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Abstract

We design and analyze a Hybrid High-Order (HHO) method on unfitted meshes
to approximate elliptic interface problems by means of a consistent penalty method à
la Nitsche. The curved interface can cut through the mesh cells in a rather general
fashion. Robustness with respect to the cuts is achieved by using a cell agglomeration
technique, and robustness with respect to the contrast in the diffusion coefficients is
achieved by using a different gradient reconstruction on each side of the interface. A
key novel feature of the gradient reconstruction is to incorporate a jump term across
the interface, thereby releasing the Nitsche penalty parameter from the constraint of
being large enough. Error estimates with optimal convergence rates are established.
A robust cell agglomeration procedure limiting the agglomerations to the nearest
neighbors is devised. Numerical simulations for various interface shapes corroborate
the theoretical results.

1 Introduction

Generating meshes to solve problems posed on domains with a curved boundary and/or
interfaces separating subdomains with different properties can be a difficult task. The use
of unfitted meshes that do not fit the boundary and interfaces greatly simplifies the mesh-
ing process since such meshes can be chosen in a very simple manner. For instance one can
consider meshing a rectangular or cubic domain that contains the actual physical domain.
The analysis of finite element methods (FEM) on unfitted meshes was started in [3, 4]. An
important advance achieved in [24] was to double the polynomial unknowns in the cells cut
by the interface and to use a consistent penalty method inspired by Nitsche’s method [32]
to enforce weakly the jump conditions at the interface or the Dirichlet conditions at the
curved boundary. We refer the reader, e.g., to [9, 11] for further advances and overviews
on the topic. One difficulty with the penalty method is the presence of small cuts, that
is, of mesh cells having only a small fraction of their volume on one side of the interface.
Small cuts have an adverse effect on the conditioning of the method and can even hamper
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convergence (see [16] for a recent discussion on the subject). There are essentially two ways
to cure the issue of small cuts: one can either consider adding some stabilization such as
the ghost penalty technique devised in [7] or one can agglomerate cells in the vicinity of
small cuts in such a way that the newly created mesh presents no small cuts [27, 34], see
also [2, 8]. Cell agglomeration is somewhat delicate in the context of conforming FEM
since it requires a careful handling of hanging nodes and specific mesh structures as in
[25], whereas this technique is somewhat more natural when combined with discretization
methods supporting polyhedral meshes such as, e.g., discontinuous Galerkin methods.

In the present work, we devise and analyze a novel Hybrid High-Order (HHO) method
to approximate elliptic interface problems on unfitted meshes. Robustness with respect to
small cuts is achieved by using a cell agglomeration technique as mentioned above, whereas
robustness with respect to the contrast in the diffusion coefficients is achieved by using a
different gradient reconstruction on each side of the interface. HHO methods have been
introduced and analyzed for diffusion and locking-free linear elasticity problems on fitted
meshes in [18, 19]. As shown in [15], these methods are closely related to Hybridizable
discontinuous Galerkin (HDG) methods and to nonconforming Virtual element methods
(ncVEM). An unfitted HHO method for elliptic problems with a curved boundary or
an interface has been proposed and analyzed in [8]. The idea therein was to extend
the consistent penalty method from [24] to the HHO context and to use the polyhedral
capabilities of HHO to deploy a cell agglomeration procedure to handle small cuts. To
this purpose the HHO unknowns (comprising both cell and face polynomials) were doubled
in the cells cut by the interface, whereas no unknowns were attached to the interface or
the curved boundary. Moreover a mixed-order polynomial setting was considered with
the cell unknowns being of one degree higher than the face unknowns. In addition the
Nitsche-type consistency terms at the interface were evaluated using the unknowns from
the less diffusive side thereby achieving robustness with respect to contrasted coefficients
in the spirit of [10, 21]. In the present work, we achieve three important advances with
respect to [8]. First the gradient reconstruction operators in the cut cells are modified
by adding a jump term on the less diffusive side of the interface. This offers the crucial
advantage of releasing the penalty parameter from any constraint of being large enough
with respect to the size of the constant from a discrete trace inequality. As a consequence,
contrary to the classical Nitsche’s method where this coefficient has to be tuned to make
the scheme stable, we can set this parameter to any simple value (for instance, we can set
it to one). Second we revise and extend the cell agglomeration procedure to ensure that
agglomerated cells do not propagate further than nearest neighbors. We observe that the
present cell agglomeration procedure is of (much) broader interest than HHO methods
and even unfitted methods. Finally we present for the first time numerical simulations on
unfitted HHO methods illustrating the cell agglomeration procedure, the optimality and
robustness of the error estimates, and the conditioning of the system matrix.

Let us put our work in perspective with the literature. Recalling that HHO and HDG
methods are closely related, we first mention that eXtended HDG (X-HDG) methods have
been proposed in [22, 23] where an additional trace variable is introduced at the interface
or the curved boundary. In [14, 33], HDG methods without an additional trace variable
are devised and analyzed, whereby a transferring technique is used to approximate the
data on the curved boundary or the jump conditions across the interface. In contrast
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these conditions are enforced herein at the boundary or interface by means of a consistent
penalty method. Concerning more specifically HHO methods, the gradient reconstruction
in the cut cells differs from [8] since the present reconstruction incorporates a jump term.
As mentioned above, this offers the crucial advantage of releasing the penalty parameter
from any constraint of being large enough. Incidentally we point out that this idea has
common features with the parameter-free Nitsche’s method devised recently in [29] for
unfitted FEM. These links are further discussed below. Another extension with respect to
[8] is to allow for reconstructions having full polynomial order without being necessarily
curl-free, as motivated by the future treatment of nonlinear problems (not considered
herein yet, see, e.g., [6, 1] for fitted HHO methods in nonlinear mechanics). Finally we
mention that the present unfitted method can be used as well on geometries with a curved
boundary that is then immersed within the mesh. A fitted HHO method for diffusion
problems with curved boundaries is assessed numerically in [5].

This work is organized as follows. We present the model elliptic interface problem and
the unfitted HHO method in Section 2. The numerical analysis leading to optimal and
robust error estimates is presented in Section 3. Implementation aspects, and in particular
the cell agglomeration procedure, are covered in Section 4. Finally numerical simulations
which confirm the theoretical convergence rates and illustrate the robustness of the method
with respect to small cuts and contrasted coefficients are discussed in Section 5.

2 Model problem and unfitted HHO method

In this section we present the elliptic interface problem and its discretization by the unfitted
HHO method.

2.1 Model problem

Let Ω be a polyhedral domain in Rd, d ∈ {2, 3} (open, bounded, connected, Lipschitz
subset of Rd) and consider a partition of Ω into two disjoint subdomains Ω = Ω1 ∪ Ω2

with the interface Γ := ∂Ω1 ∩ ∂Ω2. As in [8] the interface Γ is assumed to be a smooth
(d−1)-dimensional manifold of class C2 that is not self-intersecting. This assumption can
be relaxed at the price of additional technical points that are not further explored herein.
The unit normal vector nΓ to Γ conventionally points from Ω1 to Ω2. For a smooth enough
function v defined on Ω1∪Ω2, we denote its jump across Γ as JvKΓ := v|Ω1

−v|Ω2
. Our goal

is to approximate the solution u ∈ H1(Ω1 ∪Ω2) = {v ∈ L2(Ω) | v|Ωi
∈ H1(Ωi), i ∈ {1, 2}}

of the following elliptic interface problem:

−∇·(κ∇u) = f in Ω1 ∪ Ω2, (1a)

JuKΓ = gD on Γ, (1b)

Jκ∇uKΓ·nΓ = gN on Γ, (1c)

u = 0 on ∂Ω, (1d)

with f ∈ L2(Ω), gD ∈ H
1
2 (Γ), and gN ∈ L2(Γ). For simplicity we consider a homogeneous

Dirichlet boundary condition on ∂Ω. To avoid technicalities we assume that the diffusion
coefficient κ is scalar-valued and that κi := κ|Ωi

is constant for each i ∈ {1, 2}. To fix the
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ideas we assume that κ1 ≤ κ2. Our analysis covers the strongly contrasted case where
κ1 � κ2.

2.2 Unfitted meshes

Let (Th)h>0 be a family of meshes of Ω. The meshes can have cells that are polyhedra
in Rd with planar faces, and hanging nodes are also possible. The mesh cells are taken
to be open sets in Rd. For all T ∈ Th, hT denotes the diameter of the cell T and nT the
unit normal on ∂T pointing outward T . We set conventionally h := maxT∈Th hT . The
mesh faces are collected in the set Fh. Assumptions on the mesh regularity and how the
interface cuts the mesh cells are stated in Section 3.1.

Let us define the partition Th = T 1
h ∪ T Γ

h ∪ T 2
h , where the subsets

T ih := {T ∈ Th | T ⊂ Ωi} ∀i ∈ {1, 2}, (2a)

T Γ
h := {T ∈ Th | T ∩ Γ 6= ∅}, (2b)

collect respectively the mesh cells inside the subdomain Ωi, i ∈ {1, 2} (the uncut cells),
and those cut by the interface Γ (the cut cells). For every cut cell T ∈ T Γ

h and all i ∈ {1, 2},
we define

T i := T ∩ Ωi, TΓ := T ∩ Γ. (3)

For all i ∈ {1, 2}, the boundary ∂(T i) of the subcell T i is decomposed as

∂(T i) = (∂T )i ∪ TΓ, (∂T )i := ∂T ∩ Ωi. (4)

An illustration is presented in the left panel of Fig. 1. To unify the notation, for every
uncut cell T ∈ T ih , i ∈ {1, 2}, we set

T i := T, T ı̄ := ∅, (∂T )i := ∂T, (∂T )ı̄ := ∅, TΓ := ∅, (5)

where ı̄ = 3− i (so that 1̄ = 2 and 2̄ = 1).

(∂T )1
(∂T )2

Γ

TΓ

T 1
T 2

The cell decomposition. A cut cell.

Γ•
•

•

•

•

•

•

•

• •
• •

•
•

An uncut cell.

•

•

•

•

•

•
• •
•

Figure 1: Basic notation for a cut cell T ∈ T Γ
h (left). Local degrees of freedom (k = 0) for

a cut (center) and an uncut (right) cells.
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2.3 The local discrete problem

We now describe the local unknowns and operators needed to formulate the unfitted HHO
method. For a subset S ⊂ Rd consisting of one mesh (sub)cell or one mesh (sub)face, we
denote P`(S) (resp. P`(S;Rd)) the space composed of the restriction to S of scalar-valued
(resp. vector-valued) polynomials of total degree at most ` ≥ 0. Moreover, for a subset
S ⊂ Rd, we denote (·, ·)S the L2(S)-inner product with appropriate Lebesgue measure and
‖ · ‖S the induced norm. Whenever S = ∅, we abuse the notation by writing P`(S) := {0}
and (·, ·)S := 0.

Let k ≥ 0 be the polynomial degree of the method. For every uncut cell T ∈ T ih ,
i ∈ {1, 2}, the local discrete HHO unknowns are a pair of functions: one polynomial
of degree at most (k + 1) attached to the cell T and one polynomial of degree at most
k attached to each face F ∈ F∂T , where F∂T comprises all the faces composing the
boundary ∂T of the cell T . We use the notation v̂T := (vT , v∂T ) ∈ Pk+1(T ) × Pk(F∂T )
with Pk(F∂T ) :=

∏
F∈F∂T

Pk(F ). In the original HHO method from [19, 18], equal-order
unknowns are considered (i.e. polynomials of degree at most k on faces and cells). In
unfitted HHO methods it is also possible to consider equal-order unknowns in the uncut
cells, but mixed-order unknowns are needed in the cut cells (i.e. polynomials of degree
at most k on faces and k + 1 in cells). For simplicity, we consider mixed-order unknowns
everywhere.

For every cut cell T ∈ T Γ
h , we double the HHO unknowns as in [8] so as to have the

usual HHO unknowns available on each subcell, up to the interface Γ where there are no
unknowns. Thus the local HHO unknowns in every cut cell T ∈ T Γ

h are

v̂T := (v̂T 1 , v̂T 2) := (vT 1 , v(∂T )1 , vT 2 , v(∂T )2) ∈ ÛkT := ÛkT 1 × ÛkT 2 , (6)

with Ûk
T i := Pk+1(T i) × Pk(F(∂T )i), F(∂T )i := {F i := F ∩ Ωi | F ∈ F∂T } is the collection

of the (sub)faces composing (∂T )i, and Pk(F(∂T )i) :=
∏
F i∈F(∂T )i

Pk(F i), i ∈ {1, 2}. The

HHO unknowns for cut and uncut cells are shown in the central and right panels of Fig. 1.
For every geometric entity, the number of points represents the number of degrees of
freedom attached to it. To unify the notation between cut and uncut cells, we define ÛkT
as in (6) for all T ∈ T ih , i ∈ {1, 2}. With this abuse of notation we have v̂T := (vT , v∂T , 0, 0)
for all T ∈ T 1

h and v̂T := (0, 0, vT , v∂T ) for all T ∈ T 2
h .

Let T ∈ Th. As usual in HHO methods, the two local ingredients are a reconstruction
operator and a stabilization operator. In every cut cell T ∈ T Γ

h , there are two gra-

dient reconstruction operators Gk
T i : ÛkT → Gk(T i;Rd), i ∈ {1, 2}, where Gk(T i;Rd)

is composed of the restriction to T i of Rd-valued polynomial functions with the re-
quirement that (q·nT )|(∂T )i ∈ Pk(F(∂T )i) for all q ∈ Gk(T i;Rd). Possible choices are

Gk(T i;Rd) := Pk(T i;Rd) and Gk(T i;Rd) := ∇Pk+1(T i). The former choice leads to a
larger reconstruction space and is more suitable in the case of nonlinear problems [6, 1].
The latter choice is the one made in the original HHO methods [19, 18] and is also made
in [8] for unfitted HHO methods. For every cut cell T ∈ T Γ

h and every v̂T ∈ ÛkT , letting
JvT KΓ := vT 1 − vT 2 , we set

(Gk
T 1(v̂T ), q)T 1 := (∇vT 1 , q)T 1 + (v(∂T )1 − vT 1 , q·nT )(∂T )1 − (JvT KΓ, q·nΓ)TΓ , (7)

(Gk
T 2(v̂T ), q)T 2 := (∇vT 2 , q)T 2 + (v(∂T )2 − vT 2 , q·nT )(∂T )2 , (8)
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for all q ∈ Gk(T 1;Rd) in (7) and all q ∈ Gk(T 2;Rd) in (8). Note thatGk
T 2(v̂T ) only depends

on v̂T 2 , whereas Gk
T 1(v̂T ) depends on both v̂T 1 and v̂T 2 owing to the jump term on the

right-hand side of (7). The difference in the reconstruction between the two subdomains
is important in the highly-contrasted case where κ1 � κ2 (recall our convention that κ1 ≤
κ2). Using the above conventions on the notation, we can consider the same definitions
for every uncut cell T ∈ T ih , i ∈ {1, 2}, leading to (Gk

T i(v̂T ), q)T i := (∇vT i , q)T i +(v(∂T )i−
vT i , q·nT )(∂T )i for all q ∈ Gk(T i;Rd), and Gk

T ı̄(v̂T ) = 0. Recalling that T i := T and

(∂T )i := ∂T , Gk
T i(v̂T ) corresponds to the usual HHO gradient reconstruction in the uncut

cells. Furthermore, to weakly enforce the matching between cell- and face-based HHO
unknowns, we consider for all T ∈ Th the stabilization bilinear forms ŝT i , i ∈ {1, 2}, such
that for all v̂T i , ŵT i ∈ ÛkT i ,

ŝT i(v̂T i , ŵT i) := κih
−1
T

(
Πk

(∂T )i(vT i − v(∂T )i), wT i − w(∂T )i

)
(∂T )i

, (9)

where Πk
(∂T )i

denotes the L2-orthogonal projector onto Pk(F(∂T )i). Owing to the above

conventions, in every uncut cell T ∈ T ih , ŝT i(v̂T i , ŵT i) corresponds to the usual HHO sta-
bilization with mixed-order unknowns (similar to the HDG stabilization from Lehrenfeld
and Schöberl [28, 31]), whereas ŝT ı̄(v̂T ı̄ , ŵT ı̄) = 0.

The discrete HHO bilinear and linear forms read for all v̂T , ŵT ∈ ÛkT ,

âT (v̂T , ŵT ) :=
∑

i∈{1,2}

{
κi(G

k
T i(v̂T ),Gk

T i(ŵT ))T i +ŝT i(v̂T i , ŵT i)
}

+ŝΓ
T (v̂T , ŵT ), (10)

ˆ̀
T (ŵT ) :=

∑
i∈{1,2}

(f, wT i)T i + κ1(gD, φT (ŵT ))TΓ + (gN , wT 2)TΓ , (11)

with

ŝΓ
T (v̂T , ŵT ) := κ1h

−1
T (JvT KΓ, JwT KΓ)TΓ , φT (ŵT ) := h−1

T JwT KΓ −Gk
T 1(ŵT )·nΓ. (12)

Note that for every cut cell T ∈ T Γ
h , the stabilization bilinear forms ŝT i , i ∈ {1, 2}, do

not couple the HHO unknowns from both sides of the interface, whereas the gradient
reconstruction in T 1 couples them. The coupling also occurs by means of the penalty
bilinear form ŝΓ

T which enforces weakly the jump conditions across the interface. The
quantity φT (ŵT ) defined in (12) is designed so that the formulation has optimal consistency
properties.

Remark 2.1. (Gradient reconstruction) The gradient reconstruction operators defined
in (7)-(8) are one of the main novelties of the present work. They differ from those con-
sidered in [8] where the two gradient reconstructions in a cut cell need to be evaluated
simultaneously. The main advantage of the present reconstructions is that the incorpo-
ration of the jump term in (7) allows one to avoid the need for a large enough penalty
parameter scaling the bilinear form ŝΓ

T . This is why we have taken this parameter equal
to one in (12).
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2.4 The global discrete problem

We define the global discrete space

Ûkh :=
∏
T∈Th

Pk+1(T 1)×
∏
F∈Fh

Pk(F 1)×
∏
T∈Th

Pk+1(T 2)×
∏
F∈Fh

Pk(F 2), (13)

recalling that T i := T ∩ Ωi and F i := F ∩ Ωi, i ∈ {1, 2}. For all v̂h ∈ Ûkh and all T in
Th, we denote v̂T := (vT 1 , v(∂T )1 , vT 2 , v(∂T )2) the components of v̂h respectively attached
to T 1, (∂T )1, T 2, and (∂T )2. Recalling the above conventions on the uncut cells, we have
v̂T := (vT , v∂T , 0, 0) for all T ∈ T 1

h and v̂T := (0, 0, vT , v∂T ) for all T ∈ T 2
h . We denote Ûkh0

the subspace of Ûkh where all degrees of freedom attached to the faces composing ∂Ω are

null. The global discrete problem reads as follows: Find ûh ∈ Ûkh0 such that

âh(ûh, ŵh) = ˆ̀
h(ŵh), ∀ŵh ∈ Ûkh0, (14)

where the bilinear and linear forms are defined by summing all the local contributions, i.e.,
for all v̂h, ŵh ∈ Ûkh0, we set âh(v̂h, ŵh) :=

∑
T∈Th âT (v̂T , ŵT ) and ˆ̀

h(ŵh) :=
∑

T∈Th
ˆ̀
T (ŵT ).

The discrete problem (14) can be solved efficiently by eliminating locally all the cell-
based unknowns by means of a static condensation procedure. This local elimination
leads to a global transmission problem on the mesh skeleton involving only the face-based
unknowns. The resulting stencil couples unknowns attached to neighboring faces (in the
sense of cells). Once this global transmission problem is solved, one can recover the values
of the cell-based unknowns in every cell by local solves. We refer the reader, e.g., to [13].

2.5 Variants

Let us give two variants of the scheme based on the use of other gradient reconstructions.
The contents of this section are not used in the sequel and can be skipped at first reading.

A first variant is to define the gradient reconstructions in the cut cells in such a way
that the two subdomains play symmetric roles. In this case one replaces (7)-(8) with the
single definition

(G̃k
T i(v̂T ), q)T i := (∇vT i , q)T i + (v(∂T )i − vT i , q·nT )(∂T )i −

1

2
(JvT KΓ, q·nΓ)TΓ , (15)

for all v̂T ∈ ÛkT and all q ∈ Gk(T i;Rd), i ∈ {1, 2}, and the bilinear and linear forms become

ãT (v̂T , ŵT ) :=
∑

i∈{1,2}

{
κi(G̃

k
T i(v̂T ), G̃k

T i(ŵT ))T i + ŝT i(v̂T i , ŵT i)
}

+ s̃Γ
T (v̂T , ŵT ),

˜̀
T (ŵT ) :=

∑
i∈{1,2}

(f, wT i)T i + (gD, φ̃T (ŵT ))TΓ + (gN , {wT }Γ)TΓ ,

with the penalty bilinear form s̃Γ
T (v̂T , ŵT ) := κ2h

−1
T (JvT KΓ, JwT KΓ)TΓ (now scaled with κ2,

recalling that κ1 ≤ κ2), φ̃T (ŵT ) := κ2h
−1
T JwT KΓ−{κG̃k

T (ŵT )}Γ·nΓ, and the average values

{wT }Γ := 1
2(wT 1 + wT 2), {κG̃k

T (ŵT )}Γ := 1
2(κ1G̃

k
T 1(ŵT ) + κ2G̃

k
T 2(ŵT )) at the interface.

The error analysis (which proceeds as in Section 3 but is omitted for brevity) leads to error



8

estimates with optimal convergence rates but lacking robustness in the highly-contrasted
case where κ1 � κ2.

A second variant, which is closer in spirit to the Nitsche-type approach and the unfitted
HHO method previously devised in [8], is to set

(Ǧk
T i(v̂T ), q)T i := (∇vT i , q)T i + (v(∂T )i − vT i , q·nT )(∂T )i ,

for all v̂T ∈ ÛkT , q ∈ Gk(T i;Rd), i ∈ {1, 2}. Owing to the absence of the jump term in the
gradient reconstruction, the consistency error analysis (which proceeds as in Section 3 but
is omitted for brevity) shows that the bilinear and linear forms should now be written as

ǎT (v̂T , ŵT ) :=
∑

i∈{1,2}

{
κi(Ǧ

k
T i(v̂T ), Ǧk

T i(ŵT ))T i + ŝT i(v̂T i , ŵT i)
}

− n̂Γ
T (v̂T , ŵT ) + ηŝΓ

T (v̂T , ŵT ),

ˇ̀
T (ŵT ) :=

∑
i∈{1,2}

(f, wT i)T i + κ1(gD, φη,T (ŵT ))TΓ + (gN , wT 2)TΓ ,

where η > 0 is a user-dependent parameter, ŝΓ
T is still defined by (12),

n̂Γ
T (v̂T , ŵT ) := κ1(JvT KΓ,∇wT 1 ·nΓ)TΓ + κ1(∇vT 1 ·nΓ, JwT KΓ)TΓ ,

and φη,T (ŵT ) := ηh−1
T JwT KΓ − ∇wT 1 ·nΓ. As is classical in this situation, the need to

bound the Nitsche-type bilinear form n̂Γ
T to ensure coercivity makes it necessary to take a

value for η that is large enough, depending on the constant from a discrete trace inequality.
Note that the handling of the diffusion coefficients on both sides of the interface is inspired
from [10, 21] and leads to robust error estimates in the highly contrasted case. However,
avoiding a large enough penalty parameter is highly beneficial in practice and is the key
motivation for introducing the novel reconstructions (7)-(8). Similar ideas in the context
of unfitted FEM were discussed in [29].

3 Analysis

In this section we establish stability and error estimates for the unfitted HHO method
introduced in the previous section.

3.1 Admissible meshes

The unfitted HHO method is to be deployed on shape-regular polyhedral mesh sequences,
i.e. for all h > 0, Th admits a matching simplicial submesh T ′h such that any cell (or
face) of T ′h is a subset of a cell (or face) of Th. Moreover, there exists a mesh-regularity
parameter ρ > 0 such that for all h > 0, all T ∈ Th, and all S ∈ T ′h such that S ⊂ T ,
we have ρhS ≤ rS and ρhT ≤ hS , where rS denotes the inradius of the simplex S. In
the numerical experiments presented in Section 5, we start with structured meshes, which
then become (locally) polyhedral after the cell agglomeration procedure. Three additional
assumptions on the mesh are needed. The first one quantifies how well the interface cuts
the mesh cells, the second one quantifies how well the mesh resolves the interface and the
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third one requires the mesh not to be excessively graded. In the sequel B(x, r) denotes
the ball of center x and radius r.

Assumption 1 (Cut cells). There is δ ∈ (0, 1) such that, for all T ∈ T Γ
h and all i ∈ {1, 2},

there is x̃T i ∈ T i such that B(x̃T i , δhT ) ⊂ T i.

Assumption 2 (Resolving Γ). There is γ ∈ (0, 1) such that, for all T ∈ T Γ
h , there is a

point x̌T ∈ Rd such that setting T † := B(x̌T , γ
−1hT ) we have the following properties: (i)

T ⊂ T †; (ii) for all s ∈ TΓ, d(x̌T , TsΓ) ≥ γhT , where TsΓ is the tangent plane to Γ at the
point s; (iii) For all F ∈ F∂T , there is xF ∈ T † such that d(xF , F ) ≥ γhT .

For all T ∈ Th, let the neighboring layers ∆j(T ) ⊂ Rd be defined by induction as

∆0(T ) := T and ∆j+1(T ) := {T ′ ∈ Th | T ′ ∩∆j(T ) 6= ∅} for all j ∈ N.

Assumption 3 (Mild mesh grading). There is n0 ∈ N such that for all T ∈ Th, the ball
T † introduced in Assumption 2 satisfies T † ⊂ ∆n0(T ).

Let us now briefly comment on the foundations and consequences of Assumptions 1
and 2. It is shown in [8, Lem. 6.4] that if the mesh is fine enough, it is possible to devise a
cell agglomeration procedure so that, choosing the parameter δ small enough (depending
on the regularity parameter ρ), Assumption 1 is fulfilled. In the present work we improve
on the procedure outlined in [8] by adding a third step that guarantees that there is no
propagation of the cell agglomeration. More details are given in Section 4.3. The role of
Assumption 1 in the analysis is to provide the following discrete (inverse) inequalities.

Lemma 4 (Discrete (inverse) inequalities). Let Assumption 1 be fulfilled. Let ` ∈ N.
There is cdisc, depending on ρ, δ, and `, such that, for all T ∈ Th, all i ∈ {1, 2} and all
vT i ∈ P`(T i), the following inequalities hold true:

• (Discrete trace inequality) ‖vT i‖(∂T )i + ‖vT i‖TΓ ≤ cdisch
− 1

2
T ‖vT i‖T i.

• (Discrete inverse inequality) ‖∇vT i‖T i ≤ cdisch
−1
T ‖vT i‖T i.

• (Discrete Poincaré inequality) Assuming that (vT i , 1)B(x̃Ti ,hT ) = 0, we have ‖vT i‖T i ≤
cdischT ‖∇vT i‖T i.

Proof. The discrete trace inequality is shown in [8, Lemma 3.4]. The proof of the other
two inequalities uses similar arguments. For brevity we only sketch the proof of the inverse
inequality. Since this inequality is classical in uncut cells (see, e.g., [17, Lemma 1.44]), we
consider a cut cell T ∈ T Γ

h . Invoking an inverse inequality in B(x̃T i , hT ) (with constant
c0) followed by the inequality ‖vT i‖B(x̃Ti ,hT ) ≤ c1‖vT i‖B(x̃Ti ,δhT ) leads to ‖∇vT i‖T i ≤
‖∇vT i‖B(x̃Ti ,hT ) ≤ c0h

−1
T ‖vT i‖B(x̃Ti ,hT ) ≤ c0c1h

−1
T ‖vT i‖B(x̃Ti ,δhT ) ≤ c0c1h

−1
T ‖vT i‖T i .

It is shown in [8, Lemma 6.1] that if the mesh is fine enough with respect to the
curvature of the interface, the points (i) and (ii) of Assumption 2 hold true. Moreover the
point (iii) of this assumption can be established by invoking the shape-regularity of the
mesh as shown in the proof of [8, Lemma 3.3]. The role of Assumption 2

is to provide a multiplicative trace inequality that is needed to establish optimal ap-
proximation properties on the faces and on the interface within the cut cells. We only
state this inequality and refer the reader to [8, Lemma 3.3] for the proof.
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Lemma 5 (Multiplicative trace inequality). Let Assumption 2 be fulfilled. There is cmtr >
0, depending on ρ and γ, such that for all T ∈ Th, all v ∈ H1(T †), and all i ∈ {1, 2},

‖v‖(∂T )i∪TΓ ≤ cmtr

(
h
− 1

2
T ‖v‖T † + ‖v‖

1
2

T †
‖∇v‖

1
2

T †

)
. (16)

Remark 3.1. (Constant cdisc) The constant cdisc from Lemma 4 can depend, as stated,
on ρ, δ, and `. In practice the cell agglomeration procedure allows that δ remains compa-
rable to ρ, so that the dependence of cdisc on δ is expected to be similar to the dependence
of the generic constants on ρ in the usual error estimates. An illustration of the moderate
impact of δ on the condition number is presented in Section 5.3. The dependence of cdisc

on ` exhibits the usual unfavorable dependence, and tackling this issue would require an
hp-analysis that goes beyond the present scope. We notice though that we are still using
moderate polynomial degrees (up to 3 in our experiments), and that the use of high-order
methods also requires a finer control of quadrature errors on cut cells as further discussed
in Section 5.

In what follows we use the convention A . B to abbreviate the inequality A ≤ CB
for positive real numbers A and B, where the constant C only depends on the polynomial
degree k ≥ 0, the mesh parameters ρ, δ, γ and n0, and the above constants cdisc and cmtr.

3.2 Stability and well-posedness

For all T ∈ Th and all v̂T ∈ ÛkT , we define the local semi-norm

|v̂T |2âT :=
∑

i∈{1,2}

κi

{
‖∇vT i‖2T i + h−1

T ‖v(∂T )i − vT i‖2(∂T )i

}
+ κ1h

−1
T ‖JvT KΓ‖2TΓ . (17)

Lemma 6 (Stability). Let Assumption 1 be fulfilled. We have |v̂T |2âT . âT (v̂T , v̂T ) for all

T ∈ Th and all v̂T ∈ ÛkT .

Proof. Owing to (7), we infer that

‖∇vT 1‖2T 1 =(∇vT 1 ,∇vT 1)T 1

=(Gk
T 1(v̂T ),∇vT 1)T 1−(v(∂T )1 − vT 1 ,∇vT 1 ·nT )(∂T )1 +(JvT KΓ,∇vT 1nΓ)TΓ .

The Cauchy–Schwarz inequality, ∇vT 1 ·nT ∈ Pk(F(∂T )1), and the discrete trace inequality
from Lemma 4 to bound ‖∇vT 1‖(∂T )1∪TΓ lead to

‖∇vT 1‖2T 1 . ‖Gk
T 1(v̂T )‖2T 1 + h−1

T ‖Π
k
(∂T )1(v(∂T )1 − vT 1)‖2(∂T )1 + h−1

T ‖JvT KΓ‖2TΓ .

Similar arguments lead to

‖∇vT 2‖2T 2 . ‖Gk
T 2(v̂T )‖2T 2 + h−1

T ‖Π
k
(∂T )2(v(∂T )2 − vT 2)‖2(∂T )2 .

Therefore we have
∑

i∈{1,2} κi‖∇vT i‖2T i +κ1h
−1
T ‖JvT KΓ‖2TΓ . âT (v̂T , v̂T ), and it remains to

bound
∑

i∈{1,2} κih
−1
T ‖v(∂T )i−vT i‖2(∂T )i

. Let i ∈ {1, 2}. Since v(∂T )i−vT i = Πk
(∂T )i

(v(∂T )i−
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vT i)−(I−Πk
(∂T )i

)(vT i) and recalling the definition (9) of the stabilization bilinear form ŝT i ,

we only need to bound h−1
T ‖(I −Πk

(∂T )i
)(vT i)‖2(∂T )i

. Invoking the discrete trace inequality

and the discrete Poincaré inequality from Lemma 4, we have

h−1
T ‖(I −Πk

(∂T )i)(vT i)‖2(∂T )i

≤ h−1
T ‖(I −Π0

(∂T )i)(vT i)‖2(∂T )i ≤ h
−1
T ‖(I −Π0

(∂T )i)(vT i − vT i)‖2(∂T )i

≤ h−1
T ‖vT i − vT i‖2(∂T )i . h−2

T ‖vT i − vT i‖2T i . ‖∇vT i‖2T i ,

where vT i is the mean value of vT i over B(x̃T i , hT ). This concludes the proof.

Letting ‖v̂h‖2âh :=
∑

T∈Th |v̂T |
2
âT

, a classical argument shows that we define a norm

on Ûkh0 (recall that all the unknowns attached to boundary faces are null by definition of

Ûkh0). This norm is in spirit close to the broken H1-norm used in discontinuous Galerkin
methods.

Corollary 7 (Well-posedness). If Assumption 1 is fulfilled, we have

‖v̂h‖2âh . âh(v̂h, v̂h), ∀v̂h ∈ Ûkh0, (18)

and the discrete problem (14) is well-posed.

Proof. The coercivity property (18) follows by summing over the mesh cells the bound
from Lemma 6, and well-posedness follows from the Lax–Milgram Lemma.

Remark 3.2. (Weights) The jump term ‖JvT KΓ‖TΓ in (17) is weighted by the factor κ1

and not κ2 (recall that κ1 ≤ κ2). This is possible because the gradient reconstruction in
T 2 does not involve the jump across Γ.

3.3 Approximation

Let Ei : Hk+2(Ωi) → Hk+2(Rd), i ∈ {1, 2}, be a stable extension operator. For all
v ∈ H1(Ω1 ∪ Ω2) with vi := v|Ωi

and all T ∈ Th, we define

Ik+1
T i (vi) := (Πk+1

T †
(Ei(vi)))|T i ∈ Pk+1(T i), (19)

ÎkT (v) := (ÎkT 1(v), ÎkT 2(v)) := (Ik+1
T 1 (v1),Πk

(∂T )1(v1), Ik+1
T 2 (v2),Πk

(∂T )2(v2)) ∈ ÛkT , (20)

where Πk+1
T †

denotes the L2-orthogonal projector onto Pk+1(T †). Note that we do not

project using the subcell T i but the larger set T † from Assumption 2 so as to invoke the
optimal approximation properties of Ik+1

T i (see for instance [8, Lemma 5.6]). Indeed if this

assumption is fulfilled, we have for all v ∈ L2(Ω) such that vi ∈ Hk+2(Ωi), i ∈ {1, 2}, and
all T ∈ Th,

‖vi − Ik+1
T i (vi)‖T i + h

1
2
T ‖vi − I

k+1
T i (vi)‖(∂T )i + hT ‖∇(vi − Ik+1

T i (vi))‖T i

. hk+2
T |Ei(vi)|Hk+2(T †), (21)

h
1
2
T ‖Jv − I

k+1
T (v)KΓ‖TΓ . hk+2

T

∑
j∈{1,2}

|Ej(vj)|Hk+2(T †). (22)
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It is convenient to define a discrete lifting operator LkT 1 : L2(Γ) → Gk(T 1;Rd) for all
T ∈ T Γ

h such that, for all g ∈ L2(Γ) and all q ∈ Gk(T 1;Rd),

(LkT 1(g), q)T 1 := (g, q·nΓ)TΓ . (23)

With the above abuse of notation, we set LkT 1(g) := 0 for all T ∈ T ih , i ∈ {1, 2}.

Lemma 8 (Approximation for gradient reconstruction). Let Assumptions 1 and 2 be
fulfilled. For all v ∈ L2(Ω) such that vi ∈ Hk+2(Ωi), i ∈ {1, 2}, and for all T ∈ Th, we
have

‖δT 1(v)‖T 1 + h
1
2
T ‖δT 1(v)‖(∂T )1∪TΓ . hk+1

T

∑
j∈{1,2}

|Ej(vj)|Hk+2(T †), (24)

‖δT 2(v)‖T 2 + h
1
2
T ‖δT 2(v)‖(∂T )2∪TΓ . hk+1

T |E2(v2)|Hk+2(T †), (25)

with δT 1(v) := Gk
T 1(ÎkT (v)) +LkT 1(JvKΓ)−∇v1 and δT 2(v) := Gk

T 2(ÎkT (v))−∇v2, and with
Gk
T 1 and Gk

T 2 defined in (7) and (8), respectively. (Note that δT 1(v) depends on v1 and
v2, whereas δT 2(v) only depends on v2.)

Proof. Let us set δ′T 1(v) := Gk
T 1(ÎkT (v)) +LkT 1(JvKΓ)−∇Ik+1

T 1 (v1). Owing to (7) and (23),
we have

‖δ′T 1(v)‖2T 1 = (Πk
(∂T )1(v1)−Ik+1

T 1 (v1), δ′T 1(v)·nT )(∂T )1 + (Jv−Ik+1
T (v)KΓ, δ

′
T 1(v)·nΓ)TΓ .

Since (δ′T 1(v)·nT )|(∂T )1 ∈ Pk(F(∂T )1) owing to the assumption on the reconstruction space

Gk(T i;Rd), we can replace Πk
(∂T )1(v1) by v1 in the first term on the right-hand side. The

Cauchy–Schwarz inequality and the discrete trace inequality from Lemma 4 lead to

‖δ′T 1(v)‖T 1 + h
1
2
T ‖δ

′
T 1(v)‖(∂T )1∪TΓ . ‖δ′T 1(v)‖T 1

. h
− 1

2
T

(
‖v1 − Ik+1

T 1 (v1)‖(∂T )1 + ‖Jv − Ik+1
T (v)KΓ‖TΓ

)
.

Invoking (21)-(22) together with δT 1(v) = δ′T 1(v) + ∇(Ik+1
T 1 (v1) − v1) and a triangle in-

equality then proves (24). The proof of (25) uses similar arguments.

3.4 Error estimate

Recall that u and ûh are the solutions to (1) and (14), respectively. We set ui := u|Ωi
,

i ∈ {1, 2}.

Lemma 9 (Consistency and boundedness). For all v̂h ∈ Ûkh0, we define the consistency

error as Dh(v̂h) :=
∑

T∈Th

{
âT (ÎkT (u), v̂T ) − ˆ̀

T (v̂T )
}

. Assume that there is ε > 0 such

that ui ∈ H
3
2

+ε(Ωi) for all i ∈ {1, 2}. Then we have

|Dh(v̂h)| .
( ∑
T∈Th

‖gT ‖2∗T + ‖ξT ‖2#T
) 1

2× ‖v̂h‖âh ,
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where

‖gT ‖2∗T := κ1

(
‖δT 1(u)‖2T 1 + hT ‖δT 1(u)‖2(∂T )1∪TΓ

)
+ κ2

(
‖δT 2(u)‖2T 2 + hT ‖δT 2(u)‖2(∂T )2

)
, (26)

‖ξT ‖2#T :=
∑

i∈{1,2}

κih
−1
T ‖ui − I

k+1
T i (ui)‖2(∂T )i + κ1h

−1
T ‖Ju− I

k+1
T (u)KΓ‖2TΓ , (27)

with δT 1(u) := Gk
T 1(ÎkT (u)) +LkT 1(gD)−∇u1 and δT 2(u) := Gk

T 2(ÎkT (u))−∇u2.

Proof. Re-arranging the terms and using the PDE satisfied by the exact solution in Ω1∪Ω2,
we have Dh(v̂h) = Ψ1 + Ψ2 with

Ψ1 :=
∑
T∈Th

{ ∑
i∈{1,2}

(
κi(G

k
T i(Î

k
T (u)),Gk

T i(v̂T ))T i + (∇·(κi∇ui), vT i)T i

)
+ κ1(LkT 1(gD),Gk

T 1(v̂T ))T 1 − (gN , vT 2)TΓ

}
,

Ψ2 :=
∑
T∈Th

∑
i∈{1,2}

ŝT i(ÎkT i(u), v̂T i) + κ1h
−1
T (JIk+1

T (u)KΓ − gD, JvT KΓ)TΓ .

Using an integration by parts for ∇·(κi∇ui), the definitions (7)-(8) of the gradient re-
constructions and the fact that

∑
T∈Th(v(∂T )i ,∇ui·nT )(∂T )i = 0, i ∈ {1, 2} (since ui ∈

H
3
2

+ε(Ωi) by assumption), we infer that

Ψ1 =
∑
T∈Th

{
− κ1((Gk

T 1(ÎkT (u)) +LkT 1(gD))·nΓ, JvT KΓ)TΓ

+ (κ1∇u1·nΓ, vT 1)TΓ − (κ2∇u2·nΓ, vT 2)TΓ + ((κ2∇u2 − κ1∇u1)·nΓ, vT 2)TΓ

+ κ1(δT 1(u),∇vT 1)T 1 + κ1(δT 1(u)·nT , v(∂T )1 − vT 1)(∂T )1)

+ κ2(δT 2(u),∇vT 2)T 2 + κ2(δT 2(u)·nT , v(∂T )2 − vT 2)(∂T )2

}
=
∑
T∈Th

{
− κ1(δT 1(u)·nΓ, JvT KΓ)TΓ

+
∑

i∈{1,2}

κi(δT i(u),∇vT i)T i + κi(δT i(u)·nT , v(∂T )i − vT i)(∂T )i

}
.

Moreover, recalling the definition of the stabilization bilinear forms ŝT i , that of Îk
T i(u),

and since JuKΓ = gD, we have

Ψ2 =
∑
T∈Th

{ ∑
i∈{1,2}

κih
−1
T (Πk

(∂T )i(ui − I
k+1
T i (u)), v(∂T )i − vT i)(∂T )i

+ κ1h
−1
T (JIk+1

T (u)− uKΓ, JvT KΓ)TΓ

}
.

We conclude the proof by invoking the Cauchy–Schwarz inequality and the definition of
‖v̂h‖âh .
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Theorem 10 (Error estimate). Let Assumption 1 be fulfilled. Assume that there is ε > 0

such that ui ∈ H
3
2

+ε(Ωi) for all i ∈ {1, 2}. Then we have∑
T∈Th

∑
i∈{1,2}

κi‖∇(ui − uT i)‖2T i .
∑
T∈Th

∑
i∈{1,2}

κi‖∇(ui − Ik+1
T i (ui))‖2T i

+
∑
T∈Th

(
‖gT ‖2∗T + ‖ξT ‖2#T

)
, (28)

with ‖gT ‖∗T and ‖ξT ‖#T defined in (26)-(27), respectively. Moreover, if Assumptions 2
and 3 are also fulfilled and if for all i ∈ {1, 2}, ui ∈ Hk+2(Ωi), then we have∑

T∈Th

∑
i∈{1,2}

κi‖∇(ui − uT i)‖2T i . h2(k+1)
∑

i∈{1,2}

κi|ui|2Hk+2(Ωi)
. (29)

Proof. For all T ∈ Th, we define the discrete error êh ∈ Ûkh0 such that êT := ÎkT (u)−ûT ∈ ÛkT
for all T ∈ Th. Then we have Dh(êh) = âh(êh, êh). Lemmas 6 (stability) and 9 (consistency
and boundedness) give

‖êh‖âh .

∑
T∈Th

‖gT ‖2∗T + ‖ξT ‖2#T

 1
2

.

Since ∇(ui−uT i) = ∇(ui−Ik+1
T i (ui))+∇eT i , invoking the triangle inequality leads to (28).

Let us now prove (29). The bounds (21)-(22) and Lemma 8 (approximation for gradient
reconstruction) imply that∑

T∈Th

∑
i∈{1,2}

κi‖∇(ui − uT i)‖2T i . h2(k+1)
∑
T∈Th

∑
i∈{1,2}

κi|Ei(ui)|2Hk+2(T †).

Since T † ⊂ ∆n0(T ) for all T ∈ Th, owing to Assumption 3, we infer that for all i ∈ {1, 2},∑
T∈Th |Ei(ui)|

2
Hk+2(T †)

. |ui|2Hk+2(Ωi)
. This concludes the proof.

4 Implementation aspects

The unfitted HHO method is implemented in ProtoN, which is a slim, fast prototyping
library to test major modifications within the DiSk++ library1 [13]. For simplicity we
focus on a two-dimensional setting with unfitted meshes composed of quadrangles. We
assume that the boundary of every cell is cut at most twice and that every face is cut
at most once. These assumptions are classical when implementing unfitted methods (see
for instance [24]) and can be satisfied if the unfitted mesh is fine enough. Moreover we
assume that the interface is specified by means of a level-set function.

As in DiSk++, polynomial basis functions associated with the mesh cells and faces are
used. The cell polynomials are centered at the barycenter of the cell and are scaled by its
diameter. The face basis functions associated with a subface F i, i ∈ {1, 2}, are taken to be
Legendre polynomials scaled by |F i|−1/2. This eases the computation of the stabilization
term since the face mass matrix that has to be inverted is the identity matrix. Moreover
this improves the conditioning of the stiffness matrix.

1see https://github.com/wareHHOuse
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Remark 4.1. (3D) Since the fitted polyhedral HHO method is already implemented for
3D problems in DiSk++, developing 3D unfitted HHO methods essentially requires to take
into account the richer cut configurations that can occur.

4.1 Mesh data structure and preprocessing

The mesh data structure hinges on the features developed for fitted HHO methods (see [13,
Section 3]). It is independent from the space dimension and from the shape of the elements.
Compared with DiSk++, some changes in the mesh data structure were introduced so as to
provide additional information concerning the cut cells. This information which is stored
for each cell contains:

• The status of the cell (in T 1
h , T 2

h or T Γ
h );

• A flag indicating whether or not the cell has a small cut and on which side of the
interface the small cut occurs. The criterion for a small cut is (in a slight variation
with respect to the requirement of Assumption 1)

|T i| ≤ α|T |, (30)

with user-parameter α ∈ (0, 1
2) (we set α := 0.3 in Section 5).

• The list of neighboring cells to be used in the agglomeration procedure;

• A list of points representing the interface to be used for numerical integration;

• A list of quadrature weights and points if the cell results from agglomeration.

In practice the mesh preprocessing follows the following steps:

• We detect in which subdomain are the nodes, the faces, and the cells of the mesh and
whether or not they are cut. Moreover we compute the intersection points between
the faces and the interface. This initializes the representation of the interface inside
the cut cells.

• We use the criterion (30) to select the cells that have to be agglomerated. We also
store the knowledge of which subcell is small. This is used when we need to find
suitable neighbors to these cells.

• For every small cut cell, we compute the list of its neighbors, that is

∆(T ) := ∆1(T ) \ {T}, (31)

i.e., ∆(T ) is the collection of the cells distinct from T that share at least a point
with T . It is useful to store separately the neighbors sharing a face and the neigh-
bors sharing only a node. Since we consider Cartesian meshes, this routine can be
specialized for optimization.



16

• We refine the representation of the interface. For every cell, the segment represen-
tation that was defined on the first step above is divided into 2nint segments for a
user-specified parameter nint ≥ 1. For instance, nint = 1 in Fig. 2c and nint = 2
in Fig. 2a and 2b. In practice we want to have nint large enough to mitigate the
geometric error induced from the fact that we consider a low-order representation
of the interface in combination with a high-order discretization method (see Fig. 8
for an illustration). The position of the points on the interface is determined by a
bisection method using the level-set representation of the interface.

• We finally agglomerate the small cut cells as described in Section 4.3.

4.2 Quadratures

During the assembly phase (and to compute errors when reporting convergence rates),
integrals over the subcells T i, i ∈ {1, 2}, and over the interface TΓ need to be evaluated
for every cut cell T ∈ T Γ

h . This operation is done by using the list of points representing the
interface (the red squares in Fig. 2). The quadrature points and weights over the interface
are obtained by gathering all the Gauss–Legendre quadrature points and weights over all
the segments composing this list of points. Furthermore, each subcell is decomposed into
several triangles, and the quadrature points and weights for the subcell are then obtained
by gathering all the Dunavant [20] quadrature points and weights of the subtriangles. In
order to build this subtriangulation, a point is fixed and triangles are formed such that
one vertex is this fixed point and the two other vertices are vertices of the polygonal cut
subcell T i, i ∈ {1, 2}. Hence we use points located on (∂T )i and on TΓ, i.e., the black
triangles and the red squares shown in Fig. 2. In practice, since we consider quadrangular
meshes, the fixed point is either the midpoint of a face (if two opposite faces are cut, see
Fig. 2a) or a vertex of the cut cell (if two adjacent faces are cut, see Fig. 2b and 2c). This
choice of fixed points can reduce the number of negative weights if the mesh is fine enough.

(a) Cutting opposite faces. (b) Cutting adjacent faces. (c) Interface with corner.

Figure 2: Subtriangulation of a cut cell. The interface is represented by red squares. The
center of subtriangulation of the subcells is indicated by a blue star and a green circle.
The other vertices of the subcells are indicated by black triangles.

Remark 4.2. (Alternative) One can also devise quadratures from an isoparametric rep-
resentation for the interface, as, e.g., in [30].
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4.3 The cell agglomeration procedure

The starting point of the procedure is an initial shape-regular mesh fulfilling Assumption 2,
but not necessarily Assumption 1. We consider the partition Th = T 1

h ∪T Γ
h ∪T 2

h as in (2).
We further partition the set of the cut cells as

T Γ
h = T ok

h ∪ T ko,1
h ∪ T ko,2

h , (32)

where T ok
h contains all the cut cells without small cuts and T ko,i

h contains all the cut

cells with a small subcell in Ωi, i ∈ {1, 2}. Recall that the subsets T ko,1
h and T ko,2

h are
disjoint owing to [8, Lemma 6.2] if the unfitted mesh is fine enough and the parameter δ in
Assumption 1 is small enough. Here the small-cut criterion is the simpler condition (30).
Nonetheless we observed in all our experiments that the subsets T ko,1

h and T ko,2
h were

indeed disjoint.
The cell agglomeration procedure needs to fulfill two goals. First every agglomerated

cell must be free of small cuts. Second, if two cells T and T ′ are agglomerated, they
must have a common neighbor. Note that this second condition allows for diagonal ag-
glomeration if needed (see for instance Fig. 4). The procedure is outlined in Algorithm
1. In stage 1, for every cell T in T ko,1

h (having a small cut in Ω1), we find a neighbor

N1(T ) ∈ (T 1
h ∪ T ok

h ∪ T ko,2
h )∩∆(T ). The existence of N1(T ) follows from [8, Lemma 6.3]

(if the mesh is fine enough and the parameter δ small enough), and by construction the

agglomerated cell T ∪N1(T ) has no small cuts. We denote T̃h
ko,2

the subset composed of
the cells in T ko,2

h that have not been chosen as neighbors during stage 1. In stage 2, for

every cell T in T̃h
ko,2

(having a small cut in Ω2 and that has not yet been agglomerated
after stage 1), we find a neighbor N2(T ) ∈ (T 2

h ∪ T ok
h ∪ T ko,1

h ) ∩∆(T ). The existence of
N2(T ) again follows from [8, Lemma 6.3] under the same conditions, and by construction
T ∪ N2(T ) has no small cuts. However the actual agglomerated cell may be larger than
T ∪ N2(T ) (i.e., some chain of agglomerations can occur), and the goal of stage 3 is to
modify N1(T ) for some cells in T ko,1

h to avoid this. The idea is that if a cell in T ko,1
h is

at the same time pointing (by means of N1 in stage 1) to a cell in T ko,2
h and is pointed to

by a cell in T̃h
ko,2

(by means of N2 in stage 2), then the pointer N1(T ) is changed unless
the cell N1(T ) belongs to T ko,2

h and is not pointed to by another cell. After completion

of stage 3, all the agglomerated cells are collected in the subset T agglo
h , and the final mesh

produced by the procedure is

T̃h = ((Th\{T,N1(T ) | T ∈ T ko,1
h })\{T,N2(T ) | T ∈ T̃h

ko,2
}) ∪ T agglo

h . (33)

Lemma 11 (Cell agglomeration). Every agglomerated cell is in ∆1(T#) for some T# ∈
Th.

Proof. Assume that a cell T ∈ T ko,1
h is chosen by a cell T ′ ∈ T̃h

ko,2
, i.e., T = N2(T ′), so

that the condition (3.a) of Algorithm 1 is fulfilled. By definition of the subset T̃h
ko,2

, T ′ has
not been chosen by any cell in stage 1. Hence there is no propagation of the agglomeration
in the direction of T ′. Let us now consider the propagation in the direction of T . Recall
that according to stage 1, N1(T ) is in T 1

h ∪ T ok
h ∪ T ko,2

h . If actually N1(T ) ∈ T 1
h ∪ T ok

h ,
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Algorithm 1 Cell agglomeration procedure.

Require: Mesh Th satisfying Assumption 2.
1. For every T ∈ T ko,1

h , find a suitable neighbor N1(T ) ∈ (T 1
h ∪ T ok

h ∪ T ko,2
h ) ∩∆(T ).

2. For every T ∈ T̃h
ko,2

, find a suitable neighbor N2(T ) ∈ (T 2
h ∪ T ok

h ∪ T ko,1
h ) ∩∆(T ).

3. For every T ∈ T ko,1
h , if the following conditions are met:

(3.a) there is T ′ ∈ T̃h
ko,2

such that N2(T ′) = T ;

(3.b) N1(T ) /∈ T ko,2
h or there is T ′′ ∈ T ko,1

h \{T} such that N1(T ) = N1(T ′′);

then set N1(T ) := T ′. Otherwise do not modify N1(T ).

4. Generate a new mesh T̃h as in (33).

then condition (3.b) is fulfilled so that we set N1(T ) := T ′. Hence the agglomerated cell

contains T and T ′, and potentially any other cell T̃2 ∈ T̃h
ko,2

such that N2(T̃2) = T . Hence
all these cells are in ∆1(T ). Otherwise N1(T ) ∈ T ko,2

h . Then, either there is T ′′ ∈ T ko,1
h

such that N1(T ) = N1(T ′′). In this case condition (3.b) is again fulfilled, so that we
set N1(T ) := T ′, and the agglomerated cell is again in ∆1(T ). Otherwise, there is no
such T ′′ so that condition (3.b) is not fulfilled, which means that the agglomerated cell is

composed of T ′, T = N2(T ′), N1(T ), and potentially any other cell T̃2 ∈ T̃h
ko,2

such that
N2(T̃2) = T . Again all these cells are in ∆1(T ). Finally the reasoning is similar if one
considers a cell T ∈ T ok

h ∪T 1
h ∪T 2

h which is pointed to by a cell from T ko,1
h and a cell from

T̃h
ko,2

.

Remark 4.3. (Stage 3) Algorithm 1 without stage 3 has been proposed in [8, Section
6]. In this case one can show that every agglomerated cell is in ∆2(T#) for some T# ∈ Th
(instead of ∆1(T#)). Indeed, a cell T in T ko,2

h can choose a cell T ′ in T ko,1
h that chooses

a cell T# in T ko,2
h ∪ T 1

h ∪ T ok
h . And similarly, another cell T̃ in T ko,2

h can choose a cell T̃ ′

in T ko,1
h that chooses T#. The agglomeration cannot propagate further since if a cell in

T ko,1
h chooses T as a neighbor, then T does not look for a neighbor and does not choose

T ′ (see the definition of T̃h
ko,2

). Furthermore, another benefit of stage 3 is the reduction
whenever possible of the size of the agglomerated cells by promoting the agglomeration of

pairs of cells, one from T ko,1
h and the other from T̃h

ko,2
. See Figure 5 for an illustration

of the three stages.

Remark 4.4. (Choice of neighbor) When looking for a neighbor in stages 1 and 2 in
Algorithm 1, picking a neighbor that shares at least one common face is preferred. If
there are no such neighbors, then diagonal agglomeration by means of a neighbor sharing
only a point is performed (see Fig. 4). Moreover, in the case where several cells sharing
at least one common face (resp., no common faces) with some T ∈ T ko,i

h are available, the
cell having the smallest (positive) area in Ωı̄ (i.e. the smallest |T ı̄|) is chosen. This way,
the cells in T ko,1

h tend (whenever possible) to be agglomerated with cells from T ko,2
h . This

reduces the total number of agglomerations as well as the triggering of stages 2 and 3.
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5 Numerical experiments

We present numerical experiments to illustrate the cell agglomeration procedure and the
convergence rates of Theorem 10. We also study the condition number of the stiffness
matrix (after static condensation).

In all the experiments we consider the unit square domain Ω := (0, 1)2 with homo-
geneous Cartesian meshes of step size h = 2−N with N ∈ {3, 4, 5, 6, 7}. Note that here
the mesh size h refers to the number of subdivisions of each side of Ω before the cell
agglomeration procedure. The interface is represented by a level-set function Φ so that
Γ := {(x, y) ∈ Ω | Φ(x, y) = 0}, Ω1 := {(x, y) ∈ Ω | Φ(x, y) < 0}, and Ω2 := {(x, y) ∈
Ω | Φ(x, y) > 0}. We consider a circular interface and a flower-like interface for which the
level-set functions are, respectively,

ΦC(x, y) := (x− a)2 + (y − b)2 −R2, (34)

ΦF (x, y) := (x− a)2 + (y − b)2 −R2 + c cos(nθ), (35)

with θ := arctan( y−bx−a) if x ≥ a, θ := π + arctan( y−bx−a) if x < a, where a, b, c ∈ (0, 1).

5.1 Agglomeration procedure

We test the agglomeration procedure detailed in Section 4.3. The circular interface is
first considered with R := 1/3 and a = b := 0.5 in (34). We plot the interface and
the mesh obtained after the cell agglomeration procedure in Fig. 3. As expected each
agglomerated cell is in the neighborhood of one of the cells of the original mesh, i.e., there
is no propagation of the agglomeration. We also remark that all the agglomerations have
been done by using cells sharing one face (see Remark 4.4).

(a) The full mesh. (b) A zoom.

Figure 3: Circular interface (h = 1/16). The interface is represented by red squares.
Agglomerated cells are highlighted in blue. The arrows indicate how the agglomerations
have been performed.
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We give more details on the cell agglomeration procedure in Table 1. We note that
for meshes that are fine enough, there are almost as many cells in T ko,1

h as in T ko,2
h , each

subset being composed of about 35% of the cells in T Γ
h . However, since the cells in T ko,1

h

look in priority for neighbors in T ko,2
h , there are much fewer cells in T̃h

ko,2
than in T ko,2

h .

We also notice that stage 3 of Algorithm 1 is never active here, i.e., #(T̃h
ko,1

) = 0, where
T̃ ko,1
h is the collection of the cells T ∈ T ko,1

h such that N1(T ) is modified during stage 3.

h−1 Th T Γ
h T ok

h T ko,1
h T ko,2

h T̃ ko,2
h T̃ ko,1

h

8 64 20 8 8 4 0 0

16 256 44 8 24 12 0 0

32 1024 84 44 24 16 0 0

64 4096 172 56 68 48 8 0

128 16384 340 120 108 112 24 0

256 65536 684 184 260 240 48 0

Table 1: Circular interface. Details on the cell agglomeration process for the various
unfitted meshes: number of mesh cells, cut cells, and cells in the subsets T ok

h , T ko,1
h ,

T ko,2
h , T̃ ko,2

h and T̃ ko,1
h .

We now test a flower-like interface with the parameters R := 1/3, a := 0.47, b := 0.46,
n := 12 and c := 0.015 in (35). We present in Fig. 4 the mesh after the agglomeration
process. As expected the agglomerated cells are contained in the neighborhood of one cell
of the original mesh. Interestingly, we observe that one agglomeration has been done with
a diagonal neighbor, i.e., a neighbor that shares a node and no faces. Indeed, considering
the right panel of Fig. 4, the cell in the bottom left corner is in T ko,2

h and all its neighbors

sharing at least one face are either in T ko,2
h or in T 1

h . A diagonal agglomeration is then
considered.

We give more details on the cell agglomeration procedure in Table 2. The results are
very similar to those reported in Table 1. The main difference is that stage 3 of Algorithm 1
is active in some cases. A zoom on the cells where this stage is used is provided in Fig. 5
(for h = 1/8). The light blue cells are the ones in T ko,1

h , the dark blue cells are the ones

in T ko,2
h . A black arrow pointing from T to T ′ means that T chooses T ′ as a neighbor for

the agglomeration. The interface is indicated by red points. We can see on the left of the
picture that a cell in T ko,1

h is chosen as a neighbor in stage 2. This cell had already chosen
another neighbor during stage 1. Since this other neighbor is also chosen by another cell
in T ko,1

h (the one at the top of the picture), stage 3 is active and the cell at the left
does not agglomerate any more with the cell in the center. This reduces the size of the
agglomerated cells.

5.2 Convergence rates

We now study the convergence of the method with respect to h. A static condensation pro-
cedure is used to decrease the total number of degrees of freedom. For the circular interface,
we report in Table 3 the total number of degrees of freedom (after static condensation)
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Figure 4: Flower-like interface (h = 1/16). The interface is represented by red squares.
Agglomerated cells are highlighted in blue. The arrows indicate how the agglomerations
have been performed. Left: global view. Right: zoom near the cell where a diagonal
agglomeration has occurred.

h−1 Th T Γ
h T ok

h T ko,1
h T ko,2

h T̃ ko,2
h T̃ ko,1

h

8 64 22 4 11 7 2 1

16 256 46 13 19 14 3 0

32 1024 100 24 40 36 14 3

64 4096 194 42 79 73 27 3

128 16384 388 119 139 130 48 1

256 65536 784 221 286 277 95 0

Table 2: Flower-like interface. Details on the cell agglomeration process for the various
unfitted meshes: number of mesh cells, cut cells and cells in the subsets T ok

h , T ko,1
h , T ko,2

h ,

T̃ ko,2
h and T̃ ko,1

h .

and the ratio of the system size before and after static condensation. This highlights the
benefits of performing static condensation. In the results presented hereafter, the linear
systems are solved by a conjugate gradient method. The tolerance is fixed to 10−14, and
we consider a diagonal preconditioner. Moreover the gradients are reconstructed in the
full vector-valued polynomial space Gk(T i;Rd) = Pk(T i;Rd) for k ∈ {0, 1, 2, 3}.

We first consider the circular interface with the exact solution:

u1(r) :=
r6

κ1
, u2(r) :=

r6

κ2
+R6

(
1

κ1
− 1

κ2

)
, (36)

with a = b := 0.5, r2 := (x − 0.5)2 + (y − 0.5)2 and R := 1/3. Note that there are no
jumps across the interface (gD = 0 and gN = 0), but the diffusion coefficient can be highly
contrasted (i.e., κ1 � κ2). A similar test case is proposed in [12].

We first test the convergence of the error with respect to the mesh size h with κ1 = 1
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(a) Stage 1. (b) Stage 2. (c) Stage 3.

Figure 5: Flower-like interface (h = 1/8). Illustration of the first three stages of the cell
agglomeration procedure.

k = 0 k = 1 k = 2 k = 3

h−1 dofs ratio dofs ratio dofs ratio dofs ratio

8 116 2.76 232 2.76 348 2.95 464 3.20

16 484 2.61 968 2.61 1452 2.79 1936 3.01

32 2020 2.57 4040 2.57 6060 2.74 8080 2.97

64 8092 2.53 16184 2.53 24276 2.70 32368 2.91

128 32588 2.52 65176 2.52 97764 2.68 130352 2.89

Table 3: Circular interface. Number of degrees of freedom (dofs) of the condensed stiffness
matrix and ratio of dofs between non-condensed and condensed matrices after agglomer-
ation of the mesh (using nint = 4 for the interface discretization).

and κ2 = 104. The numerical results are reported in Fig. 6. We recover the expected
convergence rates for the cell error H1-seminorm. Moreover the error measured in the
L2-norm also fulfills optimal convergence rates (not shown for brevity).

We then evaluate the robustness of the method with respect to the contrast of the
coefficients κ1 and κ2. We consider κ1 = 1 and κ2 = 10` with ` ∈ {0, 2, 4, 6}. The results
are reported in Fig. 6. We observe that the method is robust with respect to the contrast
between κ1 and κ2 since the cell error H1-seminorm remains bounded when the contrast
increases.

Let us now consider the flower-like interface with parameters R := 0.31, a = b := 0.5,
n := 4, c := 0.04 and the following discontinuous solution:

u1(x, y) := cos(πx) cos(πy), u2(x, y) := sin(πx) sin(πy). (37)

For this test case, we set κ1 = κ2 := 1. The shape of the interface, the agglomerated mesh
(for h = 1/16), and the cell component of the numerical solution at the quadrature nodes
are presented in Fig. 7.

We test the convergence of the cell error in the H1-seminorm for the polynomial orders
k ∈ {0, 1, 2, 3}. Owing to the lack of mesh resolution, we do not consider the case with
h = 1/8. The results are reported in the left panel of Fig. 8 for nint = 10. We observe
that we recover the expected optimal convergence rates. The value of nint is an important
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Figure 6: Circular interface. Left: Convergence for nint = 10, κ1 = 1 and κ2 = 104. Right:
Robustness with respect to contrast (κ1 = 1, h = 1/64, nint = 10).

parameter when using high-order polynomials since a low order representation of the
interface can slow the convergence of the method when jumps are considered [26]. To
illustrate this point, we compare different values of nint in the right panel of Fig. 8 for
k = 3. We see that for nint small, we do not have optimal convergence of the error. Indeed
some geometric error is introduced by the linear piecewise representation of the interface.
This error is lowered when choosing nint larger. A more efficient technique could be the
use of a higher order representation of the immersed interface like in [30].

5.3 Square interface problem: condition number

As a final numerical experiment, we evaluate the condition number cond(K) := λmax
λmin

of
the stiffness matrix K, where λmax and λmin are respectively the maximum and minimum
eigenvalues of K which are computed with the use of the Spectra library2. The stiffness
matrix considered is the one that we use to solve the linear system, i.e. we use static
condensation. We consider κ1 = κ2 = 1.

We consider the square interface defined by the level-set function ΦS(x, y) := max(x−
0.5, y − 0.5) − (0.25 + a) with parameter a ∈ (0, 0.1), see Fig. 9. When a → 0, this
configuration maximizes the number of badly cut cells (and the number of small subfaces).
We consider a fixed unfitted 64×64 square mesh. Even if we agglomerate some mesh cells,
there are small cut faces since there is no agglomeration of faces (the faces are unchanged
during the agglomeration procedure, except for the ones that are withdrawn). For instance,
the large square around the corner is an octagon (and not a square) since it has eight faces
(see Fig. 9). In a similar way, the agglomerated cells along the interface are hexagons, not
rectangles. In this configuration, for a small enough, a corresponds to the length of the
smallest subface, and our goal is to explore the behavior of the condition number of the
stiffness matrix when a→ 0.

The results are reported in Fig. 10. The right panel shows that the condition number
does not diverge when a→ 0, even if some faces are cut with very tiny subsets. We think
that the scaling of the face basis functions associated with a subcell F i, i ∈ {1, 2}, by

2see https://spectralib.org/
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Figure 7: Flower-like interface. Left: mesh and shape of the interface (h = 1/16). Right:
Cell component of the discrete solution at the quadrature nodes (h = 1/16, k = 0).

|F i|−1/2 tames the potential ill-conditioning of the matrix due to the small-cut faces. The
left panel in Fig. 10 presents the evolution of the condition number as a function of h.
When h→ 0, the condition number grows like O(h−2) which is the usual rate for second-
order elliptic differential operators. Moreover, the condition number remains reasonable
when k increases. This result is different from the one reported for cutFEM in [35], where
strong growth of the condition number with increasing polynomial degree was observed.
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