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Abstract

This work is devoted to the control of the Fokker-Planck equation, posed on a bounded domain

of Rd (d > 1). More precisely, the control is the drift force, localized on a small open subset.

We prove that this system is locally controllable to regular nonzero trajectories. Moreover,

under some conditions on the reference control, we explain how to reduce the number of controls

around the reference control. The results are obtained thanks to a linearization method based

on a standard inverse mapping procedure and the �ctitious control method. The main novelties

of the present article are twofold. Firstly, we propose an alternative strategy to the standard

�ctitious control method: the algebraic solvability is performed and used directly on the adjoint

problem. Secondly, we prove a new Carleman inequality for the heat equation with one order

space-varying coe�cients: the right-hand side is the gradient of the solution localized on a subset

(rather than the solution itself), and the left-hand side can contain arbitrary high derivatives of

the solution.

Keywords:Controllability, Parabolic equations, Carleman estimates, Fictitious control method,

Algebraic solvability.
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1 Introduction and main results

1.1 Introduction

Let T > 0 and let Ω be a bounded domain in Rd (d ∈ N∗), regular enough (for example of class

C∞). Denote by QT := (0, T )× Ω and ΣT := (0, T )× ∂Ω. We consider the following system
∂ty = ∆y + div(uy) in QT ,

y = 0 on ΣT ,

y(0, ·) = y0 in Ω,

(1.1)

where y0 ∈ L2(Ω) is the initial data and u = (u1, ..., ud) ∈ L∞((0, T )× Ω)d is the control.

It is well-known (see for instance [23, Theorem and Proposition 3.1]) that for every initial data

y0 ∈ L2(Ω) and every control u ∈ L∞((0, T )× Ω)d, there exists a unique solution y to System (1.1)

in the space W (0, T ), where

W (0, T ) := L2((0, T ), H1
0 (Ω)) ∩H1((0, T ), H−1(Ω)) ↪→ C0([0, T ];L2(Ω)).

Equation (1.1), introduced in [30], is called the Fokker-Planck equation. In the case where the

Fokker-Planck equation is posed on the whole space Rd, it is strongly related to the stochastic

di�erential equation (SDE){
dXt =

∑d
i=1 ui(Xt)dt+ dWt in (0, T )× Rd,

X(0, ·) = X0 in Rd,
(1.2)

whereWt is the standard multi-dimensional Brownian motion starting from 0. System (1.2) describes

the movement of a particule of negligible mass, with constant and isotropic di�usion, under the action

of a force �eld u = (u1, . . . , ud).

Under some regularity conditions on the drift term U , it is well-known that, by the Itô Lemma,

the probability density function p associated to (1.2) veri�es{
∂tp = 1

2∆p+ div(up) in (0, T )× Rd,
p(0, ·) = p0 in Rd,

(1.3)

where p0 is some initial probability density function (see e.g. [41, Section 5.3]). By de�nition of a

probability measure, we have p0 > 0 a.e. and
∫
Rd p

0 = 1. It is then very easy to prove that these

properties are preserved during time: any solution p of System (1.3) veri�es also p(t, ·) > 0 a.e. and∫
Rd p(t, ·) = 1, for any t ∈ [0, T ] and hence remains a probability measure. We refer to [42] for

more explanations on the Fokker-Planck equation, notably in the case of nonlinear drift terms or

non-constant and anisotropic di�usion.

However, in the case where we impose Dirichlet boundary conditions as in (1.1), the derivation

of the Fokker-Planck equation from a SDE is more di�cult: the Brownian motion has to be replaced

by an �absorbed� or �killed� Brownian motion, see e.g. [11, pp. 31-60]. Moreover, the total mass of

the initial condition is not conserved anymore, meaning that the probability of remaining inside Ω

decreases in time, and the solution to (1.1) is not a probability density function anymore. We refer

to [23, Section 2] for a discussion on the relevance of Dirichlet boundary conditions in this context.

Neumann boundary conditions (that would restore the conservation of mass) seem to be beyond the

scope of the present article.
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While the controllability properties of the scalar linear heat equation in the case of internal

control and Dirichlet boundary condition are now well-understood (see notably [32] and [24]), bilinear

controllability seems to have been less explored. Equation (1.1) has been studied in [8], in the whole

space and with controls localized everywhere in space and time. Concerning bilinear control in

the case where the bilinear term div(uy) is replaced by uy with u ∈ L∞((0, T ) × Ω), we refer to

[9, 10, 27, 28, 26, 29, 34, 40, 44, 45].

Let us mention that bilinear optimal control of parabolic equations has previously been studied.

A �rst result was proved in [1], where a close forth-order in time model is investigated, with controls

depending only on time. This result has been extended to second-order parabolic equations �rstly

in [4] in the one-dimensional case, then in [5] in the multi-dimensional case, still for time-varying

controls. For equation (1.1) (in a slightly more general form), the case of space and time-varying

controls is treated in [23]. Notably, for a drift term that is a�ne in the control, the authors prove the

existence of optimal controls for general cost functionals, and derive �rst-order necessary optimality

conditions using an adjoint state. The controllability of the continuity equation, i.e. System (1.1)

without di�usion, has been investigated in [19, 20].

The structure of the article is as follows. In Section 1.2, we give the mains results of the article

(Theorem 1.1, resp. Theorem 1.2, which gives a result of local controllability to the trajectories with

d components, resp. a reduced number of controls around the reference control) and some remarks.

Section 2 is devoted to studying a linearized version of (1.1). In Section 2.1, we prove a new Carleman

estimate (Proposition 2.1) for solutions of the linear backward heat equation with one-order terms.

The main novelty is that the local observation term is the gradient of the solution of the adjoint

problem (2.4). This has already been proved in [17] for constant coe�cients. Moreover, we are able

to put as many derivatives as we want in the left-hand side of our Carleman estimate, which will

be needed for the rest of the proof. In Section 2.2, we explain how to remove some components of

the gradient in the Carleman inequality. This is performed by using what we call an argument of

�algebraic solvability� (as introduced in [12] in the context of the stabilization of ODEs and in [16]

for the study of coupled systems of PDEs), based on ideas developed by Gromov in [25, Section

2.3.8]. This procedure has already been used successfully in [2, 17, 18, 15, 33, 43]. The main novelty

compared to the existing literature is that the algebraic solvability is performed directly on the dual

problem. Moreover, we are able to get rid of the high order derivatives of the right in order to obtain

the �nal Carleman estimate (2.34). In Section 2.3, we use some arguments coming from optimal

control theory in order to derive from our observability inequality the existence of regular enough

controls, with a special form, in appropriate weighted spaces. In Section 3, we go back to the nonlinear

problem by using a standard strategy coming from [37] together with some adapted inverse mapping

Theorem. To �nish, in Section 4, we give an example of trajectory for which the local controllability

does not hold with a reduced number of controls.

1.2 Mains results

Let (y, u) be a trajectory of (1.1), i.e. verifying
∂ty = ∆y + div(uy) in QT ,

y = 0 on ΣT ,

y(0, ·) = y0 ∈ L2(Ω) \ {0} in Ω.

(1.4)
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1.2.1 Controls with d components

We �rst state a result of local controllability to the trajectories to System (1.4) with a control

containing d components:

Theorem 1.1. Let ω be any nonempty open subset of Ω. Assume that the trajectory (y, u) with

u = (u1, ..., ud) of System (1.4) is regular enough (for example of class C∞ on (0, T )× Ω), and that

there exists some open subset ωu, strongly included in Ω, such that the support of u is included in

[0, T ]× ωu.
Then, System (1.1) is locally controllable with localized controls, in the following sense:

for every ε > 0 and every T > 0, there exists η > 0 such that for any y0 ∈ L2(Ω) verifying

||y0 − y(0)||L2(Ω) 6 η, (1.5)

there exists a trajectory (y, u) to System (1.1) such that

y(T ) = y(T ),

u = u+ v for some v ∈ L∞((0, T )× Ω)d,

Supp (v) ⊂ (0, T )× ω,
||v||L∞((0,T )×Ω)d 6 ε,

||y − y||W (0,T ) 6 ε.

Remark 1. • The regularity assumptions on (y, u) can be improved, notably it is enough that the

reference trajectory is Cr for some r ∈ N∗ large enough, on an open subset of (0, T )× ω0.

• If y0 = 0, the only solution to (1.1) is y ≡ 0, whatever u is, so that the only reachable state at

time T is 0. As a consequence, η > 0 has notably to be chosen small enough such that y0 6= 0.

• From the results given in [7], as soon as y0 > 0, then any trajectory to System (1.1) remains

non-negative (see also [23]). This fact di�ers from the usual linear heat equation with internal

control (see [38]).

1.2.2 Controllability acting through a control operator

In this section, we give a result of local controllability to the trajectories to System (1.4) with a

control acting through a control operator B ∈Md,m(R) with m ∈ N∗ such that m 6 d.

We �rst introduce some notations. Let q ∈ N and consider the following set

E(m, q) = {(α1, . . . , αm) ∈ Nm | 0 < α1 + . . .+ αm 6 q},

with the convention that E(m, q) = ∅ if q = 0. Note that by an elementary computation,

#E(m, q) =
(q +m)!

m!q!
− 1 =: N(m, q).

For v ∈ Rm, we write Bv = (B1v, . . . , Bdv) ∈ Rd. For j ∈ {1, ...,m}, we write

(B∗m.∇) : ψ ∈ C∞(Rd) 7→ B∗m(∇ψ) ∈ C∞(Rd).

For (α1, . . . αm) ∈ E(m, q), we introduce the following operator:

(B∗.∇)α1,...αm : ψ ∈ C∞(Rd) 7→ (B∗1 .∇) . . . (B∗1 .∇)︸ ︷︷ ︸
α1 times

. . . (B∗m.∇) . . . (B∗m.∇)︸ ︷︷ ︸
αm times

ψ ∈ C∞(Rd).
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We introduce the following matrix:

Mq(u) =



B∗1
...

B∗m
(B∗.∇)1,0,...,0u1 . . . (B∗.∇)1,0,...,0ud
(B∗.∇)0,1,...,0u1 . . . (B∗.∇)0,1,...,0ud

...
. . .

...

(B∗.∇)0,...,0,qu1 . . . (B∗.∇)0,...,0,qud


∈MN(m,q)+m,d(R). (1.6)

We have the following controllability result.

Theorem 1.2. Let m ∈ N∗ (with possibly m < d). Under the hypothesis of Theorem 1.1, assume

that there exists q ∈ N and some (t0, x0) ∈ (0, T )× ω such that

Rank(Mq(u)(t0, x0)) = d. (1.7)

Then, System (1.1) is locally controllable with localized controls, in the following sense:

for every ε > 0 and every T > 0, there exists η > 0 such that for any y0 ∈ L2(Ω) verifying

||y0 − y(0)||L2(Ω) 6 η,

there exists a trajectory (y, u) to System (1.1) such that

y(T ) = y(T ),

u = u+Bv for some v ∈ L∞((0, T )× Ω)m,

Supp (v) ⊂ (0, T )× ω,
||v||L∞((0,T )×Ω)m 6 ε,

||y − y||W (0,T ) 6 ε.

Remark 2. • Remark that if B = Id (i.e. we control every component of the gradient of u),

condition (1.7) is automatically veri�ed for q = 0, whatever u is. Hence Theorem 1.2 contains

the result given in Theorem 1.1. Thus we will only give a proof of Theorem 1.2.

• Condition (1.7) notably implies that q has to be chosen large enough such that N(m, q) > d−m.

• Assumption (1.7) is generic, in the following sense: if C∞((0, T )× ω)2 is endowed with the Cq

topology, the sets of the functions (y, u) ∈ C∞((0, T )×ω)2 verifying (1.7) is an dense open set.

• In Section 4, we give an example of trajectory which does not satisfy condition (1.7) and for

which the local controllability to the trajectories does not hold. It highlights that Condition

(1.7) is not arti�cial. Even if the authors think that Condition 1.7 is optimal, �nd a necessary

and su�cient condition remains on open problem.

Exemple 1.1. We give an explicit example, in order to explain better condition (1.7). Let us assume
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that we want to control only the m(< n) �rst components of the gradient, i.e.

B =



1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

0 . . . . . . 0
...

...

0 . . . . . . 0


∈Mn,m(R).

Then for any q ∈ N such that N(m, q) > d−m, we have

Mq(u) =



1 0 . . . . . . . . . . . . 0

0 1 0 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0 . . . 0

∂x1u1 ∂x1
u2 . . . . . . ∂x1

um+1 . . . ∂x1
ud

...
...

...

∂xmu1 . . . . . . . . . ∂xmum+1 . . . ∂xmud
∂2
x2
1
u1 . . . . . . . . . ∂2

x2
1
um+1 . . . ∂2

x2
1
ud

...
...

...

∂p
xqm
u1 . . . . . . . . . ∂q

xqm
um+1 . . . ∂q

xqm
um+1



∈MN(m,q)+m,d(R).

We observe that Mq(u) is of maximal rank d if and only if the following matrix:

M̃q(u) =



∂x1
um+1 . . . ∂x1

ud
...

...

∂xmum+1 . . . ∂xmud
∂2
x2
1
um+1 . . . ∂2

x2
1
ud

...
...

∂q
xqm
um+1 . . . ∂q

xqm
um+1


∈MN(m,q),d−m(R),

is of maximal rank d−m.

2 Null controllability of the linearized system

In what follows, we always assume that the trajectory (y, u) of (1.4) veri�es the hypothesis of Theorem

1.1. Consider the following linear parabolic system
∂ty = ∆y + div(uy) + div(θu) in QT ,

y = 0 on ΣT ,

y(0, ·) = y0 in Ω,

(2.1)
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where y0 ∈ L2(Ω) and θ ∈ C∞(Ω) is such that
Supp(θ) ⊆ ω,
θ ≡ 1 in ω0,

0 6 θ 6 1 in Ω,

(2.2)

for some non-empty open subset ω0 which is strongly included in ω. The goal of this section is to

prove the null controllability of System (2.1), with less controls than equations and regular enough

controls in a special form.

Remark 3. Note that the null controllability of (2.1) is equivalent to the null controllability of the

�real� linearized version of (1.1) around (y, u) given by
∂ty = ∆y + div(uy) + div(yũ) in QT ,

y = 0 on ΣT ,

y(0, ·) = y0 in Ω.

(2.3)

Indeed, by unique continuation of the solution y of (1.4), as soon as y0 6= 0, since y cannot vanish

on a subset of (0, T )× Ω of positive measure (see [6]) and y is in C∞((0, T )× Ω), there exists some

subset (T1, T2)× ω̃0 of (0, T )× ω0 such that |y| > C > 0 on (T1, T2)× ω0, that we can assume to be

exactly (0, T )× ω0 without loss of generality. Hence, for any i ∈ {1, . . . , d}, one can solve (in ũi) the

equation θui = yũi by posing

ũi =
θui
y
.

Remark that ũi enjoys the same regularity properties as ui.

2.1 Carleman estimates

Let us consider the following adjoint system associated to System (2.1)
−∂tψ = ∆ψ + u · ∇ψ in QT ,

ψ = 0 on ΣT ,

ψ(T, ·) = ψ0 in Ω.

(2.4)

First of all, we will introduce some notations. We denote by | · | the euclidean norm on RM ,

whatever M ∈ N∗ is. For s, λ > 0 and p > 1, let us de�ne the two following functions:

α(t, x) :=
exp((2p+ 2)λ‖η0‖∞)− exp[λ(2p‖η0‖∞ + η0(x))]

tp(T − t)p
(2.5)

and

ξ(t, x) :=
exp[λ(2p‖η0‖∞ + η0(x))]

tp(T − t)p
. (2.6)

Here, η0 ∈ C∞(Ω) is a function satisfying

|∇η0| > κ in Ω\ω1, η0 > 0 in Ω and η0 = 0 on ∂Ω,

with κ > 0 and ω1 some open subset verifying ω1 ⊂⊂ ω0. The proof of the existence of such a

function η0 can be found in [24, Lemma 1.1, Chap. 1] (see also [13, Lemma 2.68, Chap. 2]). We will

use the two notations

α∗(t) := max
x∈Ω

α(t, x) and ξ∗(t) := min
x∈Ω

ξ(t, x), (2.7)
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for all t ∈ (0, T ). Note that these maximum and minimum are reached at the boundary ∂Ω. For

s, λ > 0, let us de�ne

I(s, λ;u) := s3λ4

∫∫
QT

e−2sαξ3u2dxdt+ sλ2

∫∫
QT

e−2sαξ|∇u|2dxdt. (2.8)

Let us now give some useful auxiliary results that we will need in our proofs. The �rst one is a

Carleman estimate which holds for solutions of the heat equation with non-homogeneous Neumann

boundary conditions:

Lemma 2.1. There exists a constant C > 0 such that for any u0 ∈ L2(Ω), f1 ∈ L2(QT ) and

f2 ∈ L2(ΣT )., the solution to the system
−∂tu−∆u = f1 in QT ,
∂u
∂n = f2 on ΣT ,

u(T, ·) = u0 in Ω

satis�es

I(s, λ;u) 6 C

(
s3λ4

∫∫
(0,T )×ω1

e−2sαξ3u2dxdt+ sλ

∫∫
ΣT

e−2sα∗ξ∗f2
2 dσdt

+

∫∫
QT

e−2sαf2
1 dxdt

)
,

for all λ > C and s > C(T p + T 2p).

Lemma 2.1 is proved in [22, Theorem 1] in the case p = 1. However, following the steps of the

proof given in [22], one can prove exactly the same inequality for any p ∈ N∗.
From Lemma 2.1, one can deduce the following result:

Lemma 2.2. Let f ∈ L2(ΣT ), G = (g1, . . . gd) ∈ L∞(QT )d and h ∈ L2(QT ). Then there exists a

constant C > 0 such that for every ϕT ∈ L2(Ω), the solution ϕ to the system
−∂tϕ = ∆ϕ+G · ∇ϕ+ h in QT ,
∂ϕ
∂n = f on ΣT ,

ϕ(T, ·) = ϕT in Ω

satis�es

I(s, λ;ϕ) 6 C

(
s3λ4

∫∫
(0,T )×ω1

e−2sαξ3ϕ2dxdt+ sλ

∫∫
ΣT

e−2sα∗ξ∗f2dσdt+

∫∫
QT

e−2sαh2dxdt

)
,

for every λ > C and s > s0 = C(T p + T 2p).

The proof of Lemma 2.2 is standard and is left to the reader (one just has to apply Lemma 2.1

and absorb the remaining lower-order terms thanks to the left-hand side).

We will also need the following estimates.

Lemma 2.3. Let r ∈ R. Then there exists C := C(r, ω1,Ω) > 0 such that, for every T > 0 and

every u ∈ L2((0, T ), H1(Ω)),

sr+2λr+2

∫∫
QT

e−2sαξr+2u2dxdt 6 C

(
srλr

∫∫
QT

e−2sαξr|∇u|2dxdt

+sr+2λr+2

∫∫
(0,T )×ω1

e−2sαξr+2u2dxdt

)
,

for every λ > C and s > C(T 2p).
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The proof of this lemma can be found for example in [14, Lemma 3] in the case p = 9. However,

following the steps of the proof given in [14], one can prove exactly the same inequality for any p ∈ N∗.
In order to deal with more regular solutions, one needs the following lemma.

Lemma 2.4. Let z0 ∈ H1
0 (Ω), G ∈ C∞(QT )d and f ∈ L2(QT )m. Let us denote by R := −∆−G ·∇

and consider the solution z to the system
∂tz = ∆z +G · ∇z + f in QT ,

z = 0 on ΣT ,

z(0, ·) = z0 in Ω.

Let n ∈ N. Let us assume that z0 ∈ H2n+1(Ω), f ∈ L2((0, T ), H2n(Ω)) ∩ Hn((0, T ), L2(Ω)) and

satisfy the following compatibility conditions:
g0 := z0 ∈ H1

0 (Ω),

g1 := f(0, ·)−Rg0 ∈ H1
0 (Ω),

...

gd := ∂n−1
t f(0, ·)−Rgd−1 ∈ H1

0 (Ω).

(2.9)

Then z ∈ L2((0, T ), H2n+2(Ω)) ∩Hn+1((0, T ), L2(Ω)) and we have the estimate

‖z‖L2((0,T ),H2n+2(Ω))∩Hn+1((0,T ),L2(Ω)) 6 C(‖f‖L2((0,T ),H2n(Ω))∩Hn((0,T ),L2(Ω)) + ‖z0‖H2n+1(Ω)).

It is a classical result that can be easily deduced for example from [21, Th. 6, p. 365].

We are now able to prove the following crucial inequality:

Proposition 2.1. Let N ∈ N with N > 3 . Then, there exists C > 0 such that for every

ψ0 ∈ L2(Ω), the corresponding solution ψ to System (2.4) satis�es

λ2

∫∫
QT

e−2sα−2µsα∗(sξ)|∇N+1ψ|2dxdt+ . . .+ λ2N+2

∫∫
QT

e−2sα−2µsα∗(sξ)2N+1|∇ψ|2dxdt

+λ2N+2

∫∫
QT

e−2sα∗−2µsα∗(sξ∗)2N+1|ψ|2dxdt

6 Cλ2N+2

∫∫
(0,T )×ω0

e−2sα−2µsα∗ (sξ)
2N+1 |∇ψ|2dxdt

(2.10)

for every λ > C and s > s0 = C(T p + T 2p).

Such a Carleman inequality seems new to the authors in the context of non-constant coe�cients

(it was proved in [17] in the case of constant coe�cients). The main improvement comes from the

fact that the observation is a gradient of the solution ψ on ω0 (and not the solution itself). We are

also able to introduce as many derivatives of ψ as we want in the left-hand side, as soon as ui is

regular enough.

Remark 4. • Note that the proof proposed here relies on the fact that the lower-order terms in

equation (2.4) are of order 1, and would fail in the presence of lower-order terms of order 0.

Indeed, in the �rst step of our proof (inequality (2.13)), some term that cannot be absorbed

will appear.

• Note that inequality (2.10) automatically implies that any solution ψ of (2.4) lives in high order

weighted Sobolev spaces. This is not a surprise since we know that away from the �nal time

t = T , any solution of (2.4) is regular.
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Proof of Proposition 2.1.

The proof is inspired by [14] and is quite similar to [17]. Let µ > 0. In all what follows, C > 0 is

a constant that does not depend on s or λ (but that might depend on the other parameters, notably

p, N , η, T , µ) and that might change from inequality to inequality. We assume without loss of

generality that N is odd (the case N even can be treated similarly).

Let ψ the solution to System (2.4). We introduce the following auxiliary functions:

ρ∗0 := e−µsα
∗
, ψ1 := ρ∗0ψ. (2.11)

Then ψ1 is solution of 
−∂tψ1 = ∆ψ1 + u · ∇ψ1 − ∂tρ∗0ψ in QT ,

ψ1 = 0 on ΣT ,

ψ1(T, ·) = 0 in Ω.

(2.12)

We remark that φ := ∇Nψ1 (the operator ∇ applied N times, or in other words, all the derivatives

of order N of ψ1, ordered for example lexicographically) satis�es the system
−∂tφ = ∆φ+

N∑
i=1

Gi · ∇iψ1 + u · ∇φ− ∂tρ∗0∇Nψ in QT ,

∂φ
∂n = ∂φ

∂n on ΣT ,

φ(T, ·) = 0 in Ω,

where, for any i ∈ {1, ..., N}, Gi is an essentially bounded tensor of appropriated size, whose coe�-

cients are depending only on ui and its derivatives in space up to the order i. Applying Lemma 2.2

to the di�erent components of φ, we obtain the following estimate

I(s, λ;φ) 6 C

(
s3λ4

∫∫
(0,T )×ω1

e−2sαξ3|φ|2dxdt+ sλ

∫∫
ΣT

e−2sα∗ξ∗
∣∣∣∣∂φ∂n

∣∣∣∣2 dσdt
+

∫∫
QT

e−2sα
N∑
i=1

|∇iψ1|2dxdt+

∫∫
QT

e−2sα|∂tρ∗0∇Nψ|2dxdt

)
.

(2.13)

The rest of the proof is divided into four steps:

• In a �rst step, we will estimate the boundary term appearing in the right-hand side of (2.13)

by some global interior term involving ψ1, which will be absorb later on (in the last step). We

will also absorb the last term of the right-hand side under some condition on p.

• In a second step, we will estimate the last term in the right-hand side of (2.13) by some local

terms involving ∇ψ1 and its derivatives on ω1, and get rid of the third term of the right-hand

side.

• In a third step, we will estimate the high-order local terms created at the previous step by some

local terms involving only ∇ψ1 on ω0.

• In a last step, we will use some Poincaré-like inequality in order to recover the variable ψ in

the left-hand side and bound the global interior term of the right-hand side involving ψ1 by

an interior term involving ∇ψ. We will conclude by coming back to the original variable ψ, in

order to establish (2.10).
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Step 1: Let θ̃ ∈ C2(Ω) a function satisfying

∂θ̃

∂n
= θ̃ = 1 on ∂Ω.

An integration by parts of the boundary term leads to

sλ

∫ T

0

e−2sα∗ξ∗
∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣2 dσdt = sλ

∫ T

0

e−2sα∗ξ∗
∫
∂Ω

∂φ

∂n
∇φ · ∇θ̃dσdt

= sλ

∫ T

0

e−2sα∗ξ∗
∫

Ω

∆φ∇φ · ∇θ̃dxdt+ sλ

∫ T

0

e−2sα∗ξ∗
∫

Ω

∇(∇θ̃ · ∇φ) · ∇φdxdt.

Hence

sλ

∫ T

0

e−2sα∗ξ∗
∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣2 dσdt 6 Cλ

∫ T

0

e−2sα∗sξ∗‖ψ1‖HN+2(Ω)‖ψ1‖HN+1(Ω)dt.

Using the interpolation inequality

‖ψ1‖HN+2(Ω) 6 C‖ψ1‖1/2HN+1(Ω)
‖ψ1‖1/2HN+3(Ω)

and Young's inequality ab 6 aq

q + bq
′

q′ ( 1
q + 1

q′ = 1) for a, b > 0 and q = 4, we deduce that for any

c ∈ R, we have

λ

∫ T

0

e−2sα∗sξ∗
∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣2 dσdt 6 Cλ

∫ T

0

e−2sα∗(sξ∗)c‖ψ1‖1/2HN+3(Ω)
(sξ∗)(1−c)‖ψ1‖3/2HN+1(Ω)

dt

6 Cλ

∫ T

0

e−2sα∗(sξ∗)4c‖ψ1‖2HN+3(Ω)dt

+Cλ

∫ T

0

e−2sα∗(sξ∗)
4(1−c)

3 ‖ψ1‖2HN+1(Ω)dt.

(2.14)

Consider the function ψ2 := ρ∗1ψ1, where

ρ∗1 := (sξ∗)
2(1−c)

3 e−sα
∗
. (2.15)

The function ψ2 is solution to the system
−∂tψ2 = ∆ψ2 + u · ∇ψ2 − ∂t(ρ∗1)ψ1 − ρ∗1∂t(ρ∗0)ψ in QT ,

ψ2 = 0 on ΣT ,

ψ2(T, ·) = 0 in Ω.

Using Lemma 2.4 for ψ2 (remark that the compatibility conditions (2.9) are veri�ed, since ψ2(T, ·) = 0

and u has spatial support strongly included in Ω), we deduce that

‖ψ2‖L2((0,T ),H2n+2(Ω))∩Hn+1((0,T ),L2(Ω)) 6 C‖∂t(ρ∗1)ψ1 + ρ∗1∂t(ρ
∗
0)ψ‖L2((0,T ),H2n(Ω))∩Hn((0,T ),L2(Ω)),

(2.16)

for n = 1, 2, . . . , (N + 1)/2. The de�nitions of ξ∗ and α∗ given in (2.7), the de�nition of ρ∗0 given in
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(2.11), and the de�nition of ρ∗1 given in (2.15) lead to

|∂tρ∗0| 6 C(sξ∗)1+ 1
p e−µsα

∗
,

...

|∂
N+3

2
t ρ∗0| 6 C(sξ∗)

N+3
2 +N+3

2p e−µsα
∗
,

|∂tρ∗1| 6 C(sξ∗)
2(1−c)

3 +1+ 1
p e−sα

∗
,

...

|∂
N+3

2
t ρ∗1| 6 C(sξ∗)

2(1−c)
3 +N+3

2 +N+3
2p e−sα

∗
.

(2.17)

Remark that for any k 6 l, we have

|∂kt ρ∗0| 6 C|∂ltρ∗0|. (2.18)

Combining (2.16) for n = (N − 1)/2, (2.17), (2.18) and the equations satis�ed by ψ and ψ1, we

obtain

λ

∫ T

0

e−2sα∗(sξ∗)
4(1−c)

3 ‖ψ1‖2HN+1(Ω)dt 6 Cλ

(∫ T

0

e−2sα∗(sξ∗)
4(1−c)

3 +N+1+N+1
p ||ψ1||2L2(Ω)dt

+

∫ T

0

e−2(1+µ)sα∗(sξ∗)
4(1−c)

3 +N+1+N+1
p ||ψ||2L2(Ω)dt

+

∫ T

0

e−2sα∗(sξ∗)
4(1−c)

3 +2+ 2
p ||ψ1||2HN−1(Ω)dt+

∫ T

0

e−2(1+µ)sα∗(sξ∗)
4(1−c)

3 +2+ 2
p ||ψ||2HN−1(Ω)dt

)
.

(2.19)

In the right-hand side of (2.19), we would like to estimate the terms∫ T

0

e−2sα∗(sξ∗)
4(1−c)

3 +2+ 2
p ||ψ1||2HN−1(Ω)dt and

∫ T

0

e−2(1+µ)sα∗(sξ∗)
4(1−c)

3 +2+ 2
p ||ψ||2HN−1(Ω)dt.

This can be done using exactly the same processus by introducing some appropriate auxiliary

weight that multiplies ψ or ψ1 as in (2.15), using Lemma 2.4 successively for n = (N − 1)/2, . . . , 0,

(2.17) and (2.18). At the end, by gathering all the inequalities, we obtain

λ

∫ T

0

e−2sα∗(sξ∗)
4(1−c)

3 ‖ψ1‖2HN+1(Ω)dt

6 Cλ

(∫ T

0

(sξ∗)
4(1−c)

3 +N+1+N+1
p ||ψ1||2L2(Ω)dt+

∫ T

0

e−2(1+µ)sα∗(sξ∗)
4(1−c)

3 +N+1+N+1
p ||ψ||2L2(Ω)dt

)
.

(2.20)

Applying the same technique also leads to

λ

∫ T

0

e−2sα∗(sξ∗)4c‖ψ1‖2HN+3(Ω)dt

6 Cλ

(∫ T

0

(sξ∗)4c+N+3+N+3
p ||ψ1||2L2(Ω)dt+

∫ T

0

e−2(1+µ)sα∗(sξ∗)4c+N+3+N+3
p ||ψ||2L2(Ω)dt

)
.

(2.21)
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From (2.14), (2.20) and (2.21), we deduce that

λ

∫ T

0

e−2sα∗sξ∗
∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣2 dσdt

6 Cλ

(∫ T

0

(sξ∗)
4(1−c)

3 +N+1+N+1
p ||ψ1||2L2(Ω)dt+

∫ T

0

e−2(1+µ)sα∗(sξ∗)
4(1−c)

3 +N+1+N+1
p ||ψ||2L2(Ω)dt

+

∫ T

0

(sξ∗)4c+N+3+N+3
p ||ψ1||2L2(Ω)dt+

∫ T

0

e−2(1+µ)sα∗(sξ∗)4c+N+3+N+3
p ||ψ||2L2(Ω)dt

)
.

(2.22)

Since we would like the powers in the right-hand side to be equal, it is natural to impose that

4c+N + 3 +
N + 3

p
=

4(1− c)
3

+N + 1 +
N + 1

p
,

i.e.

c =
−3− p

8p
. (2.23)

Thus, using (2.22) and (2.23), we deduce that

λ

∫ T

0

e−2sα∗sξ∗
∫
∂Ω

∣∣∣∣∂φ∂n
∣∣∣∣2 dσdt

6 Cλ

(∫ T

0

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p ||ψ1||2L2(Ω)dt+

∫ T

0

e−2(1+µ)sα∗(sξ∗)
2N(p+1)+5p+3

2p ||ψ||2L2(Ω)dt

)
.

(2.24)

From (2.13), (2.24), the �rst line of (2.17) and the de�nition of ψ1 given in (2.11), we already deduce

that

I(s, λ;φ) 6 C

(
s3λ4

∫∫
(0,T )×ω1

e−2sαξ3|∇Nψ1|2dxdt+ λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2dxdt

+

∫∫
QT

e−2sα
N∑
i=1

|∇iψ1|2dxdt+

∫∫
QT

e−2sα(sξ∗)2+ 2
p |∇Nψ1|2dxdt

)
.

By de�nition the de�nition of ξ∗ given in (2.7), it is clear that ξ∗ 6 ξ. Hence, taking p large enough

such that 2 + 2
p 6 3 (i.e. p > 2), s, λ large enough and using the de�nition of I(s, λ;φ) given in (2.8),

we deduce that we can absorb the last term of the right-hand-side, so that we obtain

I(s, λ;φ) 6 C

(
s3λ4

∫∫
(0,T )×ω1

e−2sαξ3|∇Nψ1|2dxdt+ λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2dxdt

+

∫∫
QT

e−2sα
N∑
i=1

|∇iψ1|2dxdt

)
.

(2.25)

Step 2: We apply Lemma 2.3 successively with

(u, r) = (∇N−1ψ1, 3), . . . , (u, r) = (∇ψ1, 2N − 1).
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We obtain a sequence of inequalities of the form

s5λ6

∫∫
QT

e−2sαξ5|∇N−1ψ1|2dxdt 6 C

(
s3λ4

∫∫
QT

e−2sαξ3|∇Nψ1|2dxdt

+s5λ6

∫∫
(0,T )×ω1

e−2sαξ5|∇N−1ψ1|2dxdt

)
,

. . .

s2N+1λ2N+2

∫∫
QT

e−2sαξ2N+1|∇ψ1|2dxdt 6 C

(
s2N−1λ2N

∫∫
QT

e−2sαξ2N−1|∇2ψ1|2dxdt

+s2N+1λ2N+2

∫∫
(0,T )×ω1

e−2sαξ2N+1|∇ψ1|2dxdt

)
.

We deduce by starting from the last inequality and using in cascade the other ones that

s5λ6

∫∫
QT

e−2sαξ5|∇N−1ψ1|2dxdt+ . . .+ s2N+1λ2N+2

∫∫
QT

e−2sαξ2N+1|∇ψ1|2dxdt

6 C

(
s3λ4

∫∫
QT

e−2sαξ3|∇Nψ1|2dxdt+ s5λ6

∫∫
(0,T )×ω1

e−2sαξ5|∇N−1ψ1|2dxdt

+ . . .+ s2N+1λ2N+2

∫∫
(0,T )×ω1

e−2sαξ2N+1|∇ψ1|2dxdt

)
.

(2.26)

Combining (2.25), (2.26) and using the de�nition of I(s, λ, φ) given in (2.8), we deduce that we

can absorb the �rst term on the right-hand side of (2.26) and obtain

sλ2

∫∫
QT

e−2sαξ|∇N+1ψ1|2dxdt+ . . .+ s2N+1λ2N+2

∫∫
QT

e−2sαξ2N+1|∇ψ1|2dxdt

6 C

(
λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2dxdt+

∫∫
QT

e−2sα
N−1∑
i=1

|∇iψ1|2dxdt

+s3λ4

∫∫
(0,T )×ω1

e−2sαξ3|∇Nψ1|2dxdt+ s5λ6

∫∫
(0,T )×ω1

e−2sαξ5|∇Nψ1|2dxdt+ . . .

+s2N+1λ2N+2

∫∫
(0,T )×ω1

e−2sαξ2N+1|∇ψ1|2dxdt

)
.

Absorbing the second term of the right-hand side, we deduce that for s, λ large enough, we have

sλ2

∫∫
QT

e−2sαξ|∇N+1ψ1|2dxdt+ . . .+ s2N+1λ2N+2

∫∫
QT

e−2sαξ2N+1|∇ψ1|2dxdt

6 C

(
λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2dxdt

+s3λ4

∫∫
(0,T )×ω1

e−2sαξ3|∇Nψ1|2dxdt+ . . .+ s2N+1λ2N

∫∫
(0,T )×ω1

e−2sαξ2N+1|∇ψ1|2dxdt

)
.

(2.27)

Step 3: Now, we consider some open subset ω2 such that ω1 ⊂⊂ ω2 ⊂⊂ ω0. We consider some

function θ̃ ∈ C∞(Ω,R) such that:

• Supp(θ̃) ⊂ ω2,

• θ̃ = 1 on ω1,

• θ̃ ∈ [0, 1].
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Some integrations by parts give

s3λ4

∫∫
(0,T )×ω1

e−2sαξ3|∇Nψ1|2dxdt 6 s3λ4

∫∫
(0,T )×ω2

θe−2sαξ3|∇Nψ1|2dxdt

6 Cs3λ4

∫∫
(0,T )×ω2

(
|∇(θe−2sαξ3)|.|∇Nψ1|.|∇N−1ψ1|+ |θe−2sαξ3|.|∇N+1ψ1|.|∇N−1ψ1|

)
dxdt.

From the de�nition of ξ and α given in (2.5) and (2.6), we deduce that

|∇(θe−2sαξ3)| 6 Csλe−2sαξ4. (2.28)

Combining this estimate with Young's inequality, we obtain that for any ε > 0, there exists Cε > 0

such that for any s and λ large enough, we have

s3λ4

∫∫
(0,T )×ω1

e−2sαξ3|∇Nψ1|2dxdt 6 C

(
εs3λ4

∫∫
(0,T )×ω2

e−2sαξ3|∇Nψ1|2dxdt

+εsλ2

∫∫
(0,T )×ω2

e−2sαξ|∇N+1ψ1|2dxdt+ Cεs
5λ6

∫∫
(0,T )×ω2

e−2sαξ5|∇N−1ψ1|2dxdt

)
.

(2.29)

Combining (2.27) and (2.29), we can absorb the local terms in |∇N+1ψ1|2 and |∇Nψ1|2 to deduce

sλ2

∫∫
QT

e−2sαξ|∇N+1ψ1|2dxdt+ . . .+ s2N+1λ2N+2

∫∫
QT

e−2sαξ2N+1|∇ψ1|2dxdt

6 C

(
λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2dxdt+ s5λ6

∫∫
(0,T )×ω2

e−2sαξ5|∇N−1ψ1|2dxdt

+ . . .+ s2N+1λ2N+2

∫∫
(0,T )×ω2

e−2sαξ2N+1|∇ψ1|2dxdt

)
.

We can perform exactly the same procedure on the terms

s5λ6

∫∫
(0,T )×ω2

e−2sαξ5|∇N−1ψ1|2dxdt, . . . , s2N−1λ2N−2

∫∫
(0,T )×ω2

e−2sαξ2N−1|∇2ψ1|2dxdt

in order to obtain the following estimate:

sλ2

∫∫
QT

e−2sαξ|∇N+1ψ1|2dxdt+ . . .+ s2N+1λ2N+2

∫∫
QT

e−2sαξ2N+1|∇ψ1|2dxdt

6 C

(
λ

∫∫
QT

e−2sα∗(sξ∗)
2N(r+1)+5r+3

2r |ψ1|2dxdt

+s2N+1λ2N+2

∫∫
(0,T )×ω0

e−2sαξ2N+1|∇ψ1|2dxdt

)
.

(2.30)

Step 4:

Since the weight (sξ∗)2N−1 does not depend on the space variable, and using the de�nition of α∗

and ξ∗ given in (2.7), the following Poincaré's inequality holds:

λ2N+2

∫∫
QT

e−2sα∗(sξ∗)2N+1|ψ1|2dxdt 6 Cλ2N+2

∫∫
QT

e−2sα∗(sξ∗)2N+1|∇ψ1|2dxdt

6 Cλ2N+2

∫∫
QT

e−2sα(sξ)2N+1|∇ψ1|2dxdt.

(2.31)
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Combining (2.30) and (2.31), we deduce that for s large enough

λ2

∫∫
QT

e−2sαsξ|∇N+1ψ1|2dxdt+ . . .+ λ2N+2

∫∫
QT

e−2sα(sξ)2N+1|∇ψ1|2dxdt

+λ2N+2

∫∫
QT

e−2sα∗(sξ∗)2N+1|ψ1|2dxdt

6 C

(
λ

∫∫
QT

e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p |ψ1|2dxdt+ λ2N+2

∫∫
(0,T )×ω0

e−2sα(sξ)2N+1|∇ψ1|2dxdt

)
.

(2.32)

We now �x p > 2 large enough such that

2N(p+ 1) + 5p+ 3

2p
< 2N + 1,

which is clearly possible since 2N(p+1)+5p+3
2p → N+ 5

2 as p→∞ and N > 3 (so that N+5/2 < 2N+1).

Using that e−2sα∗(sξ∗)
2N(p+1)+5p+3

2p 6 Ce−2sα(sξ)2N+1, we deduce by absorbing the �rst term of

the right-hand side of (2.32) that

λ2

∫∫
QT

e−2sα(sξ)|∇N+1ψ1|2dxdt+ . . .+ λ2N+2

∫∫
QT

e−2sα(sξ)2N+1|∇ψ1|2dxdt

+λ2N+2

∫∫
QT

e−2sα∗(sξ∗)2N+1|ψ1|2dxdt 6 Cλ2N+2

∫∫
(0,T )×ω0

e−2sα(sξ)2N+1|∇ψ1|2dxdt.

Going back to ψ thanks to (2.12), we deduce (2.10).

2.2 Algebraic resolubility

In this section, we will derive a new Carleman inequality, adapted to the control problem with less

controls we want to prove. We assume here that q ∈ N∗ (if q = 0, necessarily, by condition (1.7), we

have m = d and we can takeM = (B∗)−1 andM2 = 0 in the following Lemma).

Lemma 2.5. Let m ∈ N∗ such that m 6 d− 1. Assume that the u is regular enough (for example of

class C∞).
Consider two partial di�erential operators L1 : C∞(Rd) → C∞(Rd)m and L2 : C∞(Rd) →

C∞(Rd) de�ned for every ϕ ∈ C∞(Rd) by

L1ϕ := B∗(∇ϕ) and L2ϕ := ∂tϕ+ ∆ϕ+ (u · ∇)ϕ.

Assume that (1.7) holds.

There exists an open subset (t1, t2)×ω̃ of (0, T )×ω and there exist two partial di�erential operators

M1 : C∞(Rd)m → C∞(Rd)d (of order 1 in time and q + 1 in space) and M2 : C∞(R) → C∞(Rd)d

(of order 0 in time and q in space) such that

M1 ◦ L1 +M2 ◦ L2 = ∇ in C∞((t1, t2)× ω̃). (2.33)

Proof of Lemma 2.5:
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Since (1.7) is veri�ed, there exists an open subset (t1, t2)× ω̃ of (0, T )× ω and a constant C > 0

such that |det(M)| > C on (t1, t2) × ω̃. Let j ∈ {1, ...,m}. We call Lj1 the j − th line of L1. We

remark that

(B∗j · ∇)L2ϕ− (∂t + ∆)Lj1ϕ− (u · ∇)Lj1ϕ = (B∗j · ∇)(u · ∇)ϕ− (u · ∇)(B∗j .∇)ϕ

= (u · ∇)(B∗j .∇)ϕ+

d∑
k=1

((B∗j · ∇)uk)∂kϕ

− (u · ∇)(B∗j .∇)ϕ

=

d∑
k=1

((B∗j · ∇)uk)∂kϕ

=: L3.

Now, for some l ∈ {1, ...,m}, the same computations easily give

(B∗l · ∇)L3ϕ−
d∑
k=1

((B∗j · ∇)uk)∂kLl1ϕ =

d∑
k=1

((B∗l · ∇)(B∗j · ∇)uk)∂kϕ =: L4ϕ.

Continuing this procedure, we can easily create two partial di�erential operators M̃1 (of order 1

in time and q + 1 in space) and M̃2 (of order 0 in time and q in space) such that

M̃1(L1(ϕ)) + M̃2(L2(ϕ)) = Mq(∇ϕ),

where Mq is de�ned in (1.6). Under condition (1.7), Mq is of maximal rank on (t1, t2) × ω̃, so that

it admits a left inverse at any point of on (t1, t2) × ω̃. We call Mq(u)−1 any of its left inverses.

Then, is is clear thatM1 := M−1
q M̃1 andM2 := M−1

q M̃2 verify (2.33) and have C∞ coe�cients on

(t1, t2)× ω̃.

We now have all the tools to deduce our �nal Carleman inequality:

Proposition 2.2. Assume that Condition (1.7) and the hypotheses of Proposition 2.1 hold. Then,

for all η ∈ (0, 1), there exists p > 2, C > 0 and K > 0 such that for every ψ0 ∈ L2(Ω), the

corresponding solution ψ to System (2.4) satis�es∫
Ω

ψ(0)2dx+

∫∫
QT

e
−2K

η(T−t)p {ψ2 + |∂tψ|2 + . . .+ |∂b
N+1

2 c
t...t ψ|2 + |∇ψ|2 + . . .+ |∇N+1ψ|2}dxdt

6 CeK/T
p

∫∫
(0,T )×ω0

e
−2K

(T−t)p |B∗(∇ψ)|2dxdt.

(2.34)

Proof of Proposition 2.2. We assume that q ∈ N∗. Let ω1 some open subset strongly included

in ω0. Combining Proposition 2.1, Lemma 2.5 (that is still true by replacing ω0 by ω1), and the fact

that any solution ψ of (2.4) veri�es by de�nition L2ψ = 0, we deduce that, for any ψ0 ∈ L2(Ω), the

corresponding solution ψ to System (2.4) satis�es

λ2

∫∫
QT

e−2sα−2µsα∗(sξ)|∇N+1ψ|2dxdt+ . . .+ λ2N+2

∫∫
QT

e−2sα−2µsα∗(sξ)2N+1|∇ψ|2dxdt

+λ2N+2

∫∫
QT

e−2sα∗−2µsα∗(sξ∗)2N+1|ψ|2dxdt

6 Cλ2N+2

∫∫
QT

θ̃e−2sα−2µsα∗ (sξ)
2N+1 |M1B

∗(∇ψ)|2dxdt,

17



where M1 is a linear partial di�erential operator of order 1 in time and q + 1 in space, and θ̃ ∈
C∞(Ω,R) such that:

• θ̃ = 1 on ω1,

• Supp(θ̃) ⊂ ω0,

• θ̃ ∈ [0, 1].

We �rst remark that

λ2N+2

∫∫
QT

θe−2sα−2µsα∗ (sξ)
2N+1 |M1B

∗(∇ψ)|2dxdt

6 Cλ2N+2

∫∫
QT

θe−2sα−2µsα∗ (sξ)
2N+1

(
q+1∑
i=0

(
|∇iB∗∇ψ|2 + |∂t∇iB∗∇ψ|2

))
dxdt.

Using that ψ veri�es (2.4), we can deduce that

λ2N+2

∫∫
QT

θe−2sα−2µsα∗ (sξ)
2N+1 |M1B

∗(∇ψ)|2dxdt

6 Cλ2N+2

∫∫
QT

θe−2sα−2µsα∗ (sξ)
2N+1

(
q+3∑
i=0

|∇iB∗∇ψ|2
)
dxdt.

Some integrations by parts give

λ2N+2

∫∫
QT

θ̃e−2sα−2µsα∗ (sξ)
2N+1 |∇B∗(∇ψ)|2dxdt

6 Cλ2N+2

∫∫
QT

θ̃e−2sα−2µsα∗ (sξ)
2N+1 |B∗(∇ψ)||∇3ψ|dxdt

+Cλ2N+2

∫∫
QT

|∇(θ̃e−2sα−2µsα∗ (sξ)
2N+1

)||B∗(∇ψ)||∇2ψ|dxdt.

Let ε > 0. Young's inequality gives

λ2N+2

∫∫
QT

θ̃e−2sα−2µsα∗ (sξ)
2N+1 |B∗(∇ψ)||∇3ψ|dxdt

6 Cελ
2N+6

∫∫
(0,T )×ω0

e−2sα−2µsα∗ (sξ)
2N+5 |B∗(∇ψ)|2dxdt

+ελ2N−2

∫∫
(0,T )×ω0

e−2sα−2µsα∗ (sξ)
2N−3 |∇3ψ|2dxdt

and also, by (2.28),

λ2N+2

∫∫
QT

|∇(θ̃e−2sα−2µsα∗ (sξ)
2N+1

)||B∗(∇ψ)||∇2ψ|dxdt

6 Cλ2N+3

∫∫
QT

θ̃e−2sα−2µsα∗ (sξ)
2N+2 |B∗(∇ψ)||∇2ψ|dxdt

6 Cελ
2N+6

∫∫
(0,T )×ω0

e−2sα−2µsα∗ (sξ)
2N+5 |B∗(∇ψ)|dxdt

+ελ2N

∫∫
(0,T )×ω0

e−2sα−2µsα∗ (sξ)
2N−1 |∇3ψ|dxdt.
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Thus, by taking ε small enough, we deduce that

λ2

∫∫
QT

e−2sα−2µsα∗(sξ)|∇N+1ψ|2dxdt+ . . .+ λ2N+2

∫∫
QT

e−2sα−2µsα∗(sξ)2N+1|∇ψ|2dxdt

+λ2N+2

∫∫
QT

e−2sα∗−2µsα∗(sξ∗)2N+1|ψ|2dxdt

6 Cλ2N+6

∫∫
(0,T )×ω0

e−2sα−2µsα∗ (sξ)
2N+5 |B∗(∇ψ)|2dxdt

+Cλ2N+2

∫∫
QT

θ̃e−2sα−2µsα∗ (sξ)
2N+1

(
q+3∑
i=2

|∇iB∗∇ψ|2
)
dxdt.

By iterating this process for i = 2, . . . , q + 3, we can get rid of the sum in the right-hand side and

obtain

λ2

∫∫
QT

e−2sα−2µsα∗(sξ)|∇N+1ψ|2dxdt+ . . .+ λ2N+2

∫∫
QT

e−2sα−2µsα∗(sξ)2N+1|∇ψ|2dxdt

+λ2N+2

∫∫
QT

e−2sα∗−2µsα∗(sξ∗)2N+1|ψ|2dxdt

6 C

(
λ2N+2+4(q+2)

∫∫
(0,T )×ω0

e−2sα−2µsα∗ (sξ)
2N+1+4(q+2)} |B∗(∇ψ)|2dxdt

)
.

Inequality (2.34) is easily deduced by replacing the space-dependent weights by their in�mum in

space in the left-hand-side and their supremum in the right-hand side, �xing s and λ large enough,

then choosing µ large enough (depending on ||η0||∞(Ω̄)) with respect to the parameter η ∈ (0, 1),

applying usual energy estimates and remarking that the fact that ψ veri�es (2.4) enables us to add

all the derivatives in time on the left-hand side.

2.3 Regular control

Our goal in this section is to construct regular enough controls. Remind that θ is de�ned in (2.2).

Proposition 2.3. Let r ∈ N. Assume that Condition (1.7) holds.

Under the hypotheses of Proposition 2.1, System
∂ty = ∆y + div(uy) + div(θBv) in QT ,

y = 0 on ΣT ,

y(0, ·) = y0 in Ω,

(2.35)

is null controllable at time T , i.e. for every y0 ∈ L2(Ω), there exists a control v ∈ L2(QT )m

such that the solution z to System (2.35) satis�es z(T ) ≡ 0 in Ω. Moreover, we can choose u ∈
L2((0, T ), H2r+2(Ω))m ∩Hr+1((0, T ), L2(Ω))m with

‖v‖L2((0,T ),H2r+2(Ω))m∩Hr+2((0,T ),L2(Ω))m 6 CeK/T
p

‖y0‖L2(Ω),

where K is the constant in (2.34).

Proof of Proposition 2.3. Let k ∈ N∗ and let us consider the following optimal control problem minimize Jk(v) :=
1

2
‖ρ̃−1/2v‖2L2(QT )m +

k

2

∫
Ω

|z(T )|2dx,

v ∈ U := {w ∈ L2(QT )m : ρ̃−1/2w ∈ L2(QT )m},
(2.36)
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where ρ̃ := e
−2K

(T−t)p (for the K > 0 given by Proposition 2.2 with N an even number to be chosen

later and some �xed η ∈ (1/2, 1)) and z is the solution in W (0, T ) to
∂tz = Az + Bv in QT ,

y = 0 on ΣT ,

y(0, ·) = y0 in Ω,

where {
A := ∆ + div(u · ),

B := div(Bθ · ).
(2.37)

Here, U is endowed with its natural weighted L2-norm.

The functional Jk : U → R+ is di�erentiable, coercive and strictly convex on the space U .
Therefore, following [35, [p. 116], there exists a unique solution to the optimal control problem (2.36)

and the optimal control vk is characterized thanks to the solution zk of the primal system by
∂tzk = Azk + Bvk in QT ,

zk = 0 on ΣT ,

zk(0, ·) = y0 in Ω,

(2.38)

the solution ϕk to the dual system
−∂tϕk = A∗ϕk in QT ,

ϕk = 0 on ΣT ,

ϕk(T, ·) = kzk(T, ·) in Ω

(2.39)

and the relation {
vk = −ρ̃B∗ϕk in QT ,

vk ∈ U .
(2.40)

The characterization (2.38), (2.39) and (2.40) of the minimizer vk of Jk in U leads to the following

computations

Jk(vk) = −1

2
〈B∗ϕk, vk〉L2(QT )m +

1

2
〈zk(T ), ϕk(T )〉L2(Ω)

= −1

2

∫ T

0

〈ϕk,Bvk〉L2(Ω)dt+
1

2

∫ T

0

{〈zk, ∂tϕk〉L2(Ω) + 〈∂tzk, ϕk〉L2(Ω)}dt

+
1

2
〈y0, ϕk(0, ·)〉L2(Ω)

=
1

2
〈y0, ϕk(0, ·)〉L2(Ω).

(2.41)

Moreover, using (2.34) with N = 2s and the expression of ρ̃, we infer

‖ϕk(0, ·)‖L2(Ω) 6 CeK/T
p‖ρ̃−1/2vk‖L2(QT )m . (2.42)

Now, using the de�nition of Jk, the expression (2.41), the inequality (2.42) and the Cauchy-

Schwartz inequality, we infer

‖ϕk(0, ·)‖2L2(Ω) 6 Ce2K/TpJk(vk) 6 Ce2K/Tp‖ϕk(0, ·)‖L2(Ω)‖y0‖L2(Ω),

from which we deduce

‖ϕk(0, ·)‖L2(Ω) 6 Ce2K/Tp‖y0‖L2(Ω). (2.43)
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Then, using (2.41) and (2.43), we deduce

Jk(vk) 6 Ce2K/Tp‖y0‖2L2(Ω). (2.44)

Furthermore, we have (see [35, p. 116])

‖zk‖W (0,T ) 6 C
(
‖Bvk‖L2((0,T ),H−1(Ω)) + ‖y0‖L2(Ω)

)
,

6 C
(
‖ρ̃−1/2vk‖L2(QT )m + ‖y0‖L2(Ω)

)
,

6 C(1 + CeK/T
p

)‖y0‖L2(Ω),

(2.45)

where C does not depend on y0 and k. Then, using inequalities (2.44) and (2.45), we deduce that

there exist subsequences, which are still denoted vk, zk, such that the following weak convergences

hold: 
vk ⇀ v in U ,
zk ⇀ z in W (0, T ),

zk(T ) ⇀ 0 in L2(Ω).

Passing to the limit in k, z is solution to System (2.37). Moreover, using the expression of Jk given

in (2.36) and inequality (2.44), we deduce by letting k going to ∞ that z(T ) ≡ 0 in Ω. Thus the

solution z to System (2.37) with control v ∈ U satis�es z(T ) ≡ 0 in Ω and using (2.44), we obtain

the inequality

‖v‖2U 6 Ce2K/Tp‖y0‖2L2(Ω).

Since ρ−1 > 1 , using the de�nition of the norm on U , we also deduce that

‖v‖2L2(QT )m 6 Ce2K/Tp‖y0‖2L2(Ω).

Now, let us explain why the controls are more regular. First of all, using the fact that ϕk veri�es

(2.39), we deduce that

||B∗ϕk||2L2(QT ) 6 C‖∂tϕk‖2L2(QT ).

Hence, for each i ∈ {1, ..., N2 −1} and k ∈ N, using inequalities similar to (2.17) and (2.18), we deduce

that for any ε > 0, there exists C > 0 such that

‖∂itvk‖2L2(QT )m =

∫∫
QT

∂it (| − ρ̃B∗ϕk|)2

6 C

∫∫
QT

ρ̃2−2ε|∂i+1
t ϕk|2

6 C

∫∫
QT

ρ̃2−2ε− 1
η ρ̃

1
η |∂i+1

t ϕk|2.

(2.46)

Now, we �x ε > 0 small enough (with respect to η) such that 2− 2ε− 1
η > 0. With this choice of ε,

we infer that ρ2−2ε− 1
η 6 1. Hence, using (2.46) together with (2.34) and (2.44), we deduce that for

any We similarly deduce that, for each i ∈ {0, ..., N2 − 1}, ‖∂itvk‖ ∈ L2(QT ) and

‖∂itvk‖2L2(QT )m 6 C

∫∫
QT

ẽ
−2K

η(T−t)p |∂i+1
t ϕk|2

6 C

∫∫
QT

e
−2K

(T−t)p |θB∗(ϕk)|2

6 C‖vk‖2U
6 Ce2K/Tp‖y0‖2L2(Ω).
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Thus, extracting one more time a subsequence if necessary and letting k go to +∞, we deduce

that for each i ∈ {1, ..., N2 − 1},

‖∂itv‖L2(QT )m 6 Ce2K/Tp‖y0‖2L2(Ω).

We similarly deduce that, for each i ∈ {1, ..., N − 2},

‖∇iv‖L2(QT )m×i×d 6 Ce2K/Tp‖y0‖2L2(Ω).

The proof is completed by setting r = N
2 + 1.

3 Controllability to the trajectories

Let r ∈ N. We use the strategy developed in [37], modifying it slightly to �t our case. Usual

interpolation estimates (see [36, Section 13.2, p. 96]) show that

L2((0, T ), H2r+2(Ω)) ∩Hr+1((0, T ), L2(Ω)) ↪→ L2((0, T ), H2r+2(Ω)) ∩H1((0, T ), H2r(Ω)),

from which we deduce

L2((0, T ), H2r+2(Ω)) ∩Hr+1((0, T ), L2(Ω)) ↪→ L∞((0, T ), H2r(Ω)).

Now, there exists R > 0 large enough such that by Sobolev embeddings, we have

L2((0, T ), H2R+2(Ω)) ∩HR+1((0, T ), L2(Ω)) ↪→ L∞((0, T ),W 1,∞(Ω)).

Hence, from Proposition 2.3 and Remark 3, for any y0 ∈ L2(Ω), there exists a control v ∈
L∞((0, T ),W 1,∞(Ω))m such that the solution y to System (2.3) satis�es y(T ) ≡ 0 in Ω and

‖v‖L∞((0,T ),W 1,∞(Ω))m 6 CeK/T
p

‖y0‖L2(Ω),

where K > 0 is the constant given by Proposition 2.2 with N = 2R and p > 2 is given in Proposition

2.1.

Letting the system evolve freely a little bit if needed, we may assume without loss of generality

that y0−y0 ∈ H1
0 (Ω). Indeed, by the regularizing e�ect, it is very easy to deduce that for any solution

(y, u) to (1.4), there exists some C(T ) > 0 such that for any solution (y, 0) to (1.1) on [0, T2 ], we have

y
(
T
2

)
− y

(
T
2

)
∈ H1

0 (Ω) and

||y
(
T

2

)
− y

(
T

2

)
||H1(Ω) 6 C(T )||y0 − y0||L2(Ω).

Hence, if ||y0 − y0||L2(Ω) is small, so is ||y
(
T
2

)
− y

(
T
2

)
||H1(Ω), so that the condition (1.5) is su�cient

for our argument to be valid.

Following [37, p. 24], we introduce the cost of controllability given by

γ(t) = CeK/t
p

, t ∈ (0, T ),

and the following weight functions

ρF (t) = e
− α

(T−t)p+1 , t ∈ [0, T ]
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and

ρ0(t) = e
K

((q−1)(T−t))p−
α

q2p+2(T−t)p+1 , t ∈
[
T

(
1− 1

q2

)
, T

]
,

extended on [0, T
(

1− 1
q2

)
] by

ρ0(t) = ρ0

(
T

(
1− 1

q2

))
, t ∈ [0, T

(
1− 1

q2

)
],

for some parameters q > 1 and α > 0 to be chosen later on.

We remark that ρF and ρ0 are non-increasing, verify ρF (T ) = ρ0(T ) = 0 and are related by the

relation

ρ0(t) = ρF (q2(T − t) + T )γ((q − 1)(T − t)), t ∈
[
T

(
1− 1

q2

)
, T

]
.

We introduce for some β > 0 the weight function

ρ(t) = e
− β

(T−t)p+1 .

We remark that

ρF 6 Cρ, ρ0 6 Cρ, |ρ′|ρ0 6 Cρ2,

as soon as β > 0 is chosen small enough, precisely

β <
α

q2p+2
. (3.1)

We introduce the following spaces:

F = {f ∈ L2((0, T )× Ω) such that
f

ρF
∈ L2((0, T )× Ω)},

U = {u ∈ L∞((0, T ),W 1,∞(Ω))m such that
u

ρ0
∈ L∞((0, T ),W 1,∞(Ω))m},

Z = {z ∈ C0([0, T ], H1
0 (Ω)) ∩ L2((0, T ), H2(Ω) ∩H1

0 (Ω)) ∩H1((0, T ), L2(Ω))

such that
z

ρ
∈ C0([0, T ], H1

0 (Ω)) ∩ L2((0, T ), H2(Ω) ∩H1
0 (Ω)) ∩H1((0, T ), L2(Ω))},

endowed with the weighted Sobolev norms naturally induced by the de�nition of these spaces.

Following [37, Proofs of Propositions 2.5, 2.8] in the spirit of [31, Section 7.2 and Appendix 5], it

is easy to obtain the following result.

Proposition 3.1. For any z0 ∈ H1
0 (Ω) and any f ∈ F , there exists v ∈ U such that the solution

z of 
∂tz = ∆z + div(uz) + div(θyBv) + f in QT ,

z = 0 on ΣT ,

z(0, ·) = z0 in Ω,

veri�es z ∈ Z (and hence z(T ) = 0).

To conclude, we use the following inverse mapping theorem:
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Theorem 3.1 (see [3]). Let X and Y be Banach spaces and let M : X 7→ Y be a C1 mapping. Let

us assume that the derivative M ′(0) : X 7→ Y is onto and let us set y0 = M(x0) with x0 ∈ X and

y0 ∈ Y. Then there exist η > 0, a mapping W : Bη(y0) ⊂ Y 7→ X and a constant K > 0 satisfying:{
W (z) ∈ X and M(W (z)) = z ∀z ∈ Bη(y0),

‖W (z)− x0‖X 6 K‖z − y0‖Y ∀z ∈ Bη(y0).

Proof of Theorem 1.2. We are looking for a solution in the form

y(x, t) = y(x, t) + w(x, t), u(x, t) = u(x, t) + θ(x)Br(x, t),

where (y, u) and (y, u) are solution to the Systems (1.1) and (1.4), respectively. Then (w, r) is solution

to 
N(w, r) := ∂tw −∆w − div(uw + θBry + θBrw) = 0 in QT ,

w = 0 on ΣT ,

w(0, ·) = y0 − y0 in Ω.

We introduce the following spaces:

X := {(w, r) ∈ Z × U such that ∂tw −∆w − div(uw + θBry) ∈ F},

endowed with the norm

||(w, r)||X = ||w||Z + ||r||U + ||∂tw −∆w − div(uw + θBry)||F ,

and the space

Y = F ×H1
0 (Ω),

endowed with the norm

||(f, z0)||Y := ||f ||F + ||z0||H1(Ω).

Introduce the mapping M given by

M : X → Y
(w, r) 7→ (N(w, r), w(0, ·)).

Let us determine what are the conditions on q, α, β ensuring that M is well-de�ned. It is clear that

||w(0, ·)||H1(Ω) 6 ||w||C0([0,T ],H1
0 (Ω)) 6 C

∥∥∥∥wρ
∥∥∥∥
C0([0,T ],H1

0 (Ω))

6 ||(w, r)||X .

Now, we remark that by de�nition of the space X , we have

||∂tw −∆w − div(uw + θBry)||F 6 ||(w, r)||X .

Hence, the only di�culty is to treat the bilinear part div(θwBr). We remark that∥∥∥∥div(θwBr)

ρF

∥∥∥∥
L2((0,T )×Ω)

6 C

∥∥∥∥∥ r

ρ
1
2

F

∥∥∥∥∥
L∞((0,T ),W 1,∞(Ω))

∥∥∥∥∥ wρ 1
2

F

∥∥∥∥∥
L2((0,T ),H1(Ω))

.

We can impose that ρ2 6 CρF and ρ2
0 6 CρF as soon as

α < 2β and q2p+2 < 2. (3.2)
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Remark that these conditions are compatible with condition (3.1).

Hence, under conditions (3.1) and (3.2), we deduce that

∥∥∥∥div(wBq)

ρF

∥∥∥∥
L2((0,T )×Ω)

6 C

∥∥∥∥ rρ0

∥∥∥∥
L∞((0,T ),W 1,∞(Ω))

∥∥∥∥wρ
∥∥∥∥
L2((0,T ),H1(Ω))

6 C||(w, r)||2X .

We conclude that under these conditions, M is indeed well-de�ned and continuous. Moreover,

we remark that M(0, 0) = (0, 0) and M is of class C1 as a sum of a linear continuous function and

a quadratic continuous function. Furthermore, Proposition 3.1 exactly means that M ′(0, 0) is onto

(see Remark 3). Theorem 3.1 leads to the conclusion.

4 Example of a non-controllable trajectory with a reduced

number of controls

In this section, we give an example of trajectory which does not satisfy condition (1.7) and for which

the local controllability to the trajectories does not hold.

Consider u ∈ L∞(QT )m which will be determined later on. Assume that for each y0 ∈ L2(Ω)\{0}
the following system is locally controllable to the trajectories with a control operator B

∂ty = ∆y + div(uy) in QT ,

y = 0 on ΣT ,

y(0, ·) = y0 in Ω.

Then for each ε ∈ (0, 1) small enough, there exists u ∈ L∞(QT )m such that
∂ty = ∆y + div(uy) in QT ,

y = 0 on ΣT ,

y(0, ·) = (1− ε)y0 in Ω,

y(T, ·) = y(T ) in Ω,

where u = u+Bv with Supp(v) ⊂ (0, T )× ω. We remark that (z, w) := (y − y, yv) is solution to
∂tz = ∆z + div(uz) + div(Bw) in QT ,

z = 0 on ΣT ,

z(0, ·) = εy0 in Ω,

z(T, ·) = 0 in Ω.

(4.1)

We deduce that System (4.1) is null controllable at time T > 0, then approximately controllable at

time T > 0. It is well known that the approximate controllability of System (4.1) on (0, T ) implies

the following property, called the Fattorini-Hautus test (see e.g. [39]) : for every s ∈ C and every

ϕ ∈ D(∆),

−∆ϕ− u · ∇ϕ = sϕ in Ω

B∗∇ϕ = 0 in ω

}
⇒ ϕ = 0. (4.2)

We now give an explicit u in contradiction with (4.2).

Let d = 2, Ω = (0, π)2, ω = (5π/24, 7π/24)2 and B = (1, 0).
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Consider ϕ(x1, x2) = ϕ1(x1)ϕ2(x2), where ϕ1 ∈ C∞([0, π],R) and ϕ2 ∈ C∞([0, π],R) any two

functions verifying

ϕ1(x1) =


sin(x1) in [0, π]\(π/6, 2π/6),

1 in ω,

ϕ1 6= 0 on (0, π)

and

ϕ2(x2) =


sin(x2) in [0, π]\(π/6, 2π/6),

sin(2x2) in ω,

ϕ′2(x2) 6= 0 in [π/6, 5π/24] ∪ [7π/24, 2π/6].

Remark that it is possible to impose the last condition, since ϕ2(π/6) 6= ϕ2(5π/24) and ϕ2(7π/24) 6=
ϕ2(2π/6). Now, we introduce

u :=

{
(0, 0) in (0, π/6) ∪ (5π/24, 7π/24) ∪ (2π/6, π),

(0,− 2ϕ+∆ϕ
∂x2ϕ

) otherwise.

Remark that u is well-de�ned. Indeed, by construction, ∂x2
ϕ 6= 0 in [π/6, 5π/24]∪ [7π/24, 2π/6] and

ϕ1 6= 0 on [0, π]. Moreover, by construction, 2ϕ+ ∆ϕ = 0 on (0, π/6)∪ (5π/24, 7π/24)∪ (2π/6, π), so

that the extension by 0 of the function 2ϕ+∆ϕ
∂x2ϕ

de�ned on (0, π/6) ∪ (5π/24, 7π/24) ∪ (2π/6, π) is of

class C∞ on Ω. We deduce that u is of class C∞ on Ω. To conclude, we remark that by construction,
−∆ϕ− u · ∇ϕ = 2ϕ in Ω,

∂x1
ϕ = 0 in ω,

ϕ 6= 0.

Thus, we obtain a contradiction with (4.2).
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