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Abstract 
The increasing use of impedance for the characterization of an electrified interface is accompanied 

by the development of accurate models to analyze the results. In the present work, the concept of 

ohmic impedance is revisited using both numerical simulations and experimental results. The 

Havriliak-Negami equation is shown to provide a good representation of the high-frequency 

dispersion or complex ohmic impedance associated with the disk electrode geometry. An excellent 

fit to simulated complex ohmic impedance was found for both capacitive electrodes and for 

electrodes characterized by constant-phase-element behavior. The use of the Havriliak-Negami 

equation to account for the complex ohmic impedance was shown to extend the useful frequency 

range for regression of physical models to the impedance response for three experimental systems: 

a gold electrode in a 0.1 M sodium sulfate solution, an aluminum electrode in a 0.01 M sodium 

sulfate solution, and pure iron in a 0.5 M sulfuric acid solution. 
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1. Introduction 

In his seminal work on the simulation of the impedance response of a blocking electrode (i.e., with 

a pure capacitance as governing interfacial boundary condition), Newman introduced the concept 

of frequency dispersion1-2 accounting for the effect of electrode geometry on the primary current 

distribution. This frequency dispersion was explained by the variations in capacitance at high 

frequencies, caused by the non-uniform primary current distribution at the periphery of the 

electrode (i.e., the boundary between the insulator and the conductive part of the electrode). 

Conversely, in low frequencies, the current distribution becomes uniform, leading to a constant 

value of the capacitance with frequency.   

Newman’s approach has been revisited for different cases, including an ideally blocking electrode,3 

a blocking electrode with a local constant-phase element behavior,4 and a disk electrode with 

faradaic reactions.5-6 It was shown using both numerical simulations and local electrochemical 

impedance spectroscopy (LEIS) experiments performed on a stainless steel passive electrode, that 

the frequency dispersion results in an ohmic impedance with a non-zero imaginary component at 

the high frequencies.7 The term ohmic impedance was introduced in 2007 to describe a transfer 

function associated with the resistance of the electrolyte to passage of current under the influence 

of geometry-induced (and frequency-dependent) non-uniform current and potential distributions.3 

Interestingly, the concept of an ohmic impedance, which accounts for the same phenomenon of 

frequency dispersion described by Newman, made it possible to extend the concept of local 

impedance in terms of the sum of the local interfacial impedance, measured locally just outside the 

double layer, and the local ohmic impedance.8-10  

Moreover, the development of LEIS has allowed the experimental validation of the ohmic 

impedance concept.10-12 In fact, the influence of electrochemical cell geometry has been observed 

experimentally through the use of recessed electrodes in which the LEIS response as a function of 

the probe position along the electrode radius has been measured.13 These experiments showed that 

the frequency dispersion caused by the electrode geometry can be cancelled by using a recessed 

electrode at least twice deeper than the electrode diameter. Such an electrode geometry can be 

easily used, for instance when working on the electrochemical characterization of coatings.14 

However, when careful control of the hydrodynamics in the system is required to evacuate the 

products from the electrode/electrolyte interface (e.g., with a rotating-disk electrode), or to work 
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with a small electrode size, such a configuration is no longer possible. Additionally, all these 

features (inductive and capacitive time constants) observed at the high frequencies of the local 

impedance response always result in a capacitive time constant on the global impedance response 

corresponding to the so-called frequency dispersion.  

From a practical point of view, most of the experiments reported in the literature deal with global 

impedance measurements and neglect the contributions of current and potential distributions. This 

is certainly due to the fact that consideration of these contributions requires simultaneous solution 

of the interfacial kinetics and Laplace’s equation in the electrochemical cell, which complicates 

analysis of the results as compared to what can be done with equivalent electrical circuits. 

However, the analysis of the high-frequency domain is required for any electrochemical system 

considered and is of special interest for many practical applications dealing with the detailed 

analysis of capacitive behavior of an electrode such as supercapacitors,15 semiconductors (e.g. 

Mott-Schottky analysis),16 thin oxide films,17-18 or coatings for material protection.19-20 

Interpretation of impedance measurements thus requires a good understanding of the processes in 

the high-frequency domain, including its ohmic component.  

In the present work, particular attention is paid to the ohmic contribution observed in the high-

frequency domain both for capacitive and faradaic electrochemical responses. A detailed 

description of the ohmic impedance is introduced, first based on synthetic data in order to devise 

an analytical expression as a quantity that can be used easily in any fitting procedure. In a second 

step, the experimental validation of this new development is presented, to exemplify the utility of 

the detailed analysis of the high frequencies for a correct description of the capacitive contribution 

of the electrochemical impedance. 

2. Experimental 

Three different electrochemical systems were investigated in this work in order to provide a 

detailed description of the ohmic impedance in the high frequencies. The response of a blocking 

electrode with a local constant phase element (CPE) was investigated using a gold disk-electrode 

of 5 mm in diameter in a 0.1 M deaerated sodium sulfate solution (Na2SO4). The electrode was 

first cycled over the oxidation and reduction limits of the solvent and then biased at E = -0.250 

V/MSE (MSE: mercury sulfate electrode – EMSE = 0.64 V/SHE) for performing the EIS 

measurement. The CPE response due to a thin oxide film was studied using pure aluminum as an 
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electrode material. The experiments were performed using a 8 mm diameter disk electrode in 0.01 

M Na2SO4 solution after two-hour immersion at the corrosion potential (E = -1.19 V/MSE), thus 

allowing formation of a few nanometer thick aluminum oxide film. The electrochemical response 

of a faradaic system was investigated using the dissolution of pure iron in a 0.5 M sulfuric acid 

solution. A 5 mm diameter iron disk-electrode biased at E = -0.924 V/MSE was used for performing 

the EIS measurement under air atmosphere.  

The experiments on gold and aluminum electrodes were performed with a Gamry Reference 600+ 

potentiostat. The iron dissolution was studied with a Sotelem potentiostat coupled to a frequency 

response analyzer (Solartron 1255). All the experiments were performed at room temperature (20 

±1°C). 

All the simulations were performed using finite-element methods (FEM). The 2-D axisymmetric 

solution to Laplace’s equation in cylindrical coordinates was obtained numerically using COMSOL 

Multiphysics® 5.0. The hardware used for simulation was a 64-bit Dell™ Precision T7500 

workstation with dual Intel® Xeon® E5620 2.4 GHz processors and 96 GB of RAM. 

3. Model 

In order to account for current and potential distributions on the impedance response of an 

electrochemical system, the potential distribution must be calculated for the entire electrochemical 

cell. For simplicity, the mathematical development is devised for a planar disk electrode embedded 

in a coplanar insulator, which corresponds, in fact, to one of the most widely used electrochemical 

setups. Therefore, the geometry of the system is defined by the electrode radius, 𝑟", and the 

distribution of potential 𝛷 in solution is governed by Laplace’s equation, which is expressed in 

cylindrical coordinates as 

 $
%
&
&%

𝑟 &'
&%

+ &)'
&*)

= 0       Eq. 1 

where 𝑟 is the radial coordinate and 𝑦 is the normal distance to the electrode surface.  

In this section, the model will be devised for small amplitude sinewave perturbation signal in the 

case of a blocking electrode either with a pure capacitance or with a local constant-phase element 

behavior. Thus, at the electrode surface, the flux boundary condition is  

 −𝜅 &𝛷𝜕* *1"
= 𝑄 𝑗𝜔 5 𝑉 − 𝛷"       Eq. 2 
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where 𝜅 is the electrolyte conductivity, 𝛼 and 𝑄 are the CPE parameters (𝛼 = 1 in the case of a 

pure capacitance), 𝜔 is the angular frequency of the sinewave perturbation, 𝑉 is the electrode 

potential, and 𝛷" is the potential just outside the double layer.  

 On the surrounding insulator, the flux is equal to zero 

 &'
&* *1"

= 0								𝑓𝑜𝑟	𝑟 > 𝑟0        Eq. 3 

and far from the electrode surface, the potential tends towards the reference electrode potential, 

which was set at zero for all the simulations. 

 𝛷 → 0					𝑎𝑠				 𝑟@ + 𝑦@ → ∞	       Eq. 4 

These equations were solved using the finite-element method, as previously described.10, 21  

As the complex ohmic impedance obtained from numerical simulation requires subtraction of the 

interfacial impedance from the calculated impedance, a refined numerical solution is required. The 

simulation domain was chosen to be an axisymmetric hemisphere, where the center of the 

embedded disk electrode was located at the coordinates 𝑟 = 0 and 𝑦 = 0. The meshing parameters 

of the simulation were the radius of the hemisphere 𝐻CDE, the maximum element size on the surface 

of the electrode 𝑠FGHI, and the element size at the edge of the disk 𝑠JCKJ. The domain and meshing 

parameters were determined iteratively such that the resistance obtained from the calculation of the 

primary current distribution was in agreement with the analytic solution for ohmic resistance of a 

disk electrode developed by Newman expressed in dimensionless form as	𝑅J𝜅/𝜋𝑟" = 0.25.22 The 

final domain and meshing parameters were dom 03000H r= , 6
edge 04.5 10s r-= ´ , and surf edge750ss = . The 

simulations required 5,547 domain elements and 487 boundary elements and had an average 

runtime of 47 s. The simulations yielded a dimensionless ohmic resistance of 0.2500023, which 

corresponded to a simulation error of 0.00092%. 

 

4. Numerical Results  

The impedance responses in the case of a pure capacitance and a local CPE are presented in Figure 

1a in a Nyquist representation. Model parameters are given in Table 1. To facilitate comparison, 

EIS data were scaled by the ratio R
%ST

, and frequency was made dimensionless using 
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 𝐾 = VWX%S
R
	         Eq. 5 

As expected, high-frequency dispersion was observed for all three cases,3-4 and can be better seen 

using a semi-logarithmic representation of the EIS data as shown in Figure 1b in the case of the 

pure capacitance or with a zoom in the HF domain in the case of a CPE behavior as shown in Figure 

1c. This frequency dispersion is visible for values of 𝐾 greater than 1, that is for frequency f greater 

than 320 Hz, using 𝑟" = 0.25 cm, 𝜅 = 0.005 S×cm-1, and 𝐶 = 10×10[\ F×cm-2, which are values 

commonly encountered experimentally. Such frequency dispersion can lead to misreading both the 

electrolyte resistance and the double layer capacitance. Indeed, Figure 1b shows that, depending 

on the frequency domain investigated, two values can be defined for the electrolyte resistance: 𝑅]^ 

in the high frequencies which formally corresponds to the primary electrolyte resistance defined 

by Newman,22 and 𝑅_^ from the measurement of the real part of impedance in low frequencies. It 

should also be mentioned that in the case of a CPE behavior (𝛼 < 1), the semi-logarithmic 

representation given in Figure 1b obscures frequency dispersion because, for a CPE, both the real 

and the imaginary component of the impedance varies with the frequency, but 𝑅]^ and 𝑅_^ can be 

obtained from the extrapolation of the two linear domain on the real axis, as shown in Figure 1c. 

 

Table 1. Model parameters used to generate Figures 1 and 2. 
a 1	 0.85	 0.7	

r0	[cm]	 0.25	 0.25	 0.25	

r	[W	cm]	 200	 200	 200	
Q	[µF	sa	cm-2]	 10	 100	 100	
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Figure	1:	Simulated	 impedance	response	for	model	parameters	given	 in	Table	1:	 (a)	Nyquist	representation	for	the	calculated	
impedance	 response	 of	 a	 blocking	 electrode	 with	 a	 pure	 capacitance	 (squares)	 and	 a	 local	 CPE	 (circles	 and	 triangles);	 (b)	
logarithmic	scale	showing	the	high-frequency	distribution	in	the	case	of	the	pure	capacitive	electrode;	(c)	and	zoom	in	the	HF	
domain	(linear	scale)	showing	the	high-frequency	distribution	in	the	case	of	the	CPE	behavior	(a	=	0.85).	The	impedances	and	the	
frequency	are	made	dimensionless	(see	text),	and	the	line	represents	the	fit	of	equation	(9)	with	fitting	parameters	given	in	Table	
4. 

 
From these synthetic data, the impedance attributed to frequency dispersion can be readily obtained 

as the difference between the impedance 𝑍, calculated from the resolution of Laplace’s equation 

and taking into account frequency dispersion, and the interfacial impedance calculated with the 

same value of the parameters but using an electrical equivalent circuit. This impedance corresponds 

to the definition of the ohmic impedance Ze which can be expressed as 

 𝑍b = 𝑍 − $
V cW X      Eq. 6 

Figure 2 shows the ohmic impedance response in a Nyquist representation for a pure capacitance 

(squares) and for a local CPE (circles and triangles) calculated from the set of synthetic data 

presented in Figure 1a. In both cases, this frequency dispersion results in a depressed capacitive 

contribution with a dimensionless high-frequency limit 𝑅]^ = 0.25 corresponding to the primary 

electrolyte resistance calculated by Newman22 and a dimensionless low-frequency limit at about 

𝑅_^ = 0.27, thus resulting in a variation of 8% of the real part of the impedance over the entire 

frequency domain.  Additionally, the degree of flattening of the loop clearly depends on the 

interfacial boundary conditions (i.e., the value of 𝛼), but the main result is that the ohmic 
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contribution to the global electrochemical impedance response is indeed described by a complex 

impedance. 

 

	
Figure	 2:	 Nyquist	 representation	 ohmic impedance,	 Ze,	 determined	 for	 the	 calculated	 impedance	 response	 of	 a	 blocking	
electrode	with	a	pure	 capacitance	 (squares)	and	a	 local	CPE	 (circles	and	 triangles)	presented	 in	Figure	1.	 The	dotted	 lines	
correspond	to	the	fitting	of	each	impedance	diagram	with	the	Cole-Davidson	equation	(7),	and	the	solid	lines	correspond	to	
the	fitting	by	the	Havriliak-Negami	equation	(8).	Fitting	results	are	presented	in	Table	2. 

 

Interestingly, a large amount of work on dielectric relaxation has been done for describing the non-

ideal behavior observed in solid-state impedance specroscopy.23-25 The shape of the ohmic 

impedance presented in Figure 2 is consistent with either a Cole-Davidson expression  

 𝑍b = 𝑅]^ +
efg[ehg
$icWj k       Eq. 7 

where 𝑅]^ and 𝑅_^ are the high- and low-frequency limits of the resistive behavior, respectively, 

and 𝜏 and 𝛽 are the two parameters corresponding to the distribution of time constant; or with the 

Havriliak-Negami equation,26which may be expressed as  

 𝑍b = 𝑅]^ +
efg[ehg
$i cWj n k       Eq. 8 

in which a third parameter 𝜐 is introduced to account for frequency dispersion.  
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As shown in Figure 2, both the Cole-Davidson and Havriliak-Negami equations allow a good fit 

of the results for the capacitive electrode, and in both cases, the value of 𝑅]^ and 𝑅_^ correspond 

to the resistive contributions introduced in Figure 1b. However, the Havriliak-Negami equation 

provides a better fit to the synthetic data associated with a CPE and even provides a slightly better 

fit for the capacitive electrode (Table 2). The value of the term 𝜐 introduced in the Havriliak-

Negami equation and determined from the fitting procedure is loosely associated with the 𝛼 

coefficient of the CPE (𝛼 = 1 for an ideal capacitance). Such a result makes sense since the CPE 

behavior should be observed independently of the frequency dispersion due to the geometry of the 

electrode; whereas, the term 𝛽 used in both relationships accounts for the frequency dispersion 

itself.  

 
Table 2. Results of Levenberg-Marquardt regression of equations (7) and (8) to the synthetic 
ohmic-impedance data presented in Figure 2 under modulus weighting. Confidence intervals 

represent ±1s. 
		 		 a = 1	 a = 0.85	 a = 0.7	

Co
le
-D
av
id
so
n	

Eq
ua

tio
n	
(7
)	 RHFk/r0p	 0.249610	 ± 0.000026	 0.249230	 ± 0.000085	 0.24677	 ± 0.00035	

RLFk/r0p	 0.270110	 ± 0.000011	 0.269980	 ± 0.000033	 0.269910	 ± 0.000043	
t	[µs] 117.40	 ± 0.88	 542	 ± 13	 212.0	 ± 9.5	

b 0.380	 ± 0.003	 0.550	 ± 0.007	 0.750	 ± 0.009	

Ha
vi
lia
k-
N
eg
am

i	
Eq

ua
tio

n	
(8
)	 RHFk/r0p	 0.24970	 ± 0.00002	 0.24973	 ± 0.00002	 0.24952	 ± 0.00002	

RLFk/r0p	 0.27014	 ± 0.00001	 0.27014	 ± 0.00001	 0.27013	 ± 0.00001	
t	[µs] 106.0	 ± 1.1	 310.0	 ± 3.7	 60.5	 ± 0.6	

n 0.962	 ± 0.003	 0.817	 ± 0.002	 0.683	 ± 0.002	

		 b 0.683	 ± 0.006	 0.690	 ± 0.005	 0.649	 ± 0.004	
 
 
 
To reduce the number of parameters used in the model, the term 𝜐 in Equation 8 was replaced by 

the value of 𝛼, e.g., 𝛼 = 1, 𝛼 = 0.85, and 𝛼 = 0.7 for the synthetic data presented in Figure 2. The 

fit was indistinguishable from that shown in Figure 2, and the regression parameters are shown in 

Table 3. The modification of Equation 8 provides an adequate representation of the complex ohmic 

impedance. The adjusted value of 𝛽 was between 0.6 and 0.63.  
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Table 3. Results of Levenberg-Marquardt regression of equation (8) assuming n equal to a, to 
the synthetic data presented in Figure 2 under modulus weighting. Confidence intervals 

represent ±1s. 
		 a = 1	 a = 0.85	 a = 0.7	

RHFk/r0p	 0.24961	 ± 0.00003	 0.24964	 ± 0.00002	 0.24938	 ± 0.00002	

RLFk/r0p	 0.27011	 ± 0.00001	 0.27011	 ± 0.00001	 0.27011	 ± 0.00001	
t	[µs] 117.35	 ± 0.88	 352.8	 ± 2.9	 68.12	 ± 0.47	
n 1	  (fixed)	 0.85	  (fixed)	 0.7	  (fixed)	
b 0.6251	 ± 0.0034	 0.6309	 ± 0.0032	 0.6049	 ± 0.0025	

 
 
Thus, for a blocking electrode, the overall impedance 𝑍 is obtained as the sum of the ohmic 

impedance and the interfacial capacitance which can be expressed in the most general way by a 

CPE as 

 𝑍 = 𝑍b + 𝑍qrs = 𝑅]^ +
efg[ehg
$i cWj X k +

$
V cW X    Eq. 9 

Equation (9) was used for the fitting of the synthetic data presented in Figure 1. The results are 

presented as lines in Figure 1, and the fitted parameters are reported in Table 4. It can be seen that 

the use of equation (9) allows a fit of the impedance data over the whole frequency range for both 

for the pure capacitance and the CPE. Moreover, from the results of the confidence intervals 

reported in Table 2, all the parameters can be determined with a good accuracy, even for the 

capacitive system, thus validating the choice of the Havriliak-Negami equation and the number of 

parameters used to analyze the results. It should be mentioned that the errors reported in Table 2 

are estimates since the Cole-Davidson and Havriliak-Negami models are approximate models that 

yield reasonable fits. For a pure-capacitive behavior both models are indistinguishable; whereas, a 

CPE behavior prompts the use of the Havriliak-Negami model because of lower regression error. 

A result of this numerical analysis is that the β parameter introduced in equation (9) is on the order 

of 0.65 − 0.70 for both capacitive and CPE blocking electrodes, and thus corresponds to the 

frequency dispersion due to the geometry of the electrode. It should however be mentioned that 

this analysis requires data that can be used in high frequencies, and that the frequency domain on 

which the frequency dispersion is observed is for 𝐾 > 1, that is for values depending on the 

electrode size and the electrolyte conductivity (see equation (5)).  
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Table 4. Results of Levenberg-Marquardt regression of equation (9) to the synthetic data 
presented in Figure 1 under statistical weighting. Confidence intervals represent ±1s. 

 
		 a =	1	 a =	0.85	 a =	0.7	
RHFk/r0p	 0.24994	 ±	 0.00007	 0.249898	 ±	 0.000051	 0.24967	 ±	 0.00003	
RLFk/r0p	 0.26995	 ±	 0.00007	 0.269746	 ±	 0.000083	 0.269890	 ±	 0.000042	
t	/	µs	 98.2	 ±	 1.6	 278.9	 ±	 5.0	 57.5	 ±	 0.8	
a  1.000000	 ±	 0.0000002	 0.850000	 ±	 0.000003	 0.69999	 ±	 0.00001	
b 0.6965	 ±	 0.0044	 0.7012	 ±	 0.0037	 0.6506	 ±	 0.0028	
Q	/µFsacm-2	 9.9949	 ±	 0.0001	 99.9995	 ±	 0.00094	 100.013	 ±	 0.0010	

 
 

It can also be of interest to perform the analysis of the impedance data using other representations 

such as the complex capacitance plot,17 as shown on Figure 3 for the synthetic data presented in 

Figure 1, using the mathematical transformation of the impedance 

 𝐶∗ = $
cW v[vw

        Eq. 10 

where 𝐶∗ is the complex capacitance which is expressed as  𝐶∗ = 𝐶x + 𝑗𝐶xx. Correction by the 

high-frequency ohmic resistance yields a loop that approaches the correct value of the real part of 

the capacitance only at low frequency. Correction by the ohmic impedance, however, yields a real 

part of the capacitance that is the correct value for all frequencies. The complex capacitance 

representation allows the high-frequency capacitance to be obtained, but as shown on Figure 3, the 

error for estimation of capacitance can be a factor of 2 if the ohmic contribution is not properly 

corrected. 
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Figure	3:	Determination	of	the	interfacial	capacitance	from	the	capacitance	plot	calculated	for	the	blocking	electrode	shown	in	
Figure	1	with	a	pure	capacitance	(C	=	10	µF	cm-2)	corrected	by	the	high-frequency	value	of	the	impedance	(squares)	and	corrected	
by	the	ohmic impedance,	Ze		(Ä).	

	
5. Experimental Results and Discussion 

Three different examples demonstrate that the correction of the ohmic contribution, when done 

correctly, facilitates extraction of information from the high-frequency part of impedance 

diagrams. The systems considered include a gold electrode in a 0.1 M sodium sulfate solution, an 

aluminum electrode in a 0.01 M sodium sulfate solution, and pure iron in a 0.5 M sulfuric acid 

solution. 

5.1 Gold Electrode	

Figure 4 shows the electrochemical impedance response of a 5 mm diameter gold disk-electrode 

immersed in a 0.1 M deaerated sodium sulfate solution and biased in the double layer region at E 

= -0.250 V/MSE in the frequency domain ranging from 100 kHz and 0.1 Hz. The impedance 

diagram shows a capacitive behavior (Figure 4a) for which the frequency dispersion is masked in 

the high-frequency domain if only raw data are plotted (Figure 4c). Following the seminal work of 

Orazem et al. for calculating the corrected phase angle using the electrolyte resistance,27 the 

corrected phase angle was obtained from the global impedance corrected from the ohmic 

impedance as  

 𝜑z{%% = 𝑡𝑎𝑛[$ v[vw ~~

v[vw ~       Eq. 11   

Where	 𝑍 − 𝑍b x and 𝑍 − 𝑍b xx are the real and the imaginary part of the global impedance 

corrected by the ohmic impedance, respectively. It is worth noting that the representation of the 

corrected phase as a function of the frequency (Figure 4d) is the only way to clearly see the CPE 
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behavior in a large frequency domain, including at high frequency. Such a behavior corresponds to 

a blocking electrode with a CPE behavior as already observed in the literature28 and can be analyzed 

using equation (9). The fitting of the results allows the ohmic impedance to be calculated (Figure 

4b). Additionally, the phase angle variation as a function of the frequency shows a constant value 

in the whole high-frequency domain when the data are corrected by the ohmic impedance (Figure 

4d). In this case, the corrected phase angle corresponds to 82°, equivalent to a value of 𝛼 = 0.91 

for the CPE; whereas, the 𝛽 parameter determined from the fitting procedure is 0.62, which is in 

good agreement with the theoretical derivation for blocking electrodes presented in the former 

section. Thus, the frequency dispersion is described by the parameter 𝛽 and is attributed to the 

geometry of the electrode. Therefore, the CPE behavior observed when data are corrected by the 

ohmic impedance correspond to the double layer capacitance which can be analyzed using Brug’s 

formula29-30 to convert the CPE to a real capacitance (c.a. 11.3 µFcm-2), thus taking into account 

the surface distribution of the impedance.  

 

Figure	4:	Electrochemical	impedance	response	of	a	gold	disk-electrode	of	5	mm	in	diameter	in	a	0.1	M	sodium	sulfate	solution	
biased	at	E	=	-0.250	V/MSE.	(a)		Nyquist	representation	of	the	impedance;	(b)	Nyquist	representation	of	the	ohmic	impedance;	(c)	
Bode	representation	of	the	impedance	–	raw	data	(d)	Bode	representation	of	the	impedance	–	corrected	by	the	ohmic	impedance.	
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The	open	symbols	correspond	to	the	experimental	data	and	the	crosses	correspond	to	the	fitting	of	the	EIS	response	with	the	
model	proposed	in	this	work	(equation	(9)).	

 

5.2 Aluminum Electrode 

High-frequency impedance analysis can also be performed on systems whose response follows a 

complicated relaxation law, such as the power-law model developed for describing the CPE 

behavior of a thin film.19, 31-32 Figure 5 shows the impedance response of an aluminum electrode 

after 2h immersion at the corrosion potential and subsequent polarization at E = -1.19 V/MSE. The 

shape of the impedance diagram corresponds to a capacitive behavior attributed to the response of 

the thin oxide film formed at the aluminum surface, the dielectric properties of which being 

described by the power-law model as 

 𝑍{���b 𝜔 = � �
$icW��S� �

𝑑𝑥���
"      Eq. 12 

in which 𝜀 	is the oxide relative permittivity, 𝜀"	is the permittivity of vacuum, 𝜌 𝑥  is the local 

resistivity depending on normal coordinate, 𝑥, and 𝛿{� is the thickness of the film. The resistivity 

𝜌 𝑥  can be expressed as a function of 𝑥 as 

 𝜌 𝑥 = 𝜌�
��
�S
+ 1 − ��

�S

�
���

� [$
     Eq. 13 

where 𝛾 is the power-law parameter and 𝜌" and 𝜌� are the boundary values of the resistivity at the 

metal / oxide interface and at the oxide / solution interface, respectively. 

Thus, the overall expression of the impedance used for the fit of the experimental results presented 

in Figure  is 

 𝑍 𝜔 = 𝑍b + 𝑍{���b = 𝑅]^ +
efg[ehg
$i cWj X k +

� �
$icW��S� �

𝑑𝑥���
"   Eq. 14 

It was previously shown that the value of 𝛾 is directly linked to the	α parameter of the CPE 

describing the non-ideal behavior of the thin-film through 

 𝛼 = �[$
�

         Eq. 15 

This relationship was used in equation (14) as the expression of the α parameter of the Havriliak-

Negami contribution.  
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Figure	5:	Electrochemical	impedance	response	of	an	aluminum	disk-electrode	of	8	mm	in	diameter	after	two-hour	immersion	in	
a	 0.01	 M	 sodium	 sulfate	 solution	 and	 biased	 at	 E	 =	 -1.19	 V/MSE.	 (a)	 	 Nyquist	 representation	 of	 the	 impedance;	 (b)	 Bode	
representation	of	the	impedance	corrected	by	the	ohmic	impedance;	(c)	Nyquist	representation	of	the	ohmic	impedance.	The	red	
symbols	 correspond	 to	 the	 experimental	 data	 and	 the	 crosses	 correspond	 to	 the	 fitting	 of	 the	 EIS	 response	with	 the	model	
proposed	in	this	work	(equation	(14)).	

	

The results of the impedance fit are reported in Figure 5 and show a good agreement with the 

experimental data. Interestingly, the whole impedance spectrum is perfectly fitted with equation 

(14). Moreover, the ohmic contribution of the impedance can also be determined (Figure 5c). The 

variations in the corrected phase angle clearly show the interest of the method developed in this 

article. Indeed, when the raw phase is plotted as a function of the frequency, the presence of a hump 

in the high-frequency range masks the essential information of high-frequency capacitive behavior, 

similar to results shown in the case of a gold blocking electrode (Figure 4). When the phase is 

recalculated taking into account the ohmic impedance, CPE behavior is then clearly seen in the 

high-frequency domain with a phase that tends towards -90° in very high frequency. It should be 

noted that it is this last contribution that is analyzed when using the complex capacitance 

representation to determine the thickness of the oxide films formed on the surface of the 

electrodes.17-18, 33 The 𝛽 parameter determined from the fitting procedure is 0.77, and will be further 

discussed in the following section.  
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As expected with the refined correction of the ohmic impedance shown in equation (10), the 

complex capacitance plot calculated from the impedance response of the Al electrode in sodium 

sulfate solution shows a well-defined high-frequency domain (Figure 6a). From the extrapolation 

of the real part of the capacitance towards the infinite frequency, a high-frequency capacitance of 

1.14 µFcm-2 is determined (Figure 6b).  Assuming a dielectric permittivity of 11.5 for the thin oxide 

alumina film formed at the electrode surface, a film thickness of 9 nm is readily determined, which 

is in agreement with value usually encountered in the literature.18  

 
Figure	6:	Determination	of	 the	 interfacial	 capacitance	 from	the	capacitance	plot	calculated	with	equation	 (10)	 for	 impedance	
response	of	an	aluminum	disk-electrode	shown	in	Figure	5.	(a)		Complex	capacitance	in	a	Nyquist	representation;	(b)	Zoom	on	the	
high	frequency	domain	of	the	complex	capacitance	plot.	

 

5.3 Iron Electrode 

The present impedance analysis can be extended to electrochemical systems with complex kinetics 

involving faradaic reactions. This is demonstrated in the case of the active dissolution of pure iron 

in sulfuric acid solution (0.5 M – pH = 0.3), for which a representative impedance diagram is 

presented in Figure 7. The impedance diagram shows a high-frequency capacitive loop, 

corresponding to the charge-transfer reaction in parallel to the interfacial capacitance, and a low-

frequency inductive loop attributed to the relaxation of the adsorbed species. The anodic dissolution 

of pure iron is well-documented in the literature34-35 and is in agreement with the impedance results 

reported in Figure 7. From a mechanistic point of view, the dissolution of iron can be described as 

a two-step electrochemical reaction involving an adsorbed intermediate, i.e., 

  Fe
					��						 Fe�CF� + 𝑒[        Eq. 16 
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  Fe�CF� 					�)						 Fe�� + 𝑒[      Eq. 17 

where 𝑘$ and 𝑘@ (expressed in mol cm-2 s-1) are the rate constants of the two successive reactions. 

Under the assumption that the kinetic constants of the electrochemical reactions follow Tafel’s law, 

they may be expressed as 

  𝑘� = 𝑘�" exp 𝑏�𝐸        Eq. 18 

where 𝑏� = 𝛼� 𝐹/𝑅𝑇 , 𝛼� is the charge transfer coefficient,	and 𝐸 the applied potential. 

Under the assumption that the adsorbate Fe�CF�  obeys a Langmuir’s isotherm with Γ, the maximum 

number of sites per surface unit, and 𝜃 the fraction of surface coverage, the charge balance may be 

expressed as 

  𝑖^ = 𝐹𝐴 𝑘$ 1 − 𝜃 + 𝑘@𝜃       Eq. 19 

where F is the Faraday constant and A is the electrode surface area. The mass balance is given as 

  Γ �¡
�¢
= 𝑘$ 1 − 𝜃 − 𝑘@𝜃      Eq. 20 

 

The linearization of the governing equations allows calculation of the faradaic impedance, which 

can be expressed as  

 $
vg W

= 𝐹𝐴 𝑘@ 𝑏$ + 𝑏@ 𝜃£¢¤¢ − 𝑘$ − 𝑘@
�) ¥�[¥) ¡¦§¨§
cW©i ��i�)

  Eq. 21 

where 𝜃£¢¤¢ is the steady-state value of the fraction of surface coverage given by 

  𝜃£¢¤¢ =
��

��i�)
        Eq. 22 

The overall impedance is then obtained by taking into account the contribution of the interfacial 

capacitance as a CPE contribution, and the ohmic impedance 

  𝑍 𝜔 = 𝑅]^ +
efg[ehg
$i cWj X k +

vg W
$iV cW Xvg W

    Eq. 23 
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Figure	7:	Electrochemical	impedance	response	of	a	Fe	disk-electrode	of	5	mm	in	diameter	in	a	0.5	M	sulfuric	acid	solution	biased	
at	E	=	-0.924	V/MSE.	Nyquist	representation	of	the	impedance;	(b)	Bode	representation	of	the	impedance	corrected	by	the	ohmic	
impedance;	(c)	Nyquist	representation	of	the	ohmic	impedance.	The	red	symbols	correspond	to	the	experimental	data	and	the	
crosses	correspond	to	the	fitting	of	the	EIS	response	with	the	model	proposed	in	this	work	(equation	(23)).	

 

Independent of the values of the different parameters obtained from the fitting procedure (which is 

not the aim of this analysis but are in good agreement with those reported in the literature), it is 

interesting to note that the high-frequency behavior of the impedance can be described by equation 

(23). The interfacial capacitance is in this case a CPE corresponding to the double layer in series 

with a partial covering thin film and is perfectly highlighted when the corrected phase is traced as 

a function of the frequency (Figure 7b). It is thus concluded that the high-frequency dispersion that 

is usually disregarded can be better interpreted by introducing the ohmic impedance that results 

from geometrical properties of the electrochemical system. In this case, the ohmic impedance 

(Figure 7c) is described by the Havriliak-Negami equation with the term 𝛽 = 0.77 as parameter 

value.  

From these results, it is thus concluded that the ohmic impedance for a disk electrode geometry can 

always be simulated using the Havriliak-Negami equation accounting for the high frequency 

dispersion. For a blocking electrode, that is for a primary steady-state current distribution, the term 

𝛽	of this relationship had a value between 0.65 and 0.7. When a secondary current distribution is 
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involved, as in the case of the active or passive dissolution, the current and potential distributions 

are different thus leading to 𝛽 values larger than 0.68. Such a difference for the value of 𝛽 between 

blocking and non-blocking behavior should be attributed to the fact that 𝛽 corresponds to a 

frequency dispersion induced by the electrode geometry. For a primary current distribution, the 

current variation between the electrode center and the electrode edge are larger than for a secondary 

current distribution, thus resulting in a smaller value 𝛽 for the former case.  

It should be mentioned that the use of the ohmic impedance for describing the high-frequency 

dispersion increases the number of parameters used for the fitting procedure. However, in many 

cases, these parameters can be readily obtained from an appropriate graphical representation of the 

results, as exemplified with the different examples presented in this article.  

 

6. Conclusions 

The notion of ohmic impedance, previously developed through the development of local 

impedance measurements and their analysis, has been extended using both numerical and 

experimental results.  The error made in assuming that the ohmic contribution of the impedance is 

only a real number depends on the system and does not necessarily interfere with the analysis of 

the reaction mechanisms involved at the electrode. However, as soon as the capacitive component 

dominates in high frequencies, the frequency dispersion distorts the electrochemical response of 

the interface. Thus, a suitable correction in this frequency domain is required to better highlight the 

CPE behavior of the interface, as shown in the examples presented, including blocking electrodes 

and electrochemical systems with complex kinetics involving faradaic reactions. As demonstrated 

in the present work, the Havriliak-Negami equation provides a universal way for describing the 

ohmic impedance for disk electrode geometries, independent of the system under investigation. It 

is also shown that if the ohmic contribution is not accurately corrected, the error on the 

determination of the high-frequency capacitance can be of a factor of 2. 
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