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Résumé  

 

Aspergillus fumigatus est le principal agent étiologique des aspergilloses invasives (AI), 

infections fongiques difficiles à prendre en charge et associées à un fort taux de mortalité. Si les 

antifongiques azolés et plus particulièrement le voriconazole ont permis d’améliorer 

considérablement le taux de survie des patients atteints d’AI, leur efficacité se voit cependant 

menacée par l’émergence de souches résistantes aux antifongiques azolés qui s’est accentuée ces 

10 dernières années. 

 Le principal mécanisme de résistance, probablement d’origine environnementale, associe 

une ou des mutations ponctuelles dans la séquence codante du gène cyp51A et l’insertion d’une 

séquence répétée en tandem dans le promoteur de ce gène entraînant sa surexpression 

(TR34/L98H et TR46/Y121F/T289A). Cependant, l’émergence de souches résistantes cliniques et 

environnementales d’A. fumigatus dépourvues de mutations du gène cyp51A laisse supposer 

l’existence d’autres mécanismes (surexpression de pompes d’efflux, etc.). 

Le développement de résistance peut être lié à l’utilisation au long court d’antifongiques 

azolés chez des patients atteints d’aspergilloses chroniques (voie médicale) ou à la pression de 

sélection exercée par les fongicides azolés dans l’environnement (voie environnementale). Cette 

voie d’acquisition de la résistance, médiée par l’utilisation des fongicides azolés, serait responsable 

de résistance chez les patients atteints d’AI et naïfs de traitements antifongiques.  

Cette revue de la littérature a pour objectif de résumer les connaissances actuelles et les 

découvertes récentes concernant la résistance aux antifongiques azolés d’A. fumigatus et de 

comprendre l’importance du rôle de la voie environnementale dans l’acquisition de la résistance.  
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Abstract  

 

Aspergillus fumigatus is the predominant etiological agent of invasive aspergillosis (IA), a 

difficult-to-manage fungal disease associated with a high case fatality rate. Azole antifungals, 

particularly voriconazole, have significantly improved the survival rate of patients with IA. 

However, the clinical advances made possible through the use of medical azoles could be 

threatened by the emergence of azole-resistant strains which has been reported in an ever-

increasing number of countries over the last 10 years. 

The major resistance mechanism, that combines point mutation(s) in the coding sequence 

of cyp51A gene and an insertion of a tandem repeat in the promoter region of this gene which 

leads to its overexpression (TR34/L98H and TR46/Y121F/T289A), is presumed to be of 

environmental origin. However, the emergence of clinical and environmental azole-resistant 

strains without the cyp51A gene mutation suggests that other mechanisms could also be 

responsible for azole resistance (for example, overexpression of efflux pumps). 

The development of resistance may be linked to either long-term use of azole antifungals 

in patients with chronic aspergillosis (patient-acquired route) or selection pressure of the 

fungicides in the environment (environmental route). The fungicide-driven route could be 

responsible for resistance in azole-naive patients with IA.  

This literature review aims to summarize recent findings, focusing on the current situation 

of azole-resistance in A. fumigatus, and provides better understanding of the importance of the 

environmental route in resistance acquisition. 
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Introduction 

 

Invasive fungal infections (IFI) have been increasingly reported in many countries over the 

past 30 years [1]. This is mainly due to the development of antineoplastic and immunosuppressive 

therapies, resulting in an increasing number of patients at risk of IFI, including hematopoietic stem 

cell or solid organ transplant recipients, patients receiving immunosuppressive therapy, and 

cancer patients [2,3]. Among invasive filamentous fungal diseases, invasive aspergillosis (IA) which 

is mainly due to A. fumigatus, is the most frequently reported, especially in patients with 

hematological malignancies [1, 2]. IA − the most severe manifestation of Aspergillus disease − is 

difficult to manage, with a case fatality that can reach 65% [4,5]. The development of azole 

antifungal drugs, particularly voriconazole, in the early 2000s improved IA survival rate [6]. Two 

other more recently available azole molecules play an important role in the management of these 

diseases: isavuconazole which may be used as first-line therapy for treating IA just like 

voriconazole, and posaconazole as prophylaxis [7,8]. 

 

The recent clinical advances made possible by the use of azole antifungals could be 

threatened by the emergence of azole-resistance in A. fumigatus which has been reported in an 

ever-increasing number of countries over the last 10 years [6]. Since the first reports of clinical 

azole-resistant A. fumigatus strains in the United Kingdom and Sweden at the end of the 1990s 

[9,10], their number has been growing worldwide [3,6,11,12]. 

Two routes of resistance acquisition have been identified: long-term azole therapy 

(patient-acquired route) and the use of azole compounds in the environment (environmental 

route). Although these two routes have different characteristics, the prerequisites for azole 

resistance are the same: a favorable environment for the fungus development and the presence of 

azole compounds [6]. The development of resistance related to the long-term use of azole 
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antifungals, notably in patients with chronic aspergillosis, has been well known for many years. 

Understanding of the fungicide-driven route, still currently debated, has progressively improved 

over the last 10 years [6,13]. Indeed, the range of applications of azole fungicides and other 

demethylase inhibitors is broad. They include plant and crop protection and the preservation of a 

variety of materials, such as wood. A. fumigatus is very widespread in the environment. Regular 

use of azole fungicides, able to remain in soil for several months, can create an environment that 

contributes to the emergence of azole-resistant strains [14]. 

 

This review aimed to summarize current knowledge and recent findings on azole resistance 

in A. fumigatus, particularly the role of the environmental route in the emergence of azole-

resistant strains. 

 

Definition of azole resistance in Aspergillus fumigatus  

 

Antifungal resistance is determined by the minimum inhibitory concentration (MIC), 

measured using broth microdilution methods. Two reference methods are used to measure MIC. 

The first was developed in the United States by the subcommittee on Antifungal Susceptibility 

Tests of the Clinical and Laboratory Standards Institute (CLSI) and the second was created in 

Europe by the European Union Committee on Antimicrobial Susceptibility Testing (EUCAST). 

 Determination of azole antifungal resistance is based on two threshold values: clinical 

breakpoints and epidemiological cut-off values (ECVs). These thresholds are defined for the four 

medical azoles used in Aspergillus-disease treatment (itraconazole, voriconazole, posaconazole, 

and isavuconazole) (Table 1) [15–18]. However, they do not all have the same meaning. Clinical 

breakpoints are established based on the pharmacokinetic and pharmacodynamic characteristics 

of antifungals, microbiological characteristics of the tested strains, and susceptibility data from 
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clinical trials associated with patient outcomes [16,19]. The susceptibility or resistance of A. 

fumigatus strains is determined by comparing the MICs of the four medical azoles with these 

clinical breakpoints. Currently, only EUCAST provides breakpoints for antifungals against A. 

fumigatus. 

The ECV of a drug for a given species is based on the antifungal MIC distribution against a 

large panel of wild-type isolates generally encompassing 95% to 97.5% of the wild-type 

population. ECVs make it possible to classify strains into two groups: wild-type and non-wild-type. 

Strains classified as non-wild-type may have acquired resistance to the tested antifungal drugs 

[19]. 

 

Mechanisms of azole resistance described in the environment  

 

Resistance mechanism linked to the cyp51A gene and its promoter 

 

Resistance mechanisms of A. fumigatus are linked to mutations of the cyp51A gene and its 

promoter are the most commonly reported. These mechanisms may confer resistance to one or 

more azole antifungals (“multi-azole” resistance) [3,20]. 

Medical azole antifungals and azole fungicides share the same mechanism of action: they 

impact an important step of the ergosterol biosynthetic pathway. Ergosterol is a predominant 

sterol and essential membrane component that ensures the permeability and fluidity of the cell 

membrane [13]. Indeed, medical azole antifungals and azole fungicides inhibit lanosterol 14-alpha-

demethylase. This important enzyme, encoded by the cyp51A gene, is a member of the P450 

enzyme family and is responsible for lanosterol demethylation, which is necessary for the 

synthesis of ergosterol [21]. Inhibition of this enzyme interrupts ergosterol synthesis, resulting in 
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the accumulation of 14-alpha methyl sterols in the fungal cell. Thus, azole antifungals inhibit the 

ergosterol biosynthesis pathway and disrupt cell transport and fungal membrane structure [5,13]. 

 

Point mutations in the cyp51A gene 

Positions G54, M220, and G448 of the cyp51A gene have been reported to be mutation hot 

spots, and mutations at these positions are frequently observed in patients with chronic 

aspergillosis treated with azole antifungals in the long term [3,19,20]. In addition, mutations at 

position G54 were reported for environmental strains isolated from various types of soil 

(agricultural fields, orchards, flowerbeds) in Romania, Tanzania, India, and Thailand [22,23]. Bader 

et al. [24] also reported an environmental strain carrying the M220I mutation. 

Although less common, other point mutations associated with resistance to azole 

antifungals have also been reported: G138C, F219I, P216L, G432S, and G432A [3,25,26]. G138C 

and F219I have currently only been found in patients receiving long-term treatment with azole 

antifungals. However, the P216L mutation has also been reported for an environmental strain [27–

29]. Strains carrying G432S and G432A mutations have been isolated from azole-naive patients 

[25,26]. A total of more than thirty cyp51A gene mutations have been identified, but the role of 

some of these mutations in azole antifungal resistance has yet to be proven. 

 

Overexpression with or without point mutations in the cyp51A gene 

Overexpression and point mutations in the cyp51A gene constitute an important second 

mechanism of azole resistance. The most commonly reported mutations, TR34/L98H and 

TR46/Y121F/T289A, combine one or several codon substitutions in the cyp51A gene with a tandem 

repeat of 34 (TR34/L98H) or 46 base pairs (TR46/Y121F/T289A) in the promoter of the gene, leading 

to its overexpression. This association is required to confer azole resistance [30,31]. This resistance 

mechanism is currently the most closely associated with the environmental route of resistance [6]. 
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The number of strains carrying these mutations has been increasing over the last 20 years. 

Since the discovery of the first azole-resistant isolates carrying the TR34/L98H mutation in the 

Netherlands and Italy in 1998, similar findings have been reported in many countries around the 

world and on every continent [6,11,32–34] (Figure 1). The more recent discovery of the 

TR46/Y121F/T289A mutation confirms the rapid emergence of azole-resistant strains with complex 

mutations. Since 2009 clinical and environmental TR46/Y121F/T289A strains have been reported in 

several European countries, such as the Netherlands, Belgium, Germany, France, Denmark, and 

Spain, as well as in India, the United States, and Colombia [6,11] (Figure 1). 

The last three years have seen the emergence of TR34/L98H strains from the environment 

in three Asian countries: China, Thailand, and Japan. In Japan, clinical and environmental 

TR34/L98H strains were found almost simultaneously the same year [22,35,36] (Figure 1).  

Several strains with one of the two tandem repeats associated with several point 

mutations have also emerged since 2014: TR34/L98H/S297T/F495I in China and France, 

TR46/Y121F/M172I/T289A in Germany, and TR46
3/Y121F/M172I/T289A/G448S in the Netherlands 

[24,29,35,37]. 

Single tandem repeat with no mutation in the cyp51A gene, the TR53 mutation, is also 

considered to be responsible for multi-azole resistance. First reported in the Netherlands in 2009 

in a young patient presenting with chronic granulomatous disease, this mutation was also found in 

environmental strains in the Netherlands and Colombia [38–40]. 

 

Resistance mechanisms not linked to the cyp51A gene  

 

Other resistance mechanisms that do not involve the cyp51A gene and its promoter were 

described [3]. Such cyp51A-independent mechanisms are also thought to be responsible for 
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treatment failure [3,19]. They were first identified in clinical strains, but it is not unlikely that they 

exist in environmental strains as well. Fungal cells possess two families of efflux pumps: ATP 

Binding Cassette (ABC) transporters and Major Facilitator Superfamily (MFS) transporters. These 

membrane proteins mediate the efflux of toxic compounds, notably azole molecules, out of fungal 

cells. Their overexpression leads to resistance to azole antifungals due to a decrease in the 

intracellular concentration of the fungicide [13].  

The Cdr1B transporter is an ABC transporter overexpressed by certain azole-resistant A. 

fumigatus strains. Deletion of the Cdr1B gene in resistant strains results in greater susceptibility to 

medical azoles [2,13]. 

Meneau et al. [41] highlighted the importance of two other ABC transporters, AtrF and 

AtrI, and one MFS transporter, MdrA, in A. fumigatus azole resistance. In this study, the expression 

of these three transporters was assessed in environmental strains with high itraconazole MICs 

(MIC ≥8 mg/L). These strains showed approximately three times AtrF expression than the 

reference susceptible strain [41]. The AtrF transporter could contribute to increased itraconazole 

MICs in environmental strains and may thus be responsible for azole resistance in certain strains 

that do not have mutations in the cyp51A gene. 

Mutations in transcription factors may also play a role in the azole resistance of clinical 

strains and are therefore likely to be found in environmental strains: the P88L mutation in the 

CCAAT-binding transcript factor complex subunit HapE or mutations in the recently described AtR 

transcription factor [3,42]. 

 

Routes of azole resistance development: the role of azole fungicide use in the environment  

 

Extensive use of azole fungicides 
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The environmental route probably plays an important role in the emergence of azole-

resistant A. fumigatus strains. This path of resistance is linked to azole fungicide selection 

pressure; azole fungicides are largely used in farming to protect cereal and wine crops from 

phytopathogenic molds [5,43]. They are also used in the processing of vegetable crops and 

ornamental plants and to preserve a variety of materials, such as wood [13,43]. They are used on a 

global scale, particularly in Europe and Asia, where they represent one of the most commonly 

used pesticide classes. In Europe 40% of all pesticides sprayed on crops are fungicides and over 

one-third of all fungicides sold are azole fungicides [12]. The percentage of fungicide consumption 

in India and China may be as high as 23% [35,44]. 

Treatment with azole fungicides is less common in North America, where less than 5% of 

the total crop area is treated in the United States [5]. In South America, Alvares et al. [38] reported 

significant demethylase inhibitor consumption in Colombia, where azole fungicides are among the 

most predominant pesticides. 

 

Five azole molecules largely used in farming (propiconazole, tebuconazole, difenoconazole, 

epoxiconazole, and bromuconazole) are particularly involved in the development of azole-

resistant strains. Several studies reported cross resistance to medical azoles and these five azole 

molecules for TR34/L98H strains [29,45,46]. These five demethylase inhibitors exhibited molecular 

characteristics that were very similar to those of medical azole antifungals, resulting in the most 

similar binding modes and the greatest level of cross-resistance [46]. Finally, the coincidence 

between authorization for use of these demethylase inhibitors and the first detection of the 

TR34/L98H mutation supports the hypothesis of a fungicide-driven route for azole resistance [46]. 

 

IA due to azole-resistant strains in azole-naive patients 
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The hypothesis of an environmental route for resistance was first suggested in the 

Netherlands when IA cases caused by azole-resistant strains were reported in patients who had 

never been treated with azole antifungals [33]. No previous azole treatment was reported for 50% 

to 71% of aspergillosis cases caused by azole-resistant strains [12,20]. 

Aspergillosis is an infectious disease for which person-to-person transmission seems 

unlikely. Patients infected by a resistant strain and naive for medical azoles likely become infected 

by inhaling azole-resistant strains present in the environment [13,47]. Findings from two studies 

support this hypothesis. Lavergne et al. [48] reported an IA case caused by an A. fumigatus strain 

carrying the TR46/Y121F/T289A mutation in a retired farmer. The patient was treated with 

infliximab for rheumatoid arthritis and was azole-naive. An environmental investigation, 

performed in and close to the patient’s home (inside the house, vegetable garden, and crop 

fields), revealed strains with the TR46/Y121F/T289A mutation and an indistinguishable genotype − 

using multiple-locus variable number tandem repeat (VNTT) analysis − from that of clinical strain 

isolated from the patient [48]. In Japan, a first case of IA caused by a strain carrying the TR34/L98H 

mutation was reported in a patient with hepatocellular carcinoma. The patient’s main hobby, who 

had never been treated with medical azoles before IA diagnosis, was gardening [49]. An 

environmental survey performed the same year, which consisted of investigating the air of 10 

public parks, found a strain carrying the TR34/L98H mutation with a genotype identical to that of 

the clinical strain isolated from the Japanese patient mentioned above [36]. Thus, patients’ 

environment could be a potential source of azole-resistant A. fumigatus strains. 

 

Mechanisms of resistance with overexpression of the cyp51A gene 

 

Tandem repeats are found in many phytopathogenic molds that develop resistance 

through exposure to demethylase inhibitors, such as Mycosphaerella graminicola (now called 
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Zymoseptoria tritici), Rhynchosporium secalis, and Botrytis cinerea [12]. The insertion of a tandem 

repeat is a complex process that most likely takes place in the environment during sexual 

reproduction. Sexual reproduction, recently described in A. fumigatus, seems to be more common 

in the environment and does not appear to be involved in fungal diseases in humans [5,50].  

Zhang et al. [37] recently reported a new complex mutation in A. fumigatus isolated from 

samples that came from azole-containing composts: TR46
3/Y121F/M172I/T289A/G448S. This 

complex mutation is similar to the TR46/Y121F/T289A mutation; it contains an additional repetition 

of the TR46 motif in the cyp51A gene promoter and two additional point mutations: M172I and 

G448S. In this study, the number of azole-resistant strains was higher in samples from azole-

containing composts. Thus, these composts could be an important ecological niche for the 

development of azole-resistant strains [37]. The recent finding of the first environmental strains 

carrying TR34/L98H in the south-eastern part of the United States supports this hypothesis. Indeed, 

these strains were isolated from compost made from harvest crop debris from peanut fields 

treated with propiconazole and tebuconazole [51]. Moreover, sexual reproduction of A. fumigatus 

may have been involved in the development of this complex mutation, as already suggested for 

the TR34/L98H and TR46/Y121F/T289 mutations [37]. The possible role of sexual reproduction in 

the emergence of the mutation was suspected due to the high genetic diversity of strain 

genotypes in compost containing azole residues. The TR46
3 mutation was also found after in vitro 

sexual reproduction; this mutation could come from a sexual cross between two TR46 strains, 

possibly through unequal crossing-over between the double tandem repeats during meiosis [37]. 

It was recently reported that A. fumigatus has three different reproduction modes [50]. 

Although asexual reproduction is the predominant mode, there may also be sexual and parasexual 

reproduction. This could increase genetic diversity via mutations and genotypic recombination, 

which could allow better adaptation of A. fumigatus to stress caused by azole fungicides, thus 

explaining the various resistance mechanisms developed by this fungus [50].  
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Relation between the use of azole fungicides and the development of resistance  

 

Many arguments suggest the importance of the environmental route in the development 

of azole-resistant strains. However, the relation between the use of azole fungicides and the 

development of resistance has not yet been demonstrated by in vitro experiments. Indeed, in vitro 

exposure of wild-type strains or those with the TR34 or L98H mutation to several demethylase 

inhibitors (propiconazole, epoxiconazole, tebuconazole, difenoconazole, and bromuconazole) did 

not generate the TR34/L98H mutation [46]. 

However, a recent Chinese study suggested a direct link between demethylase inhibitor 

use in farming and the development of azole-resistant strains. Initially susceptible environmental 

A. fumigatus strains became resistant to medical azoles after exposure to five demethylase 

inhibitors used in cereal crop processing (epoxiconazole, propiconazole, tebuconazole, 

hexaconazole, and metconazole). The TR46/Y121F/T289A mutation was the most frequent 

resistance mechanism found in azole-resistant strains induced by in vitro exposure to these 

demethylase inhibitors [52]. This result requires confirmation by additional studies. 

 

Clinical implications 

 

Changes in treatment practices 

 

A. fumigatus azole resistance is a worrisome and widespread phenomenon which can 

significantly compromise the management of patients, resulting in treatment failure and a high 

case fatality rate [4,28,40]. 
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Voriconazole and more recently isavuconazole are the two azole molecules currently used 

as first-line therapy for treating IA. However, a group of experts recommended that these two 

azole molecules should no longer be used as monotherapy in areas where the prevalence of azole 

resistance is ≥10% [53]. Isavuconazole shows clinical efficacy and a spectrum of antifungal activity 

close to that of voriconazole for treating IA. It is also probably better tolerated. However, high 

MICs and MICs similar to those of voriconazole have been reported for azole-resistant A. 

fumigatus strains carrying the TR34/L98H and TR46/Y121F/T289A mutations [19,29]. Thus, 

isavuconazole may not be suitable for managing patients with IA caused by azole-resistant strains. 

 

In regions with environmental resistance rates ≥10%, experts recommend amphotericin B 

for the first-line therapy. If susceptibility is unknown, because of negative cultures, or if there has 

been no susceptibility assessment, cautious de-escalation to voriconazole or posaconazole 

monotherapy after two weeks of amphotericin B may be considered, if the patient is responding 

on a clinical level [53]. 

Amphotericin B has many adverse effects, especially nephrotoxicity, despite the availability 

of the liposomal form with improved tolerability. Moreover, its sole administration by the 

intravenous route limits its long-term use [19]. An azole-echinocandin combination is suggested as 

a second treatment alternative when azole-resistance is ≥10%. Echinocandins are recommended 

as a salvage treatment for treating IA when first-line therapies fail. Some studies even reported 

that the azole-echinocandin combination has better efficacy than medical azoles in monotherapy, 

but additional studies are required to confirm the clinical benefit of the azole-echinocandin 

combination [7,53]. 

 

Determining the prevalence of azole-resistant A. fumigatus strains: an important challenge 
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Good knowledge of azole-resistant strain prevalence is necessary because it determines 

therapeutic management. However, the prevalence may vary greatly from one country to another 

and is difficult to measure. Garcia-Rubio et al. [3] recently reported a global prevalence between 

0.55% and 30% based on the literature; this finding is comparable to that of Vermeulen et al. in 

2013 [3,54]. 

 

The prevalence can also vary within a given country. For example, studies in Germany 

reported prevalence ranging from 1.1% to 30% [55,56]. This is also true for France, where 

resistance was found to be stable by a Parisian research team with a prevalence of less than 1% 

between 2006 and 2014 [25,57] whereas another French study, led by a Nantes research team, 

reported a prevalence of 8% [58]. Prevalence in the Netherlands ranges from 1.8% to 40% [33,59]. 

These national and international variations may be due to the studied diseases (chronic pulmonary 

aspergillosis in patients with chronic obstructive pulmonary disease or cystic fibrosis, or IA in 

patients presenting with hematological malignancies). This variability may also be due to the 

geographical location of the study. Azole fungicide selection pressure may indeed be different in 

urban and rural areas. 

Such differences in prevalence could also be related to biases due to different laboratory 

practices. Prevalence varies depending on whether the study involves clinical strains of A. 

fumigatus collected in laboratories and not previously selected, clinical strains from patients with 

aspergillosis (chronic or invasive manifestation), or clinical strains isolated from a cohort of 

patients with an underlying and previously defined disease and who later developed IA. The 

source of the strains can lead to a 30-fold difference in the estimated prevalence [60]. 

 

The lack of standardized procedures and the low sensitivity of cultures for the detection of 

azole-resistant strains could also explain these variations. The low positivity rate of A. fumigatus 
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cultures from an infected site is well known for patients with chronic infections and for 

neutropenic patients [60], particularly those undergoing prophylactic antifungal treatment or for 

whom the detection of fungal biomarkers (Aspergillus antigen, PCR) led to the early initiation of 

antifungal therapy. 

Fungal culture only provides a picture of viable microorganisms in the samples at a given 

time and is limited to microorganisms that can grow on culture media. A negative culture is not 

sufficient to completely rule out the presence of azole-resistant strains. Moreover, a recent study 

reported that patients can be co-infected by azole-resistant and susceptible strains. Thus, a 

positive Aspergillus culture may contain mixed phenotypes (wild-type and resistant), making it 

more difficult to identify patients with IA due to an azole-resistant strain [61]. 

 

Clinical and environmental azole-resistant strains can be detected by the use of culture 

media containing an azole antifungal such as itraconazole or voriconazole. Although some 

research teams chose to screen with media containing low azole antifungal concentrations (1 mg/L 

for voriconazole and 2 mg/L for itraconazole) to improve the sensitivity of azole-resistant strain 

detection, others use higher concentrations such as 4 mg/L [24,29,40,51]. Under these conditions, 

the detection of clinical and environmental strains with a particular resistance phenotype may be 

limited. 

Standardizing laboratory practices and procedures and accessing data from national and 

international surveillance programs using standardized protocols are probably necessary to 

generate reliable surveillance data and to determine the prevalence of azole resistance for 

different countries and patient groups [57,60]. 

 

Molecular biology and the detection of azole resistance  
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Azole-resistant strains should be detected as soon as possible to better adapt antifungal 

therapy and to improve patient management. However, the detection of resistance is limited by 

the lack of sensitivity of Aspergillus cultures. Some laboratories have developed direct molecular 

biology detection techniques from samples, such as respiratory tissues or secretions. Molecular 

biology provides an interesting alternative to improve both the identification of azole-resistant 

strains and patient management. However, such molecular tools are not yet routinely used in all 

laboratories [6]. A PCR assay (AsperGeniusTM, Pathonostics, the Netherlands) has just become 

commercially available. This assay targets Aspergillus spp. DNA (A. fumigatus and A. terreus) in 

respiratory samples in combination with the detection of the most prevalent mutations TR34/L98H 

and TR46/Y121F/T289A [62-63]. 

 

Conclusion and perspectives 

 

The importance of azole-resistant A. fumigatus strains and the high rates of azole 

resistance in some countries or regions support further development of national and international 

surveillance programs. A better understanding of the conditions that allow the selection of azole-

resistant strains in the environment is necessary to implement adequate prevention measures. 

Studies focusing on professions that use azole fungicides may be useful for assessing the 

emergence and spread of new resistance mechanisms. Indeed, TR34/L98H and TR46/Y121F/T289A 

mutations are currently the most prevalent mutations associated with the environmental route, 

but azole-resistant A. fumigatus strains without cyp51A gene mutations may also emerge from the 

environment. 

 The evidence demonstrating the role of azole fungicides in the environmental emergence 

of azole-resistant strains is constantly increasing. However, although discontinuing the use of azole 

fungicides in the environment would be desirable − particularly in farming − it is currently unlikely 
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because of the significant economic losses and food shortages that would result from crop 

damage without their use [13]. It is thus essential to change processing practices to reduce the use 

of azole fungicides and their spread in the environment that results in cross resistance with 

medical azoles. The use of fungicide formulations without azole molecules, those combining 

molecules that induce less resistance or new adsorption processes to limit the diffusion of azole 

fungicides into the environment are new approaches that must be rapidly developed to preserve 

the efficacy of medical azoles [64]. Medical azoles are essential for the management of patients 

with Aspergillus diseases. 
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Figure 1. Chronologie de l’émergence des souches d’Aspergillus fumigatus possédant les mutations 

TR34/L98H et TR46/Y121F/T289A : pays et année de découverte initiale 

Figure 1. Emergence of the TR34/L98H and TR46/Y121F/T289A Aspergillus fumigatus strains: country 

and year of first recovery 

 

 

 

in bold: countries where clinical and environmental strains have been described 

bold line: year 2007 indicating the acceleration of the emergence of TR34/L98H and 

TR46/Y121F/T289A strain 

 



Tableau I. Valeurs seuils cliniques et épidémiologiques des quatre azolés médicaux pour 

Aspergillus fumigatus 

Table I. Clinical breakpoints and epidemiological cut-off values of four medical azoles for 

Aspergillus fumigatus 

 

 

S=susceptible; R=resistant; EUCAST: European Union Committee on Antimicrobial 

Susceptibility Testing; CLSI: Clinical and Laboratory Standards Institute; ECV: epidemiological 

cut-off values. 

 

 

Medical azoles CLSI ECVs (mg/L) EUCAST ECVs (mg/L) EUCAST clinical breakpoints 

(mg/L) 

itraconazole 1 1 S ≤ 1 ; R > 2 

voriconazole 1 1 S ≤ 1 ; R > 2 

posaconazole 0.5 0.25 S ≤ 0.125 ; R > 0.25 

isavuconazole 1 2 S ≤ 1 ; R > 1 




