
+ (K ′ − 〈K〉)2

)
cosh (ω̄ (θ − θ′))− 2 (K − 〈K〉) (K ′ − 〈K〉)

)
2σ2 sinh (ω̄ (θ − θ′))


×
√

ω̄X
2π sinh (ω̄X (θ − θ′))

exp

− ω̄X
((
X2 + (X ′)

2
)

cosh (ω̄X (θ − θ′))− 2XX ′
)

2 sinh (ω̄X (θ − θ′))



×δ

P − D exp
(
− |X|1+γ

)
(K)

α
1+γ

 δ

P ′ − D exp

(
−|X

′|
1+γ

)
(K ′)

α
1+γ

H (θ − θ′)

where H (θ − θ′) is the Heaviside function.
Note that for θ − θ′ = 0, in (90), the dominant part becomes t

2ϑ2 , which means that in average one can
replace t by ϑ2, which describes the description in terms of harmonic oscillators used in Appendix 2.

6.5.2 Case ρ 6= 0

For ρ 6= 0, the X part of the action is similar to the previous case, in

∫
Ψ† (K,X)

(
−∇2

X + κ0X
2
)

Ψ (K,X)− κ1

2
|Ψ (K,X)|2 KK

′ exp (−χ1 |X − Y |)
〈K〉2

|Ψ (K ′, Y )|2

+

∫
κ2

3
exp (−χ2 |X − Y | − χ2 |X − Z| − χ2 |Y − Z|) |Ψ (K,X)|2 |Ψ (K ′, Y )|2

∣∣Ψ (K”, Z
)∣∣2

we will replace the interaction potential by its average in variables y and z, but now, this average is computed
in the fundamental state Ψ0. We found that the norm of Ψ0 satisfies at the zeroth order in χ1 and χ2:

ρ2 =
κ1 +

√
κ2

1 − 2κ2

(
2α+ 2

ϑ2 +
√
κ0 + σδ

)
2κ2

(91)

for Ā2 >> A2. It will be useful in the sequel to find a more precise form for ρ2 at the second order in χ1

and χ2. At this order, the equation for the fundamental Ψ0 can be found in the following way. We developp
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the potential terms to second order in Ψ (K,x) around Ψ0, that is:∫
κ1

2
|Ψ (K,X)|2 KK

′ exp (−χ1 |X − Y |)
〈K〉2

|Ψ (K ′, Y )|2 dY

→
∫
κ1 |Ψ (K,X)|2 KK

′ exp (−χ1 |X − Y |)
〈K〉2

|Ψ0 (K ′, Y )|2 dY

' κ1 exp (−χ1 |X|) |Ψ (K,X)|2 K

〈K〉
ρ2

' κ1

(
K

〈K〉
exp (−χ1 |X|) |Ψ (K,X)|2

)
ρ2

The parameter ρ2 has been computed before. Similarly, the second part of the potential is replaced by:

κ2

3
|Ψ0 (K,x)|2 exp (−χ2 |x− y| − χ2 |x− z| − χ2 |y − z|) |Ψ (K ′, y)|2

∣∣Ψ† (K”, z)
∣∣2

→
∫
κ2 exp (−χ2 |x− y| − χ2 |x− z| − χ2 |y − z|) |Ψ0 (K,x)|2 |Ψ0 (K ′, y)|2 |Ψ0 (K”, z)|2 dK ′dK”dydz

' κ2 exp (−2χ2 |x|) |Ψ0 (K,x)|2 ρ4

−∇2Ψ (x) +
κ0

2
x2Ψ (x)− κ1

(
K

〈K〉
exp (−χ1 |x|) |Ψ (K,x)|2

)
ρ2 + κ2 exp (−2χ2 |x|) |Ψ (K,x)|2 ρ4 + αΨ (x)

expanding the exponentials in χ1 and χ2 yields thus the first approximation to the potential of the X
(79), and thus a second order action in χ1 and χ2:

Ψ† (x)

(
−σ2

X∇2
X +

κ0

2

(
1− χ2

1κ1ρ
2

2κ0
+ 2χ2

κ2

κ0
ρ4

)(
x+

sgn (x)

κ0

(
χ1κ1

K

2 〈K〉
ρ2 − χ2κ2ρ

4

))2
)

Ψ (x)

+

(
ρ4κ2 − ρ2κ1 −

1

2κ0

(
χ1κ1

K

2 〈K〉
ρ2 − χ2κ2ρ

4

)2
)(

Ψ† (x) Ψ (x)
)

The complete action is then:∫
Ψ† (K,X, θ)

(
−σ2∇2

K − ϑ2∇2
θ − σ2

X∇2
X +

(
δ2 +

Ā2A2(
A2U2 + Ā2

)2
)

(K − 〈K〉)2

)
Ψ (K,X, θ)

+
κ0

2

(
1− χ2

1κ1ρ
2

2κ0
+ 2χ2

κ2

κ0
ρ4

)∫ ((
x+

sgn (x)

κ0

(
χ1κ1

K

2 〈K〉
ρ2 − χ2κ2ρ

4

))2

x2 + αX

)
|Ψ (K,X, θ)|2

+
(
2ρ2κ2 − κ1

) ∣∣∣∣∫ Ψ† (K,X, θ) Ψ0 (K,X, θ)

∣∣∣∣2
where

αX = α+
1

ϑ2
+

(
−κ1ρ

2 + κ2ρ
4 − 1

2κ0

(
χ1κ1

K

2 〈K〉
ρ2 − χ2κ2ρ

4

)2
)

since (85) implies that:

0 = α+
1

ϑ2
+

1

2
κ

1
2
0

√
1− χ2

1κ1ρ2

2
+ 2χ2

2κ2ρ4

−κ1ρ
2 + κ2ρ

4 − 1

2κ0

(
χ1κ1

K

2 〈K〉
ρ2 − χ2κ2ρ

4

)2

+

σ
√
δ2 + Ā2A2

(A2U2+Ā2)
2

2
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one has:

αX = −1

2
κ

1
2
0

√
1− χ2

1κ1ρ2

2
+ 2χ2

2κ2ρ4 −
σ
√
δ2 + Ā2A2

(A2U2+Ā2)
2

2

and the second order action rewrites:∫
Ψ† (K,X, θ)

(
−σ2∇2

K − ϑ2∇2
θ − σ2

X∇2
X +

(
δ2 +

Ā2A2(
A2U2 + Ā2

)2
)

(K − 〈K〉)2

)
Ψ (K,X, θ) (92)

+
κ0

2

(
1− χ2

1κ1ρ
2

2κ0
+ 2χ2

κ2

κ0
ρ4

)∫
Ψ† (K,X, θ)

((
x+

sgn (x)

κ0

(
χ1κ1

K

2 〈K〉
ρ2 − χ2κ2ρ

4

))2

x2

)
Ψ (K,X, θ)

−
∫

Ψ† (K,X, θ)

1

2
κ

1
2
0

√
1− χ2

1κ1ρ2

2
+ 2χ2

2κ2ρ4 +

σ
√
δ2 + Ā2A2

(A2U2+Ā2)
2

2

Ψ (K,X, θ)

+
(
2ρ2κ2 − κ1

) ∣∣∣∣∫ Ψ† (K,P,X, θ) Ψ0 (K,P,X, θ)

∣∣∣∣2

As said before, the fundamental level of the X part of the action has the form:

Ψ0 (X) = N1

(
exp

(
−κ
− 1

2
0 (X + δX)

2

2

)
H (x) + exp

(
−κ
− 1

2
0 (X − δX)

2

2

)
H (−x)

)
≡ Ψ̄0 (X + δX)H (X) + Ψ̄0 (X − δX)H (−X)

where:

δX =
1

κ0

(
χ1κ1

K

2 〈K〉
ρ2 − χ2κ2ρ

4

)
For a given value of K, The Green function can be obtained by its expansion in function of all the eigenstates
Ψ̄n of the system.

GK (x, y) =
∑
n

(
Ψ̄n (x+ δX)H (x) + Ψ̄n (x− δX)H (−x)

)
×
(
Ψ̄n (y + δX)H (y) + Ψ̄n (y − δX)H (−y)

)
= Ḡ (x+ δX, y + δX)H (x)H (y) + Ḡ (x− δX, y − δX)H (−x)H (−y)

+Ḡ (x+ δX, y − δX)H (x)H (−y) + Ḡ (x− δX, y + δX)H (−x)H (y)

where we have defined:

Ḡ (x, y, t) =

√
κ0

2πσ2
X sinh (κ0t)

exp

((
− κ0

2σ2
X sinh (κ0t)

)((
x2 + (x′)

2
)

cosh (κ0t)− 2xx′
))

=

√
κ0

2πσ2
X sinh (κ0t)

exp

((
− κ0

2σ2
X sinh (κ0t)

)(
(x− x′)2

+ (cosh (κ0t)− 1)
(
x2 + (x′)

2
)))

The term associated to the change of variable can be found similarly to the first phase:, but now it has to
evaluated in the state Ψ0 (K,X, θ) + Ψ (K,X, θ). As explained in Appendix 3, in first approximation, this
is equivalent to evaluate it in the state Ψ0 (K,X, θ). We find again an exponential factor:

exp

−
 (K − 〈K〉X)

2

2σ2

(K′,X′)

(K,X)

(K′,X′)

(K,X)


with 〈K〉X computed in the state Ψ0 (K,X, θ) as in Appendix 3.
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Ultimately, as in the first phase, to (92) one can associate a Green function that is the Laplace transform
with parameter αX of a temporal Green function:

G (K,K ′, P, P ′, X,X ′, θ, θ′, t)

= exp

−
 (K − 〈K〉X)

2

2σ2

(K′,X′)

(K,X)

(K′,X′)

(K,X)


×
√

ω̄

2πσ2 sinh (ω̄t)
exp

− ω̄
((

(K − 〈K〉)2
+ (K ′ − 〈K〉)2

)
cosh (ω̄t)− 2 (K − 〈K〉) (K ′ − 〈K〉)

)
2σ2 sinh (ω̄t)


×GK+K′

2

(X,Y, t)

×
√

1

2πϑ2t
exp

(
− (θ − θ′)2

2ϑ2t
+
θ − θ′

ϑ2

)
× δ

P − D exp
(
− |X|1+γ

)
(
K
〈K〉

) α
1+γ

× δ
P ′ − D exp

(
−|X

′|
1+γ

)
(
K′

〈K〉

) α
1+γ


Eventhough αX < 0, the Laplace transform is well defined since −αX is the lower bound of the terms

in the exponential (−αX is the lowest eigenvalue associated to the evolution operator whose G is the Green
function).

As in phase 1, this Green function is centered around t = θ− θ′, so that we can replace t = θ− θ′ in the
Green function, leads to:

G (K,K ′, P, P ′, X,X ′, θ, θ′)

= exp

−
 (K − 〈K〉X)

2

2σ2

(K′,X′)

(K,X)

(K′,X′)

(K,X)


×
√

ω̄

2πσ2 sinh (ω̄ (θ − θ′))
exp

− ω̄
((

(K − 〈K〉)2
+ (K ′ − 〈K〉)2

)
cosh (ω̄ (θ − θ′))− 2 (K − 〈K〉) (K ′ − 〈K〉)

)
2σ2 sinh (ω̄ (θ − θ′))



×GK+K′
2

(X,Y )× δ

P − D exp
(
− |X|1+γ

)
(
K
〈K〉

) α
1+γ

× δ
P ′ − D exp

(
−|X

′|
1+γ

)
(
K′

〈K〉

) α
1+γ

H (θ − θ′)

6.6 Appendix 5

We consider a general model:

S (Ψ) =

∫
Ψ† (X)

(
−σ2

X∇2
X + V

)
Ψ (X) +

∫
1

2
Ψ† (X) Ψ† (Y )W (X,Y ) Ψ (X) Ψ (Y )

that encompasses the model studied in this work. The field Ψ (X) depends on an arbitrary number of
variables X belonging to some configuration space, and W (X,Y ) = W (Y,X). We have chosen a fourth
order interaction term, but a more general choice, such a s a sum of powers, would not change the result.
We assume that there is a non trivial minimum to the action S (Ψ), so that the equation:

(
−σ2

X∇2
X + V

)
Ψ (X) +

(∫
Ψ† (Y )W (X,Y ) Ψ (Y )

)
Ψ (X) = 0
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has a solution ρΨ0 (X) 6= 0, and Ψ0 of norm equal to 1. We want to show that the non trivial vacuum
implies to separate the system into two systems defined on two half-space of the configuration space.

Given the field Ψ0 minimizing the action, the second order variation of S (Ψ) is:

δΨ† (X)
(
−σ2

X∇2
X + V

)
δΨ (X) + δΨ† (X)

(∫
Ψ†0 (Y )W (X,Y ) Ψ0 (Y )

)
δΨ (X)

+2 Re
(
δΨ† (X)

(
Ψ†0 (Y )W (X,Y ) Ψ0 (X)

)
δΨ (Y )

)
= δΨ† (X)

(
−σ2

X∇2
X + V (X)

)
δΨ (X) + δΨ† (X)V0 (X) δΨ (X) + δΨ† (X)W0 (X,Y ) δΨ (Y )

where:

W0 (Y,X) = Ψ†0 (Y )W (X,Y ) Ψ0 (X)

W †0 (X,Y ) = W0 (Y,X)

and:

V0 (X) =

∫
Ψ†0 (Y )W (X,Y ) Ψ0 (Y )

Now, assume that Ψ0 (X) is peaked around some X0, which is the case in the text for the K part of Ψ0,
then:

V0 (X) '
∫

Ψ†0 (Y )W (X,X0) Ψ0 (Y ) = W (X,X0) ρ2

W0 (Y,X) ' ρ2

∫
Ψ†0 (X0)W (X0, X0) Ψ0 (X) δ (X −X0) δ (Y −X0)

and the following contributions of the second order variation becomes:

δΨ† (X)V0 (X) δΨ (X) → ρ2δΨ† (X)W (X,X0) δΨ (X)

δΨ† (X)W0 (X,Y ) δΨ (Y ) → ρ2 |Ψ0 (X)|2W (X0, X0) δΨ† (X0) δΨ (X0)

For ρ2W (X0, X0) >> 1, the contributions for fields δΨ such that δΨ (X0) 6= 0 are suppressed. Then the
integrals over the δΨ can be limited to contributions such that δΨ (X0) = 0.

This means that δΨ can be decomposed in two parts:

δΨ (X) = δΨ+ (X) + δΨ− (X)

and δΨ+ (X) and δΨ− (X) are independent and defined on two half space X± respectively and satisfy:

δΨ± (X∓) = 0

And the second order action for δΨ± becomes:

δΨ† (X)
(
−σ2

X∇2
X + V (X)

)
δΨ (X) + δΨ† (X)V0 (X) δΨ (X) + δΨ† (X)W0 (X,Y ) δΨ (Y )

= δΨ†± (X)
(
−σ2

X∇2
X + V (X)

)
δΨ± (X) + ρ2δΨ†± (X)W (X,X0) δΨ± (X)

This action models also two independent fields with constraint δΨ̄± (X∓) = 0 and defined on the all space,
but subject to a wall potential H± (X), the wall being defined on the space X∓:

δΨ̄†± (X)
(
−σ2

X∇2
X + V (X) +H± (X)

)
δΨ̄± (X) + ρ2δΨ̄†± (X)W (X,X0) δΨ̄± (X)

and this models two sets of different agents, evolving on X± and subject to a ”wall” potential. Applied to
our case, this result are the following. Recall that we found the fundamental state (82):

Ψ0 (K,X) = ρN
[
Ψ̄0 (X + δX)H (X) + Ψ̄0 (X − χδX)H (−X)

]
× exp

−
√
δ2 + Ā2A2

(A2U2+Ā2)
2 (K − 〈K〉X)

2

2σ
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where N and ρ are given by (83) and (76) and (84) respectively. If we assume, as in Appendix 2 that:√
δ2 + Ā2A2

(A2U2+Ā2)
2

σ
> κ

1
2
0

i.e. the X variable is more spread than K, then Ψ0 (K,X) is peaked on the hypersurface K = 〈K〉X . As
a consequence, the space (K,X) is divided into two subspaces S+ (defined by K > 〈K〉X) and S−(defined
by K < 〈K〉X). To these halfspaces correspond two systems, independent in first approximation. An agent
starting in S+ (S− respectively) will remain in S+ (S− respectively).
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