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Bilinear local controllability to the trajectories of the

Fokker-Planck equation with a localized control

MicHEL DUPREZ* PIERRE Lissy T

September 6, 2019

Abstract

This work is devoted to the control of the Fokker-Planck equation, posed on a bounded domain
of R¢ (d > 1). More precisely, the control is the drift force, localized on a small open subset.
We prove that this system is locally controllable to regular nonzero trajectories. Moreover,
under some conditions on the reference control, we explain how to reduce the number of controls
around the reference control. The results are obtained thanks to a linearization method based
on a standard inverse mapping procedure and the fictitious control method. The main novelties
of the present article are twofold. Firstly, we propose an alternative strategy to the standard
fictitious control method: the algebraic solvability is performed and used directly on the adjoint
problem. Secondly, we prove a new Carleman inequality for the heat equation with one order
space-varying coefficients: the right-hand side is the gradient of the solution localized on a subset
(rather than the solution itself), and the left-hand side can contain arbitrary high derivatives of
the solution.

Keywords:Controllability, Parabolic equations, Carleman estimates, Fictitious control method,
Algebraic solvability.
2010 MSC: 93B05, 93B07, 93B25, 93C10, 35K40.
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1 Introduction and main results

1.1 Introduction

Let 7 > 0 and let Q be a bounded domain in R? (d € N*), regular enough (for example of class
C*). Denote by Q7 := (0,T) x Q and X7 := (0,T) x 92. We consider the following system

Oy = Ay +div(uy) in Qr,
Y =0 on X, (1.1)
y(0,) =y° in Q,

where y° € L?() is the initial data and u = (uy, ...,uq) € L>((0,T) x Q)% is the control.

It is well-known (see for instance [23, Theorem and Proposition 3.1]) that for every initial data
y° € L?(Q) and every control u € L*((0,T) x )%, there exists a unique solution y to System (L.1))
in the space W(0,7"), where

W(0,T) := L*((0,T), Hy(Q)) N H*((0,T), H1(Q)) — C°([0, T]; L*()).

Equation (1.1)), introduced in [30], is called the Fokker-Planck equation. In the case where the
Fokker-Planck equation is posed on the whole space R?, it is strongly related to the stochastic
differential equation (SDE)

dX; =" wi(X,)dt +dW;, i (0,T) x RY, 1)
X(0,) =Xx° in R?, '

where W, is the standard multi-dimensional Brownian motion starting from 0. System describes
the movement of a particule of negligible mass, with constant and isotropic diffusion, under the action
of a force field u = (uq,...,uq).

Under some regularity conditions on the drift term U, it is well-known that, by the It6 Lemma,
the probability density function p associated to (|1.2) verifies

{ Oip = 2Ap+div(up) in (0,T) x RY, (1.3)

p(o, ) = pO in Rd;
where p° is some initial probability density function (see e.g. |41, Section 5.3]). By definition of a
probability measure, we have p° > 0 a.e. and [;,p” = 1. It is then very easy to prove that these
properties are preserved during time: any solution p of System verifies also p(¢,-) > 0 a.e. and
fRd p(t,) = 1, for any t € [0,7] and hence remains a probability measure. We refer to [42] for
more explanations on the Fokker-Planck equation, notably in the case of nonlinear drift terms or
non-constant and anisotropic diffusion.

However, in the case where we impose Dirichlet boundary conditions as in , the derivation
of the Fokker-Planck equation from a SDE is more difficult: the Brownian motion has to be replaced
by an “absorbed” or “killed” Brownian motion, see e.g. [I1, pp. 31-60]. Moreover, the total mass of
the initial condition is not conserved anymore, meaning that the probability of remaining inside 2
decreases in time, and the solution to is not a probability density function anymore. We refer
to [23], Section 2] for a discussion on the relevance of Dirichlet boundary conditions in this context.
Neumann boundary conditions (that would restore the conservation of mass) seem to be beyond the
scope of the present article.



While the controllability properties of the scalar linear heat equation in the case of internal
control and Dirichlet boundary condition are now well-understood (see notably [32] and [24]), bilinear
controllability seems to have been less explored. Equation has been studied in [8], in the whole
space and with controls localized everywhere in space and time. Concerning bilinear control in
the case where the bilinear term div(uy) is replaced by uy with v € L*°((0,T) x ), we refer to
19, 10, (27, 128} 126, 29, (34, 40, [} [45],

Let us mention that bilinear optimal control of parabolic equations has previously been studied.
A first result was proved in [I], where a close forth-order in time model is investigated, with controls
depending only on time. This result has been extended to second-order parabolic equations firstly
in [] in the one-dimensional case, then in [5] in the multi-dimensional case, still for time-varying
controls. For equation (in a slightly more general form), the case of space and time-varying
controls is treated in [23]. Notably, for a drift term that is affine in the control, the authors prove the
existence of optimal controls for general cost functionals, and derive first-order necessary optimality
conditions using an adjoint state. The controllability of the continuity equation, i.e. System
without diffusion, has been investigated in [19] [20].

The structure of the article is as follows. In Section [1.2] we give the mains results of the article
(Theorem resp. Theorem which gives a result of local controllability to the trajectories with
d components, resp. a reduced number of controls around the reference control) and some remarks.
Section is devoted to studying a linearized version of . In Section we prove a new Carleman
estimate (Proposition for solutions of the linear backward heat equation with one-order terms.
The main novelty is that the local observation term is the gradient of the solution of the adjoint
problem . This has already been proved in [I7] for constant coefficients. Moreover, we are able
to put as many derivatives as we want in the left-hand side of our Carleman estimate, which will
be needed for the rest of the proof. In Section [2:2] we explain how to remove some components of
the gradient in the Carleman inequality. This is performed by using what we call an argument of
“algebraic solvability” (as introduced in [12] in the context of the stabilization of ODEs and in [16]
for the study of coupled systems of PDEs), based on ideas developed by Gromov in [25, Section
2.3.8]. This procedure has already been used successfully in [2, 17, 18] 15 B3, 43]. The main novelty
compared to the existing literature is that the algebraic solvability is performed directly on the dual
problem. Moreover, we are able to get rid of the high order derivatives of the right in order to obtain
the final Carleman estimate . In Section we use some arguments coming from optimal
control theory in order to derive from our observability inequality the existence of regular enough
controls, with a special form, in appropriate weighted spaces. In Section[3] we go back to the nonlinear
problem by using a standard strategy coming from [37] together with some adapted inverse mapping
Theorem. To finish, in Section [d] we give an example of trajectory for which the local controllability
does not hold with a reduced number of controls.

1.2 Mains results

Let (g,w) be a trajectory of ([1.1), i.e. verifying

oy = Ay + div(ay) in Qr,
Y =0 on Y, (1.4)
5(0,) =7°e L2\ {0} inQ.



1.2.1 Controls with d components

We first state a result of local controllability to the trajectories to System (1.4) with a control
containing d components:

THEOREM 1.1. Let w be any nonempty open subset of Q). Assume that the trajectory (y,u) with
u = (Uy,...,uq) of System is reqular enough (for example of class C*° on (0,T) x Q), and that
there exists some open subset wg, strongly included in 2, such that the support of u is included in
[0,T] X wg.

Then, System is locally controllable with localized controls, in the following sense:

for every e > 0 and every T > 0, there exists 1 > 0 such that for any y° € L?(Q) verifying

1y = 7(0)]] L2y < 1, (1.5)

there ewists a trajectory (y,u) to System (1.1) such that

U =+ v for some v € L¥((0,T) x Q)4,
Supp (v) c(0,T) xw,

[V Loe 0,y x0)e < &,
1y —¥llwo,1) <e.

Remark 1. e The regularity assumptions on (7, %) can be improved, notably it is enough that the
reference trajectory is C” for some r € N* large enough, on an open subset of (0,7) X wq.

e If 4° = 0, the only solution to (I.1) is ¥ = 0, whatever u is, so that the only reachable state at
time T is 0. As a consequence, i > 0 has notably to be chosen small enough such that y° # 0.

e From the results given in [7], as soon as y" > 0, then any trajectory to System ((1.1)) remains
non-negative (see also [23]). This fact differs from the usual linear heat equation with internal
control (see [38]).

1.2.2 Controllability acting through a control operator

In this section, we give a result of local controllability to the trajectories to System (1.4) with a
control acting through a control operator B € Mg ,,,(R) with m € N* such that m < d.
We first introduce some notations. Let ¢ € N and consider the following set
E(m,q) ={(a1,...,am) EN" |0<a;+...4+ am < ¢},
with the convention that £(m,q) = 0 if ¢ = 0. Note that by an elementary computation,

(g +m)!
mlq!

#g(qu) = 1= N<m7Q)'

For v € R™, we write Bv = (Byv, ..., Bgv) € R% For j € {1,...,m}, we write
(B;,.V) : 9 € C®(R?Y) = B, (Vi) € C(RY).
For (a1,...am) € E(m, q), we introduce the following operator:

(B*.V)*@m qh € C°(RY) s (Bf.V)...(B;.V)...(B;,.V)...(B5.V) € C°(R?).

a; times am times



We introduce the following matrix:

By
By,
M,@) = | (B= )10, . (B*.V)100%, | € My m.g)em.a(R). (1.6)
(B* v)O 1,..., 0U1 (B* v)O 1,...,OHd
(B*.V)0-0aq, ... (B*.V)0--0aq,

We have the following controllability result.

THEOREM 1.2. Let m € N* (with possibly m < d). Under the hypothesis of Theorem assume
that there exists ¢ € N and some (to,z9) € (0,T) X w such that

Rank(M, (@) (to, z0)) = d. (1.7)

Then, System (1.1)) is locally controllable with localized controls, in the following sense:
for every e > 0 and every T > 0, there exists n > 0 such that for any y° € L?(2) verifying

17 —70)||z2() <,

there exists a trajectory (y,u) to System (1.1) such that

y(T) =y(T),
u =7u+ Bv for some v € L*((0,T) x Q)™,
Supp (v) c(0,7) xw,
[[v]| Lo (0,myxym <€,
lly = Fllwo.1) <e.
Remark 2. e Remark that if B = I, (i.e. we control every component of the gradient of u),

condition ([1.7) is automatically verified for ¢ = 0, whatever u is. Hence Theorem contains
the result given in Theorem Thus we will only give a proof of Theorem [I.2

e Condition (1.7) notably implies that ¢ has to be chosen large enough such that N(m,q) > d—m.

e Assumption ((1.7) is generic, in the following sense: if C°°((0,7) x w)? is endowed with the C
topology, the sets of the functions (3, u) € C°°((0,T) x w)? verifying (1.7)) is an dense open set.

e In Section 4| we give an example of trajectory which does not satisfy condition (1.7) and for
which the local controllability to the trajectories does not hold. It highlights that Condition

(1.7) is not artificial. Even if the authors think that Condition is optimal, find a necessary
and sufficient condition remains on open problem.

Exemple 1.1. We give an explicit example, in order to explain better condition ([1.7). Let us assume



that we want to control only the m(< n) first components of the gradient, i.e.

1 0 0
0 1
: . 0
B=1o ... 0 1|€&Mun@®).
0
0 ... ... 0

Then for any ¢ € N such that N(m,q) > d — m, we have

1 o 0
1 0 0
0 .. 0 1 0 ... 0
Bmlﬂl 81152 e e axlﬂerl e 8zlﬂd
Mq(ﬂ) = : : : € MN(m,q)+m,d(R)~
Op, Wy oo e re O TUmgr ... O, Tg
82%61 e 85%@,”“ .. 63%@1
aignﬂl e e 8§qmﬂm+1 . 8g;,nam+1

We observe that M, (u) is of maximal rank d if and only if the following matrix:

O, Umt1 - -- Oz, Ud
— O, U Oz, U,
_ +1 e 2 Ud
M,(u) = ' — eM _m(R
4(@) Polmsr ... 0%Tg N(m.g).d-m(R),
1 1
q q =
8wgnum+1 SN 890?”“7”‘*‘1

is of maximal rank d — m.

2 Null controllability of the linearized system

In what follows, we always assume that the trajectory (g, ) of (|1.4) verifies the hypothesis of Theorem
Consider the following linear parabolic system

Oy = Ay + div(ay) + div(fu) in Qr,
Y =0 on X, (2.1)
y(0,)) =y° in Q,



where y° € L?(Q2) and 0 € C*°(9) is such that

Supp(d) € w,
0 =1 in wo, (2.2)
0 <O0<1 inQ,

for some non-empty open subset wy which is strongly included in w. The goal of this section is to
prove the null controllability of System (2.1, with less controls than equations and regular enough
controls in a special form.

Remark 3. Note that the null controllability of (2.1) is equivalent to the null controllability of the
“real” linearized version of (1.1]) around (7, ) given by

Oy = Ay + div(ay) + div(ga) in Qr,
Y =0 on X, (2.3)
y(0,)) =y° in Q.

Indeed, by unique continuation of the solution y of , as soon as y° # 0, since 3 cannot vanish
on a subset of (0,T) x Q of positive measure (see [6]) and 7 is in C°°((0,T) x ), there exists some
subset (T1,T3) x &g of (0,T) X wp such that [g| > C > 0 on (T1,7%) X wp, that we can assume to be
exactly (0,7) x wop without loss of generality. Hence, for any ¢ € {1,...,d}, one can solve (in @;) the
equation fu; = yu,; by posing

_ Oy
U; = .

Y
Remark that u; enjoys the same regularity properties as w;.

2.1 Carleman estimates

Let us consider the following adjoint system associated to System ({2.1))

-0y =Ay+u-Vi¢ in Qr,

P =0 on X, (2.4)
W(T,) =y in Q.
First of all, we will introduce some notations. We denote by | - | the euclidean norm on RM,

whatever M € N* is. For s, A > 0 and p > 1, let us define the two following functions:

exp((2p + 2)Al7°|lso) — expA2p][7° lloo + 1°(2))]
(T —{)p

a(t,z) =

and

£(t.0) = exp[A(2p||n° |l +1°())]
o te(T — t)p '
Here, n° € C>°(Q) is a function satisfying
V| = kin Q\wi;, 7°>0inQ and 7°=0on 0f,

with x > 0 and w; some open subset verifying w; CC wy. The proof of the existence of such a
function 7° can be found in [24, Lemma 1.1, Chap. 1] (see also [13, Lemma 2.68, Chap. 2]). We will
use the two notations

o*(t) :=maxa(t,z) and &*(¢) := miné(¢, x), (2.7)
€N z€



for all ¢ € (0,T). Note that these maximum and minimum are reached at the boundary 0. For
s, A > 0, let us define

I(s, \u) == s3\* // e 25y dadt + s\? // e~ 25|Vl dxdt. (2.8)

Let us now give some useful auxiliary results that we will need in our proofs. The first one is a
Carleman estimate which holds for solutions of the heat equation with non-homogeneous Neumann
boundary conditions:

LEMMA 2.1. There exists a constant C > 0 such that for any v° € L*(Q), fi € L*(Qr) and
fa € L3(X7)., the solution to the system

78tu —Au = fl in QTa

g% = f2 on ET»

u(T,-) =u’ inQ

satisfies

I(s,\ju) < C [ 34 / / e 250302 dudt + s / / e~ 25 e f2dodt
(0,T) xw1 Sr

+ / / e~ 25 ffda;dt> ,
T

Lemma [2.1] is proved in [22, Theorem 1] in the case p = 1. However, following the steps of the
proof given in [22], one can prove exactly the same inequality for any p € N*.
From Lemma 2.1} one can deduce the following result:

LEMMA 2.2. Let f € L*(37), G = (g1,...94) € L®°(Q7)? and h € L*(Qr). Then there ezists a
constant C > 0 such that for every T € L*(), the solution ¢ to the system

—Op =Ap+G-Veo+h inQr,
e =f on X,
o(T,) =T in

for all A\ > C and s > C(TP +T?P).

satisfies

I(s,\;0) < C [ 324 / / e~ 23 dadt + s / / e 257 ¢ 2 dodt + / / e~ 25 n2dxdt |
(O,T)le ZT T

for every A > C and s > so = C(T? + T?).

The proof of Lemma is standard and is left to the reader (one just has to apply Lemma
and absorb the remaining lower-order terms thanks to the left-hand side).
We will also need the following estimates.

LEMMA 2.38. Let r € R. Then there exists C := C(r,w1,Q) > 0 such that, for every T > 0 and
every u € L?((0,T), H*()),

g2 )\r+2 // ef2sa€r+2u2dxdt <C <sr>\r // 6*25“£T|Vu|2dxdt
T T

4Tt \r+2 // 6250‘§T+2u2dmdt> ,
(O,T)le

for every A > C and s > C(T?).



The proof of this lemma can be found for example in [14, Lemma 3] in the case p = 9. However,
following the steps of the proof given in [14], one can prove exactly the same inequality for any p € N*.
In order to deal with more regular solutions, one needs the following lemma.

LEMMA 2.4. Let 29 € H}(Q), G € C®(Qr)? and f € L?>(Qr)™. Let us denote by R := —A—G-V
and consider the solution z to the system

O0:z =Az+G-Vz+ f inQr,
z =0 on X,
2(0,-) =z in Q.

Let n € N. Let us assume that zo € H*"*1(Q), f € L*((0,T),H**()) N H"((0,T),L3*(2)) and
satisfy the following compatibility conditions:

go := 20 € HL(Q),

9= 10,) = Rao € Hy (), (2.9)

ga =07 f(0,-) = Rga—1 € H} ().
Then z € L*((0,T), H**2(Q)) N H"T1((0,T), L?(Q)) and we have the estimate

||Z||L2((O,T),H2"+2(Q))HH"+1((O,T),L2(Q)) < C(Hf”LQ((O,T),HM(Q))HH"((0,T),L2(Q)) + HZU||H2"+1(Q))'

It is a classical result that can be easily deduced for example from [21], Th. 6, p. 365].
We are now able to prove the following crucial inequality:

PROPOSITION 2.1. Let N € N with N > 3 . Then, there exists C > 0 such that for every
Y0 € L2(Q), the corresponding solution v to System (2.4) satisfies

)\2 // 6—2304—2;1,30(* (Sé-)‘vN+l,L/]|2dmdt+ . + )\2]\7—}-2 // e—ZSa—Qusa* (85)2N+1|v,¢}|2dmdt
T T
+>\2N+2 // e—23a*—2usa* (S§*>2N+1|w|2dl‘dt
T

< ON\2N+2 e—ZSa—Qusa* (S£)2N+l |vw‘2d$dt
(0,T) xwo

(2.10)
for every A > C and s > so = C(T? + T?).

Such a Carleman inequality seems new to the authors in the context of non-constant coefficients
(it was proved in [I7] in the case of constant coefficients). The main improvement comes from the
fact that the observation is a gradient of the solution ¢ on wy (and not the solution itself). We are
also able to introduce as many derivatives of 1) as we want in the left-hand side, as soon as w; is
regular enough.

Remark 4. e Note that the proof proposed here relies on the fact that the lower-order terms in
equation are of order 1, and would fail in the presence of lower-order terms of order 0.
Indeed, in the first step of our proof (inequality ), some term that cannot be absorbed
will appear.

e Note that inequality (2.10]) automatically implies that any solution 1 of (2.4} lives in high order
weighted Sobolev spaces. This is not a surprise since we know that away from the final time
t =T, any solution of (2.4) is regular.



Proof of Proposition [2.1

The proof is inspired by [14] and is quite similar to [I7]. Let p > 0. In all what follows, C' > 0 is
a constant that does not depend on s or A (but that might depend on the other parameters, notably
p, N, n, T, p) and that might change from inequality to inequality. We assume without loss of
generality that N is odd (the case N even can be treated similarly).

Let % the solution to System . We introduce the following auxiliary functions:

g = €0y = . (2.11)

Then 1) is solution of

—Oh1 =AY+ Vi = Oppy  in Qr,
V1 =0 on Yr, (2.12)
vi(T,:) =0 in Q.

We remark that ¢ := V1), (the operator V applied N times, or in other words, all the derivatives
of order N of ¢, ordered for example lexicographically) satisfies the system

N .
~0ip=A0p+ > G- Vi +u-Vé— 0psVVy  in Qr,

i=1
272 = % on ET,
$(T,-) =0 in ©,

where, for any i € {1,..., N}, G; is an essentially bounded tensor of appropriated size, whose coefli-
cients are depending only on u; and its derivatives in space up to the order i. Applying Lemma
to the different components of ¢, we obtain the following estimate

I(s,\;¢) <C <33A4 / / e 2593 p|2dadt + s\ / / e 250 ¢x
(O,T)le ST
N

+// e*2sa2|vi¢1|2dxdt+// eraatpévNdedt).
T

i=1 Qr
(2.13)

2

0¢
% dodt

The rest of the proof is divided into four steps:

e In a first step, we will estimate the boundary term appearing in the right-hand side of (2.13)
by some global interior term involving 1, which will be absorb later on (in the last step). We
will also absorb the last term of the right-hand side under some condition on p.

e In a second step, we will estimate the last term in the right-hand side of (2.13)) by some local
terms involving Vi and its derivatives on wq, and get rid of the third term of the right-hand
side.

e In a third step, we will estimate the high-order local terms created at the previous step by some
local terms involving only Vi; on wy.

e In a last step, we will use some Poincaré-like inequality in order to recover the variable 1 in
the left-hand side and bound the global interior term of the right-hand side involving v; by
an interior term involving V. We will conclude by coming back to the original variable %, in

order to establish ([2.10).

10



Step 1: Let 6 € C2(Q) a function satisfying

An integration by parts of the boundary term leads to
2 T
. 15) ~
dodt = s\ / e g —¢V¢ - Vldodt
0 oQ

T
S)\/ 6—2801*5* 8¢
0 o0 on

T T
= s\ / e 250 gx / APV - VOdzdt + s / e 2507 ¢r [ V(VH- V) - Vodrdt.
0 Q 0 Q

on

Hence

2

9¢

T
on dodt < C)\/ 6_2sa Sf*llwlnHNJrz(Q)||1/11HHN+1(Q)dt.
0

T
S)\/ 6—2304 é—*
0 o0

Using the interpolation inequality

1/2 1/2
[l vy < Cllvonlgaan oy 191 [ v

and Young’s inequality ab < % + % (é + = =1) for a,b > 0 and ¢ = 4, we deduce that for any

c € R, we have

9¢
n

T 2 T
)\/ o250 Sf* dodt < C)\/ e~ 250 (85*)c”,¢1||gi+3(9)(8§*)(1—0)||¢1||?1’1{1%+1(Q)dt
0 o0 a 0

T
< oA / €2 (€74 b 2yt
0

4(

T . 1—c)
+C)\/ 6—25(1 (55*) 3 ||{¢)1||§{N+1(Q)dt
0
(2.14)
Consider the function 2 := pi11, where

2(1—c) *

P = (€))7 e, (2.15)
The function s is solution to the system

—0pby = Ay +7 - Vihy — 0y(p7)Y1 — p10c(pg)y  in Qr,
Py =0 on X,
,IZ)Q(Ta ) =0 in Q.

Using Lemma2.4]for ¢ (remark that the compatibility conditions (2.9) are verified, since ¢ (T, ) = 0
and @ has spatial support strongly included in ), we deduce that

122 (0,1, H2m 2 (@))nER+1 ((0,7),22(Q)) < CllO:(p1) Y1 + p10:(p6) V] L2 ((0,7), 527 ()N H" ((0,7),L2(2))
(2.16)

forn=1,2,...,(N 4+ 1)/2. The definitions of £&* and a* given in (2.7)), the definition of p given in
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(2.11), and the definition of pj given in (2.15]) lead to

O] < C(sgr) ! FremhseT,
0, gl < C(ser) T e
* * 2“ °)+1+1 a* (217)
|0: 1] < C(s€%) re S
0,7 pi] < Clsgr) T e
Remark that for any k£ < I, we have
07 5| < C|0}p5- (2.18)

Combining ([2.16) for n = (N — 1)/2, (2.17), (2.18) and the equations satisfied by ¢ and 1, we

obtain
g —2sa™ w2029 L vy N 2
[Frx 1)t < CA / B (s67) Pl oyt

)\/ —2sa” Sf
_|_/ e 2(1+/1,)so¢*(8§*)
0

T —2sa™ sy 2= 4oy 2 2 T —2(14p)sa* *
T e (sE) Pl -1 ydt + | em T (sE7)
0 0

EEEENEEE [ gyt

4(1—c)
3

2
P Fv-1 o Ot

(2.19)
In the right-hand side of (2.19), we would like to estimate the terms

T vsat en IEEI N, 2 dt and g —2(14p)sa” ( ex 2z 494 2 2 d
o (s€") 7|1 larn -1 (o dt an o (s€%) Pz gy dt.

This can be done using exactly the same processus by introducing some appropriate auxiliary
weight that multiplies ¢ or ¢ as in (2.15), using Lemma successively for n = (N —1)/2,...,0,
(2.17) and (2.18)). At the end, by gathering all the inequalities, we obtain

T —2sa™ * 4(1 <)
A / €20 (5 ) 5 upy |2
0

T 2020) 4 N1 N 2 g —2(14p)sa [ pox) 2= p N1 NEL 2
< COA (s€*)" @ Pl dt + [ e (s€*)" @ P [Y]|72@dt ] -
0 0
(2.20)

Applying the same technique also leads to

T
A / €250 (571 |y gy
0

T T
*\4c M — * c ==
<o ( F A e mdt>
0
(2.21)

12



From (2.14), (2.20) and (2.21)), we deduce that

2

87¢ dodt

T
)\/ —2sa*
0 & aq | On

T 4(1—c) N+41 T * C)
<O ( sy T g gt [ (s SN g
0 0

T T
*\4c N+3 — sa™ *\4c N+3
+/O (s€ )4 +N+3+1 ||¢1H%z(g)dt+/0 e~ 2(1+p) (s¢ )4 +N+3+4 ||¢||2L2(Q)dt>.

(2.22)
Since we would like the powers in the right-hand side to be equal, it is natural to impose that

N+3 4(1-— N+1
e+ N+3+ 2 = (?’C)JFN+1+T+
- c= 3P (2.23)
=~ .
Thus, using (2.22) and (2.23), we deduce that
T 2
A / —2sa gex 991" ot
. 0 E)QTan
* 2N(P+1)+5p+3 _ sa* 2N(P+1)+5p+
<CA </ e (s€”) IlellLa(de/ e 2T (5¢%) IIwIILQ(Q)dt>
0
(2.24)

From ({2.13] , - the first line of (2.17) and the definition of ¢ given in , we already deduce
that

I(s, ) 6) < ( 3 )4 / / e~ 2503\ N g [2dadt + A / / —2sa” (ex) R ) 2000
OT)le T

+//T *25a2|v21/)1‘2d17dt+// 2 (g )2+”VN¢1|2dxdt>,

i=1 Qr

By definition the definition of £* given in (2.7)), it is clear that £* < £. Hence, taking p large enough
such that 2 + % < 3 (i.e. p > 2), s, A large enough and using the definition of I(s, A; ¢) given in (2.8)),
we deduce that we can absorb the last term of the right-hand-side, so that we obtain

I(s, ) 0) < C | s3x8 // e*25ag3|vN¢1|2dxdt+/\// o250 (5¢) R 1y 2y
OT)le T
N

+// e " Vi [Pdadt
Qr

i=1
(2.25)
Step 2: We apply Lemma [2.3] successively with

(u,r) = (VN1ep1,3), ..., (u,7) = (Vapy, 2N — 1).

13



We obtain a sequence of inequalities of the form

N / / e 2O |V [Pdadt < C<s3)\4 / / e 2|V Ny [Pdudt
T Qr

+55A6//( ) e 2P|V [Pddt
0,7)Xwq

S2N+1>\2N+2 // 67250‘§2N+1|V1/11|2dxdt < C (52N1>\2N // 672sa§2N71|v2'¢J1|2d$dt
T T
+52N+1)\2N+2 // 67250452N+1‘v,¢)1|2d1:dt
(0,T) xwy
We deduce by starting from the last inequality and using in cascade the other ones that
85)\6 // 6728a£5|vN711/)1‘2d$dt+ L+ 82N+1)\2N+2 // 6728a€2N+1|V1/}1|2d$dt
T T
<O s\ / / e 2P|V [Pdadt + s°\° / / e 2P|V P dadt (2.26)
Qr (0,T)x w1
+...+52N+1)\2N+2 // e—QSa£2N+1|vw1|2dxdt
(0,T)xw1

Combining ([2.25)), (2.26) and using the definition of I(s, A, ¢) given in (2.8)), we deduce that we
can absorb the first term on the right-hand side of (2.26]) and obtain

S)\Q // 672sa£|vN+1w1|2d:€dt+ .“+52N+1)\2N+2 // 6728&52N+1|v¢1|2d1,dt
T T

<C ()\ // osa* 2N(P+1)+op+3|w1‘ dudt & // —2sa Z |V ¢1| dxdt

+55>\4//(0T) e25a§3|VN1/11|2dxdt+55A6//(0T) 6*25a55\vN¢1|2dxdt+...
Xwi Xw1

+S2N+1)\2N+2 // 6_2saf2N+l|v’l/11|2dZ'dt
(0 T)le
Absorbing the second term of the right-hand side, we deduce that for s, A large enough, we have

S)\Z // 6728a€|vN+1’¢)1‘2d(Edt+...+S2N+1)\2N+2 // 6728a€2N+1|V'¢1|2dxdt
T T

( // 9sa* 2N(p+1>+op+3 \w1|2d3;‘dt
T

+s30 / / e 2B VN Pdadt + .. 4 NN / / e PN Ty [Pdadt
(0,T) xw1

(0,T) X w
(2.27)
Step 3: Now, we consider some open subset wy such that w; CC wy CC wg. We consider some
function § € C>(Q,R) such that:

o Supp(f) C ws,
e 0=1on w1,

o fec [0, 1].

14



Some integrations by parts give

s34 / / e 2 VN Yy Pdadt < $*A* / / Oe= 2 VN gy [Pdwdt
(0,T)xwy (0,T) Xws

< Cs3\t (IV (0253 |V N1 | [V 1y | 4 |0e =253 | [ VN Ty || VYV~ 1apy |) dadt.
(0,T) xwa

From the definition of £ and « given in (2.5) and (2.6)), we deduce that
|V (e 252¢3)| < Cshe25¢h, (2.28)

Combining this estimate with Young’s inequality, we obtain that for any £ > 0, there exists C. > 0
such that for any s and A large enough, we have

s / / e 2G|V Pdedt < C | es®X* / / e 2PV Ny [Pdudt
(0,T) xw;y 0,T)Xwa

+es\? //(0 . e 25|V N T e 2 dadt 4 CosP\S //0 . _280‘§5VN_11/J1|2dxdt>.
s Xwa2 Xw2

Combining (2.27) and (2.29), we can absorb the local terms in [VN 14 |2 and V4|2 to deduce
8A2 // 672sa£‘vN+1w1|2dl'dt+ +52N+1A2N+2 // 6723a52N+1‘V¢1|2dmdt
<C ()\ // 9sa” 2N(P+1)+5p+3|w1| dedt + 5\ // _29a§5|vN 1w ‘ dwdt
T 0 T)Xwg

o 2NN / / e 2PNV [Pdadt | .
(O T)XUJQ

(2.29)

We can perform exactly the same procedure on the terms

85)\6 // 6723a55|vN71"¢)1|2d$dt,...782N71A2N72 // 6725a52N71|V2¢1|2dI’dt
(O,T)sz (O,T)XUJQ

in order to obtain the following estimate:

8A2 // 672saflvl\/’+1w1|2dxdt+...+52N+1A2N+2 // 672sa£2N+1‘V1/)1|2d$dt

2N(r+1)+5r+3

<C (A // €72 (s¢) |1 |*dadt (2.30)

Qr

+52N+1>\2N+2 // 6728a52N+1‘vw1|2d‘rdt .
(0,T) xwo
Step 4:

Since the weight (s¢*)%V~! does not depend on the space variable, and using the definition of a*
and £* given in (2.7), the following Poincaré’s inequality holds:

A2N+2 / / o200 (56%) 2N+ |y [Pdadt < CAPN / / e 2 ()N T P dadt
(2.31)
< Cp2N+2 / / €250 (5¢ 2N+ Uy, [2dadt,
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Combining (2.30) and (2.31), we deduce that for s large enough

A2 / / e 2 sE | VN Ty P dadt 4 .. 4+ N2V T2 / / e 25 (&) Ve |2 ddt

+/\2N+2 // 6_2sa*(8§*)2N+1|’¢1|2dIdt
Qr

( // —2sa* "’N("“”‘)” (o [2dadt + N2N+2 //0 . em 25 (s€) 2N ey | d:vdt)
T Xwo

(2.32)
We now fix p > 2 large enough such that
2N(p+1)+5p+3
2p

< 2N +1,

2N (p+1)+5p+3
2p

which is clearly possible since — N+3asp—ooand N > 3 (so that N+5/2 < 2N+1).
2N (p+1)+5p+3

Using that e25" (s&*) 2 < Ce™259(5£)2N+1 we deduce by absorbing the first term of
the right-hand side of (2.32)) that

22 / / e 25 (s&) VN Thapy Pdadt + ...+ N2V T2 / / e 25 (s€)* N Wy |Pdadt
T T
A2N+2 // —2sa™ 85 )2N+1|¢1|2dxdt < C)\2N+2 //OT 725a S€)2N+1|VT/J |2d$dt
T ><wo

Going back to ¢ thanks to (2.12), we deduce ([2.10).

2.2 Algebraic resolubility

In this section, we will derive a new Carleman inequality, adapted to the control problem with less
controls we want to prove. We assume here that ¢ € N* (if ¢ = 0, necessarily, by condition (1.7)), we
have m = d and we can take M = (B*)~! and M3 = 0 in the following Lemma).

LEMMA 2.5. Let m € N* such that m < d—1. Assume that the T is reqular enough (for ezample of
class C).

Consider two partial differential operators L1 : C®(R?) — C®RH™ and Ly : C*(R?) —
C>(R) defined for every ¢ € C(R?) by

Lip = B*(Vo) and Lop := o+ Ap + (- V)p.

Assume that holds.

There exists an open subset (t1,t2) X of (0,T) xw and there exist two partial differential operators
My : C2(RH)™ — C°(RN)? (of order 1 in time and ¢+ 1 in space) and My : C°(R) — C=(R%)?
(of order 0 in time and q in space) such that

MioLi+MsoLy =V in Cm((tl,tg) X W). (2.33)

Proof of Lemma [2.5k
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Since (1.7) is verified, there exists an open subset (t1,%2) X w of (0,7) x w and a constant C' > 0
such that |det(M)| > C on (t1,t2) x @. Let j € {1,...,m}. We call £] the j — th line of £;. We
remark that

(Bj - V)Law = (0 + A)Lip = (@ V)Lip = (B} - V)(@- V)p = (@- V)(B}. V)¢

d
=(@-V)( %0+Z (B} - V)uy)ore

,_.

— (@ V)( j-V)sa

M=

((Bj - V)ug)Oke
k=1
=: Ls.

Now, for some [ € {1,...,m}, the same computations easily give

d

d
(Bf -V)Lap — S (B} - V)an)dlhe = S (B -V)(B; - V) dhp = Lag.
k=1 k=1

Continuing this procedure, we can easily create two partial differential operators Ml (of order 1
in time and ¢ + 1 in space) and My (of order 0 in time and ¢ in space) such that

My(L1(9)) + Ma(L2(p)) = My(Vep),

where M, is defined in (1.6). Under condition (1.7)), M, is of maximal rank on (¢1,%2) X @, so that
it admits a left inverse at any point of on (t1,t2) x @. We call M,(u)~! any of its left inverses.
Then, is is clear that M := M ' My and My := M M, verify (2.33) and have C* coefficients on
(t1,t2) x @. [ ]

We now have all the tools to deduce our final Carleman inequality:

PROPOSITION 2.2. Assume that Condition and the hypotheses of Pmpositionm hold. Then,
for all n € (0,1), there exists p > 2 c > 0 and K > 0 such that for every v° € L?(Q), the
corresponding solution 1 to System (2.4) satisfies

/ $(0)2de + // T (2 4 0P .+ 10T R 4 VR 4t (VNP Y dadt
Q Qr
< Cek/T” / / eT07 | B* (V)2 dadt.
0,7) Xwo
(2.34)

Proof of Proposition [2.2] We assume that ¢ € N*. Let w; some open subset strongly included
in wg. Combining Pr0p0s1t10n [2.1] Lemma[2.5] (that is still true by replacing wo by w1), and the fact
that any solution ¢ of ( verifies by deﬁmtlon L2t = 0, we deduce that, for any 1° € L?(Q), the
corresponding solution 1/) to System ([2.4) satisfies

A2 // e—23a—2,usa* (35)\VN+1¢|2dasdt+ L+ )\2N+2 // e—25a—2#5a* (35)2N+1|V¢|2d$dt
+/\2N+2 e—2sa*—2;¢sa* (Sf*)2N+1|’¢|2dl‘dt
Qr
< C)\2N+2/ fe—2sa—2psa” (35)21\7-"—1 ‘MlB*(V¢)|2d$dt,
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where Mj is a linear partial differential operator of order 1 in time and ¢ + 1 in space, and 0 €
C*(Q,R) such that:

° ézlonwl,

e Supp(f) C wo,
e Hclo1]
We first remark that
A2N+2 / g P 220 (o) 2N T My B (Vo)) Pdadt
T

q+1

< C\2N+2 // 96725(172;18&* (85)2N+1 (Z (|sz*vw|2 + |atsz*vw|2)> dxdt.

=0

Using that 1 verifies (2.4)), we can deduce that

/\2N+2/ 96—23(1—2usa* (S§)2N+1 |MlB*(V’(/))|2d$dt
Qr

q+3
=25 2msa” (ge)2NH (Z |v1’B*vw2> dxdt.

=0

< CA2N+2/
Qr

Some integrations by parts give
/\2N+2/ 5672sa72;¢sa* (Sg)ZN—H |VB*(V’¢)|2d$dt
Qr
<oz [ e (524 B () [V duds
QT

woxss [ (et () B (94|l

Let € > 0. Young’s inequality gives
sz [ Geseesamen” (g4 B () [V dod
T
< CE/\2N+6 67250472#504* (S§)2N+5 |B*(V1/))‘2dl’dt

(0,T) xwo

+€)\2N—2 ( ) e—25a—2usa* (85)2N73 |V3’L/J|2d1'dt
0,7") Xwo

and also, by (2.28),

A2N+2 // |V(9~e*28a—2psa* (5§)2N+1)||B*(V1/J)||V2w|d:z:dt

< ONNHS fe 2020 (5)2NH2 | B (V) || V2| dadt
Qr
< CAPNHE e 2sem s (5e) 2N B (Va)) | davdlt
(0,T) xwo
+eX2N e~ 2sa2mse” (oo 2N g3 dadt.
(0,T) xwo

18



Thus, by taking £ small enough, we deduce that

A2 // 6—23@—2H301* (Sf)‘vN-‘rllﬁPde‘dt—‘r L+ A2N+2 // e—QSa—Q;Lsa* (86)2N+1|v¢|2d:}3dﬁ
T T
+)\2N+2 // e—ZSa*—Q;Lsa* (S§*>2N+1|w|2dl‘dt
T

< C)\2N+6 // 6—230(—2;;5:0:* (55)21\’-"—5 ‘B*(V’(/J”dedt
(O,T)Xo.)o

q+3
fe—2sa—2msa” (5¢)2N+1 (Z |viB*v¢|2> dxdt.

=2

—|—C/\2N+2 /
QT

By iterating this process for ¢ = 2,...,q + 3, we can get rid of the sum in the right-hand side and
obtain

)\2 // 6—2305—2;1,30(* (Sé-)‘vN+l,L/]|2dmdt+ L + )\2]\7—}-2 // e—ZSa—Qusa* (85)2N+1|v,¢}|2dmdt
T T
+>\2N+2 // e—QSa*—Qusa* (S§*>2N+1|w|2dl‘dt

T

<C <A2N+2+4(q+2) / / em2sa2usa” (o) 2NF1HA(0+2)) B*(v¢)|2dxdt> .
(0,T) xwo

Inequality is easily deduced by replacing the space-dependent weights by their infimum in
space in the left-hand-side and their supremum in the right-hand side, fixing s and A large enough,
then choosing p large enough (depending on |[7o]|(q)) with respect to the parameter n € (0,1),
applying usual energy estimates and remarking that the fact that v verifies enables us to add
all the derivatives in time on the left-hand side.

|
2.3 Regular control
Our goal in this section is to construct regular enough controls. Remind that 6 is defined in (2.2).
PROPOSITION 2.3. Let r € N. Assume that Condition (L.7) holds.
Under the hypotheses of Proposition [2.1], System
Oy = Ay + div(ay) + div(0Bv) in Qr,
y=0 on X, (2.35)

y(0,) =y’ in €,
is null controllable at time T, i.e. for every y° € L2(Q), there ewxists a control v € L*(Qr)™
such that the solution z to System (2.35) satisfies z(T) = 0 in Q. Moreover, we can choose u €
L2((0,T), H*r*2(Q))™ N H™1((0,T), L*(Q))™ with
0]l 2 (0.7), r2r+2(@)ymEr+2 (0,1, 22 () < CeEX T [y L2,

where K is the constant in (2.34).

Proof of Proposition Let & € N* and let us consider the following optimal control problem
s L1212 k 2
minimize Ji(v) := §||p V72 (gpym + 3 2(T)|"dx,

| (2.36)
vel :={weL*(Qr)™: P e L*(Qr)™},
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where p := =07 (for the K > 0 given by Proposition ﬁ with N an even number to be chosen
later and some fixed n € (1/2,1)) and z is the solution in W(0,T) to

Oz = Az + Bv in Qr,
y=20 on X,
y(0,) = ¢° in Q,

where

{ A=A +div(u - ), (2.37)

B :=div(B6 -).

Here, U is endowed with its natural weighted L2-norm.

The functional J; : U — R7T is differentiable, coercive and strictly convex on the space .
Therefore, following [35] [p. 116], there exists a unique solution to the optimal control problem
and the optimal control v is characterized thanks to the solution z; of the primal system by

atZk = AZk + ka in QT,

2z, =0 on X, (2.38)
2:(0,+) = ¢ in Q,
the solution ¢y to the dual system
—Ovpr = A" ¢x, in Qr,
v =0 on X, (2.39)

‘pk(Tv ) = ka(T, ) in Q

and the relation
vp = —pB*py in Qr,
2.40
{ v €U. ( )
The characterization (2.38)), (2.39) and (2.40) of the minimizer vy of Ji in U leads to the following
computations

LT, on(T)) 1)

1
Ji(vk) = _§<B*Sﬁkv”k>L2(QT)m+2

1

T T
1
= —5/0 <¢k»ka>L2(Q)dt+§/o {(2k, Oror) L2(02) + (Or2k, Pr) L2(02) pdt (2.41)

+§(y0,¢k(0, )) L2
= 5000 Ny,
Moreover, using with N = 2s and the expression of p, we infer
ler(0, M2y < CeX/T 1 20 2@y (2.42)

Now, using the definition of Ji, the expression (2.41)), the inequality (2.42) and the Cauchy-
Schwartz inequality, we infer

Il (0, ')||2L2(Q) < CeKIT" Ji (o) < CeET7 |0k (0, ) 2o 190l L2 ()

from which we deduce
(0, ) L2y < Ce2X/ T30 2(q).- (2.43)
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Then, using (2.41) and (2.43), we deduce

Ji(vi) < CeQK/TpH:UOHQp(Q)- (2.44)
Furthermore, we have (see [35, p. 116])

lzellwo.ry < C (I1BvkllLzory,m-1@) + 18°2@))
<C (||P_1/20k||52(QT)m + 1902 » (2.45)
< CA+CeXM)1y0 L2y,

where C' does not depend on 3° and k. Then, using inequalities and (2.45), we deduce that
there exist subsequences, which are still denoted v, zx, such that the following weak convergences
hold:

Vg — U inl,

2 — 2 in W(0,T),

2(T) =0 in L*(Q).
Passing to the limit in &, z is solution to System . Moreover, using the expression of Ji given
in and inequality , we deduce by letting k going to oo that z(T) = 0 in Q. Thus the
solution z to System with control v € U satisfies 2(T') = 0 in Q and using (2.44), we obtain
the inequality

JollZ, < CeK/T 4022 .

1

Since p~* > 1, using the definition of the norm on U, we also deduce that

P
HU||2L2(QT)m < Ce?XIT ||Z/O||2L2(Q)-

Now, let us explain why the controls are more regular. First of all, using the fact that ¢y, verifies

[2.39), we deduce that
1B*0cl 320y < ClORN132(00)-

Hence, for each i € {1,..., 5 —1} and k € N, using inequalities similar to (2-17) and (2.18), we deduce
that for any € > 0, there exists C' > 0 such that

00k gy = [ 011 Bl
QT
<c[[ #Epital (2.46)
T
< C// e T ARN
T

Now, we fix € > 0 small enough (with respect to 1) such that 2 — 2¢ — % > 0. With this choice of ¢,
we infer that pQ_QE_% < 1. Hence, using (2.46) together with (2.34]) and (2.44), we deduce that for
any We similarly deduce that, for each i € {0,..., 5 — 1}, ||9jvx|| € L*(Q7) and

. —2K .
Hat’ka?Lg(QT)m < C// en(T—0P |8z+1§0k|2
Qr

<C / / e T 0B (1) |2

Cllorliz

<
< OeQK/Tp

||y0||2L2(Q)'
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Thus, extracting one more time a subsequence if necessary and letting k£ go to +oo, we deduce
that for each i € {1,..., 5§ — 1},

C2K/T?

107 0]l 22(@rym < I15°1172 (@)

We similarly deduce that, for each i € {1,..., N — 2},

Il 2(@pyxixa < Ce2E/ 322 g,

The proof is completed by setting r = % + 1. |

3 Controllability to the trajectories

Let r € N. We use the strategy developed in [37], modifying it slightly to fit our case. Usual
interpolation estimates (see [36, Section 13.2, p. 96]) show that

L2((0,7), H*2(Q)) n H™((0,T), L*()) < L*((0,T), H**(Q)) N H'((0,T), H*" (),
from which we deduce
L*((0,T), H*""2(Q)) n H™1((0,T), L*()) = L>((0,T), H*"(Q)).
Now, there exists R > 0 large enough such that by Sobolev embeddings, we have
L2((0,7), H*2(Q)) n HT1((0,T), L2()) < L>=((0,T), W (Q)).

Hence, from Proposition and Remark for any y° € L2(f), there exists a control v €
L>((0,T), WH°(Q))™ such that the solution y to System (2.3)) satisfies y(7) = 0 in Q and

[v][ Lo ((0,7), w100 (2))m < CBK/Tv”yoHLQ(Q),

where K > 0 is the constant given by Proposition with N = 2R and p > 2 is given in Proposition
21

Letting the system evolve freely a little bit if needed, we may assume without loss of generality
that y° —7° € H (). Indeed, by the regularizing effect, it is very easy to deduce that for any solution
(y,u) to (L.4), there exists some C(T') > 0 such that for any solution (y,0) to on [0, Z], we have
v(3) ~7(3) € Hy(®) and

TN _ (T 7
[y <2> —Y (2> @) < CDOlY" =7l z2(0)-

Hence, if [|y° —7°||12(q) is small, so is ||y (3) =7 (£) ||m1(q), so that the condition (L5) is sufficient
for our argument to be valid.
Following [37, p. 24], we introduce the cost of controllability given by

y(t) = Ce™™ e (0,T),
and the following weight functions

pr(t) = e TP ¢ € [0,T]
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and

polt) = eI TG RT € [T (1 B ) ,T} ,

extended on [0, T (1 - %)] by

o (r(o- D) seor(- L)

for some parameters ¢ > 1 and a > 0 to be chosen later on.

Q

We remark that pr and py are non-increasing, verify pp(T) = po(T) = 0 and are related by the
relation

1
palt) = (T =0+ Thla— DT -0, ee |7 (1- L) 7]
We introduce for some 5 > 0 the weight function
___ =8
p(t) = ¢ TP
We remark that
pr < Cp, po < Cp, |p'lpo < Cp?,
as soon as 8 > 0 is chosen small enough, precisely
@
B < peresl (3.1)
We introduce the following spaces:
F ={f e L*(0,T) x Q) such that pi € L*((0,T) x )},
F

U = {ue L®(0,T), WH(Q))™ such that pﬂ € L®((0,T), Wh>(Q))™},
0

2 = {2 € C°((0,T), Hy () n L*((0,T), H*() N Hy () N H'((0,T), L*(2))
such that % € C°([0, 7], Hy (2)) N L*((0,T), H*(2) N Hg () N H'((0,T), L*(2))},
endowed with the weighted Sobolev norms naturally induced by the definition of these spaces.

Following [37), Proofs of Propositions 2.5, 2.8] in the spirit of [31] Section 7.2 and Appendix 5], it
is easy to obtain the following result.

PROPOSITION 3.1. For any 2° € H}(Q) and any f € F, there exists v € U such that the solution

z of
Oz = Az +div(uz) + div(6yBv) + f  in Qr,
z =0 on X,
2(0,-) =2° in Q,

verifies z € Z (and hence z(T) = 0).

To conclude, we use the following inverse mapping theorem:
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THEOREM 3.1 (see [3]). Let X and Y be Banach spaces and let M : X Y be a C' mapping. Let
us assume that the derivative M'(0) : X — Y is onto and let us set yo = M (x¢) with xg € X and
yo € Y. Then there exist 1 > 0, a mapping W : By (yo) C Y — X and a constant K > 0 satisfying:

{ W(z) € X and M(W(z)) = z Vz € B, (yo),
[W(z) — zollx < Kllz = yolly Vz € By(yo)-

Proof of Theorem We are looking for a solution in the form
y(,t) =y(z,t) + wiz,t), u(z,t) =u(z,t) + 0(z)Br(z,t),

where (y, ) and (7, @) are solution to the Systems (1.1)) and (1.4)), respectively. Then (w, r) is solution
to

N(w,r) = Ow — Aw —div(aw + 0Bry+ 0Brw) =0 in Qr,
w = 0 on 2T7
w(©0,) = ¥ -7 in Q.

We introduce the following spaces:
X = {(w,r) € Z xU such that dw — Aw — div(aw + Bry) € F},
endowed with the norm
(w,r)llx = [[w]|z + [|rlle + [[0:w = Aw = div(ww + 0Bry)|| 7,

and the space
Y =F x Hy(Q),

endowed with the norm
N 20y = 1FlF + 11220 0)-

Introduce the mapping M given by

M : X — Yy
(w,r) — (N(w,r),w(0,-)).

Let us determine what are the conditions on ¢, o, 5 ensuring that M is well-defined. It is clear that

w
110(0, )11 oy < Ilellom oy s ey < ch

< (w7l
€O (10,71, H3 ()

Now, we remark that by definition of the space X', we have

[|0;w — Aw — div(aw + 0Bry)|| 7 < ||(w,7)|| -

Hence, the only difficulty is to treat the bilinear part div(éwBr). We remark that

We can impose that p? < Cpr and p2 < Cpr as soon as

w

1
2
P

r

1
2
P

div(6wBr)
PF

<C
L2((0,T)x)

Loo((0,7), W2 (Q)) L2((0,7),H'(2))

a <23 and ¢*P*? < 2. (3.2)
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Remark that these conditions are compatible with condition (3.1)).
Hence, under conditions (3.1) and (3.2), we deduce that

We conclude that under these conditions, M is indeed well-defined and continuous. Moreover,
we remark that M (0,0) = (0,0) and M is of class C* as a sum of a linear continuous function and
a quadratic continuous function. Furthermore, Proposition exactly means that M’(0,0) is onto
(see Remark . Theorem leads to the conclusion.

r

Po

div(wBq) w

PF

< O|(w, )| 13-
L2((0,7),H(2))

<C
L2((0,T)x Q)

L>((0,T),W1e°(Q)) H p

4 Example of a non-controllable trajectory with a reduced
number of controls

In this section, we give an example of trajectory which does not satisfy condition and for which
the local controllability to the trajectories does not hold.

Consider @ € L*>°(Q7)™ which will be determined later on. Assume that for each 3° € L?(Q)\ {0}
the following system is locally controllable to the trajectories with a control operator B

0y = Ay +div(zy) in Qr,
? =0 on ZT;
7(0,)) =7 in Q.

Then for each ¢ € (0,1) small enough, there exists u € L>(Qr)™ such that

Oy = Ay +div(uy) in Qr,
Y =0 on X,
y(O, ) = (1 - E)?O in Q)
y(T,:) =79(T) in €,

where u = @ + Bv with Supp(v) C (0,T) x w. We remark that (z,w) := (y — 7, yv) is solution to

Oz = Az +div(uz) + div(Bw) in Qr,
z =0 on X,

4.1
2(0,") =ey° in Q, (4.1)
2(T,-) =0 in Q.

We deduce that System (4.1]) is null controllable at time 7" > 0, then approximately controllable at
time T > 0. It is well known that the approximate controllability of System (4.1) on (0,7") implies
the following property, called the Fattorini-Hautus test (see e.g. [39]) : for every s € C and every
¢ € D(A),

—Ap—1u-Vp=s in Q
4 v — (4.2)
B*Vp =0 inw
We now give an explicit @ in contradiction with (4.2).

Let d =2, Q= (0,7)2, w= (5r/24,77/24)? and B = (1,0).
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Consider p(z1,22) = @1(x1)p2(x2), where p1 € C°([0,7],R) and w2 € C°°([0,7],R) any two
functions verifying
sin(zy) in [0, 7]\(7/6,27/6),
p1(r1) =< 1 in w,
w1 #0 on (0,7)
and
sin(xs) in [0, 7]\ (7 /6,27/6),
po(a2) = { sin(225)  inw,
oh(z2) #0  in [1/6,57/24] U [Trr/24, 27 /6).

Remark that it is possible to impose the last condition, since @o(7/6) # w2(57/24) and o (T7/24) #
v2(27/6). Now, we introduce

_ ] (0,0) in (0,7/6) U (5w /24,7x/24) U (27 /6, ),

] (0, —%) otherwise.

Remark that u is well-defined. Indeed, by construction, 9, # 0 in [7/6, 57/24] U [7r/24, 27 /6] and

1 # 0 on [0, 7]. Moreover, by construction, 2¢ + Ay = 0 on (0, 7/6)U (57 /24, 77 /24) U (27 /6, 7), so

that the extension by 0 of the function % defined on (0,7/6) U (57/24,7m/24) U (27 /6,7) is of
w3

class C* on ). We deduce that @ is of class C* on 2. To conclude, we remark that by construction,

—Ap—u-Ve=2p in
aan@:o inw,
¢ # 0.

Thus, we obtain a contradiction with (4.2).
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