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currents in a quite general context. We show how to regularize positive closed currents and how to solve the dd c -equation in an arbitrary compact Kähler manifold. In Section 4 we construct an explicit structural variety for a given current R which is a difference of positive closed currents. So, R appears as the slice by {0} × X of a closed current R in P 1 × X. This is the main technical tool, which permits to use the powerful estimates on subharmonic functions in order to prove the convergence theorems. We also define here the intersection of currents. In chapter 8, we give the applications to the dynamics of automorphisms. In chapter 3, we introduce a geometry on the space C p , in particular, the structural varieties and their curvature forms α. In Paragraph 4, we establish the basic properties of super-potentials, in particular, convergence theorems which make the theory useful. The main point here is to extend the definition of the super-potential U S from smooth forms in C k-p+1 to arbitrary currents in C k-p+1 . We introduce (Definition 4.2.0.3) the notion of Hartogs'convergence (or H-convergence for short) for currents, which is technically useful. Paragraph 5 deals with a theory of intersection of currents. We give good conditions for the intersection of currents of arbitrary bidegrees.

Chapter 1

Background on complex dynamics

 for more detailed expositions on these subjects. Now, let τ 2 be, as in Proposition 1.4.0.2, the projection from X s+1 on the last s factors. Define Θ := ω m where ω is the canonical Kähler form on X s . It is enough to estimate u * (T ), τ * 2 (Θ) = τ 2 * (u * (T )), Θ . Observe that τ 2 * (u * (T )) is supported in Γ M (see Proposition 1.4.0.2) and has no mass on analytic subsets of Γ M , since T is smooth. Let Γ M denote the largest Zariski open subset of Γ M which is locally a graph over the first factor X of X s and let u : Γ M → X denote the canonical projection on this factor. We will prove as in Lemma 1.3.0.2 that τ 2 * (u * (T )) = u * (f m 1 * (T )) on a Zariski open set of Γ M . We first assume this and complete the proof.

The case s = 1 implies that

The case |M | = s -1, applied to M and to f m 1 * (T ), yields τ 2 * (u * (T )), Θ = u * (f m 1 * (T )), Θ f m 1 * (T ) (δ m + ) ms-m 1 T (δ m + ) ms .

Here is one of the best and the more recent books on Complex Dynamics in Higer Dimension. Here, we develop a calculus on positive closed currents of arbitrary bidegree on compact Kähler manifolds after recalling a notion of superpotential associated to such currents by using deformations in the space of currents. We define in particular the intersection of such currents and the pull-back operator. We apply the theory of super-potentials to construct Green currents and to study distribution problems . We obtain several results on the stochastic dynamics such as the regularity and the uniqueness of the Green currents, the regularity, the entropy, the ergodicity and the hyperbolicity of the equilibrium measures.We obtain many stochastic properties for the equilibrium measures. We prove the exponential decay of correlations, the central limit theorem and the large deviations theorem. One of the main tools is the use of structural discs in the space of positive closed currents which gives a "geometry" on that space. As an application, for example, when f is a dominating meromorphic self-map of large topological degree on a compact Kähler manifold , we give the recent new construction of the equilibrium measure µ f of f , prove that µ f is exponentially mixing , show that repelling periodic points are equidistributed with respect to µ f and describe the exceptional set of points whose backward orbits are not equidistributed with respect to µ f .Finally, we prove exponential estimates for plurisubharmonic functions with respect to Monge-Ampère measures and discuss some open value distribution problems .

Introduction

Let (X, ω) be a compact Kähler manifold of dimension k.We will develop a calculus on positive closed currents of bidegree (p, p) on X and apply this calculus to prove some surprising uniqueness results for dynamical currents in their cohomology classes.

When S is a positive closed (1, 1)-current on X, it is possible to introduce its potential u satisfying the following equation with a normalization condition dd c u = S -α and X uω k = 0, where α is a smooth representative of the cohomology class of S. The function u is quasi-p.s.h.; it is defined everywhere and satisfies dd c u ≥ -cω for some constant c > 0. This is the unique solution of the above equation and calculus problems on S can be transfered to computation on the potential u.

Dinh and Sibony have developed in [321] a theory of super-potentials associated to positive closed currents S of bidegree (p, p) in P k (their approach can be easily extended to homogeneous manifolds). Let ω FS denote the Fubini-Study form on P k normalized by P k ω k FS = 1. Assume for simplicity that S is of mass 1, that is, S is cohomologous to ω p FS . One can always solve the equation But when p > 1, the current U S is not unique and it is difficult to give U S a value at every point, in order for example, to consider expressions like the wedgeproduct U S ∧ [V ] where [V ] is a current associated to an analytic set V . In [321], they have introduced for S a super-potential U S which is a function defined on the space of positive closed currents R of bidegree (k -p + 1, k -p + 1) and of mass 1. More precisely, they have shown that it is possible to define 1 U S (R) = U S , R := lim sup U S , R with R smooth positive closed converging to R. The above formula is symmetric in R and S, that is, U S (R) = U R (S). So, we have U S (R) = S, U R where U R is CONTENTS a normalized solution of the equation dd c U R = R -ω k-p+1

dd c U S = S -ω p

FS

. In particular, U S (R) does not depend on the choice of U S and U R .

The super-potentials appear as quasi-p.s.h. functions on an infinite dimensional space and the value -∞ is admissible. The calculus one has obtained is satisfactory and permits to solve non trivial dynamical questions for holomorphic endomorphisms of P k and polynomial automorphisms of C k . It also permits to give a useful intersection theory of positive closed currents in P k .

It will be important to extend such a calculus to arbitrary compact Kähler manifolds. There are however some important difficulties. First, according to Bost-Gillet-Soulé [START_REF] Bost | Heights of projective varieties and positive Green forms[END_REF], if p > 1, it is not always possible to solve the equation (13.2.1) with U S bounded from above. In some sense, using the potentials one may loose the positivity or the boundedness from below. Second, the approximation of arbitrary positive closed currents by smooth ones is only possible when a loss in positivity is allowed, see Theorem 1.10.0.4 below. The loss of positivity is under control but it is still a source of several technical difficulties. In general, the deformation of currents on non-homogeneous manifolds is a delicate problem.

In the present book, we introduce the super-potentials of S as acting on the real vector space of closed currents R which are smooth and cohomologous to 0. Then U S is defined as

U S (R) := S, U R ,
where U R is a smooth solution of dd c U R = R satisfying some normalization conditions. This permits to develop the first steps of a theory of super-potential on an arbitrary compact Kähler manifold. In particular, we can define with some regularity assumption, the wedge-product S 1 ∧ S 2 where S j are positive closed (p j , p j )-currents.

We then apply these notions to the dynamical study of automorphisms of a compact Kähler manifold. Let f be a holomorphic automorphism of X. The dynamical degree of order s of f is defined as the spectral radius of the pull-back operator f * on the cohomology group H s,s (X, R). It follows from a result by Khovanskii-Teissier-Gromov [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF] that the function s → log d s is concave. In particular, we can assume that

1 = d 0 < d 1 < • • • < d p = • • • = d p > • • • > d k-1 > d k = 1.
They have constructed in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for 1 ≤ q ≤ p, Green (q, q)-currents T q . In our context, they are the positive closed currents of bidegree (q, q) such that f * (T q ) = d q T q , see Section 8.2 for the precise definition. Under the hypothesis that the dynamical degrees are distinct (i.e. p = p ), they also constructed and studied an ergodic invariant measure µ for f . The case of surfaces (k = 2) was studied by Cantat in [START_REF] Cantat | Dynamique des automorphismes des surfaces K3[END_REF]. Dynamically interesting automorphisms of surfaces are also constructed by Bedford-Kim [START_REF] Bedford | Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences[END_REF] and McMullen [START_REF] Mcmullen | Dynamics on blowups of the projective plane[END_REF].

Here, we propose a new approach using super-potentials to deal with convergence problems. We will show that the Green currents have Hölder continuous super-potentials. The following uniqueness result is quite surprising and can be applied to all q smaller than or equal to p. We refer to [START_REF] Fornaess | Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems (Rio de Janeiro[END_REF]395,322,[START_REF]Equidistribution towards the Green current for holomorphic maps[END_REF]321,[START_REF] Dinh | Dynamics of horizontal-like maps in higher dimension[END_REF] and the references therein for analogous results in other settings.

Theorem. Let f be a holomorphic automorphism of a compact Kähler manifold X and d s the dynamical degrees of f . Suppose V is a subspace of H q,q (X, R) invariant under f * . Assume that all the (real and complex) eigenvalues of the restriction of f * to V are of modulus strictly larger that d q-1 . Then each class in V contains at most one positive closed (q, q)-current.

As a consequence, we deduce that given a positive closed (q, q)-current S, the convergence of the classes (f n i ) * [S], properly normalized, implies the convergence of the currents (f n i ) * (S), properly normalized. Here,

f n := f • • • • • f (n times)
is the iterate of order n of f . The result applied to the current of integration on a subvariety Y of X gives a description of the asymptotic behavior of the inverse image of Y by f n when n → ∞. We also deduce that the Green currents are the unique positive closed currents in their cohomology classes without restricting to invariant currents.

Assume that the dynamical degrees of f are distinct, i.e. p = p (for surfaces this just means d 1 > 1). Assume also that the action of f * on H p,p (X, R) satisfies the following condition which is always true for surfaces. Let H be the invariant subspace of H p,p (X, R) corresponding to eigenvalues of maximal modulus. Suppose that f * restricted to H is diagonalizable over C. This condition means that the Jordan form of f * restricted to H ⊗ R C is a diagonal matrix. Let T + be a Green (p, p)-current of f and T -a Green (k -p, k -p)-current associated to f -1 . The hypothesis on f * |H is a necessary and sufficient condition in order to have T + ∧ T -= 0 for a suitable choice of T + , T -, see Proposition 8.4.0.1. These measures T + ∧T -generate a real space N of finite dimension. We will show that the convex cone N + of positive measures in N is closed, with a simplicial basis and that the measures µ on the extremal rays are ergodic. When the eigenvalues of f * |H are all real positive, i.e. equal to d p , µ is mixing. We will show that any such measure µ is of maximal entropy log d p . Then, using a recent result of de Thélin [START_REF] De Thélin | Un phénomène de concentration de genre[END_REF] we deduce that µ is hyperbolic with precise estimates on the positive and the negative Lyapounov exponents. The Hölder continuity of the super-potentials of the Green currents implies that µ is moderate: if u belongs to a compact family of quasi-p.s.h. functions and dd c u ≥ -ω then µ, e λ|u| ≤ c for some positive constants λ and c. As far as we know, this property is the strongest regularity property satisfied by the equilibrium measures in a quite general setting. It implies that any quasi-p.s.h. function is in L p (µ) for all 1 ≤ p < ∞. Moreover, µ has no mass on proper analytic subsets of X. A result due to Katok [334,p.694] implies that the set of saddle periodic points is Zariski dense in X since its closure contains the support of µ.

Main notations and conventions. Throughout the book, except for some CONTENTS definitions in Section 1.8, (X, ω) is a compact Kähler manifold of dimension k. The notation [V ] or [S] means the current of integration on an analytic set V or the class of a dd c -closed (p, p)-current S in H p,p (X, C) or H p,p (X, R). Denote by π : X × X → X × X the blow-up along the diagonal ∆ and ∆ := π -1 (∆) the exceptional hypersurface in X × X. The canonical projections of X × X on its factors are denoted by π i and we define Π i := π i • π for i = 1, 2. We also fix a Kähler form ω on X × X. Let C p denote the convex cone of positive closed (p, p)-currents on X, D p the real space generated by C p and D 0 p the subspace of currents in D p which belong to the class 0 in H p,p (X, R). We consider on these spaces the norms • C -l , • * and the * -topology defined in Section 1.8. On C p or on * -bounded (i.e. bounded with respect to • * ) subsets of D p , the * -topology coincides with the weak topology on currents. The current Θ 0 , its deformations Θ θ with θ ∈ P 1 , the associated transforms L 0 , L θ and the transform L K are defined in Section 1.10. The deformations S θ := L θ (S) of a current S and the associated structural line (S θ ) θ∈P 1 are introduced in Sections 1.10 and 3.4. The super-potential of a current S in D p , normalized by a fixed family α of closed (p, p)-forms, is denoted by U S . If S belongs to D 0 p , then U S does not depend on the choice of α, see Section 2.2. Finally, most of the constants depend only on (X, ω). The notations , mean inequalities up to a multiplicative constant and we will write ∼ when both inequalities are satisfied.

Let (X, ω) be a compact Kähler manifold. It is in general quite difficult to develop a calculus on cycles of codimension ≥ 2. An important approach has been introduced by Gillet-Soulé [START_REF] Gillet | Arithmetic intersection theory[END_REF] who constructed appropriate potentials with tame singularities for cycles of arbitrary codimension. See also Bost-Gillet-Soulé [START_REF] Bost | Heights of projective varieties and positive Green forms[END_REF], Berndtsson [START_REF] Berndtsson | Integral formulas on projective space and the Radon transform of Gindikin-Henkin-Polyakov[END_REF] and Henkin-Polyakov [START_REF] Henkin | Homotopy formulas for the ∂-operator on CP n and the Radon-Penrose transform[END_REF] for the resolution of ∂∂ and ∂-equations in the projective space.

On the other hand, the calculus on positive closed currents of bidegree (1, 1) using potentials is very useful and quite well-developped. Demailly's paper [388] and book [306] contain a clear exposition of this subject. It has many applications in complex geometry and to holomorphic dynamics, see the surveys [START_REF] Fornaess | Dynamics in several complex variables[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] for background. The recent papers [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] by the authors give other applications.

We will develop a calculus on positive closed currents of bidegree (p, p). For simplicity, we restrict here to the case of the projective space P k . We first explain the familiar situation of currents of bidegree [START_REF] Azonnahin | Conceitos Fundamentais e Métodos Pluripotenciais para Aplicações Cohomologicamente Expansíveis[END_REF][START_REF] Azonnahin | Conceitos Fundamentais e Métodos Pluripotenciais para Aplicações Cohomologicamente Expansíveis[END_REF]. The reader will find in Paragraph 3 some basic notions and properties of positive closed currents and of pluri-subharmonic functions.

Denote by ω the standard Fubini-Study form on P k normalized by P k ω k = 1. Let S be a positive closed (1, 1)-current on P k . We assume that the mass S := S, ω k-1 is 1, that is, S is cohomologous to ω. A quasi-potential of S is a quasi-plurisubharmonic function u such that S -ω = dd c u.

Recall that d c := i 2π (∂ -∂). This function u is unique when we normalize it by P k uω k = 0. The correspondence S ↔ u is very useful. Indeed, u has a value at every point if we allow the value -∞. This makes it possible to consider the pullback of S by dominant meromorphic maps [START_REF] Méo | Image inverse d'un courant positif fermé par une application analytique surjective[END_REF] or to consider the wedge-product (intersection) S ∧ S := ω ∧ S + dd c (uS ) when u is integrable with respect to the trace measure of a positive closed current S .

From our point of view, the formalism in this case is as follows. Let δ x denote the Dirac mass at x. We consider a (k -1, k -1)-current v, non uniquely determined, such that v, ω = 0 and dd c v = δ x -ω k . We then have formally

u(x) = u, δ x = u, δ x -ω k = u, dd c v = dd c u, v = S -ω, v = S, v .
So, S, v is in particular independent of the choice of v. Moreover, we can extend the action of u to C k the convex set of probability measures. If dd c U ν = ν -ω k with ν ∈ C k and U ν , ω = 0, we get

u, ν = S, U ν ,
where the value -∞ is allowed. We prefer to consider that the quasi-potential is acting on C k . Define U S (ν) := u, ν = S, U ν .

This is somehow irrelevant in this case since Dirac masses are the extremal points of C k and U S is simply the affine extension of u to C k . Let C p denote the convex compact set of positive closed currents S of bidegree (p, p) on P k and of mass 1, i.e. S := S, ω k-p = 1. Let U S denote a solution to the equations dd c U S = S -ω p , U S , ω k-p+1 = 0.

We introduce U S as a function on C k-p+1 that we will call the super-potential of mean 0 of S. Suppose R is in C k-p+1 and let dd c U R = R -ω k-p+1 with U R , ω p = 0. Then, formally

U S (R) := U S , R = U S , R -ω k-p+1 = U S , dd c U R = dd c U S , U R = S -ω p , U R = S, U R .
The function U S determines S. We will show that it is defined everywhere if the value -∞ is allowed.

To develop the calculus, we have to consider C p and C k-p+1 as infinite dimensional spaces with special families of currents that we parametrize by the unit disc ∆ in C. We call these families special structural discs of currents. When U S is restricted to such discs we get quasi-subharmonic functions. More precisely, if x → R x is a special structural disc of currents parametrized by x ∈ ∆, then

dd c x U S (R x ) ≥ -α
where α is a smooth (1, 1)-form independent of S. The above definition of U S (R) is valid for S or R smooth. In general, we have

U S (R) = lim x→0 U S (R x )
for some special discs with R 0 = R. Two currents R 1 ∈ C p 1 and R 2 ∈ C p 2 are wedgeable if and only if a superpotential of R 1 is finite at R 2 ∧ ω k-p 1 -p 2 +1 . The calculus on differential forms can be extended to wedgeable currents: commutativity, associativity, convergence and continuity of wedge-product for the H-convergence. If R 2 is of bidegree [START_REF] Azonnahin | Conceitos Fundamentais e Métodos Pluripotenciais para Aplicações Cohomologicamente Expansíveis[END_REF][START_REF] Azonnahin | Conceitos Fundamentais e Métodos Pluripotenciais para Aplicações Cohomologicamente Expansíveis[END_REF], the condition means that the quasi-potentials of R 2 are integrable with respect to the trace measure of R 1 . As a special case, we obtain the usual intersection of algebraic cycles. The question of developing such a theory was raised by Demailly in [388]. We give, in the last paragraph, a satisfactory approach to the problem of pulling back a current in C p by meromorphic maps. Also in this paragraph, we apply the theory of super-potentials to complex dynamics in higher dimension. The main applications are the following results.

As a first application, we construct Green currents of bidegree (p, p) for a large class of meromorphic maps on P k . This requires a good calculus using the pull-back operation. The following result holds for holomorphic maps and for Zariski generic meromorphic maps which are not holomorphic.

Theorem 0.0.0.1. Let f be an algebraically p-stable meromorphic map on P k with dynamical degrees d s , 1 ≤ s ≤ k. Assume that d p-1 < d p and that the union of the infinite fibers is of dimension ≤ k -p. Then, d -n p (f n ) * (ω p ) converge to an f * -invariant current T which is is extremal among f * -invariant currents in C p .

Note that the convergence result holds also for regular polynomial automorphisms. The current T is called the Green current of bidegree (p, p) of f . The convergence is still valid if we replace ω p by a current with bounded super-potentials. The case p = 1 was considered by Sibony in [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF].

Let M d (P k ) denote the space of dominant meromorphic self-maps of algebraic degree d ≥ 2 on P k . Such a map can be lifted to a homogeneous polynomial selfmap of C k+1 of degree d. The lift is unique up to a multiplicative constant. The space M d (P k ) has the structure of a Zariski dense open set in P N with N := (k +1)(d+k)!/(d!k!)-1. The space H d (P k ) of holomorphic self-maps of algebraic degree d ≥ 2 on P k is a Zariski open subset of M d (P k ) and M d (P k ) \ H d (P k ) is an irreducible hypersurface of M d (P k ), see [START_REF] Bassanelli | Bifurcation currents in holomorphic dynamics on P k[END_REF] and [284, p.427 ) and if S is a current in C p , then d -pn (f n ) * (S) converges to the Green current of bidegree (p, p) of f uniformly on S.

A more precise description is known for p = 1 and k = 2 in [START_REF] Fornaess | Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems (Rio de Janeiro[END_REF]395], for p = 1 and k ≥ 2 in [START_REF]Equidistribution towards the Green current for holomorphic maps[END_REF], and for p = k in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF]Equidistribution towards the Green current for holomorphic maps[END_REF], see also [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF][START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF]. Applying the previous theorem to the currents of integration on subvarieties H gives the equidistribution of f -n (H) in P k . Another application is a rigidity theorem for polynomial automorphisms of C k that we consider as birational maps on P k . Theorem 0.0.0.3. Let f be a polynomial automorphism of C k which is regular in the sense of [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. Let I + denote the indeterminacy set of f at infinity and p the integer such that dim I + = k -p -1. Let K + be the set of points z ∈ C k with bounded orbits. Then, the Green (p, p)-current associated to f is the unique positive closed (p, p)-current of mass 1 with support in K + .

The result was proved by Fornaess and Sibony in dimension k = 2 [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF]. Note that when k = 2 and p = 1, regular automorphisms are the Hénon type automorphisms of C 2 . It is known that dynamically interesting polynomial automorphisms in C 2 are conjugated to the regular ones [START_REF] Friedland | Dynamical properties of plane polynomial automorphisms[END_REF]. Let H be an analytic subset of pure dimension k -p which does not intersect the indeterminacy set I -of f -1 . We obtain as a consequence of Theorem 0.0.0.3 that the currents of integration on f -n (H), properly normalized, converge to the Green (p, p)-current of f . The case k = 2 and p = 1 of this result was proved by Bedford-Smillie in [START_REF] Bedford | Polynomial diffeomorphisms of C 2 III[END_REF].

Remark 0.0.0.4. The super-potential U S can be extended to a function on weakly positive closed currents of bidegree (k -p + 1, k -p + 1). For simplicity, we consider only (strongly) positive currents. We can also define super-potentials for weakly positive closed (p, p)-currents; they are functions on (strongly) positive closed currents of bidegree (k-p+1, k-p+1). The super-potentials are introduced on currents of mass 1 but they can be easily extended by linearity to currents of arbitrary mass. Their domain of definition can be also extended to positive closed currents of arbitrary mass.

Other notation. ∆ r is the disc of center 0 and of radius r in C, ∆ denotes the unit disc, ∆ k the unit polydisc in C k and ∆ * := ∆ \ {0}. The group of automorphisms of P k is a complex Lie group of dimension k 2 + 2k that we denote by Aut(P k ) PGL(k + 1, C). We will work with a fixed holomorphic chart and local holomorphic coordinates y of Aut(P k ). The automorphism with coordinates y is denoted by τ y . Choose y so that |y| < 2 and y = 0 at the identity id ∈ Aut(P k ). In order to simplify the notation, choose a norm |y| of y which is invariant under the involution τ → τ -1 . Fix a smooth probability measure ρ with compact support in {|y| < 1}. Choose ρ radial and decreasing when |y| increases. So, the involution τ → τ -1 preserves ρ. The mass of a positive or negative (p, p)-current S on P k is defined by S := | S, ω k-p |. Throughout the book, S θ , R θ , . . . will denote the regularization of S, R, . . . defined in Paragraph 3.1 below.

We have tried to make the book readable for non experts. In Section 1.8 we give background on positive closed currents and we introduce transforms on

Introduction

Let (X, ω) be a compact Kähler manifold of dimension k. A meromorphic correspondence f : X → X is a meromorphic multivalued self-map on X. The precise definition will be given in Section 1.3. One can compose correspondences and consider the dynamical system associated to f , i.e. study the sequence of iterates f n := f • • • • • f , n times, of f . Any projective manifold admits dynamically interesting correspondences. The topological entropy h(f ) of f is defined as in [START_REF] Bowen | Topological entropy for non compact sets[END_REF][START_REF] Gromov | On the entropy of holomorphic maps[END_REF][START_REF] Friedland | Entropy of algebraic maps[END_REF], see Section 1.4. It measures the divergence of the orbits of f and the complexity of the associated dynamical system.

In this chapter, we show that h(f ) is bounded from above by the logarithm of the maximal dynamical degree of f which is easier to compute or estimate. The dynamical degree d p (f ) of order p measures the growth of the norms of f n acting on the cohomology group H p,p (X, C) when n tends to infinity, see Section 1.3. Let Γ [n] denote the graph of (f, f 2 , . . . , f n ) in X n+1 . We will use the following intermediate indicator, introduced by Gromov [START_REF] Gromov | On the entropy of holomorphic maps[END_REF], which measures the growth of the volume of Γ We will see that the last limit always exists. Our main result is the following theorem which is new even for holomorphic correspondences. It answers a problem raised by Gromov [START_REF] Gromov | On the entropy of holomorphic maps[END_REF][START_REF] Friedland | Entropy of algebraic maps[END_REF].

Theorem 1.1.0.1. Let f be a meromorphic correspondence on a compact Kähler manifold (X, ω) of dimension k. Let d p (f ) denote the dynamical degree of order p of f . Then h(f ) ≤ lov(f ) = max 0≤p≤k log d p (f ).

The case of holomorphic maps was proved by Gromov [START_REF] Gromov | On the entropy of holomorphic maps[END_REF], see also [START_REF] Friedland | Entropy of algebraic maps[END_REF], and the case of meromorphic maps was proved by the authors in [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. For other contexts, see [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] De Thélin | Un phénomène de concentration de genre[END_REF][START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF] and the references therein. The proofs in the previous cases cannot be extended to correspondences. We need here new geometric ingredients. In the last two sections we extend the previous result to the entropy of f on a subvariety of X and we discuss a notion of Julia and Fatou sets for correspondences. Our goal here is also to develop a calculus for meromorphic correspondences.

Note that if f is a holomorphic self-map on X, by Yomdin's theorem [START_REF] Yomdin | Volume growth and entropy[END_REF], we have h(f ) ≥ max p log d p (f ); then h(f ) = max p log d p (f ), see also [?, 361, 360, 355, 411]. However, this is false for holomorphic correspondences, even in dimension 1. Let (z, w) denote the canonical affine coordinates of C × C in P 1 × P 1 . Consider the correspondence f on P 1 with irreducible graph Γ ⊂ P 1 × P 1 of equation w 2 = z 2 + 1. The reader can check easily that d 0 (f ) = d 1 (f ) = 2 and h(f ) = 0.

Regularization

Recall that the mass of a positive (p, p)-current T on a compact Kähler manifold (X, ω) of dimension k is given by T := T, ω k-p . It depends continuously on T . When T is positive closed, T depends only on the class of T in H p,p (X, C). In order to simplify the notation, if Y is an analytic set of pure dimension in X, we often denote by Y , instead of [Y ], the current of integration on Y and by Y its mass. The main tool used in the proof of Theorem 1.1.0.1 is the following result.

Theorem 1.2.0.1 ( [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]). Let (X, ω) be a compact Kähler manifold of dimension k. Let T be a positive closed (p, p)-current on X. Then there are positive closed (p, p)-currents T ± and a constant c > 0 independent of T such that i) T = T + -T -and T ± ≤ c T ; ii) T ± are limits of smooth positive closed (p, p)-forms on X.

We deduce the following consequence.

Corollary 1.2.0.2. Let π : (X 1 , ω 1 ) → (X 2 , ω 2 ) be a holomorphic map between two compact Kähler manifolds. Let Y ⊂ X 1 be an analytic subset of pure dimension and let Y be a Zariski open subset of Y such that the restriction τ of π to Y is locally a submersion on X 2 . If T is a positive closed current on X 2 , then τ * (T ) extends to a positive closed current on X 1 such that

τ * (T ) ≤ c Y T ,
where the constant c > 0 depends only on (X 1 , ω 1 ), (X 2 , ω 2 ) and π.

Proof. Observe that τ * (T ) defines a positive closed current on the Zariski open subset X \ (Y \ Y ) of X. If τ * (T ) has finite mass, a theorem of Skoda [START_REF] Skoda | Prolongement des courants positifs, fermés de masse finie[END_REF] implies that its trivial extension defines a positive closed current on X. Then, we only need to estimate the mass of τ * (T ).

The constants that we use here are independent of Y , Y and T . By Theorem 1.10.0.4, there are smooth positive closed forms T n converging to a current T ≥ T and such that T n ≤ c T . It follows that there is a constant c > 0 such that c T ω p 2 -T n is cohomologous to a smooth positive closed form for every n. Here, (p, p) is the bidegree of T and we use the fact that H p,p (X 2 , C) has finite dimension. So the class of T n is bounded by the class of c T ω p 2 . Since τ is locally a submersion on Y ⊂ Y , we have

τ * (T ) ≤ lim sup n→∞ Y ∧ π * (T n ) ≤ c T Y ∧ π * (ω p 2 ) ≤ c Y T .
In the last inequalities, we use the fact that the mass of a positive closed current depends only on its cohomology class.

Remark 1.2.0.3. If T is the current of integration on a subvariety Y 2 ⊂ X 2 then we obtain from the previous corollary that

Y ∩ π -1 (Y 2 ) ≤ c Y Y 2 .
This is a Bézout type theorem in which we do not assume that the intersection Y ∩ π -1 (Y 2 ) is of pure dimension.

Correspondences

Let π 1 and π 2 denote the canonical projections of X 2 onto its factors. A meromorphic correspondence f on X is given by a finite holomorphic chain Γ = Γ i such that i) for each i, Γ i is an irreducible analytic subset of dimension k of X 2 ;

ii) π 1 and π 2 restricted to each Γ i are surjective.

We call Γ the graph of f . We do not assume that the Γ i 's are smooth or distinct. Of course, we can write Γ = n j Γ j where n j are positive integers and Γ j are distinct irreducible analytic sets. Then, a generic point in the support ∪Γ j of Γ belongs to a unique Γ j and n j is called the multiplicity of Γ at x. In what follows we use the notation Γ i . The indice i permits to count the multiplicities. Let Γ -1 denote the symmetric of Γ with respect to the diagonal of X 2 . The correspondence f -1 associated to Γ -1 is called the adjoint of f .

Observe that if Ω and Ω are dense Zariski open sets in X, then, by condition ii), all components of Γ intersect π -1 1 (Ω) ∩ π -1 2 (Ω ). Hence, Γ is the closure of its restriction to π -1 1 (Ω) ∩ π -1 2 (Ω ). We will use this property several times. We define formally f := π 2 • (π 1|Γ ) -1 . More precisely, if A is a subset of X, define f (A) := π 2 (π -1 1 (A) ∩ Γ) and f -1 (A) = π 1 (π -1 2 (A) ∩ Γ). So, generically the fibers f (x) and f -1 (x) are finite subsets of X. The sets

I 1 (f ) := x ∈ X, dim π -1
1 (x) ∩ Γ > 0 and I 2 (f ) := x ∈ X, dim π -1 2 (x) ∩ Γ > 0 are the first and second indeterminacy sets of f ; they are of codimension ≥ 2. One can compare the restriction of π 1 to Γ with a blow up of X along I 1 (f ) and π -1 1 (I 1 (f )) ∩ Γ is contracted by π 1 to I 1 (f ). If I 1 (f ) = ∅ we say that f is holomorphic. If generic fibers of π 1|Γ contain only one point, we obtain a dominant meromorphic self-map on X.

We can compose correspondences. Let f and f be two correspondences on X of graphs Γ = i Γ i and Γ = j Γ j in X 2 . Then, the graph of f • f is equal to Γ • Γ := i,j Γ i • Γ j , where Γ i • Γ j is defined as follows.

Let P i (f ) denote the smallest analytic subset of X such that π i restricted to Γ \ π -1 i (P i (f )) defines an unramified covering over X \ P i (f ). Let Ω ⊂ X \ P 1 (f ) be a dense Zariski open subset of X. Let Ω ⊂ X \ P 1 (f ) be a similar Zariski open set for f such that f (Ω ) ⊂ Ω. We can choose for example Ω = (X \ P 1 (f )) \ f -1 (X \ Ω). Let Σ be the closure in X 2 of the set (x, z) ∈ Ω × X, there is y ∈ X with (x, y) ∈ Γ j and (y, z) ∈ Γ i . 1 The composition Γ i • Γ j is the holomorphic k-chain with support in Σ where the multiplicity of a generic point (x, z) is defined as the number of y's satisfying the previous conditions; quite generically the multiplicity is one.

Observe that Σ and Γ • Γ do not depend on the choice of Ω and Ω . Note that compositions of irreducible correspondences can be reducible. This is the reason why we have to deal with multiplicities. For example, if the graph Γ of an irreducible correspondence f is symmetric with respect to the diagonal of X 2 and if the degree of π i|Γ is larger than 1 then f 2 is reducible since its graph contains the diagonal ∆ of X 2 as one component. Note also that the graph of f • f -1 contains ∆ but in general we do not have f • f -1 = id.

Correspondences act on smooth forms. If α is a smooth (p, p)-form on X, define f * (α) := (π 1 ) * Γ ∧ π * 2 α and f * (α) := (π 2 ) * Γ ∧ π * 1 α . Recall that we identify Γ with the current it represents. Observe that if α is positive then f * (α) and f * (α) are positive closed (p, p)-currents which are smooth on a dense Zariski open set and have no mass on analytic subsets of X. They are represented by forms with coefficients in L 1 . For example, f * (α) is smooth in X \ P 1 (f ) and has no mass on P 1 (f ). Moreover, if the positive closed (p, p)-forms α and α are cohomologous then f * α = f * α and f * α = f * α . Define

λ p (f ) := f * (ω p ) = X f * (ω p ) ∧ ω k-p = Γ, π * 2 ω p ∧ π * 1 ω k-p = X f * (ω k-p ) ∧ ω p .
This integral can be computed cohomologically. It measures the norm of the linear operator f * acting on the cohomology group H p,p (X, C).

The following proposition shows that the sequence cλ p (f n ) is sub-multiplicative, see also [START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF]. Hence, λ p (f n ) 1/n converge to a constant d p (f ). We call d p (f ) the dynamical degree of order p of f . It is easy to check that d 0 (f ) and d k (f ) are the topological degrees (i.e. the number of points in a generic fiber counted with multiplicities) of π 1|Γ and π 2|Γ and that d p (f n ) = d p (f ) n . Proposition 1.3.0.1. Let f and f be two correspondences on (X, ω). Then, there exists a constant c > 0 independent of f and f such that

λ p (f • f ) ≤ cλ p (f )λ p (f ).
We will need the following lemma.

Lemma 1.3.0.2. Let Ω ⊂ X \ P 1 (f ) and Ω ⊂ X \ P 1 (f ) be dense Zariski open subsets of X such that f (Ω) ⊂ X \ P 2 (f ) and f (Ω ) ⊂ Ω \ P 2 (f ). If S is an arbitrary current on X, then

(f • f ) * |Ω (S) = f * |Ω f * |Ω (S) . Proof.
Let U be a small neighbourhood of a point in Ω . Since Ω ∩ P 1 (f ) = ∅, the restriction of f = π 2 • (π 1|Γ ) -1 to U is given by a family of biholomorphic maps u r : U → U r ⊂ Ω. If U is small enough, f = π 2 • (π 1|Γ ) -1 restricted to each U r is given by a family of biholomorphic maps u rs : U r → U rs ⊂ X. Hence f • f restricted to U is given by the family of biholomorphic maps u rs • u r : U → U rs . We have This implies the lemma.

f * |U f * |Ω (S) =
Proof of Proposition 1.3.0.1. Observe that (f •f ) * (ω p ) is a positive closed current on X. Moreover, (f • f ) * (ω p ) and f * (f * (ω p )) are well defined and smooth outside an analytic set. We obtain from Lemma 1.3.0.2 that these forms are equal on some Zariski open set Ω . By Theorem 1.10.0.4, there exist positive closed smooth (p, p)-forms T n , converging to a current T ≥ f * (ω p ), such that T n ≤ c f * (ω p ) = cλ p (f ). Hence, there is another constant c > 0 such that cλ p (f )ω p -T n is cohomologous to a smooth positive closed form for every n. We have

f * |Ω f * (ω p ) ≤ lim sup n→∞ f * (T n ) ≤ cλ p (f ) f * (ω p ) = cλ p (f )λ p (f ).
Hence, since (f • f ) * (ω p ) has no mass on analytic sets,

(f • f ) * (ω p ) = f * |Ω f * (ω p ) ≤ cλ p (f )λ p (f ).
Remark 1.3.0.3. Let A p,q (f ) denote the norm of f * on H p,q (X, C). One can prove as in [START_REF] Dinh | Distribution des préimages et des points périodiques d'une correspondance polynomiale[END_REF] that

A p,q (f ) ≤ c λ p (f )λ q (f )
where c > 0 is a constant independent of f . This inequality and the Lefschetz fixed points formula allow to get an asymptotic estimate of the number of periodic points of order n of f when they are isolated. For example, if d k (f ) is strictly larger than the other dynamical degrees, this number is equal to d k (f ) n 1+o(1) .

Entropy

We now define the topological entropy of f . We call n-orbit of f any sequence (x 0 , i 1 , x 1 , i 2 , x 2 , . . . , x n-1 , i n , x n ) where x 0 , . . ., x n are points of X with x i ∈ I 1 (f ), and i 1 , . . ., i n are indices such that (x r-1 , x r ) ∈ Γ ir for every r. Let F be a finite family of n-orbits of f . We say that F is -separated if for all distinct elements (x 0 , i 1 , x 1 , i 2 , x 2 , . . . , x n-1 , i n , x n ) and (x 0 , i 1 , x 1 , i 2 , x 2 , . . . , x n-1 , i n , x n )

of F , we have either i r = i r or dist(x r , x r ) > for some r. As we already explained, the indices i r allow to count the multiplicities. When Γ is irreducible, we always have i r = i r , then the indices i r in the definition of n-orbit can be dropped. But since we are going to consider the graph of f n , we cannot deal only with the irreducible case.

Definition 1.4.0.1 (see [START_REF] Bowen | Topological entropy for non compact sets[END_REF][START_REF] Gromov | On the entropy of holomorphic maps[END_REF][START_REF] Friedland | Entropy of algebraic maps[END_REF]). Define the topological entropy of f by h(f ) := sup >0 lim n→∞ 1 n log max #F , F an -separated family of n-orbits of f .

We say that the n-orbit O = (x 0 , i 1 , x 1 , i 2 , x 2 , . . . , x n-1 , i n , x n ) is regular if for every 1 ≤ s ≤ n, Γ is is, in a neighbourhood of (x s-1 , x s ), a graph over each factor of X 2 . Since any n-orbit can be approximated by regular n-orbits, in Definition 1.4.0.1, one can consider only regular orbits. This is why we will consider only the extension by zero of all the currents defined on a Zariski open set.

As observed in [START_REF] Gromov | On the entropy of holomorphic maps[END_REF][START_REF] Friedland | Entropy of algebraic maps[END_REF], f is conjugated to a shift σ on the space X ∞ , the closure of the set of the infinite orbits (x 0 , i 1 , x 1 , i 2 , . . . , i n , x n , . . .) ∈ X N . It follows that h(f ) = h(σ), and since σ is continuous, one gets that h(f n ) = nh(f ) and h(f -1 ) = h(f ).

Let M = {m 1 , . . . , m s }, with 0 ≤ m 1 ≤ m 2 ≤ • • • ≤ m s , be a multi-index. We define the graph Γ M of (f m 1 , . . . , f ms ) in X s+1 as the closure of the set of points (x 0 , x m 1 , . . . , x ms ) ∈ X s+1 associated to a regular m s -orbit O = (x 0 , i 1 , x 1 , i 2 , x 2 , . . . , x ms-1 , i ms , x ms ). This is a holomorphic k-chain in X s+1 where the multiplicity of a generic point (x 0 , x m 1 , . . . , x ms ) in Γ M is the number of the associated regular m s -orbits O. If M = {n} we obtain the graph Γ n of f n in X 2 . If M = {1, . . . , n}, we obtain the graph Γ [n] of (f, f 2 , . . . , f n ) in X n+1 . Recall that lov(f ) = lim sup We divide the proof of Theorem 1.1.0.1 in two parts.

Proof of the inequality. We follow an idea due to Gromov [START_REF] Friedland | Entropy of algebraic maps[END_REF], see also [START_REF] Gromov | On the entropy of holomorphic maps[END_REF].

Let F be an -separated family of regular n-orbits of f . We have to compare #F with Γ [n] . We associate to each element O = (x 0 , i 1 , . . . , i n , x n ) of F an open set B O ⊂ Γ [n] which is the set of the points (x 0 , . . . , x n ) ∈ X n+1 with (x r-1 , x r ) ∈ Γ ir and dist(x r , x r ) < /2 for every r.

Here, the distance between two points in X n+1 is the maximum of the distances between their projections on factors of X n+1 . Since F is -separated, the balls B O are disjoint (two balls with indices (i 1 , . . . , i n ) = (i 1 , . . . , i n ) are considered as disjoint balls). Hence, the total mass of all the B O is smaller than Γ [n] .

On the other hand, B O contains an analytic subset of dimension k of the ball of diameter and of center (x 0 , . . . , x n ) in X n+1 . A theorem of Lelong [START_REF] Lelong | Fonctions plurisousharmoniques et formes différentielles positives[END_REF] implies that B O ≥ c 2k where c > 0 is a constant independent of and of n.

Let Π i : X n+1 → X denote the canonical projections on the factor of index i, 0 ≤ i ≤ n. Define ω i := Π * i (ω). We use for X n+1 the canonical Kähler form ω 0 + • • • + ω n . Then, the number of B O , which is equal to #F , satisfies

#F ≤ c -1 -2k Γ [n] .
The inequality h(f ) ≤ lov(f ) in Theorem 1.1.0.1 follows from Definition 1.4.0.1.

Proof of the equality. Recall that π 1 , π 2 : X 2 → X denote the canonical projections. We have

Γ n = Γ n , (π * 1 ω + π * 2 ω) k = k p=0 k p Γ n , π * 1 ω k-p ∧ π * 2 ω p = k p=0 k p λ p (f n ). Hence max 0≤p≤k λ p (f n ) ≤ Γ n ≤ 2 k max 0≤p≤k λ p (f n ). (1.4.1)
On the other hand, the projection of Γ [n] on the product X 2 of the first and the last factors of X n+1 , is equal to Γ n . It follows that Γ [n] ≥ Γ n , hence lov(f ) ≥ max log d p (f ).

For the other inequality, it is enough to show that Γ [n] n k (δ + ) n , where δ := max p d p (f ) and is a fixed constant. We have

Γ [n] = Γ [n] , (ω 0 + • • • + ω n ) k = 0≤ns≤n Γ [n] , ω n 1 ∧ . . . ∧ ω n k .
We only need to prove that Γ [n] , ω n 1 ∧ . . . ∧ ω n k ≤ c(δ + ) n , c > 0. The following proposition will be useful for that purpose.

Proposition 1.4.0.2. There is a constant c s > 0 independent of the multi-index M = {m 1 , . . . , m s }, 0 ≤ m 1 ≤ • • • ≤ m s , such that Γ M ≤ c s (δ + ) ms .

Proof. The proof uses an induction on s. For s = 1 we have Γ M = Γ m 1 , and the desired estimate follows from the relation (1.4.1).

Assume the proposition for |M | = s -1. We will prove it for |M | = s. Let τ 1 : X s+1 → X 2 be the canonical projection on the two first factors and let τ 2 : X s+1 → X s be the projection on the s last factors. Define M := {m 2 -m 1 , . . . , m s -m 1 }. We will prove that Γ M = τ -1 1 (Γ m 1 ) ∩ τ -1 2 (Γ M ) in a Zariski open set, then we will apply Corollary 1.2.0.2.

Let Ω ⊂ X be the Zariski open set of all the points x 0 ∈ X which admit d 0 (f ) ms distinct regular m s -orbits, i.e. the maximal number of regular m s -orbits.

Let Ω s+1 denote the Zariski open subsets of points in X s+1 whose projections on the first factor X belong to Ω. Observe that Γ M ∩ Ω s+1 is Zariski dense in Γ M . Hence, we only need to estimate Γ M ∩ Ω s+1 .

Consider a regular m s -orbit O := (x 0 , i 1 , . . . , i ms , x ms ), x 0 ∈ Ω, associated to a point z in Γ M ∩ Ω s+1 . The point τ 1 (z) is associated to the regular m 1 -orbit O 1 := (x 0 , i 1 , . . . , i m 1 , x m 1 ), i.e. to a point in Γ m 1 . The point τ 2 (z) is associated
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to the regular (m s -m 1 )-orbit O 2 := (x m 1 , i m 1 , . . . , i ms , x ms ), i.e. to a point in Γ M . It follows that in Ω s+1 , Γ M is the intersection of τ -1 1 (Γ m 1 ) with τ -1 2 (Γ M ). Let Ω 2 denote the Zariski open subset of points in X 2 whose projections on the first factor X belong to Ω. The choice of Ω implies that in Ω 2 , Γ m 1 is locally a graph over the second factor X of X 2 . It follows that τ 2 restricted to τ -1 1 (Γ m 1 ) ∩ Ω s+1 is locally biholomorphic. Then, we can apply Corollary 1.2.0.2 and Remark 1.2.0.3 to π = τ 2 , and to components of τ -1 1 (Γ m 1 ) and of Γ M . We obtain

Γ M = Γ M ∩ Ω s+1 ≤ c τ -1 1 (Γ m 1 ) Γ M ≤ c Γ m 1 Γ M
where c, c depend only on (X, ω) and on s. The case |M | = 1 and the case |M | = s -1 imply the result.

End of the proof of Theorem 1.1.0.1. We will prove that Γ

[n] , ω n 1 ∧ . . . ∧ ω n k ≤ c(δ + ) n , c > 0, for 0 ≤ n 1 ≤ • • • ≤ n k ≤ n.
Let Π : X n+1 → X k+1 be the canonical projection on the product of factors with indices 0, n 1 , . . ., n k . We show that Π defines a map of topological degree d 0 (f ) n-n k between Γ [n] and Γ M , where M := {n 1 , . . . , n k }.

Observe that if we fix a generic orbit O := (x 0 , i 1 , . . . , i n k , x n k ) there are d 0 (f ) n-n k choices for O := (i n k +1 , x n k +1 , . . . , i n , x n ) such that O := (O , O ) is a point in Γ [n] . By definition, O corresponds to a point in Γ M . Hence, Π defines a map of topological degree d 0 (f ) n-n k between Γ [n] and Γ M .

If ω denotes the canonical Kähler form on X k+1 , then

Γ [n] , ω n 1 ∧ . . . ∧ ω n k ≤ Γ [n] , Π * ( ω k ) = d 0 (f ) n-n k Γ M , ω k = d 0 (f ) n-n k Γ M .
By Proposition 1.4.0.2, Γ M ≤ c k (δ + ) n k . The desired estimate follows.

Entropy on a subvariety

Let Y ⊂ X be an analytic subset of pure dimension m or more generally a holomorphic m-chain. Assume that for a generic point x 0 ∈ Y the sets f n (x 0 ) do not intersect I 1 (f ) for any n ≥ 0. Such a point admits n-orbits. We define the entropy h(f, Y ) of f on Y as in Definition 1.4.0.1 but we only consider the orbits O = (x 0 , i 1 , . . . , i n , x n ) starting from a point x 0 ∈ Y . Define the holomorphic chain Γ Y [n] as the closure in X n+1 of the set of n-orbits O = (x 0 , i 1 , x 1 , . . . , i n , x n ) with x 0 ∈ Y generic, and lov(f, Y ) := lim sup n→∞ log vol(Γ Y

[n] ) 1/n .

We have the following result which generalizes Theorem 1.1.0.1.
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Theorem 1.5.0.1. Let Y be as above. Assume that all the orbits starting from a generic point x 0 ∈ Y are regular 2 . Then

h(f, Y ) ≤ lov(f, Y ) ≤ max 0≤p≤m log d p (f ).
Such an estimate should be useful in the study of dimensional entropies and Lyapounov exponents. We refer to Newhouse [START_REF] Newhouse | Entropy and volume, Ergodic Theory Dynam. Systems[END_REF] and Buzzi [START_REF] Buzzi | Entropy, volume growth and Lyapounov exponents[END_REF] for this purpose. The proof uses the same idea as in Theorem 1.1.0.1. The first inequality is left to the reader. For the second inequality, in order to estimate vol(Γ Y

[n] ), it is sufficient to apply Proposition 1.5.0.2 below for T = Y . Proposition 1.5.0.2 is more general than Proposition 1.4.0.2. However, we keep Proposition 1.4.0.2 because its proof contains a useful geometric argument.

Let M = {m 1 , . . . , m s }, 0 ≤ m 1 ≤ • • • ≤ m s , be a multi-index. Let Γ M denote the largest Zariski open subset of Γ M which is locally a graph over the first factor of X s+1 . Define u : Γ M → X the canonical projection on the first factor and δ m := max 0≤p≤m d p (f ).

Proposition 1.5.0.2. There is a constant c s > 0 independent of M such that if T is a positive closed (k -m, k -m)-current on X then u * (T ) defines a positive closed current of bidimension (m, m) on X s+1 with u * (T ) ≤ c s T (δ m + ) ms .

Proof. By Skoda's theorem [START_REF] Skoda | Prolongement des courants positifs, fermés de masse finie[END_REF], the trivial extension of u * (T ) is positive and closed in X s+1 provided that u * (T ) has finite mass. So, it is enough to estimate u * (T ) . By Theorem 1.10.0.4, the case where T is smooth implies the general case. Hence, we can assume T smooth. The proof uses an induction on s.

For s = 1 we have Γ M = Γ m 1 . We need to show that u * (T ), ω r 0 ∧ ω m-r 1 T (δ m + ) m 1 for 0 ≤ r ≤ m. Choose a constant c > 0, independent of T , such that c T ω k-m+r -T ∧ ω r is cohomologous to a smooth positive closed form. Hence

u * (T ) ∧ ω r 0 , ω m-r 1 = u * (T ∧ ω r ), ω m-r 1 ≤ c T ω k-m+r 0 ∧ Γ m 1 , ω m-r 1 = c T λ m-r (f m 1 ).
The desired estimate follows. Now, assume the inequality for |M | = s -1 and for arbitrary T , smooth or not. We will prove it for |M | = s and for T smooth. We have to estimate u * (T ), ω r 0 0 ∧ . . . ∧ ω rs s with r 0 + • • • + r s = m. Since this integral is equal to u * (T ∧ ω r 0 ), ω r 1 1 ∧ . . . ∧ ω rs s , we can replace T by T ∧ ω r 0 and assume that r 0 = 0.

It follows that u * (T ), τ * 2 (Θ) T (δ m + ) ms which implies the result. Now, we prove the identity τ 2 * (u * (T )) = u * (f m 1 * (T )) on a Zariski open set of Γ M . Let U be a small neighbourhood of a generic point in Γ M . Then u defines a biholomorphic map between U and an open set V ⊂ X. If U is small enough, f -m 1 restricted to V is given by a family of biholomorphic maps u r : V → V r ⊂ X. Observe that a generic point (x, z) ∈ Γ M is sent by τ 2 to z ∈ Γ M if and only if x is sent by f m 1 to u (z). Then, τ -1 2|U is given by a family of biholomorphic maps between U and the open sets U r := u r (u (z)), z ∈ X × X s , z ∈ U .

These maps, by definition of τ 2 , are equal to z → u r (u (z)), z . From the definition of u, we deduce that u • τ -1 2|U is given by the family of the biholomorphic maps u r • u : U → V r . Hence, on U , we have

τ 2 * (u * (T )) = r (u r • u ) * (T ) = u * r u * r (T ) = u * (f m 1 * (T )).
This implies the result.

Julia and Fatou sets

We discuss here a notion of Julia and Fatou sets for correspondences. Let B x (r) denote the ball of center x and of radius r. The following function, which describes the local growth of volume of graph, has strong links with the Julia and Fatou sets : Φ(x) := inf

r>0 lim sup n→∞ 1 n log vol Γ n ∩ π -1 1 (B x (r))
(we can also consider Γ [n] instead of Γ n ). Since π 1 restricted to Γ n has topological degree d 0 (f ) n , we have Φ(x) ≥ log d 0 (f ). Proposition 1.4.0.2 implies that Φ(x) ≤ max p log d p (f ). It is easy to check that the function Φ is upper semi-continuous. We can study the sets {Φ < δ} and {Φ ≥ δ} as analogues of Fatou and Julia sets.

It is likely that ergodic invariant measures of maximal entropy, if they exist, are supported on the set where Φ take the maximal value. Consider some examples.

Example 1.6.0.1. Let f : P k → P k be a holomorphic map of algebraic degree d ≥ 2. It is well known that d -pn f n * (ω p FS ) converges to T p . Here, ω FS denotes the Fubini-Study form on P k and T denotes the Green (1, 1)-current of f . The volume of Γ n ∩π -1 1 (B x (r)) is the sum over p of the integrals f n * (ω p FS ) |Bx(r) , ω k-p FS on B x (r). One estimates these integrals using the speed of convergence of d -n f n * (ω FS ) toward T , see [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF][START_REF] De Thélin | Un phénomène de concentration de genre[END_REF][START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF], and one deduces that Φ(x) = log d p if x ∈ supp(T p ) \ supp(T p+1 ). The support supp(T p ) of T p and its complement are the Julia and the Fatou sets of order p associated to f . For p = 1, one obtain the classical Fatou and Julia sets, see [START_REF] Fornaess | Complex dynamics in higher dimensions[END_REF]. The function Φ takes only k + 1 values and the set {Φ ≥ log d p } supports the invariant positive closed current T p .

The following trivial example shows that, in general, Fatou and Julia sets cannot be characterized only by the values of Φ.

Example 1.6.0.2. Consider f : P 1 → P 1 given by z → 2z where z is an affine coordinate. Then Φ(x) = 0 everywhere but the family (f n ) n≥0 is locally equicontinuous except at 0. The limit of Γ n contains a singular fiber π -1 1 (0) as component. Taking a product of f with other holomorphic maps gives analogous examples in any dimension with positive entropy. One sees in the example below that the meromorphic case is quite more delicate.

Example 1.6.0.3. Let f : P 2 → P 2 be the meromorphic map given by (z, w) → (z -d , w -d ), d ≥ 2, where (z, w) denotes affine coordinates of P 2 . Using the fact that f 2 (z, w) = (z d 2 , w d 2 ), we obtain that Φ(0) = 0; but 0 is a point of indeterminacy of f . Now define

Ψ(x) := lim sup r→0 lim sup n→∞ vol Γ n ∩ π -1 1 (B x (r)) r 2k d 0 (f ) n .
It is left to the reader to check that if f is a holomorphic endomorphism of P k then {Ψ < ∞} and {Ψ = ∞} are the Fatou and Julia sets of f .

Compact Kähler manifolds

• Hodge cohomology groups. Consider a compact Kähler manifold X of dimension k. Let H r (X, R) and H r (X, C) denote the de Rham cohomology groups of real and complex smooth r-forms. Let H p,q (X, C), p + q = r, be the subspace of H r (X, C) generated by the classes of closed (p, q)-forms. The Hodge theory asserts that H r (X, C) = p+q=r H p,q (X, C) and H p,q (X, C) = H q,p (X, C).

For p = q, define H p,p (X, R) := H p,p (X, C) ∩ H 2p (X, R),

then H p,p (X, C) = H p,p (X, R) ⊗ R C.
The cup-product on H p,p (X, R) × H k-p,k-p (X, R) is defined by

([β], [β ]) → [β] [β ] := X β ∧ β
where β and β are smooth closed forms. The last integral depends only on the classes of β and β . The bilinear form is non-degenerate and induces a duality (Poincaré duality) between H p,p (X, R) and H k-p,k-p (X, R). In the definition of one can take β smooth and β a current in the sense of de Rham. So, H p,p (X, R) can be defined as the quotient of the space of real closed (p, p)-currents by the subspace of d-exact currents. Recall that a (p, p)-current β is real if β = β. When β is a real (p, p)-current such that dd c β = 0, by the dd c -lemma [306,[START_REF] Voisin | Hodge theory and complex algebraic geometry[END_REF], the integral X β ∧ β is also independent of the choice of β smooth and closed in a fixed cohomology class. So, using the duality, one can associate to β a class in H p,p (X, R).

• Blow-up along the diagonal. The integration on the diagonal ∆ of X × X defines a real closed (k, k)-current [∆] which is positive, see Section 1.8 for the notion of positivity. By Künneth formula, we have a canonical isomorphism H k,k (X × X, C) 0≤r≤k H r,k-r (X, C) ⊗ H k-r,r (X, C).

Hence, [∆] is cohomologous to a smooth real closed (k, k)-form α ∆ which is a finite combination of forms of type β(x) ∧ β (y). Here, β and β are closed forms on X of bidegree (r, k -r) and (k -r, r) respectively, and (x, y) denotes the coordinates of X × X. In other words, if π i denote the projections of X × X on its factors, then α ∆ is a combination of π * 1 (β) ∧ π * 2 (β ). So, α ∆ satisfies d x α ∆ = d y α ∆ = 0. Replacing α ∆ (x, y) by 1 2 α ∆ (x, y) + 1 2 α ∆ (y, x) allows to assume that α ∆ is symmetric, i.e. invariant by the involution (x, y) → (y, x).

Let π : X × X → X × X be the blow-up of X × X along ∆ and ∆ := π -1 (∆) the exceptional hypersurface. By a theorem of Blanchard [START_REF] Blanchard | Sur les variétés analytiques complexes[END_REF], X × X is a compact Kähler manifold. We fix a Kähler form ω on X × X. According to Gillet-Soulé [328, 1.3.6], there is a real smooth closed (k -1, k -1)-form η on X × X such that π * (α ∆ ) is cohomologous to [ ∆] ∧ η, where [ ∆] is the positive closed (1, 1)-current of integration on ∆. Hence, π * ([ ∆] ∧ η) is cohomologous to α ∆ and to [∆]. On the other hand, π * ([ ∆] ∧ η) is supported on ∆ and is equal to a product of [∆] by a function. We deduce that π * ([ ∆] ∧ η) = [∆]. The map (x, y) → (y, x) induces an involution on X × X. We can also choose η symmetric with respect to this involution.

Let γ be a real closed (1, 1)-form on X × X, cohomologous to [ ∆]. We can choose γ symmetric. We will see later that there is a quasi-p.s.h. function ϕ on X × X such that dd c ϕ = [ ∆] -γ. This function is necessarily symmetric. Subtracting from ϕ a constant allows to assume that ϕ < -2.

• Local coordinates near ∆ and ∆. Consider a local coordinate system x = (x 1 , . . . , x k ) on a chart of X. For simplicity assume that the ball W of center 0 and of radius 1 is strictly contained in this chart. For the neighbourhood W ×W of (0, 0) in X × X, we will use the coordinates (x, y) = (x 1 , . . . , x k , y 1 , . . . , y k ). The diagonal ∆ contains the point (0, 0) and is given by the equation x = y. Define x := x -y. Then (x , y) is also a coordinate system of W × W and ∆ is given by x = 0. Consider the submanifold M of C k × C k × P k-1 defined by

M := (x , y, [v]) ∈ C k × C k × P k-1 , x ∈ [v] ,
where [v] = [v 1 : • • • : v k ] denotes the homogeneous coordinates of P k-1 . Recall that x belongs to [v] if and only if x and v are proportional. The submanifold M is the blow-up of C k × C k along x = 0. So, we identify π -1 (W × W ) with an open set in M defined by x + y = x < 1 and y < 1.

Consider a point (a, b, [u]) in ∆. We have necessarily a = 0. For simplicity, assume that the first coordinate of u is the largest one. Therefore, we can write [u] = [1 : u 2 : • • • : u k ] with |u i | ≤ 1. In a neighbourhood of (0, b, [u]), the first coordinate of v does not vanish and we can write [v] = [1 : v 2 : • • • : v k ] with |v i | < 2. Write v := (v 2 , . . . , v k ). Then, (x 1 , y, v ) is a local coordinate system for a neighbourhood of (0, b, [u]). Here, ∆ is given by the equation x 1 = 0. We also have π(x 1 , y, v ) = (x , y) = (x 1 , x 1 v , y) and Π 2 (x 1 , y, v ) = y.

We see that Π 2 and its restriction to ∆ are submersions. In the same way, we prove that Π 1 and its restriction to ∆ are also submersions.

Positive currents and psh functions

• Positive closed currents. A smooth (p, p)-form φ on a general complex manifold of dimension k is positive if it can be written in local charts as a finite combination with positive coefficients of forms of type

(iα 1 ∧ α 1 ) ∧ . . . ∧ (iα p ∧ α p )
where α i are (1, 0)-forms. The positivity is a pointwise property and does not depend on local coordinates. A (p, p)-current S is weakly positive if S ∧ φ is a positive measure for every smooth positive (k -p, k -p)-form φ. The current S is positive if S ∧ φ is a positive measure for every smooth weakly positive (k -p, k -p)-form φ. The notions of positivity and weak positivity coincide for p = 0, 1, k -1 and k. We say that S is negative if -S is positive and we write S ≥ S , S ≤ S when S -S is positive. Note that positive and negative currents are real. If S, S are positive and S is smooth then S ∧ S is positive. Let V be an analytic subset of pure codimension p. Then, the integration on the regular part of V defines a positive closed (p, p)-current that we denote by [V ].

A (p, p)-current S is said to be strictly positive if in local coordinates x, we have S ≥ (dd c x 2 ) p for some > 0. Let (X, ω) be a compact Kähler manifold of dimension k. If S is a positive or negative (p, p)-current on X, define the mass3 of S by

S := | S, ω k-p |.
Let C p denote the cone of positive closed (p, p)-currents on X, D p the real space generated by C p and D 0 p the space of currents S ∈ D p such that [S] = 0 in H p,p (X, R). The duality between the cohomology groups implies that if S is a current in C p , its mass depends only on the class [S] in H p,p (X, R). Define the norm • * on D p by S * := min S + + S -, where the minimum is taken over S + , S -in C p such that S = S + -S -. A subset in D p is * -bounded if it is bounded with respect to the • * -norm. We will consider on D p and D 0 p the following * -topology. We say that S n converge to S in D p if S n → S weakly and if S n * is bounded by a constant independent of n. Note that the * -topology restricted to C p or to a * -bounded subset of D p coincides with the weak topology. We will see in Theorem 1.10.0.4 below that smooth forms are dense in D p and D 0 p for the * -topology. Consider some natural norms and distances on D p . For l ≥ 0, let [l] denote the integer part of l. Let C l p,q be the space of (p, q)-forms whose coefficients admit all derivatives of order ≤ [l] and these derivatives are (l -[l])-Hölder continuous. We use here the sum of C l -norms of the coefficients for a fixed atlas. If S and S are currents in D p , define where Φ is a test smooth (k -p, k -p)-form on X. Observe that • C -l

• * for every l ≥ 0. The following result is proved as in [321] using the theory of interpolation between Banach spaces. Proposition 1.8.0.1. Let l and l be real strictly positive numbers with l < l . Then on any * -bounded subset of D p , the topology induced by dist l or by dist l coincides with the weak topology. Moreover, on any * -bounded subset of D p , there is a constant c l,l > 0 such that

dist l ≤ dist l ≤ c l,l [dist l ] l/l .
In particular, a function on a * -bounded subset of D p is Hölder continuous with respect to dist l if and only if it is Hölder continuous with respect to dist l .

• Plurisubharmonic functions. Consider a general (connected) complex manifold X. An upper semi-continuous function u : X → R ∪ {-∞}, not identically -∞, is plurisubharmonic (p.s.h. for short) if its restriction to each holomorphic disc in X is subharmonic or identically equal to -∞. If u is a p.s.h. function then u belongs to L p loc for 1 ≤ p < ∞, and dd c u is a positive closed (1, 1)-current on X. Conversely, if S is a positive closed (1, 1)-current, it can be locally written as S = dd c u with u p.s.h. A subset of X is locally pluripolar if it is locally contained in the pole set {u = -∞} of a p.s.h. function. P.s.h. functions satisfy a maximum principle. In particular, on a compact manifold, p.s.h. functions are constant. A function u on X is quasi-p.s.h. if it is locally a difference of a p.s.h. function and a smooth function.

Assume now that X is a compact Kähler manifold of dimension k and ω is a Kähler form on X. If u is a quasi-p.s.h. function on X then dd c u + cω is a positive closed (1, 1)-current for c > 0 large enough. Conversely, if S is a positive closed (1, 1)-current and α is a real closed smooth (1, 1)-form cohomologous to S, then there is a quasi-p.s.h. function u such that dd c u = S -α. The function u is unique up to an additive constant. A subset of X is pluripolar if it is contained in the pole set {u = -∞} of a quasi-p.s.h. function u.

A function is called d.s.h. if it is equal outside a pluripolar set to a difference of two quasi-p.s.h. functions. We identify two d.s.h. functions if they are equal out of a pluripolar set. If u is d.s.h. then dd c u is a difference of two positive closed (1, 1)-currents which are cohomologous. Conversely, if S + and S -are positive closed (1, 1)-currents in the same cohomology class then S + -S -= dd c u for some d.s.h. function u. The function u is unique up to an additive constant. There are several equivalent norms on the space of d.s.h. functions. We consider the following one, see [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF] u DSH := u L 1 + dd c u * .

We have the following proposition [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF].

Proposition 1.8.0.2. Let u be a d.s.h. function on X. Then there exist two quasi-p.s.h. functions u + , u -such that

u = u + -u -, u ± L 1 ≤ c u DSH , and dd c u ± ≥ -c u DSH ω,
where c > 0 is a constant independent of u.

We deduce from this proposition and the fundamental exponential estimate for p.s.h. functions [START_REF] Hörmander | The analysis of Linear partial differential operators I[END_REF] the following result, see also [START_REF]Exponential estimates for plurisubharmonic functions and stochastic dynamics[END_REF].

Proposition 1.8.0.3. There are constants λ > 0 and c > 0 such that if u is a d.s.h. function with u DSH ≤ 1 then X e λ|u| ω k ≤ c.

We will need the following version of the exponential estimate for d.s.h. functions on P 1 and for ω FS the Fubini-Study form on P 1 . Lemma 1.8.0.4. Let u be a d.s.h. function on P 1 = C ∪ {∞}. Assume that u vanishes outside the unit disc of C and that dd c u is a measure of mass at most equal to 1. Then there are constants λ > 0 and c > 0 independent of u such that

P 1 e λ|u| ω FS ≤ c,
In particular, if B is a disc of radius r, 0 < r < 1/2, then inf B |u| ≤ -c log |r| for some constant c > 0 independent of u, B and r.

Proof. Write dd c u = ν + -ν -where ν ± are probability measures with support in the unit disc. Define for z ∈ C

u ± (z) := C log |z -ξ|dν ± (ξ).
Observe that u ± L 1 (P 1 ) are bounded by a constant independent of ν ± . We also have lim

z→∞ u ± (z) -log |z| = 0 and dd c u ± = ν ± -δ ∞
where δ ∞ is the Dirac mass at ∞. It follows that

lim z→∞ u + (z) -u -(z) = 0 and dd c (u + -u -) = ν + -ν -= dd c u.
So, u + -u -and u differe by a constant. The fact that u is supported in the unit disc implies that u = u + -u -. We deduce that u L 1 is bounded by a constant independent of u, and then u DSH is bounded by a constant independent of u. Proposition 1.8.0.3 implies the result.

• Slicing of positive closed current. Let V be a complex manifold of dimension l. We are interested in families of currents parametrized by V which are slices of some closed current R in V × X. Let π V and π X denote the canonical projections from V × X on its factors. We have the following proposition where currents on {θ} × X are identified with currents on X, see also [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF].

Proposition 1.8.0.5. Let R be a positive closed (s, s)-current in V × X with s ≤ k. Then there is a locally pluripolar subset E of V such that the slice R, π V , θ exists for θ ∈ V \ E. Moreover, R, π V , θ is a positive closed (s, s)current on {θ} × X and its class in H s,s (X, R) does not depend on θ.

Recall that slicing is the generalization of restriction of forms to level sets of holomorphic maps. It can be viewed as a version of Fubini's theorem or Sard's theorem for currents. The operation is well-defined for currents R of order 0 and of bidegree ≤ (k, k) such that ∂R and ∂R are of order 0. When R is a smooth form, R, π V , θ is simply the restriction of R to {θ} × X. When R is the current of integration on an analytic subset Y of V × X, R, π V , θ is the current of integration on the analytic set Y ∩ {θ} × X for θ generic.

In general, if φ is a smooth form on V ×X then R ∧φ, π V , θ = R, π V , θ ∧φ. Slicing commutes with the operations ∂ and ∂. So, in our situation, since R is closed, R, π V , θ is also closed. The following description shows that R, π V , θ is positive.

Let z denote the coordinates in a chart of V and λ V the standard volume form. Let ψ(z) be a positive smooth function with compact support such that ψλ V = 1. Define ψ (z) := -2l ψ( -1 z) and ψ θ, (z) := ψ (z -θ). The measures ψ θ, λ V approximate the Dirac mass at θ. For every smooth test form Ψ of bidegree

(k -s, k -s) on V × X one has R, π V , θ (Ψ) = lim →0 R ∧ π * V (ψ θ, λ V ), Ψ (1.8.1) 
when R, π V , θ exists. This property holds for all choice of ψ. Conversely, when the previous limit exists and is independent of ψ, it defines the current R, π V , θ and one says that R, π V , θ is well-defined. The following formula holds for smooth forms Ω of maximal degree with compact support in

V : θ∈V R, π V , θ (Ψ)Ω(θ) = R ∧ π * V (Ω), Ψ . (1.8.2)
Proof of Proposition 1.8.0.5. Since the problem is local on V , we can assume that V is a ball in C l and z are the standard coordinates. It is enough to consider real test forms Ψ with compact suppport. Define φ := (π V ) * (R ∧ Ψ). This is a current of bidegree (0, 0) on V . Observe that dd c Ψ can be written as a difference of positive closed forms on V × X, not necessarily with compact support. It follows that

dd c φ = (π V ) * (R ∧ dd c Ψ) is a difference of positive closed currents.
Therefore, φ can be considered as a d.s.h. function. We have

R ∧ π * V (ψ θ, λ V ), Ψ = V φψ θ, λ V .
Classical properties of p.s.h. functions imply that for θ outside a pluripolar set (because φ is only d.s.h.) the last integral converges to φ(θ) when → 0. So, for such a θ, the limit in (1.8.1) exists and does not depend on ψ.

Choose a pluripolar set E ⊂ V such that the previous convergence holds for θ outside E and for a countable family F of test forms Ψ. We choose a family F which is dense for the C 0 -topology. The density implies that we have the convergence for a test form Ψ strictly positive near {θ} × X. This, the density of F together with the positivity of R imply the convergence for every Ψ. Hence, R, π V , θ is well-defined for θ ∈ E and is a positive closed current on {θ} × X.

We have R, π V , θ (Ψ) = φ(θ). Consider a closed (k -s, k -s)-form Φ on X and Ψ := π * X (Φ). If φ is defined as above, we have dφ = 0. Therefore, φ is a constant function and R, π V , θ (Ψ) does not depend on θ. If R, π V , θ is identified with a current on X, then R, π V , θ (Φ) is independent of θ. This, together with Poincaré's duality, implies that the class of R, π V , θ in H s,s (X, R) does not depend on θ.

Remark 1.8.0.6. Assume that R, π V , θ is defined for θ outside a set of zero measure and that θ → R, π V , θ can be extended to a continuous map with values in the space of currents of order 0. Then, by definition of slicing, (1.8.1) and (1.8.2), R, π V , θ is defined for every θ and coincides with the continuous extension of θ → R, π V , θ . If R n are positive closed currents converging to R, we can prove that there is a subsequence R n i with R n i , π V , θ → R, π V , θ for almost every θ. Indeed, for a bounded sequence of d.s.h. functions on V we can extract a subsequence which converges almost everywhere.

Transforms

• General transforms on currents. We recall here a general idea how to construct linear operators on currents which are useful in geometrical questions. Let X 1 , X 2 and Z be Riemannian manifolds and τ 1 , τ 2 smooth maps from Z to X 1 and X 2 . Let Θ be a fixed current on Z. Define for a current S on X 1 another current L Θ (S) on X 2 by

L Θ (S) := (τ 2 ) * τ * 1 (S) ∧ Θ
when the last expression is meaningful. The current τ * 1 (S) is well-defined if S is a bounded form or if τ 1 is a submersion. The operator (τ 2 ) * is well-defined if τ 2 is proper, in particular, when Z is compact. Assume that Z is compact. Then, L Θ is well-defined on smooth currents S. Let Θ denote the push-forward of Θ to X 1 × X 2 by the map (τ 1 , τ 2 ). Then, Θ defines a transform L Θ where Z is replaced by X 1 × X 2 . The transform L Θ is equal to L Θ on smooth forms S and this useful property may be extended to larger spaces of currents.

In this section, we consider the following situation used in Gillet-Soulé [START_REF] Gillet | Arithmetic intersection theory[END_REF] and [START_REF] Bost | Heights of projective varieties and positive Green forms[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Vigny | Lelong-Skoda transform for compact Kähler manifolds and selfintersection inequalities[END_REF], see also [START_REF] Berndtsson | Integral formulas on projective space and the Radon transform of Gindikin-Henkin-Polyakov[END_REF][START_REF] Henkin | The Abel-Radon transform and several complex variables[END_REF][START_REF] Méo | Inégalités d'auto-intersection pour les courants positifs fermés définis dans les variétés projectives[END_REF][START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF]. We use the notations introduced in Section 1.7. Consider a current Θ of bidegree (r, s) on X × X. If S is a current on X, define the transform L Θ (S) of S by

L Θ (S) := (Π 2 ) * Π * 1 (S) ∧ Θ .
This definition makes sense if the last wedge-product is well-defined, in particular when Θ or S is smooth.

If S is of bidegree (p, q) then L Θ (S) is of bidegree (p + r -k, q + s -k). So, we say that the transform L Θ is of bidegree (r -k, s -k). The bidegree may be negative. In what follows, we will be interested in the cases where r = s = k or r = s = k -1, and S is a current in D p . The current Θ will be real and smooth or smooth outside ∆. If Θ is positive or negative, we say that the transform L Θ is positive or negative respectively.

Example 1.9.0.1. Consider Θ 0 := [ ∆] ∧ η where η is the smooth real closed form of bidegree (k -1, k -1) chosen in Section 1.7, and define L 0 := L Θ 0 . Since Π 1 and its restriction to ∆ are submersions, L 0 can be extended continuously to any current S. We have π

* (Θ 0 ) = [∆]. So, if S is a smooth form, then L 0 (S) = (π 2 ) * π * 1 (S) ∧ [∆] = S.
By continuity, L 0 is equal to the identity on all currents S. If S is in D p , using the theory of intersection with positive closed (1, 1)-currents [388,[START_REF] Demailly | Monge-Ampère Operators, Lelong numbers and Intersection theory in Complex Analysis and Geometry[END_REF][START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF] and that [ ∆] = dd c ϕ + γ, we obtain for S in D p that if S := Π * 1 (S)

S = L 0 (S) = (Π 2 ) * dd c (ϕS ∧ η) + γ ∧ S ∧ η ,
see also [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. We will construct some deformations L θ of L 0 , i.e. transforms associated to some deformations Θ θ of Θ 0 .

• Regular and semi-regular transforms. Consider now a situation used in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. Let Θ be a form which is smooth outside ∆ and such that

|Θ| -log dist(•, ∆) and |∇Θ| dist(•, ∆) -1
near ∆. Here, the estimate on ∇Θ means an estimate on the gradients of the coefficients of Θ for a fixed atlas. Transforms associated to such forms Θ are called semi-regular (when Θ is smooth, we say that L Θ is regular). The form Θ := π * (Θ) is smooth outside ∆. Using the local coordinates described in Section 1.7, one proves that

|Θ | -log dist(•, ∆) dist(•, ∆) 2-2k and |∇Θ | dist(•, ∆) 1-2k
near ∆, see [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. In particular, the coefficients of Θ restricted to X × {y} are in L 1+1/k for every y ∈ X.

Recall that L Θ is defined for S smooth. Since Π * 1 (S) ∧ Θ has no mass on ∆, we have L Θ (S) = (π 2 ) * π * 1 (S) ∧ Θ ). The wedge-product π * 1 (S) ∧ Θ has no mass on ∆. So, one has to integrate only outside ∆. Then, using the estimates on |Θ |, |∇Θ | and the Hölder inequality, we obtain the following result, see [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. Proposition 1.9.0.2. Any semi-regular transform can be extended to a linear continuous operator from the space of currents of order 0 to the space of L 1+1/k forms. It defines a linear continuous operator from the space of L q forms, q ≥ 1, to the space of L q forms where q is given by q

-1 + 1 = q -1 + [1 + 1/k] -1 if q < k + 1 and q = ∞ if q ≥ k + 1.
It also defines a linear continuous operator from the space of L ∞ forms to the space of C 1 forms.

The following result is a direct consequence of Proposition 1.9.0.2. Corollary 1.9.0.3. Let L 1 , . . ., L k+2 be semi-regular transforms of bidegree (0, 0). If S is a current of order 0, then

S := L k+2 • • • • • L 1 (S) is a form of class C 1 . Moreover, we have S C 1 ≤ c S , where c > 0 is a constant independent of S.
We will need the following lemma. Lemma 1.9.0.4. Assume that Θ is a smooth positive closed (k, k)-form. Then L Θ defines a linear map from D p to itself which preserves C p , D 0 p and is continuous with respect to the * -topology. Moreover, if S is in D p , then L Θ (S) * ≤ c Θ S * for some constant c > 0 independent of Θ and S.

Proof. Since Π 1 is a submersion, by definition, L Θ is a linear continuous map on currents. It is clear that L Θ preserves C p , D p and D 0 p . We only have to prove the estimate on L Θ (S) * . We can assume that S is positive. Since Π 1 is a submersion, we have Π * 1 (S) S . Recall that the mass of a positive closed current can be computed cohomologically. Therefore,

Π * 1 (S) ∧ Θ Θ Π * 1 (S) Θ S .
The continuity of (Π 2 ) * implies the result.

• Symmetric transforms. The map (x, y) → (y, x) on X × X induces an involution on X × X. In order to simplify notations, we will only consider the transforms L Θ associated to forms Θ which are invariant by this involution. We say that L Θ is symmetric. Let Ψ be a smooth test form on X of the apropriate bidegree. If S is smooth then we deduce from the symmetry of L Θ that

L Θ (S), Ψ = X×X Π * 1 (S) ∧ Θ ∧ Π * 2 (Ψ) = S, (Π 1 ) * (Π * 2 (Ψ) ∧ Θ) = S, L Θ (Ψ) .
When S is closed and Φ is a smooth test form of the apropriate bidegree, we have

L Θ (S), dd c Φ = X×X Π * 1 (S) ∧ dd c Θ ∧ Π * 2 (Φ) = L dd c Θ (S), Φ .
Observe that the smoothness of S is superflous when Θ is smooth. The previous identities may be extended to some cases where S and Θ are not smooth using a regularization on S.

Green potential

• Deformation of the identity transform. We introduce in this section a family of regular transforms L θ , θ ∈ P 1 \ {0}, of bidegree (0, 0) which is a continuous deformation of the identity transform L 0 considered in Example 1.9.0.1. We use the notations of Section 1.7. Consider the following regularization of the function ϕ. Recall that ϕ ≤ -2. Let χ be a smooth convex increasing function on R ∪ {-∞} such that χ(t) = t for t ≥ 0, χ(t) = -1 for t ≤ -2 and 0 ≤ χ ≤ 1. Define χ θ (t) := χ(t -log |θ|) + log |θ| and ϕ θ := χ θ (ϕ).

When |θ| decreases to 0, χ θ decreases to χ 0 = id and ϕ θ decreases to ϕ. The following lemma gives some properties of ϕ θ where the coordinates (x 1 , y, v ) are introduced in Section 1.7.

Lemma 1.10.0.1. There is a constant c > 0 such that for θ ∈ C * small enough, dd c ϕ θ + γ vanishes on {|x 1 | > c|θ|}. Moreover, we can write

dd c ϕ θ + γ = Adx 1 ∧ dx 1 + B where A is a smooth function such that A ∞ ≤ c|θ| -2 and B is a smooth form such that B ∞ ≤ c|θ| -1 .
Proof. Since ∆ is given by x 1 = 0 and

dd c ϕ = [ ∆] -γ, the function ψ := ϕ -log |x 1 | is smooth. By definition, ϕ θ = ϕ on {ϕ > log |θ|} which contains {|x 1 | > c|θ|} for some constant c > 0 large enough. So, we have for |x 1 | > c|θ| dd c ϕ θ + γ = dd c ϕ + γ = 0.
This proves the first assertion of the lemma.

For the second assertion, observe that ϕ θ is constant on {|x 1 | < c |θ|} for some constant c > 0. Therefore, it is enough to consider the problem on the domain {c |θ| ≤ |x 1 | ≤ c|θ|} where we have

dd c ϕ = γ. Observe that ϕ C 1 |x 1 | -1 , ϕ C 2 |x 1 | -2
and that the derivatives of χ θ are bounded by a constant independent of θ. We have

dd c ϕ θ = dd c χ θ (ϕ) = χ θ (ϕ)dϕ ∧ d c ϕ + χ θ (ϕ)dd c ϕ.
The last term is bounded. For the first term, we have since ψ is smooth

dϕ ∧ d c ϕ = d(log |x 1 | + ψ) ∧ d c (log |x 1 | + ψ) = i π |x 1 | -2 dx 1 ∧ dx 1 + O(|x 1 | -1 ).
This implies the result.

Lemma 1.10.0.2. The function (θ, z) → ϕ θ (z) can be extended to a quasi-p.s.h. function on C × X × X which is continuous outside {0} × ∆ and d.s.h. on

P 1 × X × X. We have ϕ 0 (z) = ϕ(z) and dd c ϕ θ (z) ≥ -λ ω(z) on C × X × X
for some constant λ > 0. Moreover, dd c ϕ θ (z) can be written as a difference of positive closed currents on P 1 × X × X which are smooth on C * × X × X.

Proof. If ψ(θ, z) := ϕ(z) -log |θ|, then we have on C * × X × X dd c ϕ θ (z) = [χ (ψ)] 2 dψ ∧ d c ψ + χ (ψ)dd c ψ ≥ χ (ψ)dd c ψ = χ (ψ)dd c ϕ(z).
Hence, dd c ϕ θ (z) ≥ -λ ω(z), λ > 0, on C * × X × X because χ is positive bounded and ϕ is quasi-p.s.h. On the other hand, by definition, ϕ θ (z) = log |θ| -1 when |θ| ≥ 1 and ϕ θ (z) is bounded from above when |θ| ≤ 1. By classical properties of p.s.h. functions, ϕ θ (z) can be extended to a quasi-p.s.h. function and the estimate

dd c ϕ θ (z) ≥ -λ ω(z) holds on C × X × X. Since ϕ θ (z) = log |θ| -1 for |θ| ≥ 1, ϕ θ (z) is d.s.h. on P 1 × X × X.
We have for the dd c operator on P

1 × X × X dd c ϕ θ (z) ≥ -{∞} × X × X -λ ω(z).
So, we can write dd c ϕ θ (z) as the following difference of two positive closed currents

dd c ϕ θ (z) + {∞} × X × X + λ ω(z) -{∞} × X × X + λ ω(z) .
These currents are smooth on C * × X × X since ϕ θ (z) is smooth there.

It remains to study ϕ θ (z) when θ = 0 or θ → 0. For a ∈ ∆, we have ϕ θ (z) → ϕ(a) when (θ, z) → (0, a). Therefore, ϕ θ (z) is continuous out of {0} × ∆ and ϕ 0 (z) = ϕ(z) outside ∆. Finally, since ϕ θ ≤ max(ϕ, log |θ|), we have that

ϕ θ (z) → -∞ when (θ, z) tends to {0} × ∆. Since ϕ θ (z) is quasi-p.s.h. on C × X × X, we deduce that ϕ 0 (z) = -∞ = ϕ(z) on ∆.
Proof. The estimate S θ * ≤ c S * is clear for θ = 0 since L 0 = id, see Example 1.9.0.1. The case θ = 0 is a consequence of Lemma 1.9.0.4 applied to L ± θ . When θ tends to a ∈ C * , then ϕ θ converges in the C ∞ -topology to ϕ a . Therefore, S θ depends continuously on (θ, S) for θ ∈ C * .

It remains to prove the estimate on dist 2 (S θ , S) for |θ| ≤ 1. This and the triangle inequality imply the continuity of S θ at θ = 0, see also Proposition 1.8.0.1. We can assume that S is positive and that S ≤ 1. Let Φ be a test form such that Φ C 2 ≤ 1. We have using the description of L 0 in Example 1.9.0.1

S θ -S, Φ = dd c (ϕ θ -ϕ) ∧ η ∧ Π * 1 (S), Π * 2 (Φ) = (ϕ θ -ϕ)η ∧ Π * 1 (S), Π * 2 (dd c Φ) = S, (Π 1 ) * (ϕ θ -ϕ)η ∧ Π * 2 (dd c Φ) .
We have to bound the last integral by c|θ| for some constant c > 0. Since S ≤ 1, it is enough to show that the form (Π 1 ) * (ϕ θ -ϕ)η ∧Π * 2 (dd c Φ) has a • ∞ -norm bounded by c|θ|. The map Π 1 is a submersion. So, the coefficients of the considered form are equal to some integrals of coefficients of

(ϕ θ -ϕ)η ∧ Π * 2 (dd c Φ) on fibers of Π 1 . The • ∞ estimate is not difficult to obtain. Indeed, η ∧ Π * 2 (dd c Φ) is a smooth form with bounded • ∞ -norm, the function ϕ θ -ϕ has support in a neighbourhood of ∆ of size |θ| and satisfies |ϕ θ -ϕ| -log dist(•, ∆) near ∆.
We deduce the following result obtained in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF], see also Propositions 2.1.0.2 and 2.2.0.8 below.

Theorem 1.10.0.4. Smooth forms are dense in D p and in D 0 p for the * -topology. Moreover, there is a constant c > 0 such that for every current S ∈ D p , we can write S = S + -S -with S ± ∈ C p , S ± ≤ c S * and S ± approximable by smooth forms in C p .

Proof. We prove the first assertion. If S is in D p , we can add to S a smooth form in order to obtain a current in D 0 p . So, it is enough to approximate currents S in D 0 p by smooth forms in D 0 p . Observe that the problem is easy when S is a form of class C 1 . Indeed, we can write S = dd c U with U of class C 2 and approximate S uniformly by S := dd c U where U is smooth and U → U in the C 2 topology. It remains to approximate S by C 1 forms in D 0 p . Consider non-zero complex numbers θ 1 , . . . , θ k+2 . The currents Θ θ i are smooth, then the associated transforms L θ i are regular. By Lemma 1.10.0.3, we can choose θ i converging to 0 such that L θ k+2 • • • • • L θ 1 (S) converges to S. By Corollary 1.9.0.3 and Lemma 1.9.0.4,

L θ k+2 • • • • • L θ 1 (S) is a C 1 form in D 0
p . This completes the proof of the first assertion.

For the second assertion, we can assume that S is positive. Recall that when θ = 0, L θ = L + θ -L - θ where L ± θ are associated to smooth positive forms Θ ± θ with mass bounded by a constant. Therefore,

L θ k+2 • • • • • L θ 1 (S) is a difference of C 1 positive
closed forms of bounded mass. We obtain the result by extracting subsequences of forms converging to some currents S ± . Corollary 1.10.0.5. Let S be a current in D p and S a current in D p with p + p ≤ k. Assume that S restricted to an open set W is a continuous form. Then S ∧ S is defined on W and its mass on W satisfies S ∧ S W ≤ c S * S * for some constant c > 0 independent of S and S .

Proof. It is clear that S ∧ S is well-defined on W and depends continuously on S for the * -topology on S . Therefore, by Theorem 1.10.0.4, we can assume that S is positive and smooth. Now S ∧ S is defined on X for every S smooth or not. We can assume that S is positive but we may loose the continuity of S. The current S ∧ S is positive on X. Its mass can be computed cohomologically. Therefore, we have

S ∧ S W ≤ S ∧ S ≤ c S S .
This implies the result. Lemma 1.10.0.6. Let S and S θ be as above. Assume that S is smooth. Then S θ is smooth for every θ and

S θ -S ∞ ≤ c|θ| S C 1
where c > 0 is a constant independent of S and θ.

Proof. The current S 0 is equal to S. Hence, S 0 is smooth. For θ = 0, L θ is a regular transform. Using the fact that Π 2 is a submersion, we deduce easily that S θ = L θ (S) is smooth. It remains to prove the estimate in the lemma.

Assume that S C 1 ≤ 1. Observe that (Π 2 ) * (Θ θ ) is a closed current of bidegree (0, 0) on X. So, it is defined by a constant function. On the other hand, since Θ θ is cohomologous to Θ 0 , (Π 2 ) * (Θ θ ) is cohomologous to

(Π 2 ) * (Θ 0 ) = (π 2 ) * π * (Θ 0 ) = (π 2 ) * [∆] = [X]. Hence, (Π 2 ) * (Θ θ ) is equal to 1. We deduce that S = (Π 2 ) * (Π * 2 (S) ∧ Θ θ ) and then S θ -S = (Π 2 ) * (π * (S ) ∧ Θ θ ), where S := π * 1 (S) -π * 2 (S)
. Observe that S C 1 is bounded and the restriction of S to ∆ vanishes. If S := π * (S ), then S C 1 is bounded and S restricted to ∆ vanishes. Therefore, in the local coordinates near ∆ as in Section 1.7, we have

S (x 1 , y, v ) = |x 1 |A + Bdx 1 + Cdx 1
where A, B, C are bounded forms.

The coefficients of S θ -S at a point y 0 is computed by some integrals involving the coefficients of S ∧Θ θ = S ∧(dd c ϕ θ +γ)∧η on {y = y 0 }. The above description of S together with Lemma 1.10.0.1, implies that these coefficients are |θ|. The result follows.

• Green potential and dd c -equation. Consider a current S in D 0 p with p ≥ 1. Then, since [S] = 0, by dd c -lemma [306,[START_REF] Voisin | Hodge theory and complex algebraic geometry[END_REF], there is a real current U S of bidegree (p -1, p -1) such that dd c U S = S. We call U S a potential of S. In order to construct an explicit potential and to estimate its norm, we use a transform of bidegree (-1, -1). Choose a real smooth (k -1, k -1)-form β on X × X such that dd c β = -γ ∧ η + π * (α ∆ ) where α ∆ , γ and η are introduced in Section 1.7. We can choose β symmetric. Consider the symmetric transform L K with K := ϕη -β. The following result was obtained in [392, Proposition 2.1], see also [START_REF] Gillet | Arithmetic intersection theory[END_REF].

Proposition 1.10.0.7. Let S be a current in D 0 p with p ≥ 1. Then U S := L K (S) is a potential of S. Moreover, we have

U S L 1+1/k ≤ c S *
for some constant c > 0 independent of S.

Proof. By Proposition 1.9.0.2, S → L K (S) is continuous with respect to the * -topology on S ∈ D 0 p and the estimate on U S L 1+1/k is clear. We show that dd c U S = S. By Theorem 1.10.0.4, it is enough to consider S smooth. Define K := π * (K). This is a form smooth outside ∆. We have seen in Section 1.9 that

|K | -log dist(•, ∆) dist(•, ∆) 2-2k
near ∆. We also have

dd c K = π * (dd c K) = π * [ ∆] ∧ η -π * (α ∆ ) = [∆] -α ∆ .
So, K is a kernel for solving the dd c -equation on X. Since S is smooth, we have

U S = (π 2 ) * (π * 1 (S) ∧ K ) and
dd c U S = (π 2 ) * π * 1 (S) ∧ [∆] -(π 2 ) * π * 1 (S) ∧ α ∆ = S -(π 2 ) * π * 1 (S) ∧ α ∆ = S,
where the last identity is obtained using that [S] = 0 and that α ∆ is a combination of forms of type β(x) ∧ β (y) with β and β closed.

Definition 1.10.0.8. We call L K (S) the Green potential of S.

Note that the Green potential depends on the choice of K.

Remark 1.10.0.9. The transform associated to i π ∂K solves the ∂-equation on X and i π π * (∂K) is a kernel which solves the ∂-equation.

Chapter 2

Structural varieties

In this chapter, we define for each positive closed (p, p)-current a super-potential which is a function on the space of smooth forms in D 0 k-p+1 . In this space, we construct some special structural lines parametrized by the projective line P 1 . The restriction of the super-potential to such a structural line is a d.s.h. function. This is a key point in our study. We will also consider currents with regular super-potentials and their intersection.

Structural varieties

Consider a current R on V × X which is a difference of two positive closed (s, s)currents. We will use in next sections the case where s = k-p+1. By Proposition 1.8.0.5, for θ in V outside a locally pluripolar set, the slice R θ := R, π V , θ is well-defined and is a current in D s . Its cohomology class does not depend on θ. Assume that R θ is in D 0 s , i.e. [R θ ] = 0. So, we obtain a map τ : V → D 0 s given by θ → R θ which is defined out of a locally pluripolar set. Definition 2.1.0.1. We say that τ or the family (R θ ) θ∈V defines a structural variety of D 0 s . When R θ is defined for every θ and depends continuously on θ for the * -topology, we say that the structural variety is continuous.

In what follows, we use some structural lines, i.e. structural varieties parametrized by the projective line

P 1 = C ∪ {∞}. Let L θ := L Θ θ be transforms defined in Section 1.10. For a given current R in D 0 s and for θ ∈ C ∪ {∞}, consider the current R θ := L θ (R). Recall that L θ , Θ θ , R θ do not depend on θ when |θ| ≥ 1 and that L 0 = id, R 0 = R.
Proposition 2.1.0.2. The family of currents (R θ ) θ∈P 1 defines a continuous structural line in D 0 s which depends linearly on R. Moreover, there is a constant c > 0 independent of R such that R θ * ≤ c R * for every θ. Definition 2.1.0.3. We call (R θ ) θ∈P 1 the special structural line associated to R.

Proof of Proposition 2.1.0.2. The linear dependence on R is clear. The continuity of (R θ ) θ∈P 1 and the estimate on R θ * are proved in Lemma 1.10.0.3. Let τ 0 denote the projection of P 1 × X × X on P 1 and τ the projection on X × X.

Consider ϕ θ (z) as a function on C × X × X. Define a current R on C * × X × X by R(θ, z) := dd c ϕ θ (z) + τ * (γ) ∧ τ * (η) ∧ τ * (Π * 1 (R)
). In this wedge-product, each current is a difference of positive closed currents with bounded mass in P 1 × X × X. We can apply Corollary 1.10.0.5 to the current R, which is well-defined on C * × X × X, and Skoda's theorem [START_REF] Skoda | Prolongement des courants positifs, fermés de masse finie[END_REF] on the extension of positive closed currents. Hence, the trivial extension of R is a difference of positive closed currents on P 1 × X × X with bounded mass. Denote also by R this extension.

On C * × X × X, in the definition of R, all currents except R, are smooth. We deduce easily from the slicing theory that

R, τ 0 , θ = (dd c z ϕ θ + γ) ∧ η ∧ Π * 1 (R)
where we identify {θ} × X × X with X × X. Let τ 2 := (τ 0 , Π 2 • τ ) denote the projection of P 1 × X × X onto the product of P 1 with the second factor X. Define R := (τ 2 ) * ( R). It is deduced from the slicing theory that

R, π P 1 , θ = (Π 2 ) * R, τ 0 , θ = R θ ,
for θ ∈ C * . Recall that R θ depends continuously on θ ∈ P 1 . By Remark 1.8.0.6, the identity R, π P 1 , θ = R θ holds for any θ ∈ P 1 . So, (R θ ) θ∈P 1 is a structural line.

Remark 2.1.0.4. We can prove that θ → L k+2 θ (R) defines a continuous structural line. In this case, for θ = 0, L k+2 θ (R) is a C 1 form.

Super-potentials

Consider a current S in D p . The super-potentials of S are defined (at least) on the smooth forms in D 0 k-p+1 . They are unique under apropriate normalization. Let α = {α 1 , . . . , α h } with h := dim H p,p (X, R) be a fixed family of real smooth closed (p, p)-forms such that the family of classes

[α] = {[α 1 ], . . . , [α h ]} is a basis of H p,p (X, R). We can find a family α ∨ = {α ∨ 1 , . . . , α ∨ h } of real smooth closed (k -p, k -p)-forms such that [α ∨ ] = {[α ∨ 1 ], . . . , [α ∨ h ]} is the dual basis of [α] with respect to the cup-product . Let R be a current in D 0 k-p+1 and U R a potential of R. Adding to U R a suitable combination of α ∨
i allows to assume that U R , α i = 0 for i = 1, . . . , h. We say that U R is α-normalized. Lemma 2.2.0.1. Assume that S is smooth or that R, U R are smooth. Then S, U R does not depend on the choice of U R . Assume that [S] = 0. Let U S be a potential of S, smooth if S is smooth. Let U R be another potential of R, smooth when R is smooth. Then S, U R = S, U R = U S , R . In particular, S, U R does not depend on α and α ∨ .

Proof. Let U R be another α-normalized potential of R. We have

dd c (U R -U R ) = 0 and [α i ] [U R -U R ] = 0 for every i. Since [α] is a basis of H p,p (X, R), we deduce that [S] [U R -U R ] = 0. Hence, S, U R = S, U R . So, S, U R does not depend on the choice of U R . If [S] = 0, we have S, U R = dd c U S , U R = U S , dd c U R = U S , R .
These identities hold for all U R not necessarily normalized, in particular for U R . Note that the smoothness of S, U S or R, U R , U R implies that the considered integrals are meaningful. Definition 2.2.0.2. The α-normalized super-potential U S of S, is the following function defined on smooth forms R in D 0 k-p+1 by

U S (R) := S, U R , (2.2.1) 
where U R is an α-normalized smooth potential of R. We say that S has a continuous super-potential1 if U S can be extended to a function on D 0 k-p+1 which is continuous with respect to the * -topology. In this case, the extension is also denoted by U S and is also called super-potential of S.

Note that the α-normalized super-potential of α i is identically zero. By Lemma 2.2.0.1, when [S] = 0, the super-potential U S does not depend on the choice of α. When S is smooth then S has a continuous super-potential and the formula (2.2.1) holds for all R in D 0 k-p+1 . In this case, if [S] = 0 and if U S is a smooth potential of S, we also have U S (R) = U S , R . Proof. The α-normalized super-potential U S of S := S -S vanishes identically.

If U is a real smooth (k -p, k -p)-form, then U is a potential of dd c U which is a form in D 0 k-p+1 . Since [S ] = 0, it follows from Lemma 2.2.0.1, that S , U = U S (dd c U ) = 0. Hence, S = 0.
Here is one of the fundamental properties of super-potential. It can be extended to more general structural varieties but, for simplicity we restrict ourselves to this particular case. Proposition 2.2.0.4. Let (R θ ) θ∈P 1 be the special structural line associated to a smooth form R ∈ D 0 k-p+1 . Let S be a current in D p . Then θ → U S (R θ ) is a continuous d.s.h. function on P 1 which is constant on {|θ| ≥ 1}. Moreover, we have dd c θ U S (R θ ) * ≤ c S * R * where c > 0 is a constant independent of R and S.

Proof. By Lemma 1.10.0.6 applied to R θ , the function H(θ) := U S (R θ ) is continuous on P 1 . It remains to bound the mass of dd c H. Since this function depends continuously on S, by Theorem 1.10.0.4, we can assume that S is smooth. Recall that the α-normalized super-potential of α i is zero. Subtracting from S a combination of α i allows to assume that [S] = 0. So, we can use the last assertion of Lemma 2.2.0.

1: if U is a smooth potential of S, then H(θ) = U, R θ .
It is enough to estimate the mass of dd c H on C * . Indeed, the continuity of H implies that dd c H has no mass on finite sets. Consider in

P 1 × X × X the currents R U := R ∧ τ * Π * 2 (U ) and R S := R ∧ τ * Π * 2 (S). These currents are smooth on C * × X × X. A direct computation gives H = (τ 0 ) * ( R U ) and dd c H = (τ 0 ) * ( R S ) on C * . So, it is enough to estimate the mass of R S on C * × X × X.
By Corollary 1.10.0.5, since S and R are smooth, this mass is bounded by a constant times

R * τ * Π * 2 (S) * τ * Π * 1 (R) * τ * Π * 2 (S) * R * S * ,
where the last inequality follows from the fact that τ , Π 1 , Π 2 are submersions.

Lemma 2.2.0.5. Let U S θ be the α-normalized super-potential of

S θ . If [S] = 0, then U S θ (R) = U S (R θ ) for R smooth.
Proof. Since S θ = L θ (S), the Green potential of S θ is equal to L K L θ (S). Using the symmetry of L θ and L K , we have by Lemma 2.2.0.1

U S θ (R) = L K L θ (S), R = S, L θ L K (R) .
On the other hand,

dd c L θ L K (R) = L θ (dd c L K (R)) = L θ (R) = R θ . It follows that U S θ (R) = U S (R θ ).
The following result is an analogue of the estimate in Proposition 1.8.0.3 for super-potentials of currents. Theorem 2.2.0.6. Let S be a current in D p and U S the α-normalized superpotential of S. Then we have for R smooth in

D 0 k-p+1 with R * ≤ 1 |U S (R)| ≤ c S * 1 + log + R C 1 ,
where log + := max(log, 0) and c > 0 is a constant independent of S, R.

Proof. Subtracting from S a combination of α i allows to assume that [S] = 0. We can also assume that S * = 1. Let U S be the Green potential of S. By Lemma 2.2.0.1, U S (R) = U S , R . We have to show that

M S,R := | U S , R | 1 + log + R C 1
is bounded when R * ≤ 1. The proof uses Proposition 1.9.0.2, Lemma 1.8.0.4 and special structural lines in D 0 k-p+1 . Consider the numbers q n ≥ 1 given by the induction identity q

-1 n = q -1 n-1 -1 + (1 + 1/k) -1 for n ≤ k + 1 with q 0 = 1. We have q k+1 = ∞. Claim. For every 0 ≤ n ≤ k + 1 and M > 0, there is a constant c > 0 independent of S, R such that M S,R ≤ c if R * ≤ 1 and R L qn ≤ M .
For n = 0, the claim implies the theorem, i.e. M S,R is bounded when R * ≤ 1. Indeed, we have R L 1 R R * and then the hypothesis R L q 0 ≤ M is satisfied. We prove now the claim using a decreasing induction on n. For n = k + 1, by Proposition 1.9.0.2, U S L 1 is bounded uniformly on S. If R ∞ is bounded, it is clear that U S , R is bounded. So, the claim is true for n = k + 1. Assume now that the claim is true for n + 1. We check it for n and we only have to consider the case where R C 1 is large.

Let R θ be as above and define H S,R (θ) := U S (R θ ). By Proposition 2.2.0.4, H S,R is a continuous d.s.h. function on P 1 . It is equal to some constant c S,R on {|θ| ≥ 1}. We have c S,R = U S , R ∞ . Moreover, dd c H S,R is bounded uniformly on S, R. On the other hand, by Propositions 1.9.0.2 and 2.1.0.2, R ∞ is a smooth form in D 0 k-p+1 with bounded L q n+1 -norm and bounded • * -norms. Since U S , R depends linearly on R, we can apply the claim to R ∞ and deduce that

c S,R 1 + log + R ∞ C 1 1 + log + R C 1 . Because U S , R = H S,R (0), it is enough to show that |H S,R (0) -c S,R | 1 + log + R C 1 . Since dd c H S,R is uniformly bounded, by Lemma 1.8.0.4 applied to H S,R -c S,R , there is a θ with |θ| ≤ R -1 C 1 such that |H S,R (θ) -c S,R | 1 + log + R C 1 .
On the other hand, Lemma 1.10.0.6 implies that

R -R θ ∞ |θ| R C 1 ≤ 1.
Therefore, using that U S L 1 is bounded, we obtain

|H S,R (0) -c S,R | ≤ |H S,R (0) -H S,R (θ)| + |H S,R (θ) -c S,R | = | U S , R -R θ | + |H S,R (θ) -c S,R | 1 + log + R C 1 .
This completes the proof.

We will use the following notion of convergence.

Definition 2.2.0.7. Let (S n ) be a sequence of currents converging in D p to a current S. Let U S , U Sn be the α-normalized super-potentials of S, S n . We say that the convergence is SP-uniform if U Sn converge to U S uniformly on any * -bounded set of smooth forms in D 0 k-p+1 . By linearity, it is enough to check the SP-uniform convergence on the unit ball of D 0 k-p+1 . This notion does not depend on α. Indeed, by Lemma 2.2.0.1, the case where [S n ] = [S] = 0 is clear. Since [S n ] converge to [S], we obtain the general case by adding to S n and S suitable combinations of α i . Moreover, if S n and S have continuous super-potentials, then since smooth forms are dense in D 0 k-p+1 , the extensions of U Sn converge to the extension of U S uniformly on * -bounded subsets of D 0 k-p+1 . Proposition 2.2.0.8. Let S be a current in D p with continuous super-potentials. Then S θ has continuous super-potentials and S θ converges SP-uniformly to S when θ → 0. In particular, S can be approximated SP-uniformly by smooth forms in D p .

Proof. Observe that the second assertion is deduced from the first one as in the proof of Theorem 1.10.0.4. We prove now the first assertion. When S is smooth, by Proposition 1.9.0.2, S θ converges to S in the C 1 -topology and the result is clear. Adding to S a combination of α i allows to assume that [S] = 0. Then, we also have [S θ ] = 0 for every θ. We only have to consider |θ| ≤ 1 since S θ does not depend on θ when |θ| ≥ 1. Let R be a current in D 0 k-p+1 with R * ≤ 1. Let U S θ denote the super-potential of S θ . By Lemma 2.2.0.5, when R is smooth, we have U S θ (R) = U S (R θ ). Since R θ depends continuously on R, U S θ admits a continuous extension to D 0 k-p+1 and the last identity holds for all R. It remains to check that U S θ converges SP-uniformly to U S . Recall that since

U S is continuous, if R * is bounded, we have U S (R) → 0 when R C -2 → 0. We also have U S θ (R) -U S (R) = U S (R θ -R). When θ → 0 and R * ≤ 1, R θ -R * is bounded and by Lemma 1.10.0.3, R θ -R C -2
tends to 0 uniformly on R. Therefore, U S (R θ -R) tends to 0 uniformly on R with R * ≤ 1. The result follows.

Intersection

We will define the intersection of two currents such that at least one of them has a continuous super-potential. The theory of intersection is far from being complete but we will see that the following properties suffice in order to study the dynamics of automorphisms. We refer the reader to [388,[START_REF] Demailly | Monge-Ampère Operators, Lelong numbers and Intersection theory in Complex Analysis and Geometry[END_REF][START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF] for the theory of intersection with currents of bidegree (1, 1) and [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF]321] for the case of bidegree (p, p) on local setting or on homogeneous manifolds, see also [START_REF] Bost | Heights of projective varieties and positive Green forms[END_REF][START_REF] Gillet | Arithmetic intersection theory[END_REF].

Let S be a current in D p and S a current in D p with p + p ≤ k. Assume that S has a continuous super-potential. We will define the intersection S ∧ S as a current in D p+p . This wedge-product satisfies some continuity properties. Let U S be the α-normalized super-potential of S and let (a 1 , . . . , a h ) denote the coordinates of [S] in the basis [α]. Define for any test smooth real form Φ of bidegree (k -p -p , k -p -p ):

S ∧ S , Φ := U S (dd c Φ ∧ S ) + 1≤i≤h a i α i , Φ ∧ S .
Lemma 2.3.0.1. Assume that S or S is smooth. Then S ∧ S coincides with the usual wedge-product of S and S .

Proof. Assume that S is smooth. Observe that Φ ∧ S is a potential of dd c Φ ∧ S . Define m i := α i , Φ ∧ S . Then Φ ∧ S -m i α ∨ i is an α-normalized potential of dd c Φ ∧ S . Therefore, U S (dd c Φ ∧ S ) + a i m i = S, Φ ∧ S - m i S, α ∨ i + a i m i = S, Φ ∧ S .
This implies that S ∧ S coincides with the usual wedge-product of S and S . The computation still holds when S is smooth but S is singular.

Theorem 2.3.0.2. Let S be a current in D p and S a current in D p with p+p ≤ k. Assume that S has continuous super-potentials. Then S ∧ S , defined as above, is a current in D p+p which depends linearly on S, S . Moreover, we have

[S ∧ S ] = [S] [S ] and S ∧ S * ≤ c S * S *
for some constant c > 0 independent of S, S . Let S n be currents in D p with continuous super-potentials converging SP-uniformly to S and S n be currents converging in D p to S . Then, S n ∧ S n converge in D p+p to S ∧ S .

Proof. It is clear that S ∧ S , Φ depends continuously on the smooth test form Φ. Hence, S ∧ S is a current. Clearly, this current depends linearly on S and S . By definition, since U S is continuous, S ∧ S depends continuously on S . We deduce using Theorem 1.10.0.4 that [S ∧ S ] = [S]

[S ] since this identity holds for S smooth. In order to estimate S ∧ S * , it is enough to assume that S is smooth positive. Writing S as a difference of positive closed current, we see that S ∧ S * S * S * . We use here that the mass of a positive closed current depends only on its cohomology class. The last assertion of the theorem is deduced directly from the definition of S ∧ S . Proposition 2.3.0.3. Assume that S, S , S n , S n have continuous super-potentials and that S n , S n converge SP-uniformly to S, S respectively. Then S ∧ S and S n ∧ S n have also continuous super-potentials and S n ∧ S n converge SP-uniformly to S ∧ S .

Proof. The proposition is clear when S, S n are linear combinations of α i . Subtracting from S and S n suitable combinations of α i allows to assume that

[S] = [S n ] = 0. So, if Φ is a smooth test form we have by definition S ∧ S , Φ = U S (S ∧ dd c Φ). We deduce that if R is smooth then U S∧S (R) = U S (S ∧ R).
Since S and S have continuous super-potentials, U S (S ∧R) can be extended continuously to R in D 0 k-p-p +1 . So, S ∧ S has a continuous super-potential and the identity U S∧S (R) = U S (S ∧ R) holds for all R in D 0 k-p-p +1 . In the same way, we prove that S n ∧S n has a continuous super-potential and

U Sn∧S n (R) = U Sn (S n ∧R). It is now clear that S n ∧ S n converge SP-uniformly to S ∧ S .
The following result shows that the wedge-product is commutative and associative. The first property allows to define S ∧S := S ∧S when S has continuous super-potentials and S is singular. Proposition 2.3.0.4. Let S i , i = 1, 2, 3, be currents in D p i . Assume that S 1 and S 2 have continuous super-potentials, then

S 1 ∧ S 2 = S 2 ∧ S 1 and (S 1 ∧ S 2 ) ∧ S 3 = S 1 ∧ (S 2 ∧ S 3 ).
Proof. The proposition is clear when S 1 and S 2 are smooth. The general case is deduced from this particular case using Propositions 2.2.0.8, 2.3.0.3 and Theorem 5.2.0.4. Remark 2.3.0.5. Assume that S and S are positive currents. By Theorem 5.2.0.4, if S is SP-uniformly approximable by smooth positive closed (p, p)-forms, then S ∧ S is positive. This is also the case when S can be approximated by positive smooth forms. In general, we don't know if S ∧ S is always positive when S or S has continuous super-potentials.

Moderate currents

Consider a current S in D p with continuous super-potentials. Its super-potentials are defined on D 0 k-p+1 .

Definition 2.4.0.1. We say that S has a Hölder continuous super-potential if it admits a super-potential which is Hölder continuous on * -bounded subsets of D 0 k-p+1 with respect to dist l for some real number l > 0.

In order to prove that U S is Hölder continuous, it is enough to show that |U S (R)| R λ C -l for R * ≤ 1 and for some constant λ > 0. By Proposition 1.8.0.1, the definition does not depend on the choice of l. One checks easily that the super-potentials of smooth forms are Hölder continuous. Hence, if S admits a Hölder continuous super-potential, all the super-potentials of S are Hölder continuous. In other words, this notion does not depend on the normalization of the super-potential. Proof. We can assume that [S] = 0 and [S ] = 0. Let U S , U S and U be the super-potentials of S, S and S ∧ S respectively. So, for R in

D 0 k-p-p +1 we have U (R) = U S (S ∧ R). It is enough to prove for R in a * -bounded subset of D 0 k-p-p +1 that S ∧ R C -4 R λ C -2
, where λ > 0 is a constant. Using a regularization, we can assume that R is smooth. Let U be a potential of S and Φ a test form with Φ C 4 ≤ 1. We have since U S is Hölder continuous and dd c Φ C 2 is bounded

S ∧ R C -4 = sup Φ | S ∧ R, Φ | = sup Φ | U ∧ R, dd c Φ | = sup Φ | U , R ∧ dd c Φ | = sup Φ |U S (R ∧ dd c Φ)| R ∧ dd c Φ λ C -2 R λ C -2 .
The result follows.

Moderate currents and moderate measures were introduced in [START_REF]Exponential estimates for plurisubharmonic functions and stochastic dynamics[END_REF][START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF]. With respect to test d.s.h. functions, moderate measures have the same regularity as the Lebesgue measure does. 

M := min(|φ|, M ) -min(|φ|, M -1) for M ≥ 1. Observe that 0 ≤ ψ M ≤ 1
and that ψ M = 0 on {|φ| ≤ M -1}, also ψ M is larger than or equal to the characteristic function ρ M of {|φ| ≥ M }. Moreover, the DSH-norm of ψ M is bounded by a constant independent of φ and M , see e.g. [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF]. We want to prove that S, e λ|φ| ≤ A for some positive constants λ and A. So, it is enough to check that S, ρ M e -λM for some (other) positive constant λ. For this purpose, we will show that S, ψ M e -λM . By Proposition 1.8.0.3, the volume of the support of ψ M is e -λM since it is contained in {|φ| ≥ M -1}. Therefore, the estimate S, ψ M e -λM is clear when S is a form with bounded • ∞ -norm because 0 ≤ ψ M ≤ 1. Subtracting from S a smooth form allows to assume that [S] = 0 but we loose here the positivity of S. Recall that the super-potential U S of S is Hölder continuous and that ψ M has a bounded DSH-norm. We have for some constant λ > 0

S, ψ M = U S (dd c ψ M ) dd c ψ M λ C -2 .
On the other hand, if Φ is a test form with Φ C 2 ≤ 1 then

dd c ψ M C -2 = sup Φ | dd c ψ M , Φ | = sup Φ | ψ M , dd c Φ | e -λM ,
where the last inequality follows from the above volume estimate of the support of ψ M . This completes the proof.

Proposition 2.4.0.5. Let S be a positive closed (p, p)-current with Hölder continuous super-potentials on X. Assume that the manifold X is projective. Then the Hausdorff dimension of S is strictly larger than 2(k -p). More precisely, the trace measure S ∧ ω k-p has no mass on sets of finite Hausdorff measure of dimension 2(k -p) + for > 0 small enough.

We will need the following lemma where we use that X is projective.

Lemma 2.4.0.6. Let A > 0 be a constant large enough and r 0 > 0 a constant small enough. If B r 0 , B r are concentric balls of radius r 0 , r respectively, r r 0 , then there is a positive smooth form Φ of bidegree (k -p, k -p) supported in B r 0 with Φ ≥ ω k-p on B r and such that

Φ ≤ Ar 2k-2p+2 , dd c Φ * ≤ Ar 2k-2p and dd c Φ C -1 ≤ Ar 2k-2p+1 .
Proof. The case where X is the projective space P k is proved in [321, Lemma 3.3.7]. We will deduce the lemma from this particular case. Since r 0 is small, we can choose a finite family of holomorphic maps from X onto P k such that every ball of radius 3r 0 is sent injectively to P k by at least one of these maps. Let Π : X → P k be such a map corresponding to the ball B 3r 0 with the same center as the considered balls B r and B r 0 . Then, Π(B r 0 ) contains a ball B in P k of radius r 0 and Π(B r ) is contained in a ball B of radius r. Let Ψ be a form satisfying the lemma for P k , B , B and for a fixed Kähler metric on P k . The choice of Π implies that the jacobian of (Π |B 2r 0 ) -1 is bounded from below and from above by positive constants. Therefore, the form Φ := Π * |Br 0 (Ψ) is positive with support in B r 0 . It satisfies Φ ω k-p on B r and Φ r 2k-2p+2 , dd c Φ * r 2k-2p on X. Multiplying Ψ by a constant allows to get Φ ≥ ω k-p on B r . Finally, it remains to check the inequality

dd c Φ C -1 r 2k-2p+1 . We have to show that sup Ω | dd c Φ, Ω | r 2k-2p+1 for smooth test form Ω with Ω C 1 ≤ 1.
Since Φ is supported in B r 0 , it is enough to consider Ω with support in B 2r 0 . In that case, the desired estimate is deduced from the analogous estimate for Ψ in P k .

End of the proof of Proposition 2.4.0.5. Fix a constant > 0 small enough. We only have to prove that Br S ∧ ω k-p r 2k-2p+ for r small, see e.g. [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. Using the previous lemma, it suffices to check that S, Φ r 2k-2p+ . The estimate is clear when S is smooth. Subtracting from S a smooth form allows to assume that [S] = 0 but we loose the positivity of S. Let U S be the super-potential of S. Since U S is Hölder continuous and r 2p-2k dd c Φ * ≤ A, we have

S, Φ = U S (dd c Φ) = r 2k-2p U S (r 2p-2k dd c Φ) r 2k-2p r 2p-2k dd c Φ C -1 r 2k-2p+ .
This implies the proposition.

Chapter 3

Geometry of currents

In this chapter, we introduce some basic facts about the convex set C p of positive closed (p, p)-currents of mass 1 in P k .

Topology and distances

Let X be a complex manifold of dimension k. Recall that a (p, p)-form Φ on X is (strongly) positive if it is positive at every point a ∈ X, that is, Φ is equal at the point a to a linear combination with positive coefficients of forms of type

(iϕ 1 ∧ ϕ 1 ) ∧ . . . ∧ (iϕ p ∧ ϕ p )
where ϕ i are (1, 0)-forms on X. Positive (0, 0)-forms are positive functions and positive (k, k)-forms are products of volume forms with positive functions. A (p, p)-form Φ is weakly positive if Φ ∧ Ψ is a positive form of maximal bidegree for every positive (k -p, k -p)-form Ψ. A (p, p)-current T on X is positive (resp. weakly positive) if T ∧ Ψ is a positive measure for every weakly positive (resp. positive) smooth (k -p, k -p)-form Ψ. Positive forms and currents are weakly positive. The notions of positivity and of weak positivity coincide only for bidegrees (0, 0), (1, 1), (k -1, k -1) and (k, k). We also say that Φ and T are negative or weakly negative if -Φ and -T are positive or weakly positive. For real (p, p)-currents T, T , we will write T ≥ T and T ≤ T when T -T is positive.

Assume that X is a compact Kähler manifold and ω X is a Kähler form on X. If T is a positive or negative (p, p)-current, the mass of T on a Borel set K ⊂ X is the mass of the trace measure T ∧ ω k-p X of T on K; that is

T K := | T, ω k-p X K |.
The mass of T means its mass T on K = X. Assume that T is positive and closed. Then, T depends only on the class of T in the Hodge cohomology group H p,p (X, C). We recall the notion of density of positive closed currents. Let x denote local coordinates in a neighbourhood of a point a ∈ X such that x = 0 at a and β := dd c |x| 2 denote the standard Euclidean form. Let B r denote the ball {|x| < r}. The Lelong number of T at a is defined by

ν(T, a) := lim r→0 T ∧ β k-p Br π k-p r 2k-2p .
When r decreases to 0, the expression on the right hand side decreases to ν(T, a) which does not depend on the choice of coordinates x [START_REF] Siu | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF]. The Lelong number compares the mass of the current on B r with the Euclidean volume π k-p r 2k-2p /(kp)! of a ball of radius r in C k-p . A theorem of Siu says that {ν(T, a) ≥ c} is an analytic subset of dimension ≤ k -p of X for every c > 0 [START_REF] Siu | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF].

The Kähler manifolds we consider in this paper are the projective space P k and the product P k × P k . Let π 1 and π 2 be the canonical projections of P k × P k onto its factors. Let ω denote the Fubini-Study form on P k normalized so that

P k ω k = 1, and define ω := π * 1 (ω) + π * 2 (ω) the canonical Kähler form on P k × P k . If T is a positive closed (p, p)-current on P k ,
one proves easily that ν(T, a) ≤ T for every a ∈ P k . Example 3.1.0.1. Let V be an analytic subset of pure dimension k -p in P k . Lelong showed in [START_REF] Lelong | Fonctions plurisousharmoniques et formes différentielles positives[END_REF] that the integration on the regular part of V defines a positive closed (p, p)-current [V ]. The mass of [V ] is equal to the degree of V , i.e. the number of points in the intersection of V with a generic projective plane P of dimension p. By a theorem of Thie, the Lelong number of [V ] at a is the multiplicity of V at a, i.e. the multiplicity at a of V ∩ P for P generic passing through a. This number is also equal to the number of points, in a small neighbourhood of a, of V ∩ P for P generic close enough to P . We deduce from the definition of the Lelong number that there are constants c, c > 0 such that

cr 2k-2 ≤ vol(V ∩ B) ≤ c r 2k-2
for every ball B with center in V of radius r ≤ 1.

We will use the weak topology in C p , i.e. the topology induced by the weak topology of currents. Recall that a sequence of (p, p)-currents (R n ) converges weakly to a current R if R n , Φ → R, Φ for every smooth (k -p, k -p)-form Φ on P k . Since the currents in C p are positive, we obtain the same topology on C p if we consider real continuous forms Φ instead of smooth forms. For this topology, C p is compact.

We introduce some natural distances on C p as follows. For α ≥ 0 let [α] denote the integer part of α. Let C α p,q be the space of (p, q)-forms whose coefficients admit derivatives of all orders ≤ [α] and these derivatives are (α -[α])-Hölder continuous. We use here the sum of C α -norms of the coefficients for a fixed atlas. If R and R are currents in C p , define

dist α (R, R ) := sup Φ C α ≤1 | R -R , Φ |
where Φ is a smooth (k -p, k -p)-form on P k . Observe that C p has finite diameter with respect to these distances since R, Φ and R , Φ are bounded.

Lemma 3.1.0.2. For every 0 < α < β < ∞, there is a constant c α,β > 0 such that dist β ≤ dist α ≤ c α,β [dist β ] α/β .
In particular, a function on C p is Hölder continuous for dist α if and only if it is Hölder continuous for dist β .

Proof. The first inequality is clear. Let L : C ∞ k-p,k-p → C be a continuous linear form. Assume that there are constants A and B such that

|L(Φ)| ≤ A Φ C 0 and |L(Φ)| ≤ B Φ C β .
The theory of interpolation between Banach spaces [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF] implies that Proof. It is enough to consider the case where a and b are close. Let x = (x 1 , . . . , x k ) be local coordinates so that a and b are close to 0. Without loss of generality, one can assume a = 0 and b = (t, 0, . . . , 0). It is clear that

|L(Φ)| ≤ c α,β A 1-α/β B α/β Φ C α with c α,β independent of A, B and L. Applying this to L := R -R with R, R
dist α (δ a , δ b ) = sup Φ C α ≤1 |Φ(a) -Φ(b)| a -b min{α,1} .
Using a cut-off function, one construct easily a function Φ with bounded

C α -norm such that near 0, Φ(x) = |Re(x 1 )| α if α < 1 and Φ(x) = Re(x 1 ) if α ≥ 1. Hence dist α (δ a , δ b ) |Φ(a) -Φ(b)| = a -b min{α,1} .
This implies the lemma.

Proposition 3.1.0.4. For α > 0, the topology induced by dist α coincides with the weak topology on C p . In particular, C p is a compact separable metric space.

Proof. It is clear that the convergence with respect to dist α implies the weak convergence. Conversely, if a sequence converges weakly in C p , then it converges uniformly on compact sets of test forms with uniform norm. By Dini's theorem, the set of test forms Φ with Φ C α ≤ 1 is relatively compact for the uniform convergence. The proposition follows.

Note that since the convex set C p is a Polish space, measure theory on C p is quite simple. We show in Lemma 3.1.0.5 and Proposition 3.1.0.6 below that smooth forms are dense in C p , see [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for the case of arbitrary compact Kähler manifolds. Here, since P k is homogeneous, one can use the group Aut(P k ) of automorphisms of P k in order to regularize currents, see also [START_REF] De Rham | Differentiable manifolds. Forms, currents, harmonic forms[END_REF]306].

Let h θ (y) := θy denote the multiplication by θ ∈ C and for |θ| ≤ 1 define ρ θ := (h θ ) * ρ, see Introduction for the notation. Then, ρ 0 is the Dirac mass at the identity id ∈ Aut(P k ) and ρ θ is a smooth probability measure if θ = 0. Moreover, for every α ≥ 0 there is a constant c α > 0 such that

ρ θ C α ≤ c α |θ| -2k 2 -4k-α
where 2k 2 + 4k is the real dimension of Aut(P k ). Define for any positive or negative (p, p)-current R on P k not necessarily closed

R θ := Aut(P k ) (τ y ) * R dρ θ (y) = Aut(P k ) (τ θy ) * R dρ(y) = Aut(P k ) (τ θy ) * R dρ(y).
The last equality follows from the fact that ρ is radial and the involution τ → τ -1 preserves the norm of y.

Define Proof. The convergence of R θy is deduced from the fact that τ θy converge to the identity in the C ∞ topology. This and the definition of R θ imply the convergence of R θ .

Proposition 3.1.0.6. If θ = 0, then R θ is a smooth form which depends continuously on R. Moreover, for every α ≥ 0 there is a constant

c α independent of R such that R θ C α ≤ c α R |θ| -2k 2 -4k-α . If K is a compact set in ∆ * , there is a constant c α,K > 0 such that if θ and θ are in K then R θ -R θ C α ≤ c α,K R |θ -θ |.
Proof. We can assume that R is supported at a point a, that is, R = δ a ∧ Ψ for some tangent (k -p, k -p)-vector Ψ defined at a with norm ≤ 1 (here, we use Federer's notation and we consider the vector Ψ as a form with negative bidegree (p-k, p-k)). The general case is deduced using a desintegration of R as currents with support at a point. We have

R θ = Aut(P k ) δ τy(a) ∧ (τ y ) * Ψ dρ θ (y).
Hence, R θ is smooth and depends continuously on R. The estimate on R θ C α follows from the estimate on the C α -norm of ρ θ . The last estimate in the proposition follows from the inequality ρ θ -ρ θ C α |θ -θ | on K.

Remark 3.1.0.7. We call R θ the θ-regularization of R. In Proposition 3.1.0.6 we can replace |θ| -2k 2 -4k-α by |θ| -2k-α but the estimates are more technical.

Let dist(τ, τ ) denote the distance between τ and τ for a fixed smooth metric on Aut(P k ). The following simple lemma will be useful in the next paragraphs. Lemma 3.1.0.8. Let K be a compact subset of Aut(P k ). Let W and W 0 be open sets in 1) .

P k such that W 0 ⊂ τ (W ) for every τ ∈ K. If R is of class C α , α ≥ 0, on W , then τ * (R) is of class C α on W 0 . Moreover, there is a constant c > 0 such that for all τ and τ in K τ * (R) C α (W 0 ) ≤ c R C α (W ) and τ * (R) -τ * (R) C α (W 0 ) ≤ c R C α (W ) dist(τ, τ ) min(α,
Proof. Since W 0 ⊂ τ (W ), it is clear that τ * (R) is of class C α on W 0 . For τ in K, we have τ -1 C α+1 ≤ A which implies the first estimate. For the second one, observe that

τ * (R) -τ * (R) = τ * R -τ * τ * (R) = τ * R -(τ -1 • τ ) * (R) .
This and the inequality

τ -1 • τ -id C α+1 dist(τ, τ )
imply the estimate.

Quasi-plurisubharmonic functions

Positive closed currents of bidegree (1, 1) admit quasi-potentials which are quasiplurisubharmonic functions (quasi-psh for short). The compactness properties of these functions are fundamental in the study of positive closed (1, 1)-currents. We recall here some facts, see [306,[START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF].

A quasi-psh function is locally the difference of a psh function and a smooth one, see [306]. The first important property we will use is the following that we state only in dimension 1. It is a direct consequence of [START_REF] Hörmander | The analysis of Linear partial differential operators I[END_REF]Theorem 4.4.5]. Lemma 3.2.0.1. Let F be a compact family in L 1 loc (∆) of subharmonic functions on ∆. Then, for every compact subset K ⊂ ∆ there are constants c > 0 and A > 0 such that e -Au L 1 (K) ≤ c for every u ∈ F .

Recall that a function ϕ :

P k → R ∪ {-∞} is quasi-psh if and only if
• ϕ is integrable with respect to the Lebesgue measure and dd c ϕ ≥ -cω for some constant c > 0;

• ϕ is strongly upper semi-continuous (strongly u.s.c. for short), that is, for any Borel subset A ⊂ P k of full Lebesgue measure, we have ϕ(x) = lim sup y→x ϕ(y) with y ∈ A \ {x}.

A set E ⊂ P k is pluripolar or complete pluripolar if there is a quasi-psh function

ϕ such that E ⊂ ϕ -1 (-∞) or E = ϕ -1 (-∞) respectively.
If ϕ is as above, then the (1, 1)-current T := dd c ϕ + cω is positive closed and of mass c since it is cohomologous to cω. We say that ϕ is a quasi-potential of T ; it is defined everywhere on P k . There is a continuous 1-1 correspondence between the positive closed (1, 1)-currents of mass 1 and the quasi-psh functions ϕ satisfying dd c ϕ ≥ -ω, normalized by P k ϕω k = 0 or by max P k ϕ = 0. The following compactness property is deduced from the corresponding properties of psh functions. Proposition 3.2.0.2. Let (ϕ n ) be a sequence of quasi-psh functions on P k with dd c ϕ n ≥ -ω. Assume that ϕ n is bounded from above by a constant independent of n. Then, either (ϕ n ) converges uniformly to -∞ or there is a subsequence (ϕ n i ) converging, in L p for 1 ≤ p < ∞, to a quasi-psh function ϕ with dd c ϕ ≥ -ω.

The next proposition is a consequence of the classical Hartogs' lemma for psh functions. Proposition 3.2.0.3. Let ϕ n and ϕ be quasi-psh functions on P k with dd c ϕ n ≥ -ω and dd c ϕ ≥ -ω. Assume that ϕ n converge in L 1 to ϕ. Let ϕ be a continuous function on a compact subset K of P k such that ϕ < ϕ on K. Then, ϕ n < ϕ on K for n large enough. In particular, we have lim sup ϕ n ≤ ϕ on P k .

We recall a compactness property of quasi-psh functions and also an approximation result (see also Proposition 4.1.0.6 below). Proposition 3.2.0.4. Let (ϕ n ) be a decreasing sequence of quasi-psh functions with dd c ϕ n ≥ -ω. Then, either ϕ n converge uniformly to -∞ or ϕ n converge pointwise and also in L p , 1 ≤ p < ∞, to a quasi-psh function ϕ with dd c ϕ ≥ -ω. Moreover, for every quasi-psh function ϕ with dd c ϕ ≥ -ω, there is a sequence (ϕ n ) of smooth functions such that dd c ϕ n ≥ -ω which decreases to ϕ.

Consider now a hypersurface V of P k of degree m and the positive closed (1, 1)-current [V ] of integration on V which is of mass m. Let ϕ be a quasipotential of [V ], i.e. a quasi-psh function such that dd c ϕ = [V ] -mω. Let δ be an integer such that the multiplicity of V is ≤ δ at every point. The following lemma will be useful in the next paragraphs. Lemma 3.2.0.5. There is a constant A > 0 such that

δ log dist(•, V ) -A ≤ ϕ ≤ log dist(•, V ) + A. Proof. Let x = (x 1 , . . . , x k ) = (x , x k ) denote the coordinates of C k . Let Π : C k → C k-1
with Π(x) := x be the projection on the first k -1 factors. We can reduce the problem to the local situation where V is a hypersurface of the unit polydisc ∆ k such that the projection Π : V → ∆ k-1 defines a ramified covering of degree s ≤ δ. For x ∈ ∆ k-1 , denote by x k,1 , . . ., x k,s the last coordinates of points in Π -1 (x ) ∩ V . Here, these points are repeated according to their multiplicity. So, V is the zero set of the Weierstrass polynomial

P (x) := (x k -x k,1 ) . . . (x k -x k,s ).
This is a holomorphic function on ∆ k . It follows that ϕ(x)-log |P (x)| is a smooth function. We only have to prove that dist(x, V ) s |P (x)| dist(x, V ) locally in ∆ k . The first inequality follows from the definition of P . Since the derivatives of P are locally bounded, it is clear that for every a in a compact set of

V |P (x)| = |P (x) -P (a)| |x -a|. Hence, |P (x)| dist(x, V ).
Let V t denote the t-neighbourhood of V , i.e. the open set of points whose distance to V is smaller than t. Recall that an integrable function ϕ on P k is said to be dsh if it is equal outside a pluripolar set to a difference of two quasi-psh functions [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF]. We identify two dsh functions if they are equal out of a pluripolar set. The space of dsh functions is endowed with the following norm

ϕ DSH := ϕ L 1 + inf T +
where T ± are positive closed (1, 1)-currents such that dd c ϕ = T + -T -. The currents T + and T -are cohomologous and have the same mass. Note that the notion of dsh function can be easily extended to compact Kähler manifolds. We have the following lemma. Lemma 3.2.0.6. Let χ : R ∪ {-∞} → R be a convex increasing function such that χ is bounded. Then, for every dsh function ϕ, χ(ϕ) is dsh and

χ(ϕ) DSH 1 + ϕ DSH .
Proof. Up to a linear change of coordinate on R ∪ {-∞}, we can assume that ϕ DSH ≤ 1. Since χ(x)

1 + |x|, χ(ϕ) L 1 is bounded. So, it is enough to prove that χ(ϕ) is dsh and to bound dd c χ(ϕ). We can write ϕ = ϕ + -ϕ -out of a pluripolar set where ϕ ± are quasi-psh with bounded DSH-norm such that dd c ϕ ± ≥ -ω. Since ϕ ± can approximated by decreasing sequences of smooth quasi-psh functions, it is enough to consider the case where ϕ ± and ϕ are smooth. It remains to bound dd c χ(ϕ). We have since χ is positive

dd c χ(ϕ) = χ (ϕ)dd c ϕ + χ (ϕ)dϕ ∧ d c ϕ ≥ χ (ϕ)dd c ϕ ≥ -χ ∞ T -,
Because χ is bounded, dd c χ(ϕ) can be written as a difference of positive closed currents with bounded mass. The lemma follows. Lemma 3.2.0.7. For every t > 0 there is a smooth function χ t , 0 ≤ χ t ≤ 1, with compact support in V A 1 t 1/δ , equal to 1 on V t and such that χ t DSH ≤ A 1 , where A 1 > 0 is a constant independent of t.

Proof. We only have to consider the case t 1. We will construct χ t using Lemma 3.2.0.6 applied twice to the function ϕ in Lemma 3.2.0.5. Let χ : R ∪ {-∞} → [0, +∞[ be a smooth function which is convex increasing. We choose χ such that χ(x) = 0 on [-∞, -1] and χ(x) = x for x ≥ 1. So, we have max(x, 0) ≤ χ ≤ max(x, 0) + 1. Let ϕ and A be as in Lemma 3.2.0.5. Define φ t := -χ ϕ -log t -A -1 and χ t := χ(φ t + 1).

Then, φ t and χ t are smooth, and by Lemma 3.2.0.6, their DSH-norms are bounded uniformly on t. We deduce from the properties of χ that χ t ≥ 0, φ t ≤ 0 and

φ t = 0 on V t . It follows that χ t = 1 on V t . Out of V A 1 t 1/δ with A 1
1, by Lemma 3.2.0.5, we have ϕ -log t -A -1 0, hence φ t = -ϕ + log t + A + 1. We deduce that φ t + 1 ≤ -1 and χ t = 0 there. This implies the lemma.

We recall a notion of capacity that was introduced in [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF] which can be extended to any compact Kähler manifold, see also [START_REF] Sibony | Some results on global analytic sets[END_REF][START_REF] Alexander | Projective capacity. Recent developments in several complex variables[END_REF]. Let P := ϕ quasi-psh, dd c ϕ ≥ -ω, max

P k ϕ = 0 . For E ⊂ P k , define cap(E) := inf ϕ∈P exp sup E ϕ .
We have cap(P k ) = 1, and E is pluripolar if and only if cap(E) = 0. Consider a quasi-potential ϕ of a current T ∈ C 1 , i.e. a quasi-psh function such that dd c ϕ = T -ω. Quasi-potentials of T differ by constants. We can associate to each point a ∈ P k the Dirac mass δ a at a. Define a function U on the extremal elements of C k by U (δ a ) := ϕ(a).

We can extend this function in a unique way to an affine function on C k by setting

U (ν) := P k ϕdν for ν ∈ C k .
The upper semi-continuity of ϕ implies that U is also u.s.c. on C k . We say that U is a super-potential of T . Super-potentials of a given current differ by constants. Let

P 1 := U super-potential of a current T ∈ C 1 , max C k U = 0 .
For each set E of probability measures in C k , define cap(E) := inf

U ∈P 1 exp sup ν∈E U (ν) .
It is easy to check that for a single measure ν, cap(ν) > 0 if and only if quasi-psh functions are ν-integrable, i.e. ν is PB in the sense of [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF]. A definition of super-potentials for currents of any bidegree will be given in the next paragraph.

Lemma 3.2.0.8. Let E ⊂ P k be a Borel set. Let E be the set of measures ν ∈ C k with ν(E ) = 1. Then, cap(E ) = cap(E).

Proof. Since U is affine and u.s.c., the supremum can be taken on the set of extremal points. It follows that max C k U = 0 if and only if max P k ϕ = 0. Moreover, we have sup E U = sup E ϕ. It is now clear that cap(E ) = cap(E).

Green quasi-potentials

Let R be a current in

C p with p ≥ 1. If U is a (p -1, p -1)-current such that dd c U = R -ω p , we say that U is a quasi-potential of R. The integral U, ω k-p+1
is the mean of U . Such currents U exist but they are not unique. When p = 1 the quasi-potentials of R differ by constants, when p > 1 they differ by dd c -closed currents which can be singular. Moreover, for p > 1, U is not always defined at every point of P k . This is one of the difficulties in the study of positive closed currents of higher bidegree. We will use constantly the following result which gives potentials with good estimates.

Theorem 3.3.0.1. Let R be a current in C p . Then, there is a negative quasipotential U of R depending linearly on R such that for every r with 1 ≤ r < k/(k -1) and for 1 ≤ s < 2k/(2k -1)

U L r ≤ c r and dU L s ≤ c s
for some positive constants c r , c s independent of R. Moreover, U depends continuously on R with respect to the L r topology on U and the weak topology on R

We will construct U using a kernel solving the dd c -equation for the diagonal of P k × P k . We need a negative kernel with tame singularities. In the case of arbitrary compact Kähler manifolds, this is not always possible [START_REF] Bost | Heights of projective varieties and positive Green forms[END_REF]. In order to simplify the notation, consider the following general situation. Let X be a homogeneous compact Kähler manifold of dimension n and let G be a complex Lie group of dimension N acting transitively on X. The following proposition gives some precisions on a result in Bost-Gillet-Soulé [367, Prop. 6.2.3], see also Andersson [START_REF] Andersson | A generalized Poincaré-Lelong formula and explicit Green currents[END_REF].

Proposition 3.3.0.2. Let D be a submanifold of pure dimension n -p in X with p ≥ 1 and Ω be a real closed (p, p)-form cohomologous to the current [D]. Then, there is a negative (p -1, p -1)-form K on X smooth outside D such that

dd c K = [D] -Ω which satisfies the following inequalities near D K(•) ∞ -log dist(•, D) dist(•, D) 2-2p , ∇K(•) ∞ dist(•, D) 1-2p .
Moreover, there is a negative dsh function η and a positive closed

(p -1, p -1)- form Θ smooth outside D such that K ≥ ηΘ, Θ(•) ∞ dist(•, D) 2-2p and η + log dist(•, D) is bounded near D.
Note that ∇K ∞ is the sum |∇K i | where K i are the coefficients of K for a fixed atlas of X. We first prove the following lemmas. Lemma 3.3.0.3. There is a negative dsh function η on X smooth outside D such that η -log dist(•, D) is bounded.

Proof. Let π : X → X be the blow-up of X along D. Denote by

D := π -1 (D) the exceptional divisor. If α is a real closed (1, 1)-form on X cohomologous to [ D],
there is a negative quasi-psh function η such that dd c η = [ D]-α. It is clear that η is smooth outside D and η -log dist(•, D) is bounded. Define η := η •π -1 . Hence, η -log dist(•, D) is bounded. Moreover, by a theorem of Blanchard [START_REF] Blanchard | Sur les variétés analytiques complexes[END_REF], X is Kähler. Hence, dd c η can be written as a difference of positive closed currents. It follows that dd c η = π * (dd c η) is also a difference of positive closed currents. We deduce that η is dsh.

Proof of Proposition 3.3.0.2. Let Γ D ⊂ G × D × X denote the graph of the map (g, x) → g(x) from G × D to X. Let Π G and Π X denote the projections of Γ D onto G and X respectively. Observe that Π G defines a trivial fibration. The map Π X also defines a fibration which is locally trivial. Indeed, we can pass from a fiber to another one using the action (g, x, g(x)) → (τ (g), x, τ (g(x)) on G × D × X, of an element τ of G. So, Π X is a submersion. The integrals that we consider below are computed on some compact subset of Γ D .

Let z be a local coordinate on G with |z| < 1 such that z = 0 at id. Let χ be a smooth positive function with compact support in {|z| < 1} and equal to 1 in a neighbourhood of 0. Define K G := χ log |z|(dd c log |z|) N -1 . This is a negative current with support in {|z| < 1} and

Ω G := -dd c K G + δ 0 is a smooth form. We have K G (•) ∞ -log |z| • |z| 2-2N and ∇K G (•) ∞ |z| 1-2N .
Observe that D := Π -1 G (id) ∩ Γ D is compact and is sent by Π X biholomorphically to D. Therefore, locally near D, one can find coordinates (x

D , ρ D , x G ) ∈ C n-p ×C p ×C N -p such that D = {ρ D = x G = 0} and Π X (x D , ρ D , x G ) = (x D , ρ D ). Define the negative form K by K := (Π X ) * (Π * G (K G )). So, K is smooth outside D. Using the coordinates (x D , ρ D , x G ) and that Π G : Γ D → G is a trivial fibration, we obtain η • Π X log dist(•, D) -log |Π G |.
This, Lemmas 3.3.0.3 and the above estimates on K G imply that

K η (Π X ) * Π * G (Θ G ) ,
where

Θ G := χ(dd c log |z|) N -1 . Define Θ := (Π X ) * Π * G (Θ G ) . Using the local coordinates (x D , ρ D , x G ) and that Π * G (Θ G ) ∞ dist(•, D) 2-2N (|ρ D | 2 + |x G | 2 ) 1-N on Γ D , we obtain Θ(•) ∞ |x G |≤1 dx G (|ρ D | 2 + |x G | 2 ) N -1 ≤ |x G |≤1 dx G |ρ D | 2N -2 + |x G | 2N -2 1 0 x 2N -2p-1 dx |ρ D | 2N -2 + x 2N -2 |ρ D | 2-2p ∞ 0 ds 1 + s 2N -2 |ρ D | 2-2p . So, we have the estimate Θ(•) dist(•, D) 2-2p .
We then deduce the desired estimate on K(•) ∞ . We also have near D

∇Π * G (K G )(•) ∞ dist(•, D) 1-2N .
A similar computation as above gives that ∇K(•) ∞ dist(•, D) 1-2p . So, the singularities of K satisfy the estimates in the proposition. We have finally

dd c K = (Π X ) * (Π * G (dd c K G )) = (Π X ) * (Π * G (δ id -Ω G )) = (Π X ) * (Π * G (δ id )) -(Π X ) * (Π * G (Ω G )) = [D] -(Π X ) * (Π * G (Ω G )) =: [D] -Ω . Because Ω G is smooth, Ω := (Π X ) * (Π * G (Ω G )
) is also smooth. Since Ω and Ω are both cohomologous to [D], there is a smooth real (p -1, p -1)-form U such that dd c U = Ω -Ω . Adding to U a positive closed form large enough allows to assume that U is positive. Replacing K by K -U gives a negative form such that dd c K = [D] -Ω with the desired tame singularities.

Proof of Theorem 3.3.0.1. We apply Proposition 3.3.0.2 to X := P k ×P k , G := Aut(P k ) × Aut(P k ) and D the diagonal of X. Since Aut(P k ) PGL(k + 1, C), we can identify Aut(P k ) to a Zariski open set in P k 2 +2k which is the projectivization of the space of matrices of size (k + 1) × (k + 1). The assumptions in Proposition 3.3.0.2 are easily verified. Let (z, ξ) denote the homogeneous coordinates of

P k × P k with z = [z 0 : • • • : z k ] and ξ := [ξ 0 : • • • : ξ k ]. The diagonal D is given by {z = ξ}. Choose Ω(z, ξ) := k j=0 ω(z) j ∧ ω(ξ) k-j .
This form is cohomologous to [D]. Using the notation from Proposition 3.3.0.2, we define

U (z) := ξ =z R(ξ) ∧ K(z, ξ).
Observe that K is smooth out of D and that its coefficients have singularities like log |z -ξ| • |z -ξ| 2-2k near D (there is an abuse of notation: we should write log |z -ξ| • |z -ξ| 2-2k on charts {z i = ξ i = 1} which cover D). It follows that the definition of U makes sense for every current R with measure coefficients. This is a form with coefficients in L r . An easy way to see that is to desintegrate R into currents with support at a point. The continuity with respect to the L r -norm of U and the weak topology on C p , and the estimate on the L r -norm of U are easy to check. For the rest of the proposition, by continuity, we can assume that R is a smooth form in C p . Denote by π 1 and π 2 the projections of P k × P k on its factors. Observe that

U = (π 1 ) * π * 2 (R) ∧ K .
Hence, U is negative since K is negative and R is positive. Since R is closed, we also have

dd c U = (π 1 ) * π * 2 (R) ∧ dd c K = (π 1 ) * π * 2 (R) ∧ [D] -(π 1 ) * π * 2 (R) ∧ Ω = R -ω p .
Therefore, U is a quasi-potential of R. We also have

dU = (π 1 ) * π * 2 (R) ∧ dK .
Since dK has singularities like |z -ξ| 1-2k near D, it is clear that dU L s is bounded by a constant independent of R.

Remark 3.3.0.4. We call U the Green quasi-potential of R. By Theorem 3.3.0.1, the mean m of U is bounded by a constant independent of R. So, U -mω p-1 is a quasi-potential of mean 0 of R. Its mass is bounded uniformly on R. Note that U depends on the choice of K.

We now give some properties of Green quasi-potentials.

Lemma 3.3.0.5. Let W W be open subsets of P k and R be a current in C p . Assume that the restriction of R to W is a bounded form. Then, there is a constant c > 0 independent of R such that

U C 1 (W ) ≤ c(1 + R ∞,W ).
Proof. Observe that the derivatives of the coefficients of K have integrable singularities of order |z -ξ| 1-2k . This and the definition of U imply the result.

The precise estimate on the behavior of U in the following proposition will be needed for the dynamical applications. Proposition 3.3.0.6. Let V , V t and δ be as in Lemmas 3.2.0.5 and 3.2.0.7. Let T i , 1 ≤ i ≤ k -p + 1, be positive closed (1, 1)-currents on P k , smooth on P k \ V . Assume that the quasi-potentials of T i are α i -Hölder continuous with 0

< α i ≤ 1. If U is the Green quasi-potential of a current R ∈ C p , then Vt\V U ∧ T 1 ∧ . . . ∧ T k-p+1 ≤ ct β , with β := (20k 2 δ) -k α 1 . . . α k-p+1 ,
where c > 0 is a constant independent of R and of t.

We will use the notations from Theorem 3.3.0.1 and Proposition 3.3.0.2. Define η M := min 0, M + η for M ≥ 0. As in Lemma 3.2.0.6, we can show that η M DSH is bounded independently of M . We have η M -M ≤ η. Define K M := -M Θ and K M := η M Θ. Then, K M is negative closed and we have

K M + K M K. Define also U M (z) := ξ R(ξ) ∧ K M (z, ξ) and U M (z) := ξ R(ξ) ∧ K M (z, ξ).
The forms U M is negative closed of mass M and we have U M + U M U . Choose M := t -β . We estimate U M and U M separately. Recall that U is negative and that Θ has singularities of order dist(z, ξ) 2-2k . Lemma 3.3.0.7. We have

Vt U M ∧ ω k-p+1
t.

Proof. We can assume t < 1/2. We don't need that R is closed. So, we can assume that R has support at a point a ∈ P k . We define U M using the same integral formula as above. Then, the coefficients of U M have singularities of type M |x| [START_REF] Lelong | Fonctions plurisousharmoniques et formes différentielles positives[END_REF],

gives that

m 0 + • • • + m n n 2k-2 .
Note that m 0 = 0 or 1 and the integral of |x| 2-2k (dd c |x| 2 ) k on a ball of radius 3t with center in A 0 is bounded by the integral of this function on the ball of center 0 and of radius 4t. Hence, it is of order t 2 . For n ≥ 1, it is clear that the integral of the considered form on a ball with center in A n is of order n 2-2k t 2 . Using the estimates on m n and Abel's transform, one obtains

Vt∩B |x| 2-2k (dd c |x| 2 ) k t 2 + 1≤n≤1/t m n n 2-2k t 2 t 2 + 1≤n≤1/t n 2k-2 -(n -1) 2k-2 n 2-2k t 2 t 2 + t 2 1≤n≤1/t n -1 .
This implies the lemma.

We continue the proof of Proposition 3.3.0.6. By continuity it is enough to consider the case where R and U are smooth. We also have that U M is smooth. Lemma 3.3.0.8. For every 0 ≤ l ≤ k -p + 1 we have

Vt U M ∧ T 1 ∧ . . . ∧ T l ∧ ω k-p-l+1
t β l , where β l := (20k 2 δ) -l α 1 . . . α l .

Proof. The proof is by induction. The previous lemma implies the case l = 0. Assume the lemma for l -1. Let χ t be as in Lemma 3.2.0.7. We want to prove that

-χ t U M ∧ T 1 ∧ . . . ∧ T l ∧ ω k-p-l+1 t β l .
Write T l = ω + dd c u with u negative quasi-psh of class C α l . By induction hypothesis, since χ t has support in V A 1 t 1/δ , we obtain

-χ t U M ∧ T 1 ∧ . . . ∧ T l-1 ∧ ω k-p-l+2 t δ -1 β l-1 t β l .
Therefore, we only have to prove that

-χ t U M ∧ T 1 ∧ . . . ∧ T l-1 ∧ dd c u ∧ ω k-p-l+1 t β l .
By Proposition 3.1.0.6 and Lemma 3.1.0.8, there is a smooth function u such that u C 2 -2k 2 -4k-2 and u -u ∞ α l . Using Stokes' theorem we can write the left hand side of the previous inequality as

-χ t U M ∧ T 1 ∧ . . . ∧ T l-1 ∧ dd c u ∧ ω k-p-l+1 + -dd c χ t ∧ U M ∧ T 1 ∧ . . . ∧ T l-1 (u -u ) ∧ ω k-p-l+1 .
By induction hypothesis, the previous estimates on u C 2 and Lemma 3.2.0.7, we obtain that the first term is of order at most equal to t δ -1 β l-1 -2k 2 -4k-2 . If we write dd c χ t = T + -T -with T ± positive closed of bounded mass, the second term is of order less than

α l T + ∧U M ∧T 1 ∧. . .∧T l-1 ∧ω k-p-l+1 + α l T -∧U M ∧T 1 ∧. . .∧T l-1 ∧ω k-p-l+1 .
These integrals can be computed cohomologically. The currents T ± have bounded mass. Since K M = -M Θ, we deduce from the definition of U M that -U M is positive and closed of mass M = t -β . Therefore, the last sum is t -β α l .

Take := t δ -1 (2k 2 +4k+2+α l ) -1 β l-1 . We have

1 - 2k 2 + 4k + 2 2k 2 + 4k + 2 + α l ≥ α l 10k 2 , then t δ -1 β l-1 -2k 2 -4k-2 t δ -1 β l-1 (10k 2 ) -1 α l t β l and t -β α l t -β t (10k 2 δ) -1 β l-1 α l t -β t 2β l t β l .
This implies the desired estimate.

Lemma 3.3.0.9. We have U M exp(-M/2).

Proof. We can forget that R is smooth and assume that R has support at a point a. The behavior of η implies that U M has support in the ball of center a of radius exp(-M/2). The coefficients of U M have singularities -log |x| • |x| 2-2k for local coordinates x with x = 0 at a. Hence, U M exp(-M/2).

The following lemma completes the proof of Proposition 3.3.0.6, since M = t -β | log t|.

Lemma 3.3.0.10. For every 0 ≤ l ≤ k -p + 1 we have

U M ∧ T 1 ∧ . . . ∧ T l ∧ ω k-p-l+1 exp(-(10k 2 ) -l α 1 . . . α l M/2).
Proof. The previous lemma implies the case l = 0. Assume the lemma for l -1 and use the notation from the proof of Lemma 3.3.0.8. The integral to bound is equal to

-U M ∧ T 1 ∧ . . . ∧ T l-1 ∧ dd c u ∧ ω k-p-l+1 + + P k ×P k -K M ∧ R(ξ) ∧ T 1 (z) ∧ . . . ∧ T l-1 (z)dd c u(z) -u (z) ∧ ω(z) k-p-l+1 .
Choose = exp(-(10k 2 ) -l α 1 . . . α l-1 M ). Using the estimate on u C 2 , by induction hypothesis, the first factor is of order at most equal to exp(-

(10k 2 ) -l+1 α 1 . . . α l-1 M/2) -2k 2 -4k-2 exp(-(10k 2 ) -l α 1 . . . α l M/2).
The second one is equal to

P k ×P k -dd c K M ∧ R(ξ) ∧ T 1 (z) ∧ . . . ∧ T l-1 (z) u(z) -u (z) ∧ ω(z) k-p-l+1 .
Since the DSH-norm of η M in the definition of K M is bounded, the first term in the last integral can be bounded by a positive closed current with bounded mass. So, this integral is of order at most equal to

u -u ∞ α l = exp(-(10k 2 ) -l α 1 . . . α l-1 α l M ).
This implies the result.

We will use the following lemma in the study of deformation of currents. 

-m| = (τ θy ) * (U ) ∧ ω k-p+1 + m -U ∧ ω k-p+1 ≤ |m | + U ∧ (τ θy ) * (ω k-p+1 ) -ω k-p+1 .
The last term is of order

U |θ| since (τ θy ) * (ω k-p+1 ) -ω k-p+1
∞ is of order |θ|. Subtracting from U θy the form (m -m)ω p-1 , which is of order |θ|, gives a quasi-potential satisfying the lemma.

Structural varieties

The notion of structural varieties of C p was introduced in [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF], see also [START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF]. In some sense, we consider C p as a space of infinite dimension admitting "complex subvarieties" of finite dimension. The emphasis is that in order to connect two closed currents we use a closed current in higher dimension. Holomorphic families of analytic cycles of codimension p are examples of structural varieties in C p . Other examples of structural varieties can be obtained by deforming a given current in C p using a holomorphic family of automorphisms. The reader will find in Dujardin [322] and in [START_REF] Dinh | On the dynamics near infinity of some polynomial mappings in C 2[END_REF] an application of such a deformation to the dynamics of Hénon-like maps. General structural varieties are more flexible, and this is crucial in our study.

Let X be a complex manifold, π X : X × P k → X and π : X × P k → P k denote the canonical projections. Consider a positive closed (p, p)-current R in X × P k . By slicing theory [START_REF] Federer | Geometric Measure Theory[END_REF], the slices R, π X , x exist for almost every x ∈ X. Such a slice is a positive closed (p, p)-current on {x} × P k (following [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF], we can prove that the slices exist for x out of a pluripolar set). We often identify R, π X , x with a (p, p)-current R x in P k . Lemma 3.4.0.1. The mass of R x does not depend on x.

Proof. Define R := R ∧ π * (ω k-p ). Then, R is positive closed on X × P k and (π X ) * (R ) is closed of bidegree (0, 0) on X. Hence, it is a constant function. So, the function ϕ(x) := R , π X , x =

P k R x ∧ ω k-p = R x
is constant. The lemma follows.

We assume that the mass of R x is equal to 1. The map x → R x is defined almost everywhere on X with values in C p . Definition 3.4.0.2. We say that the map x → R x or the family (R x ) x∈X defines a structural variety in C p . The positive closed (1, 1)-current

α R := (π X ) * (R ∧ π * (ω k-p+1 ))
on X is called the curvature of the structural variety, see Propositions 4.1.0.3 and 4.2.0.1 below. Definition 3.4.0.3. A structural variety associated to R is said to be special if R x exists for every x ∈ X, R x depends continuously on x and if the curvature is a smooth form.

In order to simplify the argument, we restrict to special structural varieties or discs. The most useful structural discs in this work are (R θ ) θ∈∆ , see Introduction and Lemma 3.5.0.3 below.

Deformation

Using the automorphisms of P k , we will construct some special structural discs in C p that we will use later on. We first construct large structural varieties parametrized by X = Aut(P k ). Proposition 3.5.0.1. Let R be a current in C p . Then, the map h : Aut(P k ) → C p with h(τ ) = R τ := τ * (R) defines a special structural variety in C p . Moreover, its curvature is bounded by a smooth positive (1, 1)-form independent of R.

Proof. For any smooth test form Φ, we have R τ , Φ = R, τ * (Φ) . So, clearly τ → R τ is continuous. Consider the holomorphic map H : Aut(P k ) × P k → P k defined by H(τ, z) := τ -1 (z). The current R := H * (R) is positive closed of bidegree (p, p). It is easy to check from the definition of slices that R τ = R, π X , τ . Hence, h defines a continuous structural variety. Now, we have to show that the curvature

α R := (π X ) * H * (R) ∧ π * (ω k-p+1 )
is a smooth form. We prove this for any current R of mass ≤ 1 not necessarily closed. Then, we can assume that R is supported at a point a, that is, there is a tangent (k -p, k -p)-vector Ψ at a of norm ≤ 1 such that R = δ a ∧ Ψ (the general case is obtained using a desintegration R into currents of the previous type). We have H * (R) = [H -1 (a)] ∧ Ψ, where Ψ is a (k -p, k -p)-vector field with support in H -1 (a) such that H * ( Ψ) = Ψ. Because H is a submersion, we can choose Ψ smooth on H -1 (a). Since H -1 (a) is a holomorphic graph over Aut(P k ), the form α R defined above is the direct image of [H -1 (a)] ∧ Ψ ∧ π * (ω k-p+1 ) by π X . So, α R is smooth. Moreover, the C s -norm of α R on any fixed compact subset of Aut(P k ) is uniformly bounded for every s ≥ 0. The proposition follows.

Remark 3.5.0.2. If i : ∆ → Aut(P k ) is a holomorphic map, then x → i(x) * R, which is equal to h • i, defines a special structural disc. We can also construct a structural disc passing through R and through the current of integration on a fixed plane of codimension p [START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF]. So, C p is connected by structural discs.

Let R be a current in C p . The following lemma gives us a useful special structural disc passing through R. Lemma 3.5.0.3. Let R θ be the currents constructed in Paragraph 3.1. Then, the family (R θ ) defines a special structural disc whose curvature is bounded by a smooth positive (1, 1)-form α which does not depend on R.

Proof. By Proposition 3.5.0.1, for |y| < 1, the family (R θy ) θ∈∆ defines a special disc in C p . Moreover, the C s -norm of its curvature is bounded uniformly with respect to R and y. In particular, this curvature is bounded by a positive form α which does not depend on R and y.

Let R y denotes the (p, p)-current on ∆ × P k associated to the structural disc (R θy ) and define R := R y dρ(y). Recall that R θ = y R θy dρ(y). Hence, (R θ ) is the family of slices of R and it defines a structural disc in C p . We know that R θ depends continuously on θ. This and the above properties of (R θy ) imply that the curvature of (R θ ) is bounded by α.

Chapter 4 Super-potentials theory

Consider a current S in C p . We recall a super-potential associated to S. It is an affine upper semi-continuous (u.s.c. for short) function U S defined on C k-p+1 with values in R ∪ {-∞}.

Super-potentials of currents

Assume first that S is a smooth form in C p . The general case will be obtained using a regularization of S. Consider an element R of C k-p+1 and fix a real number m. Define U S (R) := S, U R , U R a quasi-potential of mean m of R. Proof. Let U S be a smooth quasi-potential of S with mean m. Using Stokes' formula, we obtain

U S (R) = S, U R = S -ω p , U R + ω p , U R = dd c U S , U R + m = U S , dd c U R + m = U S , R -ω k-p+1 + m = U S , R .
This also shows that U S (R) is independent of the choice of U R and it depends continuously on R. It is clear that U S is affine.

We say that U S is the super-potential of mean m of S. One obtains the superpotentials of mean m by adding m -m to the super-potential of mean m. We will see latter that the following lemma holds also for an arbitrary current S in C p smooth or not, see Corollary 4.1.0.7 below. Lemma 4.1.0.2. There is a constant c ≥ 0 independent of S such that if U S is the super-potential of mean m of S, then U S ≤ m + c everywhere.

Proof. Without loss of generality we can assume m = 0. Let U R be the Green quasi-potential of R which is a negative current and m the mean of U R . Then, U R := U R -m ω k-p is a quasi-potential of mean 0 of R. By Lemma 4.1.0.1, since U R is negative and S is positive, we have

U S (R) = S, U R = S, U R -m ≤ -m .
We have seen in Remark 3.3.0.4 that |m | is bounded by a constant independent of S. This implies the result.

As we have seen in the last paragraph, the convex set C k-p+1 can be considered as an infinite dimensional space admitting "complex subvarieties" of finite dimension. With this point of view, we can consider U S as a quasi-psh function on C k-p+1 . More precisely, we will show that the restriction of U S to a special structural variety is a quasi-psh function, see Proposition 4.2.0.1 below.

We now extend the definition of U S to an arbitrary current S in C p . For R smooth, define U S (R) as in (4.1.1) with U R smooth. Observe that U S (R) depends continuously on S. We can show as in Lemma 4.1.0.1 that the definition is independent of the choice of U R . We will extend U S to a function on C k-p+1 with values in R ∪ {-∞}. The reader can check that for p = 1 we will obtain the same super-potentials introduced in Paragraph 3.2.

Let (R θ ) be the special structural disc in C k-p+1 constructed in Paragraphs 3.1 and 3.5 and let α be as in Lemma 3.5.0.3. Recall that R θ is smooth for θ = 0. Lemma 4.1.0.3. The function u(θ) := U S (R θ ) defined on ∆ * can be extended as a quasi-subharmonic function on ∆ such that dd c u ≥ -α.

Proof. Proposition 3.1.0.6 implies that u is continuous on ∆ * . Lemma 4.1.0.2 holds for S singular and R smooth. So, u is bounded from above. Let R be the (k -p + 1, k -p + 1)-current in ∆ × P k associated to (R θ ) and let π ∆ , π be as in Paragraph 3.5. Observe that R is smooth on ∆ * × P k . If U S is a quasi-potential of mean m of S, then by definition of U S we have

u = (π ∆ ) * R ∧ π * (U S )
in the sense of currents on ∆ * . It follows that

dd c u = (π ∆ ) * R ∧ π * (dd c U S ) ≥ -(π ∆ ) * R ∧ π * (ω p ) ≥ -α.
If v is a smooth function such that dd c v = α, then u + v is subharmonic on ∆ * . Since u is bounded from above, u + v can be extended to a subharmonic function. The lemma follows. Observe that if R is a smooth form, then u(θ) is defined and is a continuous function on ∆. It is quasi-subharmonic and satisfies dd c u ≥ -α.

Recall that S θ is defined as in Paragraphs 3.1 and 3.5 for S instead of R. By Lemma 3.1.0.5 and Proposition 3.1.0.6, S θ is smooth and converges to S when θ tends to 0. Proposition 4.1.0.4. Let U S θ denote the super-potential of mean m of S θ . Then, U S θ (R) converge to u(0) when θ → 0. In particular, if R is a smooth form, then U S θ (R) converge to U S (R).

Proof. When R is smooth, we have u(0) = U S (R). So, we deduce easily the last assertion from the first one. By Lemma 4.1.0.3, there is a constant A > 0 independent of R and S such that u(θ)+A|θ| 2 is subharmonic. Since this function is radial (recall here that ρ is radial, see Introduction), it decreases to u(0) when |θ| decreases to 0. Therefore, the proposition is deduced from Lemma 4.1.0.5 below.

Lemma 4.1.0.5. There is a constant c > 0 independent of R and S such that

|U S θ (R) -U S (R θ )| = |U S θ (R) -u(θ)| ≤ c|θ| for θ ∈ ∆ * .
Proof. Since R can be approximated by smooth forms in C k-p+1 , we can assume R smooth. Then, we can also assume S smooth. Indeed, the following estimates are uniform on R and S. Let U S be a smooth quasi-potential of mean m of S with bounded mass. Define U θy := (τ θy ) * U S . We have

U S (R θ ) = y U S , (τ θy ) * R dρ(y) = y U θy , R dρ(y).
As in Lemma 3.3.0.11, we show that there is a quasi-potential U θy of mean m of (τ θy ) * (S) such that U θy -U θy C 2 |θ|. We have

U S θ (R) = y U θy , R dρ(y).
The estimate on U θy -U θy implies that

|U S θ (R) -U S (R θ )| = y U θy -U θy , R dρ(y)
|θ|.

The proof is complete. 

U n (R) -U n+1 (R) ≥ U Sn (R) -U S n+1 (R) + A(|θ n | 2 -|θ n+1 | 2 ) + 2c|θ n | ≥ u(θ n ) + A|θ n | 2 -u(θ n+1 ) + A|θ n+1 | 2 .
We have seen that u(θ) + A|θ| 2 is radial subharmonic and decreases to u(0) when |θ| decreases to 0. Hence, (U n ) is decreasing. This implies the first assertion of the proposition.

For the second assertion, we show that u n (0) converge to u(0). Observe that by definition, U n converge to U S on smooth forms R in C k-p+1 . Define u n (θ) := U n (R θ ). Hence, u n converge to u pointwise on ∆ * . On the other hand, Lemma 4.1.0.3 implies that (u n + A|θ| 2 ) is a decreasing sequence of subharmonic functions for A large enough. Hence, it converges pointwise to a subharmonic function. We deduce that u n (0) converge to u(0). This completes the proof.

Corollary 4.1.0.7. U S can be extended in a unique way to an affine u.s.c function on C k-p+1 with values in R ∪ {-∞}, also denoted by U S , such that

U S (R) = lim θ→0 U S θ (R) = lim θ→0 U S (R θ ).
In particular, we have

U S (R) = lim sup R →R U S (R ) with R smooth.
Moreover, if c is the constant in Lemma 4.1.0.2, then U S ≤ m + c, independently of S.

Proof. Proposition 4.1.0.6 implies that the decreasing limit of U Sn is an extension of U S . Denote also by U S this extension. Since U Sn are affine and continuous, U S is affine and u.s.c. with values in R ∪ {-∞}. In particular, we have 

U S (R) ≥ lim sup R →R U S (R ) with R smooth.
U S (R) = u(0) = lim θ→0 u(θ) = lim θ→0 U S (R θ ) = lim θ→0 U S θ (R).
The second limit is bounded above by lim sup

R →R U S (R ) with R smooth. It follows that U S (R) = lim sup R →R U S (R ) with R smooth.
The uniqueness of the extension of U S is clear. The inequality U S ≤ m + c is a consequence of Lemma 4.1.0.2.

Definition 4.1.0.8. We call U S the super-potential of mean m of S.

It is clear that if U S is the super-potential of mean m of S, then the superpotential of mean m of S is equal to U S + m -m. The following result applied to I = ∅, shows that the super-potentials determine the currents. Proposition 4.1.0.9. Let I be a compact subset in P k with (2k-2p)-dimensional Hausdorff measure 0. Let S, S be currents in C p and U S , U S be super-potentials of S, S . If U S = U S on smooth forms in C k-p+1 with compact support in P k \ I, then S = S .

Proof. If R is a current in C k-p+1 with compact support in P k \ I, then R θ has compact support in P k \ I for θ small enough. On the other hand, since R θ is smooth, we have

U S (R) = lim θ→0 U S (R θ ) = lim θ→0 U S (R θ ) = U S (R).
Hence, U S = U S on every current R with compact support in P k \ I. The hypothesis on the Hausdorff measure of I implies that a generic projective subspace P of dimension p -1 does not intersect I. We can write ω k-p+1 as an average of currents [P ]. Since U S = U S at [P ] and since U S and U S are affine, they are equal at ω k-p+1 . Hence, U S and U S have the same mean. We can assume that this mean is 0.

If K is compact in P k \ I, using an average of [P ], we can construct a smooth form R 1 in C k-p+1 with compact support in P k \ I which is strictly positive on K.

We show that S = S on K. Let Φ be a smooth (k -p, k -p)-form with compact support on K. If c > 0 is a constant large enough, cR 1 + dd c Φ is a positive closed form of mass c since it is cohomologous to cR 1 . We can write cR

1 + dd c Φ = cR 2 with R 2 ∈ C k-p+1 . We have U S (R 1 ) = U S (R 1 ) and U S (R 2 ) = U S (R 2 ). If U S is a quasi-potential of mean 0 of S, we have S, Φ = S -ω p , Φ + ω p , Φ = dd c U S , Φ + ω p , Φ = U S , dd c Φ + ω p , Φ = U S , cR 2 -cR 1 + ω p , Φ = cU S (R 2 ) -cU S (R 1 ) + ω p , Φ .
The current S satisfies the same identity. We deduce that S, Φ = S , Φ .

Hence, S = S on K. It follows that S = S on P k \ I. The hypothesis on the Hausdorff measure of I implies that S and S have no mass on I [START_REF] Harvey | Extending analytic objects[END_REF]. Therefore, S = S on P k .

Properties

The following proposition extends Lemma 4.1.0.3. It shows that in some sense super-potentials can be considered as quasi-psh functions on C k-p+1 . In particular, they inherit the compactness property of C p .

Proposition 4.2.0.1. Let (R x ) x∈X be an arbitrary special structural variety in C k-p+1 and α be the associated curvature. Then, either U S (R x ) = -∞ for every x ∈ X or x → U S (R x ) is a quasi-psh function on X such that dd c U S (R x ) ≥ -α.

Proof. By Proposition 4.1.0.6, it is enough to consider the case where S is smooth.

The proof is the same as in Lemma 4.1.0.3. Let R, π X and π be as in Paragraph 3.4. Then, x → U S (R x ) is continuous and we have

U S (R x ) = (π X ) * (R ∧ π * (U S ))
which implies that

dd c U S (R x ) = (π X ) * R ∧ π * (dd c U S ) ≥ -(π X ) * R ∧ π * (ω p ) = -α.
This completes the proof.

The following result is the analogue of the classical Hartogs' lemma for psh functions, see also Proposition 3.2.0.3. Proposition 4.2.0.2. Let (S n ) be a sequence in C p converging to a current S. Let U Sn (resp. U S ) be the super-potential of mean m n (resp. m) of S n (resp. S). Assume that m n converge to m. Let U be a continuous function on a compact subset K of C k-p+1 such that U S < U on K. Then, for n large enough we have U Sn < U on K. In particular, we have lim sup U Sn ≤ U S on C k-p+1 .

Proof. Recall that U S is u.s.c., U is continuous and C k-p+1 is compact. The proposition can be applied to K = C k-p+1 . Assume there are currents R n in K such that U Sn (R n ) ≥ U (R n ). Extracting a subsequence allows to assume that R n converge to a current R in K. Let (R n,θ ) θ∈∆ be the special structural disc associated to R n constructed as in Paragraphs 3.1 and 3.5. Define u n (θ) := U Sn (R n,θ ). Proposition 4.2.0.1 implies that u n is quasi-subharmonic and dd c u n ≥ -α with α as in Lemma 3.5.0.3. The first assertion of Proposition 3.1.0.6 implies that u n converge pointwise to u(θ) := U S (R θ ) on ∆ * . It follows from the Hartogs' lemma for subharmonic functions that

U S (R) = u(0) ≥ lim sup n→∞ u n (0) = lim sup n→∞ U Sn (R n ) ≥ U (R).
This is a contradiction. The proof of the first assertion is complete. Taking K = {R} and U (R) = U S (R) + gives the second assertion. Proof. We have m n = U Sn (ω k-p+1 ). Hence, m n converge to m := U (ω k-p+1 ). Let S and S be limit currents of (S n ). From the definition of super-potential, we deduce that the super-potentials of mean m of S and of S are equal to U on smooth forms in C k-p+1 . By Proposition 4.1.0.9, S = S . Hence, (S n ) is convergent.

We now give a compactness property of super-potentials. Proposition 4.2.0.6. Let U Sn be a super-potential of a current S n in C p . Assume that (U Sn ) is bounded from above and does not converge uniformly to -∞. Then, there is an increasing sequence (n i ) of integers such that S n i converge to a current S and U Sn i converge on smooth forms in C k-p+1 to a super-potential U S of S. Moreover, we have lim sup

U Sn i ≤ U S .
Proof. By the last assertion in Corollary 4.1.0.7, since (U Sn ) is bounded from above and does not converge to -∞, their means m n are bounded from above uniformly on n and do not converge to -∞. Extracting a subsequence allows to assume that S n converge to a current S and m n converge to a finite value m. So, we can assume m n = m = 0. Let U S denote the super-potential of mean 0 of S. By definition of U S (R) for R smooth, we have U Sn (R) → U S (R). The inequality lim sup U Sn i ≤ U S is a consequence of Proposition 4.2.0.2. Corollary 4.2.0.7. Let U Sn be super-potentials of mean m n of S n . Assume that U Sn decrease to a function U which is not identically -∞. Then, S n converge to a current S, m n converge to a constant m and U is the super-potential of mean m of S.

Proof. By Lemma 4.2.0.5, S n converge to a current S and m n converge to a constant m. Define u(θ) := U (R θ ) and u n (θ) := U Sn (R θ ). As in Proposition 4.1.0.6, the functions u n are quasi-subharmonic and decrease to u. Hence, u is quasi-subharmonic. On the other hand, since R θ is smooth for θ = 0, we have u(θ) = U S (R θ ) for θ = 0 where U S is the super-potential of mean m of S. The function θ → U S (R θ ) is also quasi-subharmonic on ∆. So, we have necessarily U S (R) = u(0) = U (R). This holds for every R in C k-p+1 . Therefore, U is the super-potential of mean m of S. Corollary 4.2.0.8. Let U S and U R be super-potentials of the same mean m of S and R respectively. Then, U S (R) = U R (S).

Proof. We have seen in the proof of Lemma 4.1.0.1 that the corollary holds for S smooth. Let S n be smooth forms as in Proposition 4.1.0.6. The upper semicontinuity implies

U S (R) = lim n→∞ U Sn (R) = lim n→∞ U R (S n ) ≤ U R (S).
In the same way, we prove that U R (S) ≤ U S (R). Lemma 4.2.0.9. Let S, S be currents in C p and let U S , U S be their superpotentials of mean m. Assume there is a positive (p -1, p -1)-current U such that dd c U = S -S. Then, U S + U ≥ U S . In particular, if S has bounded super-potentials, then S has bounded super-potentials.

If U R is a super-potential of a current R ∈ C k-p+1 , then U R (S ) + U ≥ U R (S).
Proof. Let U S be a quasi-potential of mean m of S. Then, U S + U is a quasipotential of mean m + U of S . For R smooth, we have

U S (R) + U = U S + U, R ≥ U S , R = U S (R).
Then, Corollaries 4.1.0.7 and 4.2.0.8 imply the result.

We have the following important result which can be considered as a version of Lemma 3.2.0.1 for super-potentials. We can apply it to K = W = P k . Proposition 4.2.0.10. Let W ⊂ P k be an open set and K ⊂ W be a compact set. Let S be a current in C p with support in K and R be a current in C k-p+1 . Assume that the restriction of R to W is a bounded form. Then, the super-potential U S of mean 0 of S satisfies

|U S (R)| ≤ c 1 + log + R ∞,W
where c > 0 is a constant independent of S, R and log + := max(0, log).

Proof. Recall that u(θ) := U S (R θ ) is a quasi-subharmonic function on ∆ such that dd c u ≥ -α. Proposition 3.1.0.6 shows that the family of these functions u for (S, R) ∈ C p ×C k-p+1 is compact. So, Lemma 3.2.0.1 implies that e -Au L 1 (∆ 1/2 ) ≤ c for some positive constants c and A.

Suppose the estimate in the lemma is not valid. Recall that U S is bounded from above by a constant independent of S. Then, for > 0 arbitrary small there is an R such that M := log R ∞,W 0 and U S (R) ≤ -2M/ . It follows that u(0) = U S (R) ≤ -2M/ . We will show that u(θ) ≤ -M/ on a disc of radius e -M which contradicts the above estimate on e -Au for small enough.

Let U be the Green quasi-potential of R and m its mean. The mass of U is bounded by a constant independent of R. By Lemma 3.3.0.11, there is a quasi-potential U θy of R θy of mean m such that

U θy -(τ θy ) * (U ) ∞ |θ|.
We deduce that

|U S (R θ ) -U S (R)| = y S, U θy -U dρ(y) |θ| + y S, (τ θy ) * (U ) -U dρ(y) .
Because θ is small, τ -1 θy (K) ⊂ W for some fixed open set W W . Since τ θy is close to the identity, using Lemma 3.3.0.5, we obtain

(τ θy ) * (U ) -U ∞,K |θ| U C 1 (W ) |θ|e M . Therefore, |u(θ) -u(0)| = |U S (R θ ) -U S (R)| |θ|e M .
This implies the above claim and completes the proof.

Regular Currents

The PB or PC currents are introduced in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF] in the study of holomorphic dynamical systems. They correspond to currents with bounded or continuous super-potentials. We recall first the definition of the space DSH k-p (P k ) of dsh currents. A real (k -p, k -p)-current Φ of finite mass is dsh if there are positive closed currents R ± of bidegree (k -p + 1, k -p + 1) such that 1 dd c Φ = R + -R -. Define Φ DSH := Φ + min R ± with R ± as above. We consider a weak topology on DSH 

(R n ) ≤ -2 n . Define R := 2 -n R n .
Since U S is affine and negative, we have U S (R) ≤ n≤N 2 -n U S (R n ) for every N . Hence, U S (R) = -∞. This is a contradiction. So, U S is bounded. Note that this property is false for quasi-psh functions on P k .

Assume that the super-potential U S of mean 0 of S satisfies |U S | < M for some constant M > 0. Consider a real smooth form Φ of bidegree (k -p, k -p) and a constant A ≥ Φ DSH . We will prove that | S, Φ | ≤ A(1 + 2C + 2M ) with C > 0 independent of S. This implies that S is PB. Since we can approximate S in the Hartogs' sense by smooth forms, it is enough to prove this inequality for S smooth. Write dd c Φ = A(R + -R -) with R ± = 1. By Remark 3.3.0.4, there are quasi-potentials U ± of mean 0 of R ± such that U ± DSH ≤ C where C > 0 is a constant. Define Ψ := Φ -AU + + AU -. We have dd c Ψ = 0 and

Ψ ≤ Φ + A U + + A U -≤ A(1 + 2C).
Since dd c Ψ = 0 and since S is cohomologous to ω p , we have

| S, Ψ | = | ω p , Ψ | ≤ A(1 + 2C). It follows that | S, Φ | ≤ | S, Ψ | + A| S, U + | + A| S, U -| = | S, Ψ | + A|U S (R + )| + A|U S (R -)| ≤ A(1 + 2C + 2M ).
1 It is also useful to consider the space generated by such currents Φ which are negative. This is necessary in order to defined the pull-back of DSH currents by holomorphic maps.

Hence, S is PB.

Conversely, if S is PB, we show that U S is bounded. Consider a smooth form R in C k-p+1 . Let U R be a quasi-potential of R of mean 0 such that U R DSH ≤ C. We have U S (R) = S, U R . Since S is PB, U S (R) is bounded by a constant independent of R. This implies that U S is bounded.

It is clear that if S is PC, S, U R for R smooth can be extended to a continuous function on C k-p+1 . Indeed, we can choose U R depending continuously on R with respect to the weak topology in DSH k-p (P k ), see Theorem 3.3.0.1 and Remark 3.3.0.4. This implies that U S is continuous. Conversely, if U S is continuous, we show that S is PC. If Φ and R ± are smooth as above, we obtain

S, Φ = ω p , Ψ + AU S (R + ) -AU S (R -).
The right hand side depends on Ψ and on AR + -AR -= dd c Φ but not on the choice of A, R ± . Hence, since Ψ and dd c Φ depend continuously on Φ, we can extend S to a continuous linear form on DSH k-p (P k ). The continuity is with respect to the weak topology on DSH k-p (P k ). This completes the proof. Proof. Let r be the positive number such that 1/r+1/s = 1. Then, r < k/(k-1). The Green quasi-potential U R of R is a form of class L r . Moreover, with respect to the L r topology, it depends continuously on R, see Theorem 3.3.0.1. The mean m R of U R depends continuously on R. On the other hand, the super-potential of mean 0 of S satisfies

U S (R) = S, U R -m R
for R smooth. The right hand side is defined for every R and depends continuously on R. Therefore, U R is continuous.

Remark 4.3.0.3. U R is in the Sobolev space W 1,r with r < 2k/(2k -1). So, we can assume S ∈ W -1,s with 1/r + 1/s = 1, and still U S is continuous. Proof. Assume that S has bounded super-potentials. Let E ⊂ P k be a pluripolar set and u be a quasi-psh function such that dd c u ≥ -ω and

E ⊂ {u = -∞}. Define R := (dd c u + ω) ∧ ω k-p . This is a current in C k-p+1 .
Let (u n ) be a sequence of smooth functions decreasing to u and such that

dd c u n ≥ -ω. Define R n := (dd c u n + ω) ∧ ω k-p . Observe that u n ω k-p are quasi- potentials of mean m n := u n ω k of R n . If U S is the super-potential of mean m := uω k of S, then S, u n ω k-p decrease to U S (R). Hence, U S (R) = S, uω k-p
. Since S has bounded super-potentials, S, uω k-p is finite. It follows that S has no mass on {u = -∞}. Proposition 4.3.0.6. Assume that S admits a super-potential which is α-Hölder continuous with respect to the distance dist 1 on C k-p+1 for some exponent α ≤ 1. Let σ S denote the trace measure of S. There is a constant c > 0 such that if B r is a ball of radius r, then σ S (B r ) ≤ cr 2k-2p+α . In particular, S has no mass on Borel subsets of P k with Hausdorff dimension less than 2(k -p) + α.

Using Lemma 3.1.0.2, we deduce analogous results for a general distance dist β on C k-p+1 . Note that the last assertion in the proposition is deduced from the first one and some classical arguments. In order to prove the first assertion It is enough to consider r small. So, we can assume that B r is a ball of center 0 in an affine chart

C k ⊂ P k . It is sufficient to show that ∆ k r S ∧ ω k-p r 2k-2p+α . Let z denote the canonical coordinates in C k .
Lemma 4.3.0.7. There are positive constants A, c independent of r, a positive

(k -p, k -p)-current Φ and two currents R ± in C k-p+1 such that Φ ≥ (dd c |z| 2 ) k-p on ∆ k r , Φ ≤ Ar 2k-2p+2 , dd c Φ = cr 2k-2p (R + -R -) and dist 1 (R + , R -) ≤ Ar.
Proof. Observe that (dd c |z| 2 ) k-p is a combination of the forms

(idz i 1 ∧ dz i 1 ) ∧ . . . ∧ (idz i k-p ∧ dz i k-p ).
Without loss of generality, one only has to construct a Φ, R ± satisfying the last three properties in the lemma and the inequality

Φ ≥ (idz 1 ∧ dz 1 ) ∧ . . . ∧ (idz k-p ∧ dz k-p ) on ∆ k r .
Taking a combination of such currents gives currents satisfying the lemma. Let χ be a smooth cut-off function with compact support in ∆ k

2 , equal to 1 on ∆ k 1 . Let v(z k-p+1 ) be a smooth function with support in {|z k-p+1 | < 2r} such that 0 ≤ v ≤ 1, v C 1 r -1 , v C 2 r -2 and v = 1 on {|z k-p+1 | ≤ r}. Let π : C k → C k-p and π : C k → C k-p+1 denote the canonical projections on the first factors of C k . Consider the restriction Θ of idz 1 ∧ dz 1 ∧ . . . ∧ idz k-p ∧ dz k-p to ∆ k-p r and define Φ := v(z k-p+1 )χ(z)π * (Θ).
Then, Φ satisfies the desired lower estimate on ∆ k r . We have to check the last three properties in the lemma.

Since π can be extended to a rational map from P k to P k-p , π * (Θ) can be extended to a positive closed current on P k of mass Θ r 2k-2p . Observe also that Cauchy-Schwarz's inequality implies that

dd c [v(z k-p+1 )χ(z)] r -2 idz k-p+1 ∧ dz k-p+1 + ω.

Denote by Θ the restriction of idz

1 ∧ dz 1 ∧ . . . ∧ idz k-p+1 ∧ dz k-p+1 to ∆ k-p r × ∆ 2r and let Ω -:= λπ * (r -2 Θ ) + λω ∧ π * (Θ) with λ > 0 large enough independent of r. Then, Ω + := Ω -+ dd c Φ is positive and closed. We have dd c Φ = Ω + -Ω -.
The currents Ω ± can be extended to positive closed currents on P k . They have the same mass since they are cohomologous. This mass is of order r 2k-2p and we denote it by cr 2k-2p . We obtain

dd c Φ = cr 2k-2p (R + -R -) with R ± := c -1 r 2p-2k Ω ± . The currents R ± are in C k-p+1 . We want to bound dist 1 (R, R ). For any test form Ψ with Ψ C 1 ≤ 1, we have | R -R , Ψ | r 2p-2k | dd c Φ, Ψ | = r 2p-2k | d c Φ, dΨ | r 2p-2k d c Φ .
On the other hand, we deduce from the definition of Φ that

d c Φ r 2k-2p d c v ∆ 2r r 2k-2p+1 .
This implies the result.

End of the proof of Proposition 4.3.0.6. Let U S be a super-potential of S.

Since U S is α-Hölder continuous, we deduce from the previous lemma that

∆ k r S ∧ ω k-p ≤ S, Φ = ω p , Φ + dd c U S , Φ = ω p , Φ + U S , dd c Φ ω p , Φ + r 2k-2p (U S (R + ) -U S (R -)) r 2k-2p+α .
This is the required estimate.

Capacity and super-polar sets

We will define a notion of capacity for Borel subsets E of C k-p+1 . This capacity does not describe how "big" is the set E but rather how singular are the currents in E. The definition mimicks the notion of capacity that was introduced in [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF] for compact Kähler manifolds. Let

P p := U S super-potential of S ∈ C p , max C k-p+1 U S = 0 .
Definition 4.4.0.1. We define the capacity of E to be the following quantity

cap(E) := inf U ∈Pp exp sup R∈E U (R) .
It is clear that the capacity is increasing as a set function. Propositions 4.1.0.6 and 4.2.0.2 imply that when E is compact, in the previous definition we obtain the same capacity if we only consider super-potentials of smooth forms. We also have cap(C k-p+1 ) = 1 and it follows that the set of smooth forms in C k-p+1 has capacity 1. Dense subsets of smooth forms in C k-p+1 have also capacity 1. So, there is a countable subset of C k-p+1 with capacity 1. Definition 4.4.0.2. We say that E is super-polar or complete super-polar in

C k-p+1 if there is a super-potential U S of a current S in C p such that E ⊂ {U S = -∞} or E = {U S = -∞} respectively.
Let E be the barycentric hull of E, i.e. the set of currents Rdν(R) where ν is a probability measure on

C k-p+1 such that ν(E) = 1. Denote by E the set of currents cR + (1 -c)R with R ∈ E, R ∈ C k-p+1 and 0 < c ≤ 1.
Then, E and E are convex. Proposition 4.4.0.3. The following properties are equivalent

1. E is super-polar in C k-p+1 . 2. E is super-polar in C k-p+1 . 3. E is super-polar in C k-p+1 . 4. cap(E) = 0.
Moreover, a countable union of super-polar sets is super-polar, complete superpolar sets are convex and cap(E) = cap( E).

Proof. Since every function U in P p is affine and negative, if U is equal to -∞ on E, it is also equal to -∞ on E and E. Therefore, the first three properties are equivalent. We also deduce that if E is complete super-polar, then E is convex and E = E. Moreover, for any U we have sup

E U = sup E U . This implies that cap(E) = cap( E).
It is clear that if E is super-polar, then cap(E) = 0. Assume that cap(E) = 0. We show that E is super-polar. There are super-potentials U Sn of S n such that max U Sn = 0 and U Sn ≤ -2 n on E. Corollary 4.1.0.7 implies that the means of U Sn are bounded. This and Corollary 4.2.0.

7 imply that U = n≥1 2 -n U Sn is a super-potential of n≥1 2 -n S n . It is equal to -∞ on E.
Hence, E is superpolar. A similar argument implies that a countable union of super-polar sets is super-polar. Proposition 4.4.0.4. Let E ⊂ C k-p+1 be a compact set. Then, E has positive capacity if and only if its barycentric hull contains a current with bounded superpotentials. Moreover, for every > 0 there is a current R in the barycentric hull E of E such that its super-potential of mean 0 satisfies

U R ≥ log cap(E) -on C p .
Proof. If R is a current with bounded super-potentials, then by symetry U (R) = -∞ for every U ∈ P p . Proposition 4.4.0.3 implies that {R} is not superpolar. Hence, if E contains a current with bounded super-potentials, E has positive capacity. Proposition 4.4.0.3 also implies that E has positive capacity. Now, assume that E has positive capacity. We show that E contains a current with bounded super-potentials. In what follows, the symbol U denotes a superpotential of mean 0. We have

inf S∈Cp sup R∈ E U S (R) ≥ M := log cap(E).
The function U S (R) is affine in both variables R and S. Hence, for every convex compact set C of continuous forms in C p , the minimax theorem [START_REF] Sion | On general minimax theorems[END_REF] implies

sup R∈ E inf S∈C U S (R) = inf S∈C sup R∈ E U S (R) ≥ M.
Observe that the family of all the convex compact sets C is ordered by inclusion and if C , C are such two sets, we have max

(C , C ) = C ∪ C . Define E C := R ∈ E, U S (R) ≥ M - for every S ∈ C .

So, (E C

) is an ordered family of compact sets in E and we can apply Zorn's lemma. Take an element R in a minimal set C 0 . Then, U R (S) = U S (R) ≥ M -for every continuous S, if not we consider C 0 ∪ {S}. This completes the proof.

Consider the set of the super-potentials U of mean 0 of currents in C p and define c k,p := sup Cp max U . Corollary 4.1.0.7 implies that this constant is finite.

Corollary 4.4.0.5. For every current R in C k-p+1 , if U R is the super-potential of mean 0 of R, then log cap(R) ≥ inf Cp -c k,p + U R .
Proof. Let U S be the super-potential of mean 0 of S. By definition of capacity and of c k,p , we have

log cap(R) ≥ inf S∈Cp U S (R) -c k,p .
Corollary 4.2.0.8 implies the result.

Corollary 4.4.0.6. For every r > k, there is a constant

c > 0 such that if R is a form in C k-p+1 with coefficients in L r , then log cap(R) ≥ -c k,p -c R L r .
Proof. Let s be the positive number such that 1/r+1/s = 1. Then, s < k/(k-1).

Let U S be the Green quasi-potential of S. This is a negative form with L s norm bounded uniformly on S. Hence

U R (S) ≥ U S , R ≥ -c R L r
for some constant c > 0. We obtain the result from Corollary 4.4.0.5.

The following result is a consequence of Proposition 4.2.0.10.

Corollary 4.4.0.7. There are constants c > 0 and λ > 0 such that for every bounded form

R in C k-p+1 cap(R) ≥ c R -λ ∞ .
Chapter 5

Theory of intersection

In this chapter, we develop the theory of intersection for positive closed currents of arbitrary bidegree. The method can be extended to currents on compact Kähler manifolds or in some local situation, see also [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF]. Here, for simplicity, we only consider currents in the projective space.

Super-functions

Let p be a positive integer such that 1

≤ p ≤ k. Define a universal function U p on C p × C k-p+1 by U p (S, R) := U S (R) = U R (S)
where U S and U R are super-potentials of mean 0 of S and R, see Corollary 4.2.0.8. We have seen that when S is fixed U p is quasi-psh on special varieties of C k-p+1 and when R is fixed, it is quasi-psh on special varieties of C p .

Lemma 5.1.0.1. The function

U p is is u.s.c. on C p × C k-p+1 .
Proof. Let S n be currents in C p converging to S and R n in C k-p+1 converging to R. Let U Sn denote the super-potential of mean 0 of S n . Choose U continuous with U S < U . By Proposition 4.2.0.2, for n large enough, U Sn < U and hence

U Sn (R n ) < U (R n ). We then get lim sup n→∞ U Sn (R n ) ≤ U (R).
Since U is arbitrary, we deduce that

lim sup n→∞ U Sn (R n ) ≤ U S (R).
This proves the lemma.

Lemma 5.1.0.2. Let S , R be currents in C p and C k-p+1 , and U S , U R be their super-potentials of mean 0. Assume there are constants a, b such that

U S + a ≥ U S and U R + b ≥ U R . Then, U p (S , R ) ≥ U p (S, R) -a -b.
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Proof. We have

U p (S, R ) = U R (S) ≥ U R (S) -b = U p (S, R) -b and U p (S , R ) = U S (R ) ≥ U S (R ) -a = U p (S, R ) -a.
This implies the result.

Lemma 5.1.0.3. Let (S n ) n≥0 and (R n ) n≥0 be sequences of currents in C p and C k-p+1 H-converging to S and R respectively. Then, U p (S n , R n ) converge to U p (S, R). Moreover, if U p (S, R) is finite, then U p (S n , R n ) is finite for every n.
Proof. Let U Sn and U Rn be the super-potentials of mean 0 of S n and R n . The H-convergence implies the existence of constants a n and b n with limit 0, such that

U Sn + a n ≥ U S and U Rn + b n ≥ U R . It follows from Lemma 5.1.0.1 that lim sup n→∞ U p (S n , R n ) ≤ U p (S, R).
It is sufficient to prove that

U p (S n , R n ) ≥ U p (S, R) -a n -b n .
This is a consequence of Lemma 5.1.0.2.

Intersection

Let p i , 1 ≤ i ≤ l, be positive integers such that p 1 + • • • + p l ≤ k. Let R i be currents in C p i with 1 ≤ i ≤ l.
We want to define the wedge-product R 1 ∧. . .∧R l , as a current. In general, one cannot define this product in a consistent way; for example, when R 1 and R 2 are currents of integration on the same projective line of P 2 . We will define the intersection of the R i when they satisfy a quite natural condition. Consider first the case of two currents, i.e. l = 2.

Proposition 5.2.0.1. The following conditions are equivalent and are symmetric on R 1 and R 2 :

1. U p 1 (R 1 , R 2 ∧ Ω) is finite for at least one smooth form Ω in C k-p 1 -p 2 +1 . 2. U p 1 (R 1 , R 2 ∧ Ω) is finite for every smooth form Ω in C k-p 1 -p 2 +1 .
3. There are sequences (R i,n ) n≥0 in C p i converging to R i and a smooth form

Ω in C k-p 1 -p 2 +1 such that U p 1 (R 1,n , R 2,n ∧ Ω) is bounded.
Proof. It is clear that the second condition implies the third one: we can choose R i,n = R i ; and the third condition implies the first one because U p 1 is u.s.c. Assume the first condition. We show that

U p 1 (R 1 , R 2 ∧ Ω ) is finite for every smooth form Ω in C k-p 1 -p 2 +1 . Write Ω -Ω = dd c U with U smooth. Adding to U a large positive closed form, we can assume that U is positive. If V is a quasi-potential of R 2 ∧ Ω, then the quasi-potential V + R 2 ∧ U of R 2 ∧ Ω is larger than V . Lemmas 4.2.0.9 and 5.1.0.2 imply that U p 1 (R 1 , R 2 ∧ Ω ) is finite.
Therefore, the three previous conditions are equivalent. It remains to prove that the first condition is symmetric. We can assume

Ω = ω k-p 1 -p 2 +1 . Consider the case where R 1 is smooth. If U 2 is a quasi-potential of mean 0 of R 2 , then U 2 ∧ Ω is a quasi-potential of mean 0 of R 2 ∧ Ω. We have U p 1 (R 1 , R 2 ∧ Ω) = R 1 , U 2 ∧ Ω = U 2 , R 1 ∧ Ω = U p 2 (R 2 , R 1 ∧ Ω).
Suppose now that R 1 is arbitrary. Let R 1,θ be the smooth forms constructed in Paragraph 3.1, starting with the current R 1 , we have

U p 1 (R 1 , R 2 ∧ Ω) = lim θ→0 U p 1 (R 1,θ , R 2 ∧ Ω) = lim θ→0 U p 2 (R 2 , R 1,θ ∧ Ω) ≤ U p 2 (R 2 , R 1 ∧ Ω) since U p 2 is u.s.c. In the same way, we obtain U p 2 (R 2 , R 1 ∧ Ω) ≤ U p 1 (R 1 , R 2 ∧ Ω). Hence, U p 2 (R 2 , R 1 ∧ Ω) = U p 1 (R 1 , R 2 ∧ Ω).
This implies the symmetry of the first condition in the proposition. Definition 5.2.0.2. We say that R 1 and R 2 are wedgeable if they satisfy the conditions in Proposition 5.2.0.1.

Note that for R 1 fixed, the set of R 2 such that R 1 and R 2 are not wedgeable is a super-polar set in C p 2 . Indeed, this is the set of

R 2 such that U (R 2 ) = -∞ where U is a super-potential of R 1 ∧ ω k-p 1 -p 2 +1 . So, R 1 is wedgeable for every R 2 if and only if R 1 ∧ ω k-p 1 -p 2 +1
has bounded super-potentials. Proposition 5.2.0.3. Let R i and R i be currents in C p i . Assume that R 1 and R 2 are wedgeable. Then, R 1 and R 2 are wedgeable in the following cases:

1. R i is more diffuse than R i for i = 1, 2. 2. There is a constant c > 0 such that R i ≤ cR i for i = 1, 2.
Proof. The first assertion is a consequence of Lemma 5.1.0.2. For the second one, it is enough to show that R 1 and R 2 are wedgeable. Then, in the same way, R 1 and R 2 are wedgeable. Write

R 2 = λR 2 +(1-λ)R 2 with 0 < λ ≤ 1 and R 2 ∈ C p 2 .
We obtain from the fact that U p 1 is affine that

λU p 1 (R 1 , R 2 ∧ ω k-p 1 -p 2 +1 ) = U p 1 (R 1 , R 2 ∧ ω k-p 1 -p 2 +1 ) -(1 -λ)U p 1 (R 1 , R 2 ∧ ω k-p 1 -p 2 +1 ) = -∞ since U p 1 (R 1 , R 2 ∧ ω k-p 1 -p 2 +1
) = -∞ and U p 1 is bounded from above. This proves the property.

Assume that R 1 and R 2 are wedgeable. We define the wedge-product (or the intersection) R 1 ∧R 2 . This will be a current of bidegree (p 1 +p 2 , p 1 +p 2 ). For every smooth real form Φ of bidegree (k

-p 1 -p 2 , k -p 1 -p 2 ), write dd c Φ = c(Ω + -Ω -)
where Ω ± are smooth forms in C k-p 1 -p 2 +1 and c is a positive constant. First, consider the case where

R 1 or R 2 is smooth. So, R 1 ∧ R 2 is defined. Let U 1 be a quasi-potential of mean 0 of R 1 . Choose U 1 smooth if R 1 is smooth. We have R 1 ∧ R 2 , Φ = ω p 1 ∧ R 2 , Φ + (R 1 -ω p 1 ) ∧ R 2 , Φ = R 2 , ω p 1 ∧ Φ + dd c (U 1 ∧ R 2 ), Φ = R 2 , ω p 1 ∧ Φ + U 1 ∧ R 2 , dd c Φ = R 2 , ω p 1 ∧ Φ + cU p 1 (R 1 , R 2 ∧ Ω + ) -cU p 1 (R 1 , R 2 ∧ Ω -).
We deduce that the last expression is independent of the choice of c and Ω ± . This formally justifies the following formula for wedgeable R 1 and R 2 . Define

R 1 ∧ R 2 , Φ := R 2 , ω p 1 ∧ Φ + cU p 1 (R 1 , R 2 ∧ Ω + ) -cU p 1 (R 1 , R 2 ∧ Ω -). (5.2.1)
The following theorem justifies our definition.

Theorem 5.2.0.4. Assume that R 1 and R 2 are wedgeable. Then, the right hand side of (5.2.1) is independent of the choice of c, Ω ± and depends linearly on Φ. Moreover, R 1 ∧ R 2 defines a positive closed (p 1 + p 2 , p 1 + p 2 )-current of mass 1 with support in supp(R 1 ) ∩ supp(R 2 ) which depends linearly on each R i and is symmetric with respect to the variables.

Proof. First, observe that the linear dependence of Φ and of R i are easily deduced from the properties of

U p 1 . Write dd c Φ = c( Ω + -Ω -) with c ≥ 0 and Ω ± smooth in C k-p 1 -p 2 +1 . We have cΩ + -cΩ -= c Ω + -c Ω -.
Since U p 1 is affine on each variable, we have

cU p 1 (R 1 , R 2 ∧ Ω + ) -cU p 1 (R 1 , R 2 ∧ Ω -) = cU p 1 (R 1 , R 2 ∧ Ω + ) -cU p 1 (R 1 , R 2 ∧ Ω -).
So, the right hand side of (5.2.1) does not change if we replace c, Ω ± by c, Ω ± . Let R i,θ be the currents constructed in Paragraph 3.1 starting with the currents R i ; they are smooth for θ = 0. Lemma 5.1.0.

3 implies that U p 1 (R 1,θ 1 , R 2,θ 2 ∧ Ω ± ) converge to U p 1 (R 1 , R 2 ∧ Ω ± ) when θ i → 0, see also Remarks 4.2.0.4. It follows that when θ i → 0 and (θ 1 , θ 2 ) = (0, 0), the currents R 1,θ 1 ∧ R 2,θ 2 con- verge to R 1 ∧ R 2 . Hence, R 1 ∧ R 2 is a positive closed current of mass 1. Since supp(R i,θ ) → supp(R i ), R 1 ∧ R 2 has support in supp(R 1 ) ∩ supp(R 2 ). We also have that R 1,θ 1 ∧ R 2,θ 2 = R 2,θ 2 ∧ R 1,θ 1 , hence R 1 ∧ R 2 = R 2 ∧ R 1 . Lemma 5.2.0.5. Let R i and R i be currents in C p i . Assume that R 1 and R 2 are wedgeable. If R i is more diffuse than R i for i = 1, 2, then R 1 ∧ R 2 is more diffuse than R 1 ∧ R 2 .
Proof. By Proposition 5.2.0.3, R 1 and R 2 are wedgeable. Theorem 5.2.0.

4 shows that R 1 ∧ R 2 , R 1 ∧ R 2 , R 1 ∧ R 2 and R 1 ∧ R 2 are well-defined. We show that R 1 ∧ R 2 is more diffuse than R 1 ∧ R 2 .
In the same way, we will get that R 1 ∧ R 2 is more diffuse than R 1 ∧ R 2 which will complete the proof.

The symbols U and U below denote quasi-potentials and super-potentials of mean 0. By hypothesis, there is a constant

a such that U R 1 + a ≥ U R 1 . Consider a smooth form R in C k-p 1 -p 2 +1 and choose U R smooth. Since dd c U R = R -ω k-p 1 -p 2 +1 , we deduce from (5.2.1) that U R 1 ∧R 2 (R) = R 1 ∧ R 2 , U R = R 2 , ω p 1 ∧ U R + U R 1 (R 2 ∧ R) -U R 1 (R 2 ∧ ω k-p 1 -p 2 +1 ). The same identity for R 1 ∧ R 2 and the inequality U R 1 + a ≥ U R 1 imply U R 1 ∧R 2 (R) -U R 1 ∧R 2 (R) ≥ -a -U R 1 (R 2 ∧ ω k-p 1 -p 2 +1 ) + U R 1 (R 2 ∧ ω k-p 1 -p 2 +1 ).
The last expression is finite and independent of R. Hence, using the regularization

R θ of R for an arbitrary R in C k-p 1 -p 2 +1 , we deduce that U R 1 ∧R 2 -U R 1 ∧R 2 is bounded below by a constant. So, R 1 ∧ R 2 is more diffuse than R 1 ∧ R 2 .
The following continuity result shows that the wedge-product is the right extension to currents of the wedge-product of smooth forms. Proposition 5.2.0.6. Let R 1 , R 2 be wedgeable currents as above and R i,n be currents in

C p i H-converging to R i . Then, R 1,n , R 2,n are wedgeable and R 1,n ∧R 2,n H-converge to R 1 ∧ R 2 .
Proof. Let U i,n and U i denote the super-potentials of mean 0 of R i,n and R i . Let a i,n be constants converging to 0 such that

U i,n + a i,n ≥ U i . Define n := U 1,n (R 2 ∧ ω k-p 1 -p 2 +1 ) -U 1 (R 2 ∧ ω k-p 1 -p 2 +1 ). We have n ≥ -a 1,n . Since U 1 (R 2 ∧ ω k-p 1 -p 2 +1 ) is finite, Proposition 4.2.0.2 implies that lim sup n ≤ 0. So, n → 0. Define K := {R 1,1 , R 1,2 , . . .} ∪ {R 1 } and δ n := sup S∈K |U 2,n (S ∧ ω k-p 1 -p 2 +1 ) -U 2 (S ∧ ω k-p 1 -p 2 +1 )|.
We first show that δ n → 0. Since U 2,n -U 2 ≥ -a 2,n , it is enough to prove that lim sup δ n ≤ 0 where

δ n := sup S∈K U 2,n (S ∧ ω k-p 1 -p 2 +1 ) -U 2 (S ∧ ω k-p 1 -p 2 +1 ) . Because R 1,n → R 1 , K is compact. Since U 1,m → U 1 pointwise, we have U 2 (R 1,m ∧ ω k-p 1 -p 2 +1 ) = U 1,m (R 2 ∧ ω k-p 1 -p 2 +1 ) → U 1 (R 2 ∧ ω k-p 1 -p 2 +1 ) = U 2 (R 1 ∧ ω k-p 1 -p 2 +1 ). So, U 2 , restricted to K, is continuous. Proposition 4.2.0.2 applied to U 2|K + , implies that lim sup δ n ≤ 0. Therefore, δ n → 0. Proposition 5.2.0.3 implies that R 1,n , R 2,n are wedgeable and R 1,n , R 2 are wedgeable. Let U n U n and U denote the super-potentials of mean 0 of R 1,n ∧R 2,n , R 1,n ∧ R 2 and R 1 ∧ R 2 . We obtain as in Lemma 5.2.0.5 for R smooth that U n (R) and U n (R) converge to U (R). Moreover, U n (R) -U (R) ≥ -|a 1,n | -| n | and U n (R) -U n (R) ≥ -|a 2,n | -δ n .
Hence,

U n (R) ≥ U (R) -|a 1,n | -|a 2,n | -| n | -δ n for R smooth.
Using the approximation of R by R θ , we deduce this inequality for arbitrary R. The super-potentials

U n + |a 1,n | + |a 2,n | + | n | + δ n are larger than U and converge to U . Hence, the sequence R 1,n ∧ R 2,n H-converges to R 1 ∧ R 2 .
Lemma 5.2.0.7. Let R 1 and R 2 be currents in C p i . Then, for τ ∈ Aut(P k ) outside some pluripolar set, R 1 and

τ * (R 2 ) are wedgeable. Moreover, if R 1 , R 2 are wedgeable, then R 1 ∧ τ * (R 2 ) converge to R 1 ∧ R 2
when τ → id in the fine topology on Aut(P k ), i.e. the coarsest topology for which quasi-psh functions are continuous.

Proof.

Let U R 1 be a super-potential of R 1 . Recall that U R 1 is an affine function which is finite on smooth forms R in C k-p 1 +1
. On the other hand, using an average

of τ * (R 2 ) ∧ ω k-p 1 -p 2 +1 we can obtain a smooth form R in C k-p 1 +1 . Therefore, the function τ → U R 1 τ * (R 2 ) ∧ ω k-p 1 -p 2 +1
is not identically -∞. So, it is a quasi-psh function on Aut(P k ) and is finite outside a pluripolar set. Hence, R 1 and τ * (R 2 ) are wedgeable for τ outside this pluripolar set. Assume now that R 1 and R 2 are wedgeable. Let Φ be a real smooth form of bidegree (k -p 1 -p 2 , k -p 1 -p 2 ). By (5.2.1), R 1 ∧ τ * (R 2 ), Φ can be written as a difference of quasi-psh functions on Aut(P k ). Hence, in the fine topology on Aut(

P k ), R 1 ∧ τ * (R 2 ), Φ converge to R 1 ∧ R 2 when τ → id. The lemma follows.
In order to define the wedge-product of several currents, we need the following result.

Lemma 5.2.0.8. Assume that R 1 and R 2 are wedgeable and that R 1 ∧ R 2 and R 3 are wedgeable. Then, R 2 R 3 are wedgeable and R 1 , R 2 ∧ R 3 are wedgeable. Moreover, we have

(R 1 ∧ R 2 ) ∧ R 3 = R 1 ∧ (R 2 ∧ R 3 ).
Proof. We use the symbols U and U for quasi-potentials and super-potentials of mean 0. Since ω p 1 is more diffuse than R 1 , by Lemma 5.2.0.5,

ω p 1 ∧ R 2 is more diffuse than R 1 ∧ R 2 . Proposition 5.2.0.3 implies that ω p 1 ∧ R 2 and R 3 are wedgeable. Hence, U R 3 (ω k-p 2 -p 3 +1 ∧ R 2 ) is finite. It follows that R 2 and R 3 are wedgeable.
We show that R 1 and R 2 ∧ R 3 are wedgeable. By Proposition 5.2.0.6 and Remark 4.

2.0.4, R 2,θ ∧ R 3,θ H-converge to R 2 ∧ R 3 . Using Lemma 5.1.0.3, we obtain for p = p 1 + p 2 + p 3 U R 1 (R 2 ∧ R 3 ∧ ω k-p+1 ) = lim θ→0 U R 1 (R 2,θ ∧ R 3,θ ∧ ω k-p+1 ) = lim θ→0 U R 1 , R 2,θ ∧ R 3,θ ∧ ω k-p+1 = lim θ→0 R 3,θ , U R 1 ∧ R 2,θ ∧ ω k-p+1 = lim θ→0 U R 3,θ (R 1 ∧ R 2,θ ∧ ω k-p+1 ) + ω p 3 , U R 1 ∧ R 2,θ ∧ ω k-p+1 -U R 3 (R 2 ∧ ω k-p 2 -p 3 +1 ) = U R 3 (R 1 ∧ R 2 ∧ ω k-p+1 ) + U R 1 (R 2 ∧ ω k-p 1 -p 2 +1 ) -U R 3 (R 2 ∧ ω k-p 2 -p 3 +1 ).
The last sum is finite. Hence, by Proposition 5.2.0.1, R 1 and R 2 ∧ R 3 are wedgeable.

We now prove the identity in the lemma. Proposition 5.2.0.6 and Remarks 4.2.0.

4 imply that R 1,θ ∧ (R 2,θ ∧ R 3,θ ) converge to R 1 ∧ (R 2 ∧ R 3 ) and (R 1,θ ∧ R 2,θ ) ∧ R 3,θ converge to (R 1 ∧ R 2 ) ∧ R 3 . For θ = 0, since R i,θ are smooth, we have (R 1,θ ∧ R 2,θ ) ∧ R 3,θ = R 1,θ ∧ (R 2,θ ∧ R 3,θ ). Letting θ → 0 gives the result.
Definition 5.2.0.9. We say that R 1 , . . . , R l are wedgeable if R 1 ∧ . . . ∧ R m and R m+1 are wedgeable for m = 1, . . . , l -1. Lemma 5.2.0.8 implies that this property and the wedge-product R 1 ∧ . . . ∧ R l are symmetric with respect to R i . The wedge-product is a positive closed current of mass 1. Applying inductively Proposition 5.2.0.6 gives the following result.

Theorem 5.2.0.10. Let (R i,n ) n≥0 be sequences of currents in C p i H-converging to R i . Assume that R 1 , . . . , R l are wedgeable. Then, R 1,n , . . . , R l,n are wedgeable and R 1,n ∧ . . . ∧ R l,n converge to R 1 ∧ . . . ∧ R l in the Hartogs' sense.
Definition 5.2.0.11. Let S and R be wedgeable currents in C p and C k-p respectively. Let a be a point in P k . We let ν R (S, a) denote the mass of S ∧ R at a and we refer to it as the Lelong number of S at a relatively to R. We will see in Proposition 5.3.0.4 below that if R is locally bounded in a neighbourhood of a hypersurface, then ν R (S, a) exists for every S. For the classical case, when R is locally bounded out of a, see [306].

Regular intersection

In this paragraph, we will give sufficient conditions for currents to be wedgeable.

Proposition 5.3.0.1. Let R i be currents in C p i with 1 ≤ i ≤ l. Assume that R i have bounded super-potentials for 1 ≤ i ≤ l -1. Then, R 1 , . . . , R l are wedgeable. If moreover R l has bounded super-potentials, then R 1 ∧. . .∧R l has bounded super- potentials.
Proof. Consider R i := ω p i . Their super-potentials of mean 0 vanish identically. It is clear that R 1 , . . . , R l-1 , R l are wedgeable. Since R i have bounded super-potentials, they are more diffuse than R i . Proposition 5.2.0.3 implies that R 1 , . . . , R l are wedgeable.

Assume that the super-potentials of R l are bounded. Then, R l are more diffuse than R l . Lemma 5.2.0.

5 implies that R 1 ∧ . . . ∧ R l is more diffuse than R 1 ∧ . . . ∧ R l . It follows that R 1 ∧ . . . ∧ R l has bounded super-potentials. Proposition 5.3.0.2. Let R i be currents in C p i with 1 ≤ i ≤ l. Assume that R i have continuous super-potentials for 1 ≤ i ≤ l -1. Then, R 1 ∧ . . . ∧ R l depends continuously on R l . If moreover R l has continuous super-potentials, then R 1 ∧ . . . ∧ R l has continuous super-potentials.
Proof. We only have to consider the case where l = 2. Since R 1 has continuous super-potentials, it follows from ( 5

.2.1) that R 1 ∧ R 2 depends continuously on R 2 . Assume that R 2 has also continuous super-potentials. Let U R 1 ∧R 2 and U R i denote the super-potentials of mean 0 of R 1 ∧ R 2 and of R i . Applying (5.2.1) to a smooth quasi-potential U R of mean 0 of a smooth form R in C k-p 1 -p 2 +1 gives U R 1 ∧R 2 (R) = R 1 ∧ R 2 , U R = U R 2 (ω p 1 ∧ R) + U R 1 (R 2 ∧ R) -U R 1 (R 2 ∧ ω k-p 1 -p 2 +1 ).
Since U R i are continuous and R 2 ∧ R depends continuously on R, the last expression can be extended continuously to R in C k-p 1 -p 2 +1 . Hence, R 1 ∧ R 2 has continuous super-potentials.

Definition 5.3.0.3. A compact subset K of P k is (p + 1)-pseudoconvex if there is a current in C k-p with compact support in P k \ K, see also [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF].

Observe that one can approximate the previous current by smooth elements of C k-p with compact support in

P k \ K. So, there is a smooth positive closed (k -p, k -p)-form Θ with compact support in P k \ K. If the 2(k -p)-dimensional
Hausdorff measure of K vanishes, then K is (p+1)-pseudoconvex. Indeed, generic projective planes of dimension p do not intersect K. In particular, analytic sets of pure codimension p are p-pseudoconvex.

To explain the terminology, observe that we can assume that Θ has mass 1 and there is a smooth (k -p -1, k -p -1)-form Φ such that dd c Φ = -Θ + ω k-p . So, dd c Φ is strictly positive on K. Adding to Φ a large positive closed form allows to assume that Φ is positive on P k , compare with Definition 7.2.0.1 for X = P k .

Proposition 5.3.0.4. Let R i be currents in C p i . Assume that R i are locally bounded forms on open sets W i ⊂ P k such that P k \ (W 1 ∪ W 2 ) is (p 1 + p 2 )- pseudoconvex. Then, R 1 and R 2 are wedgeable. Proof. Let Θ be a smooth form in C k-p 1 -p 2 +1 with compact support in W 1 ∪ W 2 . Fix open sets W i W i such that supp(Θ) ⊂ W 1 ∪ W 2 .
Reducing W i if necessary, we can assume that R i are bounded on W i . Proposition 5.2.0.1 implies that it suffices to show that

U p 1 (R 1 , R 2 ∧ Θ) ≥ -A(1 + R 1 ∞,W 1 + R 2 ∞,W 2 )
where A > 0 is independent of R i . This estimate is uniform on R i , we can then use a regularization and assume that R i are smooth.

Let U i denote the Green quasi-potentials of R i and m i their means. Lemma 3.3.0.5 implies that

U i C 1 (W i ) ≤ c(1 + R i ∞,W i ) and |m i | ≤ c for c > 0 inde- pendent of R i . Let χ i be positive smooth functions with compact support in W i such that χ 1 + χ 2 = 1 on supp(Θ). We have U p 1 (R 1 , R 2 ∧ Θ) = U 1 , R 2 ∧ Θ -m 1 = χ 2 U 1 , R 2 ∧ Θ + χ 1 U 1 , R 2 ∧ Θ -m 1 .
Since χ 1 U 1 is bounded, we only have to estimate the first integral. By Stokes' formula, it is equal to the sum of χ 2 U 1 , ω p 2 ∧ Θ which is bounded, and the integral

χ 2 U 1 , dd c U 2 ∧ Θ = χ 2 dd c U 1 , U 2 ∧ Θ + dχ 2 ∧ d c U 1 , U 2 ∧ Θ -d c χ 2 ∧ dU 1 , U 2 ∧ Θ + U 1 ∧ dd c χ 2 , U 2 ∧ Θ = χ 2 R 1 , U 2 ∧ Θ -χ 2 ω p 1 , U 2 ∧ Θ -dχ 1 ∧ d c U 1 , U 2 ∧ Θ + d c χ 1 ∧ dU 1 , U 2 ∧ Θ -U 1 ∧ dd c χ 1 , U 2 ∧ Θ .
We used dχ 2 = -dχ 1 and dd c χ 2 = -dd c χ 1 on supp(Θ). It is clear that the last sum is of order at most equal to

1 + R 1 ∞,W 1 + R 2 ∞,W 2
. Indeed, we have U i ≤ c and each integral is taken on a domain where we can use the estimates on U i C 1 (W i ) .

Remark 5.3.0.5. It is enough to assume that R i are in L s loc (W i ) with s > 2k. We deduce from Proposition 5.3.0.4 and Lemma 3.3.0.5 the following results.

Corollary 5.3.0.6. Let R i be currents in C p i . Assume for i = 2, . . . , l that the intersection of the supports of R 1 , . . . , R i is (p 1 + • • • + p i )-pseudoconvex. Then, R 1 , . . . , R l are wedgeable. Corollary 5.3.0.7. Let V i , 1 ≤ i ≤ l, be analytic subsets of pure codimension p i in P k . Assume that their intersection is of pure codimension p 1 + • • • + p l . Let I n denote the components of V 1 ∩ . . . ∩ V l
and m n their multiplicities. Then, the currents of integration on V i are wedgeable and we have

[V 1 ] ∧ . . . ∧ [V l ] = m n [I n ]. Proof. It is clear that V 1 ∩ . . . ∩ V i is of pure codimension p 1 + • • • + p i . Hence, it is (p 1 + • • • + p i )-pseudoconvex. Corollary 5.3.0.6 implies that V 1 , . . . , V l are wedgeable and [V 1 ] ∧ . . . ∧ [V l ] has support in V 1 ∩ . . . ∩ V l which is of pure codimension p 1 + • • • + p l . It follows that [V 1 ] ∧ . . . ∧ [V l ] is a combination of [I n ].
For the identity in the corollary, by induction, it is enough to prove it for l = 2. Since m n [I n ] depends continuously on V 1 and V 2 , Lemma 5.2.0.7 implies that it is enough to prove the corollary for V 1 and τ (V 2 ) where τ is a generic automorphism close enough to the identity. So, we can assume that m n = 1 for every n. Hence, for a generic point

a in V 1 ∩ V 2 , a belongs to the regular parts of V 1 , V 2 and V 1 , V 2 intersect transversally at a. It is enough to prove that [V 1 ] ∧ [V 2 ] = [V 1 ∩ V 2 ] in a neighbourhood of a. In this neighbourhood, the θ-regularization [V 2 ] θ of [V 2
] is an average of currents of integration on manifolds τ (V 2 ) where τ is an automorphism close to the identity. Observe that τ

(V 2 ) is close to V 2 and it intersects V 1 transversally on a manifold close to V 1 ∩V 2 . Hence, [V 1 ]∧[V 2 ] θ is an average of [V 1 ∩τ (V 2 )]. When θ tends to 0, this mean converges to [V 1 ∩ V 2 ].
On the other hand, we have seen in Proposition 5.

2.0.6 that [V 1 ] ∧ [V 2 ] θ converge to [V 1 ]∧[V 2 ]. Therefore, [V 1 ]∧[V 2 ] = [V 1 ∩V 2 ]
. The corollary follows.

(1,1)-Intersection

Consider now the case where

p 2 = • • • = p l = 1. For 2 ≤ i ≤ l, there is a quasi-psh function u i on P k such that dd c u i = R i -ω.
We have the following lemma.

Lemma 5.4.0.1. The currents R 1 , . . . , R l are wedgeable if and only if for every 2 ≤ i ≤ l, u i is integrable with respect to the trace measure of R 1 ∧ . . . ∧ R i-1 . In particular, the last condition is symmetric with respect to R 2 , . . . , R l .

Proof. It is enough to consider the case l = 2. We can assume that u 2 is of mean 0. Let u 2,θ be the quasi-potential of mean 0 of R 2,θ . Since R 2,θ H-converge to R 2 , there are constants a θ converging to 0 such that u 2,θ + a θ ≥ u 2 and u 2,θ converge pointwise to Proof. Proposition 5.2.0.6 implies that R 1 ∧R 2,θ converge to R 1 ∧R 2 when θ → 0. Since R 2,θ is smooth, we have

u 2 . If U R 1 is the super-potential of mean 0 of R 1 , then U R 1 (R 2 ∧ ω k-p 1 ) = lim θ→0 U R 1 (R 2,θ ∧ ω k-p 1 ) = lim θ→0 R 1 , u 2,θ ω k-p 1 = R 1 , u 2 ω k-p 1 . Therefore, U R 1 (R 2 ∧ ω k-p 1 ) is finite if and only if u 2 is integrable with respect to the trace measure R 1 ∧ ω k-p 1 of R 1 . This implies the lemma. If R 2 has a quasi-potential integrable with respect to R 1 , it is classical to define the wedge-product R 1 ∧ R 2 by R 1 ∧ R 2 := dd c (u 2 R 1 ) + ω ∧ R 1 . One defines R 1 ∧ . . . ∧ R l by induction.
R 1 ∧ R 2,θ = R 1 ∧ (dd c u 2,θ + ω) = dd c (u 2,θ R 1 ) + ω ∧ R 1 .

It is clear that the last expression converge to dd

c (u 2 R 1 ) + ω ∧ R 1 .

Chapter 6 Bi-regular maps in P k

We develop the study of some spaces of currents of bidegree (p, p). As an application we construct the equilibrium measure for a large class of birational maps of P k , as intersection of Green currents. We show that these currents are extremal and that the corresponding measure is mixing.

Introduction

In [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF], one has introduced a class of polynomial automorphisms of C k -regular automorphisms -and has constructed for such maps the equilibrium measures as intersection of invariant positive closed currents -Green currents (see also [380,[START_REF] Dinh | Dynamique des applications semi-régulières[END_REF]). The measure is proved to be mixing when k = 2 or 3. Regular polynomial automorphisms are Zariski dense in the space of polynomial automorphisms of a given algebraic degree. In dimension 2, these maps are Hénon type automorphisms (see [START_REF] Bedford | Polynomial diffeomorphisms of C 2 III[END_REF][START_REF] Bedford | Polynomial diffeomorphisms of C 2 IV[END_REF][START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF]).

In this chapter, we develop the theory of some spaces of currents and we construct Green currents for a larger class of birational maps of P k . We show that the Green currents are extremal and we obtain a mixing measure as intersection of these currents. Every small pertubation of regular polynomial automorphisms belongs to this class. Our method can be extended to some rational non-invertible self-maps of P k and to random iteration.

For a Hénon automorphism f of C 2 , it was proved in [START_REF] Fornaess | Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems (Rio de Janeiro[END_REF] that the Green current T + is the unique positive closed (1, 1)-current of mass 1 supported on K + := {z, (f n (z)) bounded}. In particular, this current is extremal. The result was extended to regular automorphisms in [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] and to weakly regular automorphisms in [380]. Here, we deal with (p, p)-currents, p > 1. The question is to prove their extremality which implies the mixing of the equilibrium measure.

The problem was already solved for automorphisms of compact Kähler manifolds under the natural assumption that their dynamical degrees are distinct. We proved that the Green currents are almost extremal, i.e. they belong to finite dimensional extremal faces of the cone of positive closed currents. Ones then constructed a mixing measure [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF].

We use here the same method of dd c -resolution as in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] to study the Green current of some birational maps of P k . The cohomology space is simpler, but we have to extend our calculus to deal with indeterminacy set (see also [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF][START_REF] Dinh | On the dynamics near infinity of some polynomial mappings in C 2[END_REF]). Most of the chapter deals with the extension of the calculus to new spaces of currents. Basically the problem is to give a meaning to the formula

f * (T ), Φ = T, f * (Φ)
when f has indeterminacy points . We believe that this can be applied in other contexts.

In [START_REF] Guedj | Equidistribution towards the Green current[END_REF] Guedj has independently proved, for weakly regular automorphisms of C k , that the Green currents of the right degrees are extremal.

We describe now our situation. Let f : P k → P k be a birational map of algebraic degree d ≥ 2. Let I ± be the indeterminacy set of f ±1 . Definition 6.1.0.1. We say that f is regular if there exists an integer s,

1 ≤ s ≤ k -1, and open sets V ± , U ± such that 1. V ± ∩ U ± = ∅, V ± ⊂ U ∓ and I ± ⊂ V ± .
2. There is a smooth positive closed (k -s, k -s)-form Θ + supported in

P k \ V +
, strictly positive on U + , and a smooth positive closed (s, s)-form

Θ -supported in P k \ V -, strictly positive on U -. 3. f maps P k \ V + into U + ; f -1 maps P k \ V -into U -.
Observe that if

P k \ V + (resp. P k \ V -
) is a union of analytic subsets of dimension s (resp. k -s) of P k , it carries a form Θ + (resp. Θ -) as above. If f is regular and σ 1 , σ 2 are automorphisms of P k close to the identity, then σ 1 • f • σ 2 is regular. When f is a polynomial automorphism, this definition is equivalent to the definition of [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF], i.e. to the fact that

I + ∩ I -= ∅.
Consider a regular birational map f of algebraic degree d ≥ 2. Let δ be the algebraic degree of f -1 . We show that the dynamical degree d p of f is equal to d p for 1 ≤ p ≤ s, the dynamical degree δ q of f -1 is equal to δ q for 1 ≤ q ≤ k -s and d s = δ k-s (Proposition 3.2). We also prove that f ±1 are algebraically stable, i.e. no hypersurface is sent under an iterate of f ±1 to its indeterminacy set. Hence, we can construct for f ±1 Green currents T ± of bidegree (1, 1) and of mass 1. The current T + (resp. T -) has Hölder continuous local potentials in P k \ V + (resp.

P k \V -) and satisfies the relation f * (T + ) = dT + (resp. f * (T -) = δT -) in P k [381]. Let I ± n be the indeterminacy set of f ±n . Define U + ∞ := ∪ n≥0 f -n (U + ) \ I + n and U - ∞ := ∪ n≥0 f n (U -) \ I - n .
Our main result is the following theorem.

Theorem 6.1.0.2. Let f : P k → P k be a regular birational map as above. Then for every p, q such that 1 ≤ p ≤ s and 1 ≤ q ≤ k -s, the following holds.

1. If T is a closed positive (p, p)-current on P k of mass 1 which belongs to

PC p (V + ), then d -np f n * (T ) converge weakly in U + ∞ to T p + . If T is a closed positive (q, q)-current on P k of mass 1 which belongs to PC q (V -), then δ -nq (f n ) * (T ) converge weakly in U - ∞ to T q -.
2. The currents T p + and T q -are extremal in the following sense. For every positive closed (p, p)-current S such that S ≤ T p + in P k , we have

S = cT p + in U + ∞ where c := S . Analogously for T q -.
3. The probability measure

µ = T s + ∧ T k-s - is invariant, mixing and supported in U + ∩ U -.
The spaces PC p will be defined in Section 2. The operator f * on positive closed currents will be defined in Section 3. We use the method of dd c -resolution (see [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]) in order to prove a convergence result, stronger than the weak convergence (point 1 of Theorem 1.2). This will be done in Section 4. The method gives also a new construction of Green currents and implies their extremality (point 2 of Theorem 1.2). The mixing of µ is a consequence of point 2 (see [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]380,[START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for the proof).

The spaces of currents we use as in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] are probably of interest: they allow to consider intersections of currents of bidegree (p, p), p > 1 (see Remark 2.3).

In [START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF], one proved that T s + and T k-s are weakly laminar (see [START_REF] Bedford | Polynomial diffeomorphisms of C 2 IV[END_REF] for Hénon maps). The Hölder continuity of local potentials of T ± on U ± implies that the measure µ is PC. It has positive Hausdorff dimension and has no mass on pluripolar sets (see for example [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]).

DSH and PC

We will introduce two classes of currents in P k . Let V be an open set in P k . The class DSH • (V ) is the space of test currents. For the bidegree (0, 0), these currents are Differences of q.p.S.H. functions which are pluriharmonic in a neigbourhood of V . Recall that an L 1 function ϕ :

P k → R ∪ {-∞} is q.p.s.h. if it is upper semi-continuous and if dd c ϕ ≥ -cω, c > 0, in the sense of currents.
Here ω is the standard Fubini-Study form on P k that we normalize by

ω k = 1. A set E ⊂ P k is pluripolar if E ⊂ {ϕ = -∞} for a q.p.s.h. function ϕ.
The class PC • (V ) is the space of currents of zero order satisfying some regularity property in P k \ V . For example, such a positive closed current of bidegree (1, 1) has Continuous local Potentials in

P k \ V (Proposition 2.2). Let DSH k-p (V ) denote the space of real-valued (k -p, k -p)-currents Φ = Φ 1 -Φ 2 on P k such that 1. Φ i are negative, Φ i|V are L ∞ loc forms on V ; 2. dd c Φ i = Ω + i -Ω - i with Ω ± i positive closed currents supported in P k \ V . The mass of a positive or negative current S of bidegree (k -p, k -p) is given by the formula S := | S ∧ ω p |. Observe that Ω + i = Ω - i . Define Φ DSH := min Φ 1 + Φ 2 + Ω + 1 + Ω + 2 , Φ i , Ω ± i as above .
So, positive closed currents supported in

P k \ V are elements of DSH • (V ).
If S is such a current and ϕ is a q.p.s.h. function integrable with respect to the trace measure of S, then ϕS

∈ DSH • (V ). A topology on DSH • (V ) is defined as follows: Φ (n) → Φ in DSH • (V ) if we can write Φ (n) = Φ (n) 1 -Φ (n) 2 , dd c Φ (n) i = Ω (n)+ i -Ω (n)- i as above and 1. Φ (n) → Φ weakly in P k . 2. ( Φ (n) i + Ω (n)+ i ) n≥1 is bounded. 3. The Φ (n) i 's are locally uniformly bounded in V . 4. The Ω (n)± i 's are supported in the same compact subset of P k \ V .
It is a topology associated to an inductive limit.

Observe that smooth forms in DSH • (V ) are dense in this space. This can be checked by the standard regularization using automorphisms of P k .

The following proposition allows to construct currents in DSH • (V ) as solutions of dd c -equation and shows that they can be used as quasi-potentials of positive closed currents (see also [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]). Proposition 6.2.0.1. Let Θ be a smooth positive closed

(k -p + 1, k -p + 1)- form of mass 1 supported in a compact K ⊂ P k \ V . Let Ω be a positive closed (k -p + 1, k -p + 1)-current of mass m supported in K. Then, there exists a negative (k -p, k -p)-form Φ ∈ C ∞ (P k \ K) ∩ DSH k-p (V ) with L 1 coefficients, such that dd c Φ = Ω -mΘ.
Moreover, Φ depends linearly and continuously on Ω. We also have

Φ L ∞ (V ) + Φ DSH ≤ c K m where c K > 0 is a constant independent of Ω. The form Φ is continuous where Ω is continuous. Proof. The diagonal ∆ of P k × P k is cohomologous to the positive closed form α(z, w) := Θ(z) ∧ ω p-1 (w) + i =k-p+1 ω i (z) ∧ ω k-i (w).
Following [START_REF] Bost | Heights of projective varieties and positive Green forms[END_REF]Prop. 6.2.3], since P k ×P k is homogeneous, we can find a negative kernel G(z, w) smooth outside ∆ such that dd c G = [∆] -α and whose coefficients are, in absolute value, smaller than c|z -w| 1-2k , c > 0. Define the negative L 1 form Φ by

Φ(z) := w∈P k G(z, w) ∧ Ω(w).
If π 1 and π 2 denote the projections of P k ×P k on its factors, we have Φ = (π 1 ) * (G∧ π * 2 (Ω)) and

dd c Φ = (π 1 ) * (([∆]-α)∧π * 2 (Ω)) = Ω-mΘ. The properties of G imply that Φ is smooth on P k \K, depends continuously on Ω and Φ L ∞ (V ) + Φ DSH ≤ c K m. It is clear that Φ is continuous where Ω is continuous.
Let PC p (V ) be the space of positive closed (p, p)-currents T which can be extended to a linear continuous form on DSH k-p (V ). The value of this lin-

ear form on Φ ∈ DSH k-p (V ) is denoted by T, Φ . Since smooth forms are dense in DSH k-p (V ) the extension is unique. Of course, if dd c Φ = 0, then T, Φ = [T ] ∧ [Φ]
where [T ] and [Φ] are classes of T and Φ in H p,p (X, C) and H k-p,k-p (X, C). Indeed, we can approach Φ by dd c -closed forms in DSH k-p (V ) using automorphisms of P k .

The following proposition justifies our notations which suggest that currents in PC have some continuity property. Let C k-p+1 denote the cone of positive closed current Ω of bidegree (k

-p + 1, k -p + 1) supported in P k \ V . Define a topology on C k-p+1 as follows: Ω n → Ω in C k-p+1 if the Ω n are supported in the same compact subset of P k \ V and Ω n → Ω weakly.
Proposition 6.2.0.2. Let T = α+dd c U be a positive closed (p, p)-current, where α is a continuous (p, p)-form and U is a (p -1, p -1)-current on P k .

1. If the map Ω → U, Ω , which is defined on smooth forms Ω ∈ C k-p+1 , can be extended to a continuous map on C k-p+1 , then T ∈ PC p (V ). In particular, if U is a continuous form on

P k \ V , then T ∈ PC p (V ). 2. If p = 1, then T ∈ PC 1 (V ) if and only if T has Continuous local Potentials in P k \ V . Proof. 1. Consider a test current Φ ∈ DSH k-p (V ). Write dd c Φ = Ω + -Ω -where Ω ± ∈ C k-p+1
. When Φ and Ω ± are smooth, we have

T, Φ = α, Φ + U, dd c Φ = α, Φ + U, Ω + -U, Ω -.
It is clear that if the map Ω → U, Ω is well defined and continuous on C k-p+1 , then T, Φ can be extended to a continuous linear form on DSH k-p (V ). Hence T ∈ PC p (V ). Using Proposition 2.1, one can prove that the converse is also true. For this, one has only to consider V weakly (p -1)-convex (see the definition below) since otherwise the currents in DSH k-p (V ) are dd c -closed.

2. We write T = α + dd c U with α continuous and U a q.p.s.h. function. Let Θ be a smooth positive (k, k)-form of mass 1 supported in P k \ V . Let a ∈ P k \ V and Φ a be the current satisfying dd c Φ a = δ a -Θ given by Proposition 2.1. When T ∈ PC 1 (V ), using a regularization of Φ a , we get

T, Φ a = α, Φ a -U, Θ + U (a).
Since Φ a and T, Φ a depend continuously on a, U is continuous on P k \ V . Remark 6.2.0.3. The notion of PC regularity allows to consider the intersection of currents. If T belongs to PC p (V ) and S be a positive closed current supported in P k \ V , then the positive closed current T ∧ S is well defined and depends continuously on S. Indeed, if ϕ is a test real smooth form, ϕ ∧ S belongs to DSH • (V ). So we can define T ∧ S, ϕ := T, ϕ ∧ S .

Assume now that V satisfies some convexity property. We say that V is weakly s-convex if there exists a non zero positive closed current Θ of bidegree (k -s, k -s) supported in P k \ V . By regularization, we can assume that Θ is smooth. Assume also that Θ = 1. Observe that every positive closed current of bidegree (s, s) intersects Θ. Hence, it cannot be supported in V .

Proposition 6.2.0.4. Assume that V is weakly s-convex as above. Let T ∈ PC p (V ), 1 ≤ p ≤ s. There exists c > 0 such that if Φ is a negative smooth (s -p, s -p)-form with dd c Φ ≥ -ω s-p+1 , then T, Φ ∧ ω k-s ≥ -c(1 + Φ ).
In particular, every q.p.s.h function is integrable with respect to the trace measure T ∧ ω k-p and T has no mass on pluripolar sets.

Proof. By scaling, we can assume that Φ ≤ 1. Hence, Φ ∧ Θ belongs to a compact set of DSH k-p (V ). Since T is in PC p (V ), there exists c > 0 independent of Φ such that T, Φ ∧ Θ ≥ -c .

On the other hand, if

U is a smooth negative (k -s -1, k -s -1)-form such that dd c U = Θ -ω k-s , we have -T ∧ Φ ∧ ω k-s + T ∧ Φ ∧ Θ = = T ∧ Φ ∧ dd c U = T ∧ dd c Φ ∧ U ≤ -T ∧ ω s-p+1 ∧ U.
We then deduce that T, Φ ∧ ω k-s ≥ -c where c > 0 is independent of Φ. Now consider a q.p.s.h. function ϕ strictly negative on P k such that dd c ϕ ≥ -ω. Let ϕ n be a sequence of negative smooth functions decreasing to ϕ such that

dd c ϕ n ≥ -ω. The first part applied to Φ = ϕ n ω s-p gives T, ϕ n ω k-p ≥ -c(1 + ϕ n L 1 ) ≥ -c(1 + ϕ L 1 ). It follows that T, ϕω k-p ≥ -c(1 + ϕ L 1 ).
The above proposition gives a version of Oka's inequality (see [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF]) in the sense that T -integrability on the support of Θ implies T -integrability. Proposition 6.2.0.5. Let V be a weakly s-convex open set in P k and T ∈ PC p (V ), 1 ≤ p ≤ s -1. Let R and R i be positive closed (1, 1)-currents. Assume that R = ω + dd c v and R i = ω + dd c v i where v and v i are continuous on P k \ V . Then R ∧ T is well defined and belongs to PC p+1 (V ). In particular, R 1 ∧ . . . ∧ R n is well defined and belongs to

PC n (V ) for 1 ≤ n ≤ s. If T i → T weakly in PC p (V ) and v i → v locally uniformly on P k \ V , then R i ∧ T i → R ∧ T weakly in PC p+1 (V ).
Proof. We can assume that v is negative. Proposition 2.4 permits to define

R ∧ T := ω ∧ T + dd c (vT ) (even without assuming that v is continuous). It is easy to check by approximation that R ∧ T is positive. If Φ ∈ DSH k-p-1 (V ) is a smooth form, we have R ∧ T, Φ := T, ω ∧ Φ + T, vdd c Φ .
When Φ ∈ DSH k-p-1 (V ) is not smooth, the right hand side is well defined and depends continuously on Φ (see Remark 2.3 for the definition of the measure T ∧ dd c Φ). Hence, we can extend R ∧ T to a linear continuous form on DSH k-p-1 (V ). It follows that R ∧ T ∈ PC p+1 (V ). For the second part of Proposition 2.5, it follows from Proposition 2.2 that R 1 ∈ PC 1 (V ). We then use an induction on n.

To prove the convergence result, we use the above formula:

R i ∧ T i , Φ := T i , ω ∧ Φ + T i , v i dd c Φ .
The convergence of the first term is clear for Φ ∈ DSH k-p-1 (V ). For the second term, observe that T i ∧ dd c Φ are measures with bounded mass supported in the same compact subset of P k \ V . The convergence follows.

Let V be as in Proposition 2.5 and let A be a compact analytic subset of

P k \ V . Define C the cone of negative L 1 forms Φ ∈ C 0 (P k \ A) ∩ DSH k-p (V ) such that dd c Φ = Ω + -Ω -with Ω ± positive closed supported in P k \ V , continuous on P k \A
and having no mass on A. Here, C 0 (P k \A) denotes the space of continuous forms on P k \ A. We will use the following lemma in Section 4. Lemma 6.2.0.6. Let R i as in Proposition 2.5. Let S be a positive closed

(p, p)- current, 1 ≤ p ≤ s, such that S ≤ R 1 ∧ . . . ∧ R p .
Then S can be extended to a continuous linear form on C by S, Φ := S, Φ P k \A :=

P k \A S ∧ Φ.
The continuity is with respect to the topology of C 0 (P k \ A) ∩ DSH k-p (V ).

Proof. Define T

i := R 1 ∧ . . . ∧ R i . Let Φ n ∈ DSH k-p (V ) be smooth negative forms on P k such that Φ n → Φ in C 0 (P k \ A)
and in DSH k-p (V ). We show that lim S, Φ n = S, Φ P k \A . This will prove the Lemma. We have by Fatou's lemma:

lim sup S, Φ n ≤ S, Φ P k \A and lim sup T p -S, Φ n ≤ T p -S, Φ P k \A .
Since, by Proposition 2.5, T p , Φ n → T p , Φ , we only need to prove that T p , Φ = T p , Φ P k \A . Let u be a negative q.p.s.h. function such that dd c u ≥ -ω, u = -∞ on A and u is smooth on P k \ A. Let χ be a smooth convex increasing function on

R -∪ {-∞} such that χ(0) = 1, χ C 2 ≤ 4 and χ = 0 on [-∞, -1]. Define u n := χ(u/n).
These functions are smooth, equal to 0 in neigbourhoods of A. We also have dd c u n ≥ -4n -1 ω and u n → 1 uniformly on compact sets of

P k \ A. It is sufficient to show that lim T p , u n Φ = T p , Φ .
Let dd c Φ = Ω + -Ω -and define Ω := Ω + -Ω -. We have

T p , Φ = v p T p-1 , Ω + T p-1 , ω ∧ Φ .
This is true for smooth forms and hence for Φ by approximation. On the other hand, we have

T p , u n Φ = dd c v p ∧ T p-1 , u n Φ + T p-1 , ω ∧ u n Φ .
Using an induction on p, we only need to prove that

lim dd c v p ∧ T p-1 , u n Φ = v p T p-1 , Ω . Let > 0, U P k \ V be a neighbourhood of A, M a constant such that M ≥ -inf U v p , and v M p := max(v p , -M ). Since v p is continuous on P k \ V , dd c v M p ∧ T p-1 ∧ Φ → dd c v p ∧ T p-1 ∧ Φ on P k \ A. The measures dd c v M p ∧ T p-1 ∧ Φ and dd c v p ∧ T p-1 ∧ Φ are equal in U . Since u n → 1 locally uniformly on P k \ A, there exists n 0 such that if n ≥ n 0 we have | dd c v p ∧ T p-1 , u n Φ -dd c v M p ∧ T p-1 , u n Φ | ≤ .
Hence, if we replace v p by v M p +M , we can assume that v p is positive. In particular, v 2 p is q.p.s.h. Hence, dd c (v 2 p T ) is a difference of positive closed currents. It follows that dv p and d c v p belong to L 2 (T p-1 ).

We have

dd c v p ∧ T p-1 , u n Φ = u n v p T p-1 , Ω -du n ∧ d c v p ∧ T p-1 , Φ + + d c u n ∧ dv p ∧ T p-1 , Φ -dd c u n ∧ v p T p-1 , Φ .
By induction hypothesis, the measure T p-1 ∧Ω has no mass on A (see also Remark 2.3). Hence, the first term tends to v p T p-1 , Ω . We show that the other terms tend to 0. Since ±dd c u n ≤ dd c u n + 8n -1 ω and dd c u n + 8n -1 ω ≥ 0, we have:

| dd c u n ∧ v p T p-1 , Φ | -dd c u n ∧ T p-1 + 8n -1 ω ∧ T p-1 , Φ -T p-1 , u n dd c Φ -8n -1 T p-1 , ω ∧ Φ . It follows that dd c u n ∧ v p T p-1 , Φ tends to 0. Indeed, since u n dd c Φ → dd c Φ in DSH k-p+1 (V ) and T p-1 ∈ PC p-1 (V ), we have T p-1 , u n dd c Φ → T p-1 , dd c Φ = 0.
For the other terms it is sufficient to use the Cauchy-Schwarz inequality and the property that du n ∧d c u n can be dominated by dd c u 2 n +100n -1 ω. The functions u 2 n satisfy analogous inequalities as the u n do.

Bi-regular maps

Let f : P k → P k be a dominating rational map of algebraic degree d ≥ 2. In homogeneous coordinates [z 0 :

• • • : z k ], we have f = [P 0 : • • • : P k ]
where P i are homogeneous polynomials of degree d without common divisor. Let Γ be the graph of

f in P k × P k , π i the canonical projections of P k × P k onto its factors. If A is a subset of P k , define f (A) := π 2 π -1 1 (A) ∩ Γ and f -1 (A) := π 1 π -1 2 (A) ∩ Γ . The operators f * := (π 2 ) * (π 1|Γ ) * and f * := (π 1 ) * (π 2|Γ
) * are well defined and continuous on L ∞ forms (forms with L ∞ coefficients) with value in spaces of L 1 forms (forms with L 1 coefficients).

We define the dynamical degree of order p of f by

d p := lim n→∞ f n * (ω p ) 1/n = lim n→∞ P k f n * (ω p ) ∧ ω k-p 1/n = lim n→∞ (f n ) * (ω k-p ) 1/n = lim n→∞ P k (f n ) * (ω k-p ) ∧ ω p 1/n (6.3.1)
These limits always exist [START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF]. It is easy to see that

d p ≤ d p 1 . The last degree d k is the topological degree of f . It is equal to #f -1 (z) for z generic.
Consider now, a birational map f , i.e. a map with topological degree 1. The set

I + (resp. I -) of points z ∈ P k such that f (z) (resp. f -1 (z)) is infinite is the indeterminacy set of f (resp. f -1 ). Hence f • f -1 = f -1 • f = id out
of an analytic set. Let δ denote the algebraic degree and δ q the dynamical degree of order q associated to f -1 .

Definition 6.3.0.1. We say that f is s-regular, 1 ≤ s ≤ k -1, if there exist two open sets V , U such that 1. V ∩ U = ∅, I + ⊂ V and I -⊂ U . 2. There is a smooth positive closed (k -s, k -s)-form Θ supported in P k \ V
and strictly positive on U . We will assume that Θ = 1.

3.

f maps P k \ V into U .
Observe that V is weakly s-convex. If H is a hypersurface of P k , then H ⊂ V . It follows that H cannot be sent by an iterate of f to I + . Hence, f is algebraically stable, i.e. deg(

f n ) = d n [381].
Proposition 6.3.0.2. Let f : P k → P k be an s-regular birational map as in Definition 3.1. Let I ± n be the indeterminacy set of f ±n . Then

I + n ⊂ V , I - n ⊂ U , dim I + n ≤ k -s -1 and d p = d p for 1 ≤ p ≤ s. We have (f n ) * = (f * ) n on H p,p (X, C) for 1 ≤ p ≤ s. If f is regular as in Definition 1.1, then dim I - n ≤ s-1, δ q = δ q for 1 ≤ q ≤ k -s and d s = δ k-s . Proof. Since f n is holomorphic on a neighbourhood of P k \ V , we have I + n ⊂ V . Since f -1 : P k \ U → V is holomorphic, we have I - n ⊂ U . If dim I + n ≥ k -s, then the current of integration on I + n intersects Θ which is cohomologous to ω k-s (recall dim H p,p (P k , C) = 1). This is impossible since I + n ⊂ V and supp(Θ) ∩ V = ∅. Since f is algebraically stable, f n * (ω) is a positive closed (1, 1)-current of mass d n and smooth on P k \ I + n . We have seen that dim I + n ≤ k -s -1.
The intersection theory [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF][START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF] 

implies that f n * (ω) ∧ . . . ∧ f n * (ω) (p times, p ≤ s)
is well defined and does not charge algebraic sets. It's mass is equal to d np . We deduce from (1) that d p = d p and (f n ) * = (f * ) n on H p,p (P k , C).

When f is regular, we prove in the same way that dim I - n ≤ s -1 and δ q = δ q . We obtain from (1) that d s = δ k-s . It follows that d s = δ k-s . Remark 6.3.0.3. The identity (f n ) * = (f * ) n on H p,p (X, C) corresponds to an algebraic stability of higher order. The notion can be introduced for meromorphic maps on a compact Kähler manifold. Proposition 3.2 is valid in a more general case.

Let T be a positive closed (p, p)-current on P k . The restriction f 0 of f to

P k \ f -1 (I -) ∪ I + is an injective holomorphic map. We can define f * 0 (T ) on P k \ f -1 (I -) ∪ I +
. By approximation, one can check that this is a positive closed current of finite mass (see also [START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF]). Let f (T ) denote the trivial extension of f * 0 (T ) on P k . By a theorem of Skoda [START_REF] Skoda | Prolongement des courants positifs, fermés de masse finie[END_REF], f (T ) is positive and closed.

If

T n → T , we have f (T n ) → f (T ) on P k \ f -1 (I -) ∪ I + . Moreover, f ( 
T ) is smaller than every limit value τ of the sequence f (T n ). More precisely, the current τ -f (T ) is positive closed and supported in f -1 (I -) ∪ I + .

Assume now that 1 ≤ p ≤ s. Proposition 3.2 implies that f * (T ) = d p T for T smooth. Using a regularization of T , we deduce from the above properties that f (T ) ≤ d p T . When f (T ) = d p T , we define f * (T ) := f (T ). We define similarly f and f * on positive closed currents. Lemma 6.3.0.4. The operator f * is continuous: if f * (T n ) and f * (T ) are well defined in the above sense and if

T n → T then f * (T n ) → f * (T ). If f * (T ) is well defined, then so is f * (S) for every positive closed current S such that S ≤ T . Proof. We have lim T n = T . It follows that lim f * (T n ) = d p T = f * (T ) . On the other hand, f * (T n ) → f * (T ) in P k \ f -1 (I -) ∪ I + and f * (T ) does not charge f -1 (I -) ∪ I + . Hence f * (T n ) → f * (T ) in P k . We have f (S) ≤ d p S , f (T -S) ≤ d p T -S and f (T ) = d p T . It follows that f (S) = d p S . Hence f * (S) is well defined. Proposition 6.3.0.5. The operators f * : DSH k-p (V ) → DSH k-p (V ) and f * : PC p (V ) → PC p (V ), 1 ≤ p ≤ s,
are well defined and are continuous. We have

(f n ) * = (f * ) n , f * (T ) = d p T and f * (T ), Φ = T, f * (Φ) for T ∈ PC p (V ) and Φ ∈ DSH k-p (V ).
Proof. Let Φ ∈ DSH k-p (V ). Using a partition of unity, we can write Φ = Φ (1) + Φ (2) where Φ (1) is a L ∞ form with compact support in V and Φ (2) is a current with support in P k \ I + . By Definition 3.1, f -1 : P k \ U → V and f : P k \ I + → P k are holomorphic. Then f * (Φ (1) ) = (f -1 ) * (Φ (1) ) and f * (Φ (2) ) are well defined. The first assertion follows, even Φ (1) and Φ (2) are not necessarily in DSH k-p (V ).

Consider now a smooth positive closed form Φ ∈ DSH k-p (V ). Recall that by Proposition 2.4, if T is in PC p (V ), then T and f (T ) do not charge analytic sets. We have f (T ), Φ = T, f * (Φ) P k \I -:=

P k \I - T ∧ f * (Φ).
We next show that T, f * (Φ) P k \I -= T, f * (Φ) . Let W be a form, smooth outside I -, such that dd c W = f * (Φ) -mω k-p and θ be a smooth function supported in U , equal to 1 in a neighbourhood of I -. Here, m is the mass of f * (Φ). Define Ψ := dd c (θW )+cω s-p ∧Θ, c > 0 big enough. Then Ψ is positive closed, supp(Ψ) ⊂ P k \ V and Ψ -f * (Φ) is smooth. This form Ψ belongs to DSH k-p (V ). We only need to show that T, Ψ P k \I -= T, Ψ . Let u n as in Lemma 2.6 but we replace A by I -. We have

T, Ψ P k \I -= lim T, u n Ψ = T, Ψ because T ∈ PC p (V ) and u n Ψ → Ψ in DSH k-p (V ). So f (T ), Φ = T, f * (Φ)
for Φ ∈ DSH k-p (V ) smooth positive and closed.

For Φ = ω s-p ∧ Θ, we get

f (T ) = f (T ), Φ = T, f * (Φ) = d p T .
The last equality follows from a regularization of the positive closed current f * (Φ) and the properties: f * (Φ) = d p and T ∈ PC p (V ). Hence f * (T ) is well defined and equal to f (T ).

Assume now that Φ is a smooth positive form in DSH k-p (V ) non necessarily closed. Using a regularization of f * (Φ) in DSH k-p (V ), we get

f * (T ), Φ = T, f * (Φ) P k \I -≤ T, f * (Φ) .
On the other hand, if Φ ≥ Φ is a smooth closed form, we also have

f * (T ), Φ -Φ = T, f * (Φ -Φ) P k \I -≤ T, f * (Φ -Φ) .
The equality f * (T ), Φ = T, f * (Φ ) implies that f * (T ), Φ = T, f * (Φ) . This also holds for Φ smooth non positive because we can write Φ as a difference of positive forms. From the first assertion of the Proposition, it follows that the right hand side of the last equality is well defined for every Φ ∈ DSH k-p (V ) and depends continuously on Φ. This allows to extend f * (T ) to a continuous linear form on DSH k-p (V ). Hence f * (T ) ∈ PC p (V ). The continuity of f * and the equality (f n ) * = (f * ) n are clear.

Convergence

Let f be an s-regular birational map of algebraic degree d ≥ 2 as in Definition 3.1. Recall that the Green (1, 1)-current

T + := lim d -n (f n ) * (ω) of f has contin- uous local potentials in a neigbourhood of P k \ V [381]. Proposition 2.5 shows that T p + is well defined for 1 ≤ p ≤ s. It belongs to PC p (V ). Moreover, we have lim d -np f n * (ω p ) = T p + in P k \ V .
The last property follows from a uniform convergence of potentials of d -n f n * (ω) (see [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]). This is also reproved in Theorem 4.1. We have f * (T p + ) = d p T p + . Let I + n be the indeterminacy set of f n . Define U ∞ := ∪ n≥0 f -n (U ) \ I + n . In this section, we prove the following result which implies Theorem 1.2. Theorem 6.4.0.1. Let f : P k → P k be an s-regular birational map as above. Then for every p, 1 ≤ p ≤ s, the following holds.

1. If T ∈ PC p (V ) is a positive closed current of mass 1, then d -pn f n * (T ) con- verges in U ∞ to T p + . Moreover, every limit value of the sequence d -np f n * (T ) is in PC p (V ). The convergence is valid in the weak topology of PC p (V ). 2. If S is a positive closed (p, p)-current such that S ≤ T p + in P k , then S = cT p + in U ∞ where c := S . Proof. 1. Let Φ be a (k -p, k -p)-current in DSH k-p (V ). Write dd c Φ = Ω = Ω + -Ω -where Ω ± are positive closed (k -p + 1, k -p + 1)-currents supported in P k \ V . Assume that Ω ± = 1. Define Ω ± n := (f n ) * (Ω ± ) and Ω n = Ω + n -Ω - n
for n ≥ 0. They are supported in U for n ≥ 1 and we have Ω ± n = d (p-1)n . Let Φ ± n be the solution of the equation

dd c Φ ± n = Ω ± n -d (p-1)n ω s-p+1 ∧ Θ given in Proposition 2.1. The Φ ± n 's are negative (k -p, k -p)-forms, smooth on V and they satisfy Φ ± n L ∞ (V ) + Φ ± n DSH d (p-1)n . Define Φ n := Φ + n -Φ - n , Ψ 0 := Φ-Φ 0 and Ψ n+1 := f * (Φ n ) -Φ n+1 . The forms Φ n are smooth on V , dd c Φ n = Ω n and Φ n DSH d (p-1)n for n ≥ 1. By Proposition 3.5, Ψ n DSH d (p-1)n . Since dd c Ψ n = 0, we can associate to Ψ n a class b n in H k-p,k-p (P k , C). We have b n Ψ n L 1 d (p-1
)n . Since we assume that T ∈ PC p (V ), Proposition 3.5 allows the following calculus

f n * (T ), Φ = f n * (T ), Ψ 0 + f n * (T ), Φ 0 = f n * (T ), Ψ 0 + f (n-1) * (T ), f * (Φ 0 ) = f n * (T ), Ψ 0 + f (n-1) * (T ), Ψ 1 + f (n-1) * (T ), Φ 1 = f n * (T ), Ψ 0 + f (n-1) * (T ), Ψ 1 + f (n-2) * (T ), f * (Φ 1 ) .
Using the equality f * (Φ n ) = Ψ n+1 + Φ n+1 we obtain by induction that

f n * (T ), Φ = f n * (T ), Ψ 0 + f (n-1) * (T ), Ψ 1 + • • • • • • + T, Ψ n + T, Φ n . (6.4.1) Since f n * (T ) is cohomologous to d pn ω p , using a regularization of dd c -closed cur- rents Ψ i in DSH k-p (V ), we get d -pn f n * (T ), Φ = [ω p ] ∧ (b 0 + d -p b 1 + • • • + d -pn b n ) + d -pn T, Φ n . Recall that T ∈ PC p (V ) and Φ ± n L ∞ (V ) + Φ ± n DSH d (p-1)n . It follows that lim d -pn T, Φ n = 0. The relations b n d (p-1)n imply that lim d -pn f n * (T ), Φ = [ω p ] ∧ c Φ where c Φ := n≥0 d -pn b n . (6.4.2)
Propositions 2.1 and 3.5 imply also that c Φ depends continuously on Φ ∈ DSH k-p (V ). So, (3) implies that every limit value of the sequence d -pn f n * (T ) belongs to PC p (V ). Consider now a smooth real-valued (k -p, k -p)-form Φ supported in U . Observe that Φ can be written as a difference Φ 1 -Φ 2 of negative forms supported in U and that dd c Φ i + c(ω s-p+1 ∧ Θ) is positive for c > 0 big enough. It follows that Φ ∈ DSH k-p (V ). By (3), d -pn f n * (T ) converges on U to a current which does not depend on T . Hence, lim d -pn f n * (T ) = T p + on U since this is true for T = ω p (and for T = T p + ). The relation

f n * (T p + ) = d np T p + implies that lim d -pn f n * (T ) = T p + on U ∞ .
2. Let c be the mass of S and define S n := d np (f n ) (S). We have S n ≤ T p + . By Lemma 3.4, f n * (S n ) is well defined. From Proposition 2.4, T p + has no mass on analytic sets. It follows that f n * (S n ) = d np S since this holds out of an analytic set. We also deduce that S n = c. Assume that Φ is smooth and supported in U . Proposition 2.1 shows that Φ j and Ψ j belong to the class C as in Lemma 2.6 for A = ∪ i≤n f i (I -). Hence, we can apply Lemma 2.6 to R i = T + and to (f n-j ) * (S n ). We get

(f n-j+1 ) * (S n ), Ψ j = (f n-j ) * , f * (Ψ j )
since these integrals can be computed out of the singularities of f , Ψ j and f * (Ψ j ). We can then apply (2) to S n -cT p + . Since S n -cT p + is cohomologous to 0, we get

d np S -cT p + , Φ = f n * (S n -cT p + ), Φ = S n -cT p + , Φ n = S n -cT p + , Φ + n -Φ - n .
The relations S n ≤ T p + and Φ ± n ≤ 0 imply that the last expression is dominated by a combination of T p + , Φ + n and of T p + , Φ - n . Hence, since T p + ∈ PC p (V ) and d -(p-1)n Φ ± n belong to a compact set in DSH k-p (V ), we have

d np | S -cT p + , Φ | d (p-1)n .
It follows that S -cT p + , Φ = 0 for every smooth form Φ supported in U . Hence, S = cT p + on U . In the same way, we show that S n = cT p + on U . The relations

f n * (S n ) = d np S and f n * (T p + ) = d np T p + imply that S = cT p + on f -n (U ) \ I + n for every n ≥ 1. Remark 6.4.0.2. The convergence in Theorem 3.1 is uniform on T ∈ PC p (V ) such that | T, Φ | ≤ c( Φ L ∞ (V ) + Φ DSH ), c > 0, for every Φ ∈ DSH k-p (V ).
Chapter 7

In higher dimension

Super-potentials allow us to construct and to study invariant currents in complex dynamics. We will give here some applications of this new notion.

Pull-back

The results in this paragraph hold for meromorphic correspondences, in particular for the inverse of a dominant meromorphic map. For simplicity, we only consider meromorphic maps on P k . Recall that a meromorphic map f : P k → P k is holomorphic outside an analytic subset I of codimension ≥ 2 in P k . Let Γ denote the closure of the graph of the restriction of f to P k \ I. This is an irreducible analytic set of dimension k in P k × P k .

Let π 1 and π 2 denote the canonical projections of P k × P k on the factors. The indeterminacy locus I of f is the set of points z ∈ P k such that dim π -1 1 (z)∩Γ ≥ 1. We assume that f is dominant, that is, π 2 (Γ) = P k . The second indeterminacy set of f is the set

I of points z ∈ P k such that dim π -1 2 (z) ∩ Γ ≥ 1. Its codimension is also at least equal to 2. If A is a subset of P k , define f (A) := π 2 (π -1 1 (A) ∩ Γ) and f -1 (A) := π 1 (π -1 2 (A) ∩ Γ).
Define formally for a current S on P k , not necessarily positive or closed, the pull-back f * (S) by

f * (S) := (π 1 ) * π * 2 (S) ∧ [Γ] (7.1.1)
where [Γ] is the current of integration of Γ. This makes sense if the wedge-product π * 2 (S) ∧ [Γ] is well-defined, in particular, when S is smooth. Note that when S is smooth f * (S) is an L 1 form. Consider now the case of positive closed currents. We need some preliminary results. Lemma 7.1.0.1. Let S be a current in C p . Assume that the restriction of S to a neighbourhood of I is a smooth form. Then, formula (7.1.1) defines a positive closed (p, p)-current. Moreover, the mass λ p of f * (S) does not depend on S.

Proof. Since π 2|Γ is a finite map outside π -1 2 (I )∩Γ, the current π * 2 (S)∧[Γ] is welldefined there and depends continuously on S, see [START_REF]Pull-back of currents by holomorphic maps[END_REF]. So, if S is smooth in a neighbourhood of I , π * 2 (S) ∧ [Γ] is well-defined in a neighbourhood of π -1 2 (I ) ∩ Γ, hence, f * (S) is well-defined and is positive. Let U be the Green quasi-potential of S. This is a negative form such that S -ω p = dd c U . By [START_REF]Pull-back of currents by holomorphic maps[END_REF], π * 2 (U ) ∧ [Γ] is well-defined outside π -1 2 (I ). Lemma 3.3.0.5 implies that U is continuous in a neighbourhood of I . Hence, as for S, we obtain that f * (U ) is well-defined. We have f * (S) -f * (ω p ) = dd c f * (U ). It follows that f * (S) and f * (ω p ) are cohomologous. Therefore, they have the same mass.

The operator f * is formally defined by

f * (R) := (π 2 ) * π * 1 (R) ∧ [Γ] . (7.1.2) Lemma 7.1.0.2. Let R be a current in C k-p+1
which is smooth in a neighbourhood of I. Then, the formula (7.1.2) defines a positive closed (k -p+1, k -p+1)current. Moreover, the mass of f * (R) does not depend on R and is equal to λ p-1 .

Proof. We obtain the first part as in Lemma 7.1.0.1. Since f * (ω k-p+1 ) and f * (ω p-1 ) have L 1 coefficients, we also have

f * (R) = f * (ω k-p+1 ) = f * (ω k-p+1 ) ∧ ω p-1 = ω k-p+1 ∧ f * (ω p-1 ) = λ p-1 ,
which proves the last assertion in the lemma.

In order to define f * (S) we need to define π * 2 (S) ∧ [Γ]. For this purpose, we can introduce the notion of super-potential in P k × P k and study the intersection of currents there. We avoid this here. We call λ p the intermediate degree of order p of f . Denote for simplicity L := λ -1 p f * and Λ := λ -1 p-1 f * . With this normalization, for S ∈ C p , R ∈ C k-p+1 , the currents L(S) and Λ(R) have mass 1 when they are well-defined. Lemma 7.1.0.3. Let S be a smooth form in C p and U S be a super-potential of

S. If U L(ω p ) is a super-potential of L(ω p ), then λ -1 p λ p-1 U S • Λ + U L(ω p ) is equal to a super-potential of L(S) on the currents R ∈ C k-p+1 which are smooth on a neighbourhood of I.
Proof. We can assume that U S and U L(ω p ) are of mean 0. Let U L(S) be the superpotential of mean 0 of L(S). Let U S be a smooth quasi-potential of mean 0 of S and U R be a quasi-potential of mean 0 of R which is smooth in a neighbourhood of I. Since L(S) and L(ω p ) are smooth outside I, the following computation

7.1. PULL-BACK 123 holds U L(S) (R) = L(S), U R = λ -1 p S, f * (U R ) = λ -1 p S -ω p , f * (U R ) + λ -1 p ω p , f * (U R ) = λ -1 p dd c U S , f * (U R ) + λ -1 p f * (ω p ), U R = λ -1 p U S , f * (dd c U R ) + U L(ω p ) (R) = λ -1 p U S , f * (R) -λ -1 p U S , f * (ω k-p+1 ) + U L(ω p ) (R) = λ -1 p λ p-1 U S (Λ(R)) -λ -1 p U S , f * (ω k-p+1 ) + U L(ω p ) (R).
This implies the result since the second term in the last line is independent of R.

Definition 7.1.0.4. We say that a current S in

C p is f * -admissible if there is a current R 0 in C k-p+1
, which is smooth on a neighbourhood of I, such that the super-potentials of S are finite at Λ(R 0 ).

Lemma 7.1.0.5. Let S be an f * -admissible current in C p . Then, the superpotentials of S are finite at Λ(R) for every R smooth in C k-p+1 . In particular, if S ∈ C p such that S ≤ cS for some positive constant c or if S is more diffuse than S, then S is also f * -admissible.

Proof. Since R admits a smooth quasi-potential, we can find a positive current U such that dd c U = R -R 0 and U smooth in a neighbourhood of I. We have dd c Λ(U ) = Λ(R) -Λ(R 0 ) and by Lemma 4.2.0.9,

U S (Λ(R)) ≥ U S (Λ(R 0 )) -Λ(U ) .
This implies the first assertion. When S ≤ cS, as in Proposition 4.3.0.4, we obtain U S (Λ(R 0 )) > -∞. This also holds when S is more diffuse than S. Hence, S is f * -admissible.

Lemma 7.1.0.6. Let S be an f * -admissible current in C p . Let S n be smooth forms in C p H-converging to S. Then, f * (S n ) H-converge to a positive closed (p, p)-current of mass λ p which does not depend on the choice of S n .

Proof. Let U Sn and U S be super-potentials of mean 0 of S n and S. Let c n be constants converging to 0 such that

U Sn + c n ≥ U S . Recall that U Sn converge pointwise to U S . If R is smooth in a neighbourhood of I, we have λ -1 p λ p-1 U Sn (Λ(R)) + U L(ω p ) (R) → λ -1 p λ p-1 U S (Λ(R)) + U L(ω p ) (R).
Lemma 7.1.0.5 implies that the last sum is not identically -∞. Lemmas 7.1.0.3 and 4.2.0.5 imply that L(S n ) converge to a positive closed current S of bidegree (p, p). Lemma 7.1.0.1 implies that the mass of S is λ p . Moreover, λ -1

p λ p-1 U Sn • Λ + U L(ω p ) (resp. λ -1 p λ p-1 U S • Λ + U L(ω p ) ) is equal
on smooth forms R to some super-potential of L(S n ) (resp. of S ). Denote by U L(Sn) and U S these super-potentials. We have U L(Sn) + λ -1 p λ p-1 c n ≥ U S on smooth forms R. Corollary 4.1.0.7 implies that this inequality holds for every R. Therefore, L(S n ) → S in the Hartogs' sense.

Finally, observe that if S n are smooth forms in C p H-converging to S, then S 1 , S 1 , S 2 , S 2 , . . . H-converge also to S. It follows that L(S 1 ), L(S 1 ), L(S 2 ), L(S 2 ), . . . converge. We deduce that the limit S does not depend on the choice of S n . We can also obtain the result using that U S (R) does not depend on the choice of S n . Definition 7.1.0.7. Let S and S n be as in Lemma 7.1.0.6. The limit of f * (S n ) is denoted by f * (S) and is called the pull-back of S under f . We say that S is

invariant under f * or S is f * -invariant if S is f * -admissible and f * (S) = λ p S.
The following result extends Lemmas 7.1.0.3 and 7.1.0.6 when S and S n are not necessarily smooth. Proposition 7.1.0.8. Let S be an f * -admissible current in C p . Let U S , U L(ω p ) be super-potentials of S and L(ω p ). Let S n be currents in C p H-converging to S. Then, S n are f * -admissible and

f * (S n ) H-converge towards f * (S). Moreover, λ -1 p λ p-1 U S • Λ + U L(ω p ) is equal to a super-potential of L(S) for R ∈ C k-p+1 , smooth in a neighbourhood of I.
Proof. If U Sn are super-potentials of mean 0 of S n , there are constants c n converging to 0 such that U Sn + c n ≥ U S . The last assertion in the proposition was already obtained in the proof of Lemma 7.1.0.6. Let U L(S) denote the superpotential of L(S) which is equal to λ -1

p λ p-1 U S •Λ+U L(ω p ) for R smooth in C k-p+1 . Let U L(Sn) denote the analogous super-potentials of L(S n ). Since U Sn → U S pointwise, U L(Sn) → U L(S) on smooth forms in C k-p+1 . As in Lemma 7.1.0.6, we obtain U L(Sn) + λ -1 p λ p-1 c n ≥ U L(S)
and this implies that L(S n ) H-converge towards L(S).

In the same way, we have the following. Definition 7.1.0.9. We say that a current R in C k-p+1 is f * -admissible if the super-potentials of R are finite at L(S 0 ) for at least one current S 0 in C p which is smooth in a neighbourhood of I (or equivalently, for every S 0 smooth in

C p ). If R ∈ C k-p+1 such that R ≤ cR for some positive constant c or if R is more diffuse than R, then R is also f * -admissible. Lemma 7.1.0.10. Let R be an f * -admissible current in C k-p+1 . Let R n be smooth forms in C k-p+1 H-converging to R. Then, R n are f * -admissible and f * (R n ) H- converge to a positive closed (k -p + 1, k -p + 1
)-current of mass λ p-1 which does not depend on the choice of R n . Definition 7.1.0.11. Let R and R n be as in Lemma 7.1.0.10. The limit of f * (R n ) is denoted by f * (R) and is called the push-forward of R under f . We

say that R is invariant under f * or R is f * -invariant if R is f * -admissible and if f * (R) = λ p-1 R. Proposition 7.1.0.12. Let R be an f * -admissible current in C k-p+1 . Let U R , U Λ(ω k-p+1 ) be super-potentials of R and Λ(ω k-p+1 ). Let R n be f * -admissible cur- rents in C k-p+1 H-converging to R. Then, f * (R n ) H-converge to f * (R). Moreover, λ p λ -1 p-1 U R •L+U Λ(ω k-p+1 ) is equal to a super-potential of Λ(R) on S ∈ C p , smooth in a neighbourhood of I .
Note that if an analytic subset H of pure dimension in P k , of a given degree, is generic in the Zariski sense, then [H] is f * -and f * -admissible. One can check that f * [H] and f * [H] depend continuously on H.

With small singularities

We will give in this paragraph sufficient conditions, easy to check, in order to define the pull-back and push-forward operators. We need some preliminary results. In what follows, X is a complex manifold of dimension k and ω X is a Hermitian form on X. Definition 7.2.0.1. A compact subset K of X is weakly p-pseudoconvex if there is a positive smooth (k -p, k -p)-form Φ on X such that dd c Φ is strictly positive on K.

Note that using a cut-off function, we can assume that Φ has compact support in X. It follows from the discussion after Definition 5.3.0.3 that p-pseudoconvex sets in P k are weakly p-pseudoconvex.

Lemma 7.2.0.2. If the (2k -2p + 1)-dimensional Hausdorff measure of K is zero, then K is weakly p-pseudoconvex.
Proof. Consider a point a in K. We construct a positive smooth (k-p, k-p)-form Φ a such that dd c Φ a is positive on K and strictly positive at a. Since K is compact, there is a finite sum Φ of such forms satisfying Definition 7.2.0.1. Consider local coordinates z = (z 1 , . . . , z k ) such that z = 0 at a. Define z := (z 1 , . . . , z k-p ) and z := (z k-p+1 , . . . , z k ). The hypothesis on the measure of K allows to choose z so that K does not intersect the set {|z | ≤ 1 and 1 -≤ |z | ≤ 1} where > 0 is a constant. Let Θ be a positive (k -p, k -p)-form with compact support in the unit ball {|z | < 1} of C k-p , strictly positive at 0. Let ϕ be a positive function with compact support in the unit ball of C p such that ϕ = |z | 2 for |z | ≤ 1 -. Let π denote the projection z → z and define Ψ a := ϕ(z )π * (Θ). It is clear that Ψ a is positive with compact support in X and dd c Ψ a ≥ 0 on K. Nevertheless, dd c Ψ a is not strictly positive at 0, but it does not vanish at 0. Observe that if τ is a linear automorphism of C k close enough to the identity, then τ * (Ψ a ) satisfies the same properties as Ψ a does. Taking a finite sum of τ * (Ψ a ) gives a form Φ a which is strictly positive at 0.

The following result is a version of the Oka's inequality, see [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF]. Proposition 7.2.0.3. Let K be a weakly p-pseudoconvex compact subset of X. Let T be a positive (p, p)-current on X, not necessarily closed. Then, for every negative (p -1, p -1)-current U on X with dd c U ≥ -T , we have

U X ≤ c(1 + U X\K )
where c > 0 is a constant independent of U .

Proof. Since U X = U X\K + U K , we only have to bound the mass of U on K. Let Φ be as in Definition 7.2.0.1 with compact support. Without loss of generality, we can assume dd c Φ ≥ ω k-p+1 X on K. We have for some positive constant c

U K = - K U ∧ ω k-p+1 X ≤ - K U ∧ dd c Φ = X\K U ∧ dd c Φ - X U ∧ dd c Φ ≤ c U X\K - X dd c U ∧ Φ ≤ c U X\K + X T ∧ Φ.
This implies the result since T is fixed.

Let Σ denote the analytic subset of the points x in Γ such that π 2 restricted to Γ is not locally finite at x. Define Σ := π 1 ( Σ ). We have Σ ⊂ π -1 2 (I ) ∩ Γ and Σ ⊂ f -1 (I ). The following proposition gives a sufficient condition in order to define the pull-back of a (p, p)-current, see also Lemma 7.2.0.7 below. The result can be applied to a generic meromorphic map in P k , see Proposition 7.3.0.6 below. Note that the hypothesis is satisfied for p = 1 and in this case the result is due to Méo [START_REF] Méo | Image inverse d'un courant positif fermé par une application analytique surjective[END_REF]. Proposition 7.2.0.4. Assume that dim Σ ≤ k -p. Then, every positive closed (p, p)-current S is f * -admissible. Moreover, the pull-back operator S → f * (S) is continuous with respect to the weak topology on currents.

Proof. Let S n be smooth forms in C p converging to S. Let U Sn denote the superpotentials of mean 0 of S n . It is sufficient to prove that for R smooth in C k-p+1 , U Sn (Λ(R)) converge to a finite number. Propositions 7.1.0.8 and 4.2.0.2 will imply that S is f * -admissible. The convergence implies also that the limit does not depend on the choice of S n , see the last argument in Lemma 7.1.0.6, and that f * is continuous.

Let U Sn denote the Green quasi-potentials of S n which are smooth negative forms such that dd c U Sn ≥ -ω p . These forms converge in L 1 to the Green quasipotential U S of S. Hence, the means c Sn of U Sn converge to the mean c S of U S . Since U Sn and R are smooth, we have

U Sn (Λ(R)) = U Sn , Λ(R) -c Sn = λ -1 p-1 f * (U Sn ), R -c Sn .
So, it is enough to prove that f * (U Sn ) converge in the sense of currents.

The restriction of π 2 to Γ \ Σ is a finite map. Under this hypothesis, it was proved in [START_REF]Pull-back of currents by holomorphic maps[END_REF] 

that π * 2 (U Sn ) ∧ [Γ] converge in P k × P k outside Σ . It follows that f * (U Sn ) converge outside Σ . Hence, the mass of f * (U Sn ) outside a small neighbourhood V of Σ is bounded uniformly on n. By Lemma 7.2.0.2, Σ is weakly p-pseudoconvex in P k . Hence, since V is small, V is also p-pseudoconvex. Using that dd c f * (U Sn ) ≥ -f * (ω p ), Proposition 7.2.0.3 gives f * (U Sn ) ≤ c(1 + f * (U Sn ) P k \V )
with c > 0 independent of S n . Therefore, the mass of f * (U Sn ) is bounded uniformly on n. We can extract from f * (U Sn ) convergent subsequences. In order to prove the convergence of f * (U Sn ) in P k , it remains to check that the limit values U of f * (U Sn ) have no mass on Σ .

Let W be a small open set in P k . Write f * (ω p ) = dd c Φ with Φ negative on W . So, Φ and U := U + Φ are negative currents with dd c positive. Since the currents U , Φ are of bidimension (k -p + 1, k -p + 1) and dim Σ ≤ k -p, it follows from a result of Alessandrini-Bassanelli [START_REF] Alessandrini | Plurisubharmonic currents and their extension across analytic subsets[END_REF]Thm 5.10] that Φ and U have no mass on Σ . This implies the result. Remark 7.2.0.5. Assume that dim Σ ≤ k -p. The previous proof gives a definition of f * (U S ) which depends continuously on U S . The definition can be extended to negative currents U such that dd c U is bounded below by a negative closed current of bounded mass. We still have that f * (U ) depends continuously on U . Proposition 7.2.0.6. Under the hypothesis of Proposition 7.

2.0.4, if R is a current in C k-p+1 with bounded (resp. continuous) super-potentials, then R is f * -admissible and Λ(R) is a current in C k-p+1 with bounded (resp. continuous) super-potentials.
Proof. Assume that the super-potentials of R are bounded. It is clear that R is f * -admissible. Proposition 7.1.0.12 implies that Λ(R) admits a super-potential equal to

λ p λ -1 p-1 U R • L + U Λ(ω k-p+1 ) on smooth S ∈ C p .
The first term is bounded. By Proposition 7.2.0.4, it can be extended to a continuous function on C p if R has continuous super-potentials. So, it is sufficient to prove that the super-potential

U Λ(ω k-p+1 ) of mean 0 of Λ(ω k-p+1
) is continuous. Let U S be the Green quasipotential of S and c S be its mean. Recall that U S -c S ω p-1 is a quasi-potential of mean 0 of S and c S depends continuously on S. For S smooth, we have

U Λ(ω k-p+1 ) (S) = U S -c S ω p-1 , Λ(ω k-p+1 ) = λ -1 p-1 f * (U S ) -c S f * (ω p-1 ), ω k-p+1 .
By Remark 7.2.0.5, the left hand side can be extended continuously to S in C p . So, U Λ(ω k-p+1 ) is continuous.

If g : P k → P k is a dominant meromorphic map, the composition g • f is well-defined on a Zariski dense open set. We extend it as a meromorphic map by compactifying the graph. The iterate of order n of f is the map

f n := f • • • • • f (n times). The inverse of f n is denoted by f -n . It should be distinguished from f -1 • • • • • f -1
. Define I n , I n and Σ n as above for f n instead of f . The following lemma will be useful in our dynamical study. Lemma 7.2.0.7. The following conditions are equivalent

1. dim Σ ≤ k -p. 2. dim f -1 (A) ≤ k -p for every analytic subset A of P k with dim A ≤ k -p. 3. dim Σ n ≤ k -p for every n ≥ 1.
Proof. It is easy to check that the first condition implies the second one and the third condition implies the first one. Suppose the second condition. We prove that the first one is satisfied. If not, we can find an irreductible analytic subset A of I , of minimal dimension, such that dim

π 1 (π -1 2 (A) ∩ Σ ) > k -p. The second condition in the lemma implies that dim A > k -p. Let A be an irreducible component of π -1 2 (A) ∩ Σ such that A := π 1 ( A) has dimension > k -p. By definition of Σ , we have dim A ≥ dim A + 1 ≥ k -p + 2.
Choose a dense Zariski open set Ω of A such that π 1 : Ω → A and π 2 : Ω → A are locally submersions. Denote by τ 1 and τ 2 these maps. If H is a hypersurface of A then

H := τ -1 2 (H) is a hypersurface of Ω. It has dimension ≥ k -p + 1. The minimality of dim A implies that dim τ 1 ( H) ≤ k -p < dim H.
Hence, the fibers of τ 1 are of positive dimension. Moreover, τ 1 ( H) has positive codimension in A . Therefore, since H is a hypersurface in A, it should be a union of components of the fibers of τ 1 . This holds for every H. Hence, the fibers of τ 2 , which can be obtained as intersections of such H, are unions of components of the fibers of τ 1 . The intersection of a fiber of τ 1 and a fiber of τ 2 contains at most 1 point. We deduce that τ 1 is locally finite, which is a contradiction. Now, assume the first two conditions. It remains to check that dim Σ n ≤ k -p for n ≥ 2. Using inductively the second condition we get that f

-1 •• • ••f -1 (Σ ) has dimension ≤ k -p. Observe that Σ n is the union of the components of dimension ≥ 1 in the fibers f -n (x). So, Σ n is contained in the union of f -1 • • • • • f -1 (Σ ).
This gives the result.

Algebraically stable maps

Consider a dominant meromorphic map f on P k of algebraic degree d ≥ 2 and the associated sets I, I , I n , I n , Σ , Σ n as in Paragraphs 7.1 and 7.2. Some results in this paragraph can be easily extended to the case of correspondences, in particular to f -1 instead of f . Let λ p denote the intermediate degree of order p of f and λ p (f n ) the intermediate degree of order p of f n . Note that λ 1 (f ) = d. We have the following elementary lemma, see [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for a more general context.

Lemma 7.3.0.1. The sequence of intermediate degrees λ p (f n ) is sub-multiplicative, i.e. λ p (f m+n ) ≤ λ p (f m )λ p (f n ). We also have λ p+q (f n ) ≤ λ p (f n )λ q (f n ) and λ p (f n ) ≤ d pn .
Proof. Observe that (f m+n ) * (ω p ) has no mass on analytic sets. Let S j be smooth positive closed forms of mass λ p (f n ) converging locally uniformly to (f n ) * (ω p ) on a Zariski open set. Then, the currents (f m ) * (S j ) are of mass λ p (f m )λ p (f n ) and converge to (f m+n ) * (ω p ) on a Zariski open set. If S is a limit of (f m ) * (S j ) in P k , it is of mass λ p (f m )λ p (f n ) and it satisfies S ≥ (f m+n ) * (ω p ). Hence, S ≥ (f m+n ) * (ω p ) . The first inequality in the lemma follows.

In the same way, we approximate (f n ) * (ω p ) and (f n ) * (ω q ) locally uniformly on a suitable Zariski open set by smooth forms S j and S j . If S is a limit current of

S j ∧ S j in P k , it satisfies S ≥ (f n ) * (ω p+q ). This implies λ p+q (f n ) ≤ λ p (f n )λ q (f n ).
For p = 1 the first assertion in the lemma implies λ 1 (f p ) ≤ d p . Applying inductively the second inequality for q = 1 gives λ p (f n ) ≤ d pn .

The previous lemma implies that the limit

d p := lim n→∞ λ p (f n ) 1/n = inf n λ p (f n ) 1/n .
exists. It is called the dynamical degree of order p of f . We have d p ≤ d p for every p. The last dynamical degree d k is also called the topological degree of f . It is equal to the number of points in a generic fiber of f and we have

λ k (f n ) = d n k . In general, λ p (f n ) is the degree of f -n (H) where H is a generic projective plane of codimension p. So, λ p (f n ) is an integer. A result by Gromov [357, Theorem 1.6] implies that p → log λ p (f n ) is concave in p. It follows that p → log d p is also concave in p. If f is holomorphic, we have d p = λ p = d p . If f is not holomorphic, it is easy to prove that d k < d k . Indeed, if a is the intersection of generic hyperplanes H 1 , . . . , H k , then f -1 (a) ⊂ f -1 (H 1 ) ∩ . . . ∩ f -1 (H k ) \ I. By Bézout's theorem, the last set has cardinal ≤ d k -1 since all the hypersurfaces f -1 (H i ) contain I. Definition 7.3.0.2. We say that f is algebraically p-stable if λ p (f n ) = λ n p for every n ≥ 1.
For such a map we have d p = λ p . For p = 1, the algebraic 1-stability coincides with the notion introduced by Fornaess and the second author [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF], i.e. no hypersurface is sent by f n to I, see also [START_REF] Nguyên | Algebraic degrees for iterates of meromorphic self-maps of P k[END_REF] and Lemma 7.3.0.4 below.

Lemma 7.3.0.3. Assume that dim Σ ≤ k -p. Then, f is algebraically p-stable if and only if (f * ) n = (f n ) * on C p .
Proof. Recall that by Proposition 7.2.0.4 and Lemma 7.2.0.7, (f n ) * is well-defined and is continuous on

C p . If (f * ) n = (f n ) * on C p , it is clear that λ p (f n ) = (f n ) * (ω p ) = (f * ) n (ω p ) = λ n p .
Hence, f is algebraically p-stable. Conversely, by continuity, it is enough to prove the identity (f

* ) n = (f n ) * on smooth forms S in C p . Observe that (f * ) n (S) = (f n ) * (S) on a Zariski dense open set V such that V , f (V ), . . ., f n-1 (V ) do not intersect I.
As we observed after the definition (7.1.1), since S is smooth, (f n ) * (S) has no mass on analytic sets. So, (f

* ) n (S) ≥ (f n ) * (S). When f is algebraically p-stable, (f * ) n (S) and (f n ) * (S) have mass λ n p and λ p (f n ) which are equal. It follows that (f * ) n (S) = (f n ) * (S). Lemma 7.3.0.4. Assume that dim Σ ≤ k -p. For every analytic subset A 0 of P k of dimension k -p, define by induction A n := f (A n-1 \ I)
, and assume that A n is not contained in I for every n ≥ 0. Then, f is algebraically l-stable for l ≤ p.

Proof. It is enough to show that (f * ) n (ω l ) = (f n ) * (ω l ). We have seen that the identity holds outside A := I ∪ f -1 (I) ∪ . . . ∪ (f -1 ) n (I) and that (f * ) n (ω l ) ≥ (f n ) * (ω l ). The hypothesis implies that A is of dimension < k-p. Hence, (f * ) n (ω l ) has no mass on A because (f * ) n (ω l ) is of bidimension (k -l, k -l). This completes the proof. Proposition 7.3.0.5. If dim Σ < k -p, then f is algebraically l-stable for l ≤ p. In particular, if f is finite, i.e. I = ∅, then f is algebraically p-stable for every p.

Proof. When dim Σ < k -p, by Proposition 7.2.0.6 applied to l + 1 instead of p, (f * ) n (ω k-l ) is well-defined and has no mass on analytic sets. We deduce as in Lemma 7.

3.0.4 that (f * ) n (ω k-l ) = (f n ) * (ω k-l ) and that f is algebraically l-stable.
Let f be a finite map. We have 

f -n = f -1 • • • • • f -1 , n times, therefore, I n = I ∪ . . . ∪ f -n+1 (I). So, the dimension of I n is independent of n. It is not difficult to prove that d p = d p for p < k -dim I. Indeed, for such p, we have f * (ω p ) = f * (ω) ∧ . . . ∧ f * (ω),
< • • • < d k , contains a Zariski dense open set of M d (P k ) \ H d (P k ).
Proof. Denote for simplicity M := M d (P k ) \ H d (P k ) and recall that this is an irreducible hypersurface of M d (P k ) [START_REF] Guelfand | Discriminants, resultants, and multidimensional determinants[END_REF]. We can check easily using the coefficients of f that the set M of maps f in M which are finite and of (maximal) topological degree d k -1 is a Zariski open set in M . For such a map, we have

d k-1 ≤ d k-1 < d k and since p → log d p is concave, we obtain d 1 < • • • < d k . It remains to check that M is not empty.
Consider the map defined on homogeneous coordinates by

f [z 0 : • • • : z k ] := [z d-1 0 z 1 : z d-1 0 z 2 -z d 1 : • • • : z d-1 0 z k -z d k-1 : z d-1 0 z 1 -z d k ].
The indeterminacy set is the common zero set of the components of f . So, I contains only the point [1 : 0 :

• • • : 0]. The map f is not holomorphic, hence d k ≤ d k -1. On the other hand, if t is a root of order d k -1 of the unity, [1 : t : t d : • • • : t d k-1 ] is sent by f to I. Hence, d k = d k -1.
We show that f is finite, i.e. I is empty. If not, there is (a 0 , . . . , a k ) = 0 in C k+1 such that the equations

z d-1 0 z 1 = a 0 , z d-1 0 z 2 -z d 1 = a 1 , . . . , z d-1 0 z 1 -z d k = a k
define an algebraic set of positive dimension. Consider a sequence of solutions

z (n) = (z (n) 0 , . . . , z (n) 
k ) such that |z (n) | tend to infinity and that z

(n) j /|z (n) | converge to some values x j . We have |x| = 1 and

x d-1 0 x 1 = 0, x d-1 0 x 2 -x d 1 = 0, . . . , x d-1 0 x 1 -x d k = 0.
Hence, |x 0 | = 1 and x 1 = • • • = x k = 0. Therefore, we can assume that z

(n) 0 tends to infinity and is strictly large than the other z (n) j . Extracting a subsequence allows to assume that for some index m ≥ 1, z

(n) m is the largest coordinate between z (n) 1 , . . . , z (n) k . The equation z d-1 0 z m -z d m-1 = a m implies that z (n) m → 0. Hence, z (n) j
→ 0 for every j ≥ 1. On the other hand, we deduce from the considered equations that

z d k = a 0 -a k . So, a k = a 0 and z (n) k = 0.
Using the given equations and the fact that z (n) j → 0, we obtain inductively that z (n) j = 0 for j ≥ 1 and then a j = 0 for every j ≥ 0. This is a contradiction. Theorem 7.3.0.7. Let f : P k → P k be an algebraically p-stable meromorphic map of dynamical degrees d s and Σ be defined as above. Assume that dim Σ ≤ k -p and d p-1 < d p . Let S n be currents in C p and U Sn be super-potentials of S n such that

U Sn ∞ = o d -n p-1 d n p . Then, d -n p (f n ) * (S n ) H-converge to an f * -invariant current T in C p which does not depend on S n .
We call T the Green (p, p)-current associated to f . Define for simplicity L := d -1 p f * and Λ := d -1 p-1 f * . Proposition 7.3.0.5 implies that f is algebraically (p -1)-stable. Hence, λ p-1 = d p-1 < d p . We have seen that L : C p → C p is continuous and

L n = d -n p (f n ) * on C p .
It follows that the convex set of f *invariant currents S in C p is not empty. Indeed, it contains all the limit values of the Cesàro means 1 N

N -1 j=0 L j (ω p ).
Let C b k-p+1 denote the set of the currents R in C k-p+1 with bounded superpotentials. By Proposition 7.2.0.6, the operator Λ :

C b k-p+1 → C b k-p+1 is well- defined. Consider a current S in C p , a super-potential U S of S and a negative super-potential U L(ω p ) of L(ω p ).
Lemma 7.3.0.8. The current L(S) admits a super-potential which is equal to

d p-1 d -1 p U S • Λ + U L(ω p ) on C b k-p+1 . If S 0 is an f * -invariant current in C p , then it admits a super-potential U S 0 satisfying U S 0 = d p-1 d -1 p U S 0 •Λ+U L(ω p ) on C b k-p+1 . Proof.
We prove the first assertion. By Proposition 7.1.0.8, we can assume that S is smooth. Moreover, there is a super-potential

U L(S) of L(S) which is equal to d p-1 d -1 p U S • Λ + U L(ω p ) on smooth forms in C k-p+1 . Consider a current R in C b k-p+1 and smooth forms R n in C k-p+1 H-converging to R. We have U L(S) (R n ) → U L(S) (R) and U L(ω p ) (R n ) → U L(ω p ) (R). By Proposition 7.1.0.12, Λ(R n ) → Λ(R). Since U S is continuous, we deduce that U S (Λ(R n )) → U S (Λ(R)). Therefore, U L(S) = d p-1 d -1 p U S • Λ + U L(ω p ) at R. For the second assertion, if U is a super-potential of S 0 , since L(S 0 ) = S 0 , the first assertion implies that U = d p-1 d -1 p U • Λ + U L(ω p ) + c on C b k-p+1
, where c is a constant. The super-potential U S 0 := U -cd p (d p -d p-1 ) -1 satisfies the lemma. We use here the property that d p = d p-1 .

Proof of Theorem 7.3.0.7. Replacing U Sn by U Sn + U Sn ∞ allows to assume that U Sn are positive. We apply inductively Lemma 7.3.0.8 for S = L j (S n ). We obtain that L n (S n ) admits a super-potential U L n (Sn) satisfying

U L n (Sn) = d n p-1 d -n p U Sn • Λ n + n-1 j=0 d j p-1 d -j p U L(ω p ) • Λ j on C b k-p+1
. By hypothesis, the first term converges to 0. Since U L(ω p ) is negative, the second term decreases to

U := ∞ j=0 d j p-1 d -j p U L(ω p ) • Λ j . Hence, U L n (Sn) converge pointwise in C b k-p+1 to U . We show that U is not identically -∞.
Let S 0 be an f * -invariant current in C p and U S 0 be a super-potential as in Lemma 7.3.0.8. We have

U S 0 = d p-1 d -1 p U S 0 • Λ + U L(ω p ) .
on C b k-p+1 . Iterating this identity gives

U S 0 = d n p-1 d -n p U S 0 • Λ n + n-1 j=0 d j p-1 d -j p U L(ω p ) • Λ j .
Since U S 0 is bounded from above and since

d p-1 < d p , letting n → ∞ gives U ≥ U S 0 . So, U is not identically -∞.
We deduce from Propositions 4.1.0.9 and 4.2.0.6 that L n (S n ) converge to a current T which admits a super-potential equal to U on C b k-p+1 . The fact that U does not depend on S n implies that T is also independent of S n . Because U Sn are positive, the convergence is in the Hartogs' sense. We have

L(T ) = L( lim n→∞ L n (S n )) = lim n→∞ L n+1 (S n ) = T.
Hence, T is f * -invariant. . Theorem 7.3.0.9. Let f be as in Theorem 7.3.0.7. Then, the Green (p, p)current T of f is the most diffuse current in C p which is f * -invariant. In particular, T is extremal in the convex set of f * -invariant currents in C p .

Proof. We have seen in the proof of Theorem 7.3.0.7 that T admits a superpotential U T which is equal to U on C b k-p+1 . It follows that

U T = d p-1 d -1 p U T • Λ + U L(ω p ) on C b k-p+1 . It is clear that U T
is the unique super-potential of T satisfying this identity. Let S 0 and U S 0 be as above. We have seen that U T ≥ U S 0 on C b k-p+1 . By Corollary 4.1.0.7, this inequality holds on C k-p+1 . Hence, T is the most diffuse current in C p which is f * -invariant.

We now prove that T is extremal among

f * -invariant currents in C p . Assume T = 1 2 (T 1 + T 2 ) with T i in C p invariant under f * . By Lemma 7.3.0.8, the T i admit super-potentials U T i such that U T i = d p-1 d -1 p U T i • Λ + U L(ω p ) on C b k-p+1
. This and the uniqueness of U T imply that U T = 1 2 (U T 1 +U T 2 ). On the other hand, we have U T ≥ U T i . Hence, U T = U T i and T i = T . This completes the proof. Theorem 7.3.0.10. Let f : P k → P k be a dominant meromorphic map of dynamical degrees d s and Σ be defined as above. Assume that dim Σ ≤ k -p and that 

d p < d p-1 . Let R n be currents in C k-p+1 and U Rn be super-potentials of R n such that U Rn ∞ = o (d p + ) -n d n p-1 for some constant > 0. Then, d -n p-1 (f n ) * (R n ) H-converge to an f * -invariant current T in C k-
L n = d -n p (f n ) * . Replacing f by an iterate f N allows to assume that λ p < d p-1 and that U Rn ∞ = o λ -n p d n p-1 .
We can also assume that U Rn are positive. Let U Λ(ω k-p+1 ) be a negative superpotential of Λ(ω k-p+1 ). By Proposition 7.2.0.6, U Λ(ω k-p+1 ) is continuous. Proposition 7.1.0.12 implies that Λ n (R n ) admits a super-potential which is equal to

λ n p d -n p-1 U Rn • L n + n-1 j=0 λ j p d -j p-1 U Λ(ω k-p+1 ) • L j on smooth forms in C p .
Letting n → ∞, the first term tends to 0, the second term decreases to a continuous function on C p since U Λ(ω k-p+1 ) and L are continuous and λ p < d p-1 . This function does not depend on R n . We deduce that Λ n (R n ) converge to a current T which is independent of R n . The convergence is in the Hartogs' sense because U Rn are positive. Moreover, T admits a super-potential U T such that

U T := ∞ j=0 λ j p d -j p-1 U Λ(ω k-p+1 ) • L j
on smooth forms in C p . We have seen that the right hand side defines a continuous function on C p . Hence, U T is continuous and the last identity holds on Proof. Let R be a current in C k-p+1 with bounded super-potentials. Theorem 7.3.0.10 implies that Λ n (R) → T . So, if R is f * -invariant, then R = T . This implies the first assertion. We deduce from this and Proposition 4.3.0.4 the extremality of T .

C p . It follows from the convergence of Λ n (R n ) that T is f * -invariant.

Distribution problem I

Consider a holomorphic map f : P k → P k of algebraic degree d ≥ 2. Recall that f * acts continuously on positive closed currents of any bidegree [START_REF] Méo | Image inverse d'un courant positif fermé par une application analytique surjective[END_REF][START_REF]Pull-back of currents by holomorphic maps[END_REF], see also Paragraphs 7.1 and 7.2. It is well-known that d -n (f n ) * (ω) converge to a positive closed (1, 1)-current T with Hölder continuous quasi-potentials. One deduces from the intersection theory of currents that d -pn (f n ) * (ω p ) converge to T p , see [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF][START_REF] Fornaess | Dynamics in several complex variables[END_REF] for the first stages of the theory. The current T p is the Green current of order p and its super-potentials are the Green super-functions of order p of f . In the following result, we give a new construction and new properties of T p .

Theorem 7.4.0.1. Let f : P k → P k be a holomorphic map of algebraic degree d ≥ 2. Then, the Green super-potentials of f are Hölder continuous. Moreover,

T p is extremal in the convex set of f * -invariant currents S in C p . If S n are currents in C p of super-potentials U Sn such that U Sn ∞ = o(d n ), then d -pn (f n ) * (S n ) H-converge to T p .
We will see that the proof also gives that (f, R)

→ U T p (R) is locally Hölder continuous on H d (P k ) × C k-p+1 .
The following lemma is a special case of [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]Proposition 2.4]. For the reader's convenience, we give here the proof. Proof. Here, a -b denotes the distance between two points a, b in K. Since K has finite diameter (it is enough to assume that U is bounded), it is sufficient to consider a -b 1. By hypothesis, there is a constant

A > 0 such that |U (a) -U (b)| ≤ A a -b α . Define A := U ∞ . Since K has finite diameter, A is finite. If N is an integer, we have n≥0 d -n U • Λ n (a) - n≥0 d -n U • Λ n (b) ≤ 0≤n≤N d -n |U • Λ n (a) -U • Λ n (b)| + n>N d -n |U • Λ n (a) -U • Λ n (b)| ≤ A 0≤n≤N d -n Λ n (a) -Λ n (b) α + 2A n>N d -n a -b α 0≤n≤N d -n A nα + d -N . If A α ≤ d, the last sum is of order at most equal to N a -b α + d -N . For a given 0 < β < α, choose N -β log a -b / log d. So, the last expression is a -b β .
In this case, the function is β-Hölder continuous for every 0 < β < α. 

When A α > d, the sum is d -N A N α a -b α + d -N . If N -log a -b / log A, the last
Proof. If Φ is a C α test (p -1, p -1)-form such that Φ C α ≤ 1, it is clear that f * (Φ) C α ≤ c α for a constant c α > 0 independent of Φ. If R and R are currents in C k-p+1 , we have | Λ(R) -Λ(R ), Φ | = | R -R , d -p+1 f * (Φ) | ≤ c α dist α (R, R ).
The lemma follows. Observe that the estimates are locally uniform on f ∈ H d (P k ).

Proof of Theorem 7.4.0.1. Theorems 7.3.0.7 and 7.3.0.9 imply that L n (S n ) H-converge to a current T p which does not depend on S n and is extremal among f * -invariant currents in C p . For S n = ω p and U Sn = 0, the computation in those theorems shows that T p admits a super-potential U Tp satisfying Let T denote the first Green current of f . So, T is the limit of d -n (f n ) * (ω) in the Hartogs' sense. By Theorem 5.2.0.10,

U Tp = ∞ j=0 d -j U L(ω p ) • Λ j on smooth forms in C k-p+1 . Since L(ω p ) is smooth, U L(ω p ) is
d -pn (f n ) * (ω p ) converge to T p . Hence, T p = T p .
Here is one of our main applications of super-potentials. 

(P k ) in H d (P k ) such that if f is in H * d (P k ), then d -pn (f n ) * (S) → T p uniformly on S ∈ C p . In particular, for f in H * d (P k ), T p is the unique current in C p which is f * -invariant. The open set H * d (P k
) is given by the following lemma. Lemma 7.4.0.5. There is a Zariski dense open set

H * d (P k ) in H d (P k ) and an in- teger N ≥ 1 such that if f is in H * d (P k ) and if δ denotes the maximal multiplicity of f N at a point in P k , then (20k 2 δ) 8k < d N .
Proof. Fix an N large enough. Observe that the set H * d (P k ) of f satisfying the previous inequality is a Zariski open set in H d (P k ). We only have to construct such a map f in order to obtain the density of H * d (P k ). Choose a rational map h : P 1 → P 1 of degree d whose critical points are simple and have disjoint infinite orbits. Observe that the multiplicity of h N at every point is at most equal to 2. We construct the map f using an idea of Ueda. Let σ k denote the group of permutations of {1, . . . , k}. It acts in a canonical way on

P 1 × • • • × P 1 , k times. Using the symetric functions on (x 1 , . . . , x k ) ∈ P 1 × • • • × P 1 , one shows that P 1 × • • • × P 1 divided by σ k is isomorphic to P k . Let π : P 1 × • • • × P 1 → P k denote the canonical map. If f is the endomorphism of P 1 × • • • × P 1 , k times, defined by f (x 1 , . . . , x k ) := (h(x 1 ), . . . , h(x k )), then there is a holomorphic map f : P k → P k of algebraic degree d such that f • π = π • f . We also have f N • π = π • f N .
Consider a point x in P k and a point x in π -1 (x). The multiplicity of f N at x is at most equal to 2 k . It follows that the multiplicity of f N at x is at most equal to 2 k k! since π has degree k!. Therefore, f satisfies the desired inequality if N is large enough.

Replacing f by f N , one can assume that f satisfies the lemma for N = 1. Let δ be the maximal multiplicity of f at a point in P k . We introduce some notations. We call dynamical super-potential of S the function V S defined by

V S := U S -U T p -c S where c S := U S (T k-p+1 ) -U T p (T k-p+1 )
where U S and U T p are the super-potentials of mean 0 of S and T p . We also call dynamical Green quasi-potential of S the form

V S := U S -U T p -(m S -m T p + c S )ω p-1
where U S , U T p are the Green quasi-potentials of S, T p and m S , m T p their means. Lemma 7.4.0.6. We have

V S (T k-p+1 ) = 0, V S (R) = V S , R for R smooth in C k-p+1 , and V L(S) = d -1 V S • Λ on C k-p+1 . Moreover, U S -V S is bounded by a constant independent of S.
Proof. It is clear that V S (T k-p+1 ) = 0. Since T k-p+1 has bounded super-potentials, c S is bounded by a constant independent of S. Hence, since U T p is bounded, U S -V S is bounded by a constant independent of S. For R smooth, we have

V S , R = U S , R -m S -U T p , R -m T p -c S = U S (R)-U T p (R)-c S = V S (R). It remains to prove that V L(S) = d -1 V S • Λ. Since Λ(T k-p+1 ) = T k-p+1 , we have V L(S) = d -1 V S • Λ = 0 at T k-p+1 . Hence, we only have to show that V L(S) -d -1 V S • Λ is constant. By Proposition 7.1.0.8, we have U L(S) = d -1 U S • Λ + U L(ω p ) + const and since L(T p ) = T p , this implies U T p = d -1 U T p • Λ + U L(ω p ) + const. It follows that V L(S) = d -1 U S • Λ -d -1 U T p • Λ + const. So, V L(S) -d -1 V S • Λ is constant.
Lemma 7.4.0.7. Let W be the -neighbourhood of the set P of critical values of f and W c be the complement of W with 0 < 1. There is a constant c > 0 independent of such that for R smooth in C k-p+1 and for 0 < , we have

Λ(R) -Λ(R) ∞,W c ≤ c R C 1 -5k ,
where Λ(R) is the -regularization of Λ(R), see Remark 3.1.0.7 for the terminology.

Proof. Let B be the ball of radius centred at a given point a of W c . Since B does not intersect P , f admits d inverse branches on B . More precisely, there are d injective holomorphic maps g i :

B → P k such that f • g i = id on B .
Observe that since f is finite, when the diameter of a ball B tends to 0, the connected components of f -1 (B) tend to single points. So, g i (B ) have small size. Using Cauchy's integral, it is easy to check that all the derivatives order n of g i on B /2 are -n . On B , we have

Λ(R) = d -p+1 g * i (R).
For fixed local real coordinates (x 1 , . . . , x 2k ), R is a combination with smooth coefficients of dx i 1 ∧ . . . ∧ dx i 2k-2p+2 . Hence, the estimate on the derivatives of g i implies that

g * i (R) C 1 (B /2 ) R C 1 -2k+2p-3 R C 1 -5k . It follows that Λ(R) C 1 (W c /2 ) R C 1 -5k .
Let τ be an automorphism of P k close enough to the identity. Lemma 3.1.0.8 implies that

τ * (Λ(R)) -Λ(R) ∞,W c R C 1 -5k dist(τ, id).
We then deduce the desired estimate from the definition of Λ(R) .

Lemma 7.4.0.8. The quasi-potentials of f * (ω) are δ -1 -Hölder continuous.

Proof. Let B be a small ball in P k . The inverse image f -1 (B) of B is a union of small open sets. Hence, there is a smooth psh function u on f -1 (B) such that ω = dd c u there. Define the function v on B by

v(z) := w∈f -1 (z) u(w)
where the points in f -1 (z) are repeated according to their multiplicity. It is clear that v is continuous and dd c v = f * (ω). We only have to show that v is δ -1 -Hölder continuous. Recall that the multiplicity of f at every point is ≤ δ. By Lojasiewicz's inequality [320, Lemma 4.3], we can write, for z, z in B,

f -1 (z) = {w 1 , . . . , w d k } and f -1 (z ) = {w 1 , . . . , w d k } so that dist FS (w i , w i ) dist FS (z, z ) δ -1 . Hence, |v(z) -v(z )| ≤ d k u C 1 max dist FS (w i , w i ) dist FS (z, z ) δ -1 .
This implies the lemma.

Lemma 7.4.0.9. Let P denote the set of critical values of

f as above. If R is smooth, then V S (Λ(R)) = V S , Λ(R) P k \P .
Proof. Observe that Λ(R) is smooth outside P . We will show that U S (Λ(R)) = U S , Λ(R) P k \P -m S . This and the same identity for T p imply the result. Since R ≤ cω k-p+1 for a constant c > 0, we have

Λ(R) ≤ cd 1-p f * (ω k-p+1 ) ≤ cd 1-p [f * (ω)] k-p+1 .
Lemma 7.4.0.8 and Proposition 3.3.0.6 imply that U S θ , Λ(R) P k \P converge to U S , Λ(R) P k \P when θ → 0. So, it is enough to consider the case where S is smooth. In this case, U S is smooth. Since Λ(R) has no mass on P , we have

U S , Λ(R) P k \P -m S = U S , Λ(R) -m S = U S (Λ(R)).
This completes the proof.

Proposition 7.4.0.10. For every smooth form R in C k-p+1 , d -4n/5 V S (Λ n (R)) converge to 0 uniformly on S. In particular, we have

| log cap(Λ n (R))| = o(d 4n/5 ).
Fix an integer n large enough and define := d -n . In what follows, the symbols and mean inequalities up to multiplicative constants which are independents of n and i. Observe that we can assume S smooth. Define i := (20k 2 δ) 6ki for 0 ≤ i ≤ n. The main point here is that i / i-1 has to be small. Define also by induction R 0 := R and R i := Λ(R i-1 ) i the i -regularization of Λ(R i-1 ), see Remark 3.1.0.7 for the terminology. Let V i be the Green dynamical quasi-potentials of L i (S). They are forms with bounded mass.

Lemma 7.4.0.11. We have

d -i |V S (R i )| (-log )d -i/4 .
Proof. By Proposition 3.1.0.6, we have

R i ∞ -2k 2 -4k i -4k 2 i
.

Hence, Lemma 4.2.0.10 applied to K = P k implies that

d -i |V S (R i )| d -i (-log i ) = d -i (-log )(20k 2 δ) 6ki .
Lemma 7.4.0.5 implies the result. Recall that we suppose N = 1.

Lemma 7.4.0.12. We have

V n-i , Λ(R i-1 ) -R i P k \P -i . Proof. Observe that V n-i := V n-i -cω p-1 is negative for some universal constant c > 0. Since Λ(R i-1
) and R i have the same mass, we also have

V n-i , Λ(R i-1 ) -R i P k \P = V n-i , Λ(R i-1 ) -R i P k \P . Proposition 3.1.0.6 implies R i-1 C 1 -2k 2 -4k-1 i-1 -5k 2 i-1 .
Let W i denote the

(10k) -1 i
-neighbourhood of P and W c i its complement. We obtain from Lemma 7.4.0.7 applied to R :

= R i-1 that Λ(R i-1 ) -R i ∞,W c i R i-1 C 1 (10k) -1 i -5k i -5k 2 i-1 1/2 i i .
Since V n-i has bounded mass, we deduce that

| V n-i , Λ(R i-1 ) -R i W c i | i .
It remains to prove that

V n-i , Λ(R i-1 ) -R i W i \P ≥ -i . Since V n-i is negative and R i is positive, it is enough to bound the integral V n-i , Λ(R i-1 ) W i \P
. By Proposition 3.1.0.6, we have

R i-1 R i-1 ∞ ω k-p+1 -4k 2 i-1 ω k-p+1 . It follows that Λ(R i-1 ) -4k 2 i-1 f * (ω k-p+1 ) -4k 2 i-1 [f * (ω)] k-p+1 .
Lemma 7.4.0.8 and Proposition 3.3.0.6 then imply that

| V n-i , Λ(R i-1 ) W i \P | -4k 2 i-1 (10k) -1 (20k 2 δ) -k δ -k i -(20k 2 δ) 2k i-1 (20k 2 δ) -3k i i .
This completes the proof.

End of the proof of Proposition 7.4.0.10. Since V S is bounded from above by a constant independent of S, we only have to bound V S (Λ n (R)) from below. By Lemmas 7.4.0.6 and 7.4.0.9, we have since R 0 = R and R i are smooth

d -n V S (Λ n (R)) = d -1 V L n-1 (S) (Λ(R 0 )) = d -1 V n-1 , Λ(R 0 ) -R 1 P k \P + d -1 V n-1 , R 1 = d -1 V n-1 , Λ(R 0 ) -R 1 P k \P + d -1 V L n-1 (S) (R 1 ) = d -1 V n-1 , Λ(R 0 ) -R 1 P k \P + d -2 V L n-2 (S) (Λ(R 1 )).
By induction, we obtain

d -n V S (Λ n (R)) = d -1 V n-1 , Λ(R 0 ) -R 1 P k \P + • • • +d -n V 0 , Λ(R n-1 ) -R n P k \P + d -n V S (R n ).
It follows from Lemmas 7.4.0.11 and 7.4.0.12 that

d -n V S (Λ n (R)) -d -1 -• • • -d -n n -d -n/4 (-log ) --d -n/4 (-log ).
Since = d -n , we get the result.

End of the proof of Theorem 7.4.0.4. Consider a current S in C p and a smooth form R in C k-p+1 . We want to prove that L n (S) converge to T p uniformly on S. By Propositions 4.2.0.6 and 4.1.0.9, it is enough to show that V L n (S) (R) converge to 0 uniformly on S. By Lemma 7.4.0.6, we have

V L n (S) (R) = d -n V S (Λ n (R)).
Proposition 7.4.0.10 implies the result.

Proposition 7.4.0.13. Assume that f is in H * d (P k ). For any α > 0, there are constants c > 0 and λ > 1

such that if S is in C p and Φ is a test (k-p, k-p)-form of class C α , then | d -pn (f n ) * (S) -T p , Φ | ≤ cλ -n Φ C α . In particular, if ϕ is a C α function such that T k , ϕ = 0, then d -kn (f n ) * (ϕ) ∞ ≤ cλ -n ϕ C α .
Proof. We prove the fisrt assertion. Using theory of interpolation as in Lemma 3.1.0.2, we only have to prove the case α = 3. Assume that Φ has a bounded C 3 -norm. Multiplying Φ by a constant allows to assume that dd c Φ = R + -R - where R ± are C 1 forms in C k-p+1 with bounded C 1 -norm. A straighforward computation as above gives

d -pn (f n ) * (S) -T p , Φ = d -n V S (Λ n (R + )) -d -n V S (Λ n (R -)).
The estimates we obtained above give

d -n V S (Λ n (R ± )) -nd -n/4 .
On the other hand, since V S is bounded from above uniformly on S, we have

d -n V S (Λ n (R ± )) d -n .
So, it is enough to take a λ smaller than d 1/4 .

For the second assertion, if δ a is the Dirac mass at a then

d -kn (f n ) * (δ a ), ϕ = δ a , d -kn (f n ) * (ϕ) = d -kn (f n ) * (ϕ)(a).
Since T k , ϕ = 0, we deduce from the first assertion that

|d -kn (f n ) * (ϕ)(a)| ≤ cλ -n ϕ C α .
This completes the proof.

Note that for α ≤ 2, we can take λ any constant smaller than d α/2 if we replace H * d (P k ) by a suitable Zariski open set depending on λ. In dimension 1, Drasin-Okuyama proved in [START_REF] Drasin | Equidistribution and Nevanlinna theory[END_REF] that the second assertion holds for every f if a is a point on the Julia set, i.e. on the support of the equilibrium measure.

Distribution problem II

In this paragraph, we consider the class of regular polynomial automorphisms introduced in [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. Let f be a polynomial automorphism of C k . We extend f to a birational map on P k that we still denote by f . Let I + and I -be the indeterminacy sets of f and f -1 respectively. With the notations of Paragraph 7.1, we have I = I + and I = I -. They are analytic subsets of codimension ≥ 2 in P k . The map f is said to be regular if I + ∩ I -= ∅. We summarize here some properties of f , which are deduced from the above assumption [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF].

The indeterminacy sets I ± are irreducible and there is an integer p such that dim I + = k -p -1 and dim I -= p -1. They are contained in the hyperplane at infinity L ∞ . We also have f

(L ∞ \ I + ) = f (I -) = I -and f -1 (L ∞ \ I -) = f -1 (I + ) = I + . If d ± denote the algebraic degrees of f ± , then d p + = d k-p -. Denote by K + (resp. K -) the set of points z in C k such that the forward orbit (f n (z)) n≥0 (resp. the backward orbit (f -n (z)) n≥0 ) is bounded in C k . They are closed subsets in C k and K ± = K ± ∪ I ± .
Moreover, I -is attracting for f and P k \ K + is the attracting basin; I + is attracting for f -1 and P k \ K -is the attracting basin.

The positive closed (1, 1)-currents d -n ± (f ±n ) * (ω) converge to the Green (1, 1)currents T ± associated to f ±1 . These currents have Hölder continuous quasipotentials out of I ± and satisfy f * 

= T p + ∧ T k-p - is supported in the boundary of K := K + ∩ K -. The current T s + , 1 ≤ s ≤ p,
is the Green current of order s of f and its super-potentials are called Green super-potentials of order s of f .

Let C k-s+1 (W ) denote the set of currents in C k-s+1 with compact support in an open set W . We assume that W is a neighbourhood of I -such that

W ∩ I + = ∅. Since dim I -= p -1, C k-s+1 (W ) is not empty for s ≤ p. If U is a function on C k-s+1 (W ), define U ∞,W := sup R∈C k-s+1 (W ) |U (R)|.
In the following result, we give a new construction of the currents T s + and T s -. Note that we cannot apply the results of Paragraph 7.3 here, since Σ = L ∞ . Indeed, we apply f * only to currents without mass on L ∞ . Theorem 7.5.0.1. Let f and W be as above. Then, the Green super-potentials of order s of f , 1 ≤ s ≤ p, are Hölder continuous on C k-s+1 (W ). Let S n be currents in C s and U Sn be super-potentials of

S n such that U Sn ∞,W = o(d n + ) for an open set W which contains K -. Then, d -sn + (f n ) * (S n ) → T s + . It is shown in [411] that the current f * (ω s ) is of mass d s + for 1 ≤ s ≤ p, see also Paragraph 7.1. It follows that f * (ω k-s ) is of mass d s + . Define L s := d -s + f * and Λ s := d -s+1 + f * .
Assume that the super-potentials of S are finite on C k-s+1 (W ). Then, S is f * -admissible, because Λ s (R) belongs to C k-s+1 (W ) when supp(R) is close enough to I -. By Lemma 7.1.0.6 and Proposition 7.1.0.8, the current f * (S) is well-defined and is of mass d s + . Consider a super-potential U Ls(ω s ) of L s (ω s ). Since L s (ω s ) is smooth on W , it is easy to check that U Ls(ω s ) is Lipschitz on C k-s+1 (W ). We first prove the following result.

Proposition 7.5.0.2. Let S n be currents in C s and U Sn be super-potentials of

S n with U Sn ∞,W = o(d n + ). If S is a limit value of d -sn + (f n ) * (S n ), then S admits a super-potential which is equal on C k-s+1 (P k \ K + ) to n≥0 d -n + U Ls(ω s ) • Λ n s . Moreover, this equality holds on C k-s+1 (P k \ I + ) when W contains K -.
Proof. Reducing W allows to assume that f (W )

W . If W contains K -, we can keep this property. Fix an open set W 0 relatively compact in P k \ K + which contains I -. If W contains K -, we can take W 0 relatively compact in P k \ I + . Observe that f -m (W ) contains W 0 for m large enough. So, replacing S n by d -sm + (f m ) * (S n+m ) and W by some open set of f -m (W ) allows to assume that W 0 W . By Proposition 7.1.0.8, there is a super-potential of L s (S n ) which is equal on

C k-s+1 (W ) to d -1 + U Sn • Λ s + U Ls(ω s )
. We apply again this proposition to L s (S n ). There is a super-potential of L 2 s (S n ) which is equal on C k-s+1 (W ) to

d -2 + U Sn • Λ 2 s + U Ls(ω s ) + d -1 + U Ls(ω s ) • Λ s .
By induction, L n s (S n ) admits a super-potential U L n s (Sn) which is equal to

d -n + U Sn • Λ n s + U Ls(ω s ) + d -1 + U Ls(ω s ) • Λ s + • • • + d -n+1 + U Ls(ω s ) • Λ n-1 s on C k-s+1 (W )
. By hypothesis, the first term tends to 0. Hence,

U L n s (Sn) converge to n≥0 d -n + U Ls(ω s ) • Λ n s on C k-s+1 (W ). This sum converges since U Ls(ω s ) is Lipschitz on C k-s+1 (W ).
By Proposition 4.2.0.6, it remains to show that U L n s (Sn) are bounded from above uniformly on n. For this purpose, it is enough to show that the means

U L n s (Sn) (ω k-s+1 ) of U L n s (Sn) are bounded from above uniformly on n. If R 0 is a smooth form in C k-s+1 (W 0 ). We have U L n s (Sn) (R 0 ) = d -n + U Sn (Λ n s (R 0 )) + U Ls(ω s ) (R 0 ) + • • • + d -n+1 + U Ls(ω s ) (Λ n-1 s (R 0 )).
This sum is bounded from above. On the other hand, R 0 admits a positive quasi-potential since it is smooth. Proposition 4.2.0.9 implies the result.

End of the proof of Theorem 7.5.0.1. Since W contains K -, by Proposition 7.5.0.2, any cluster point of L n s (S n ) has a super-potential equal to d -n + U Ls(ω s ) • Λ n s on C k-s+1 (P k \ I + ). Lemma 4.1.0.9 implies that there is only one cluster point for the sequence L n s (S n ), hence L n s (S n ) converge to a current T s . This current does not depend on S n since it admits a super-potential independent of S n . For S n = ω s , we obtain that T s is the Green current of order s of f . It admits a super-potential U Ts equal to n≥0 d -n + U Ls(ω s ) • Λ n s on C k-s+1 (P k \ I + ). Lemma 8.2.0.5 implies that this function is Hölder continuous on C k-s+1 (W ).

Let T + := T 1 . We want next to prove that T s = T s + . For this purpose, it is sufficient to show that T s and T l are wedgeable and T s ∧ T l = T s+l when s + l ≤ p. Since s + l ≤ p, there is a smooth form Ω ∈ C k-s-l+1 with compact support in P k \ I + . Hence, Ω ∧ T l has compact support in P k \ I + and the super-potentials of T s are finite at Ω ∧ T l . It follows that T s and T l are wedgeable.

The computation in Proposition 7.5.0.2 implies that L n s (ω s ) admits a superpotential

U L n s (ω s ) which is equal to n i=0 d -i + U Ls(ω s ) • Λ i s on C k-s+1 (P k \ I + )
. Fix a real smooth test form Φ of bidegree (k -s -l, k -s -l) with compact support in P k \ I + . As in Proposition 4.1.0.9, write dd c Φ = c(Ω + -Ω -) with c > 0 and Ω ± in C k-s-l+1 (P k \ I + ). The sequence Ω ± ∧ L n l (ω l ) converges to Ω ± ∧ T l . Since these currents have supports in a fixed compact subset of

P k \ I + , the values of U L n s (ω s ) at Ω ± ∧ L n l (ω l ) converge to the value of U Ts at Ω ± ∧ T l . The formula (5.2.1) implies that L n s (ω s ) ∧ L n l (ω l ) converge to T s ∧ T l .
On the other hand, L n s+l (ω s+l ) and L n s (ω s ) ∧ L n l (ω l ) are smooth forms which are equal outside I + . They have no mass on I + because dim I + < k -s -l. Hence, these currents are equal. Therefore, letting n → ∞ gives T s+l = T s ∧ T l and in particular T s = T s + .

Theorem 7.5.0.3. The Green current T s + is the most diffuse f * -invariant current in C s . In particular, it is extremal in the convex set of f * -invariant currents in C s .

Proof. It follows from the convergence in Theorem 7.5.0.1 that T s + is f * -invariant. Let T be an f * -invariant current in C s and U T be a super-potential of T . Proposition 7.1.0.8 implies that L s (T ) admits a super-potential U which is equal to

d -1 + U T •Λ s +U Ls(ω s ) on R smooth in C k-s+1 . Since L s (T ) = T ,
there is a constant c such that U = U T + c. Subtracting from U T an appropriate constant gives another super-potential that we still denote by U T , such that

U T = d -1 + U T • Λ s + U Ls(ω s )
on R in C k-s+1 which is smooth in a neighbourhood of I + . The condition on R is invariant under Λ. So, iterating the above identity gives

U T = d -n + U T • Λ n + n-1 i=0 d -i + U Ls(ω s ) • Λ i s .
Since U T is bounded from above, letting n → ∞, we obtain

U T ≤ ∞ i=0 d -i + U Ls(ω s ) • Λ i s = U T s + .
This identity holds on smooth forms R in C k-s+1 . Hence, T s + is more diffuse than T . Now, we prove that T s + is extremal among f * -invariant currents. Assume that T s + = 1 2 (T + T ) with T and T in C s invariant by f * . Let U T be as above. Let U T be the analogous super-potential of T . It is the unique super-potential which satisfies

U T = d -1 + U T • Λ s + U Ls(ω s ) on smooth forms in C k-s+1 . Observe that 1 2 (U T + U T ) is a super-potential of T s + satisfying the same property. It follows that 1 2 (U T + U T ) = U T s + .
We deduce from the inequalities

U T ≤ U T s + and U T ≤ U T s + that U T , U T are equal to U T s + . Hence, T = T = T s + .
This implies the result.

In the case of bidegree (p, p), we have the following stronger result which is another main application of the super-potentials. It was proved by Fornaess in the case of dimension 2 [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF]. In what follows, we only consider currents S in C p with support in K + . By Proposition 4.2.0.10, their super-potentials of mean 0 are bounded on C k-p+1 (W ) uniformly on S when W P k \K + . In particular, they are bounded at the current R ∞ := (deg I -) -1 [I -]. We call the dynamical super-potential of S the function V S defined by

V S := U S -U T p + -c S where c S := U S (R ∞ ) -U T p + (R ∞ )
where U S , U T p + are the super-potentials of mean 0 of S and T p + . We also call the dynamical Green quasi-potential of S the form

V S := U S -U T p + -(m S -m T p + + c S )ω p-1
where U S , U T p + are the Green quasi-potentials of S, T p + and m S , m T p + are their means. Denote for simplicity L := L p and Λ := Λ p . Lemma 7.5.0.5.

Let W P k \ I + be an open set. Then, V S (R ∞ ) = 0, V S (R) = V S , R for R smooth in C k-p+1 (W ), and V L(S) = d -1 + V S • Λ on C k-p+1 (W ). Moreover, U S -V S is bounded on C k-p+1 (W ) by a constant independent of S. Proof. It is clear that V S (R ∞ ) = 0. Recall that m S , m T p + and c S are bounded. Since U T p + is continuous on C k-p+1 (W ), U S -V S is bounded on C k-p+1 (W ) by a constant independent of S. We also have for R smooth in C k-p+1 (W ) V S , R = U S , R -m S -U T p + , R -m T p + -c S = U S (R)-U T p + (R)-c S = V S (R). It remains to prove that V L(S) = d -1 + V S • Λ on C k-p+1 (W ). Observe that since I -is irreducible, Λ(R ∞ ) = R ∞ . We deduce that V L(S) = d -1 + V S • Λ = 0 at R ∞ .
Hence, we only have to show that V L(S) -d -1 + V S • Λ is constant. By Proposition 7.1.0.8, see also Proposition 7.5.0.2, we have

U L(S) = d -1 + U S • Λ + U L(ω p ) + const
and since L(T p + ) = T p + , this implies

U T p + = d -1 + U T p + • Λ + U L(ω p ) + const. It follows that V L(S) = d -1 + U S • Λ -d -1 + U T p + • Λ + const. It is clear that V L(S) -d -1 + V S • Λ is constant.
Proof of Theorem 7.5.0.4. Consider a current S in C p (P k ) with support in K + . Define S n := d pn + (f n ) * (S) on C k . These currents are positive closed with support in K + . Since K + = K + ∪ I + , S n are defined on P k \ I + . Since dim I + < k -p, S n can be extended to positive closed currents on P k without mass on I + [START_REF] Harvey | Extending analytic objects[END_REF]. We also denote this extension by S n . Since f n is an automorphism in C k we have (f n ) * (S n ) = d pn + S on C k . The equality holds in P k because the currents have supports in K + and hence, have no mass at infinity. So, necessarily S n have mass 1. Let V Sn , V S denote the dynamical super-potentials of S n and S. We want to prove that S = T p + . According to Proposition 4.1.0.9, it is enough to show that V S = 0 on C k-p+1 (W ) for any W disjoint from I + .

We have L n (S n ) = S, hence Lemma 7.5.0.5 implies that

V S = d -n + V Sn • Λ n . Since V Sn is bounded from above on C k-p+1 (W ) by a constant independent of n, the last identity implies that V S ≤ 0 on C k-p+1 (W ). If V S = 0 on C k-p+1 (W ), there is a smooth form R in C k-p+1 (W ) such that V S (R) < 0. It follows that V Sn (Λ n (R)) -d n + . Let W be a neighbouhood of K + , disjoint from I -, such that f -1 (W ) ⊂ W . Hence, Df -1 is bounded there by some constant M on W . It follows that Λ n (R) ∞,W M 3kn . The inequality V Sn (Λ n (R)) -d n + contradicts Proposition 4.2.0.10 which gives |V Sn (Λ n (R))| 1 + log M 3kn . So, V S = 0 on C k-p+1 ( 
W ) and this completes the proof.

The following result holds for currents of integration on generic varieties of dimension k -p in P k . Corollary 7.5.0.6. Let S be a current in C p such that supp(S) ∩ I -= ∅. Then,

d -pn + (f n ) * (S) converge to T p + .
Proof. Let W be a neighbourhood of I -such that f (W ) W and W ∩supp(S) = ∅. Hence, f -n (W ) ⊂ f -n-1 (W ) and d -pn + (f n ) * (S) has support in P k \ f -n (W ). It follows that the limit values of d -pn + (f n ) * (S) are supported in the complement of ∪ n≥0 f -n (W ) which is contained in K + . By Theorem 7.5.0.4, the only limit value is T p + .

Remark 7.5.0.7. In [START_REF] De Thélin | Un phénomène de concentration de genre[END_REF], de Thélin proved that the measure µ is hyperbolic. It admits k-p strictly negative and p strictly positive Lyapounov exponents. Pesin's theory implies that if a point a is generic with respect to µ, then it admits a stable manifold of dimension k -p and an unstable manifold of dimension p. If p = k -1 and if τ : C → K + is an entire curve, using the Ahlfors' construction [START_REF] Ahlfors | Zur Theorie der Überlagerungoflächen[END_REF], we obtain positive closed (k-1, k-1)-currents with support in τ (C). Indeed, Ahlfors' inequality implies the existence of (r n ) → ∞ such that the currents of integration on τ (∆ rn ), properly normalized, converge to a positive closed current of mass 1. Theorem 7.5.0.4 implies that this current is equal to

T k-1 + . Hence τ (C) contains the support of T k-1
+ . This result holds for generic stable manifolds of µ. Remark 7.5.0.8. For 1 ≤ s ≤ p, if S is a current in C s with super-potentials bounded on C k-s+1 (W ) for some small neighbourhood W of I -, then we can prove in the same way that d -sn + (f n ) * (S) converge to T s + . The proof follows the same lines as the one in Theorem 7.5.0.4. We should choose W large enough, in particular, we have W ∪ W = P k . In order to apply Proposition 4.2.0.10, we write R as a combination of a current in C k-p+1 (W ) and a smooth form with bounded C 0 -norm.

Chapter 8 Automorphisms

In this chapter, we study the dynamics of automorphisms on compact Kähler manifolds. The main dynamical objects (Green currents and equilibrium measure) were constructed in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. In [START_REF] Guedj | Equidistribution towards the Green current[END_REF], under some extra hypothesis, Guedj gives another construction of the Green current of some bidegree and of the equilibrium measure. Here, the theory of super-potentials allows us to obtain a new construction and to prove some fine properties of these dynamical objects.

Action

We first give some basic properties of linear maps. Their proofs are left to the reader. Recall that a Jordan block J λ,m is a square complex matrix (a ij ) 1≤i,j≤m such that a ij = λ if i = j, a ij = 1 if j = i + 1 and a ij = 0 otherwise. If λ = 0, the entry of index (1, m) of J n λ,m is equal to n m-1 λ n-m+1 when n ≥ m -1. This is the only entry of order n m-1 |λ| n , the other ones have order at most equal to n m-2 |λ| n . We have

J n λ,m ∼ n m -1 |λ| n-m+1 ∼ n m-1 |λ| n .
The eigenspace of J λ,m associated to the unique eigenvalue λ is a complex line. Consider a linear automorphism L of a real space E R h . We assume there is an open convex cone K in E which is salient, i.e. K ∩ -K = {0}, and totally invariant by L, i.e. L(K ) = K . For a fixed basis of E, L is associated to an invertible square matrix with real coefficients. One can extend L to an automorphism of E C := E ⊗ R C C h . Then, there is a complex basis of E C such that the associated matrix of L is a Jordan matrix, i.e. a block diagonal matrix whose blocks are Jordan blocks. In other words, one can decompose E C into direct sum of complex subspaces E C l which are invariant by L: We say that J λ l ,m l is a dominant Jordan block if (|λ l |, m l ) = (|λ 1 |, m 1 ) and in that case we say that λ l is a dominant eigenvalue of L. Let ν be the integer such that J λ 1 ,m 1 , . . ., J λν ,mν are the dominant Jordan blocks. The positive number λ := |λ 1 | is the spectral radius of L. The integer m := m 1 is called the multiplicity of the spectral radius. Since L preserves the salient open cone K , λ is a dominant eigenvalue of L. Moreover, the Perron-Frobenius theorem implies that L admits an eigenvector in K associated to the dominant eigenvalue λ. It is clear that

E C = 1≤l≤r E C l with dim E C l = m l and
L n ∼ n m 1 -1 λ n . Let E C
l be the hyperplane generated by the first m l -1 vectors of the basis of E C l associated to the Jordan form. We have

L n v ∼ n m 1 -1 λ n for any vector v ∈ E C 1 ⊕ • • • ⊕ E C ν ⊕ E C ν+1 ⊕ • • • ⊕ E C r , in particular for v ∈ K . Let F C
l denote the eigenspace of L l which is a complex line. We say that

F C := F C 1 ⊕ • • • ⊕ F C ν is the dominant eigenspace. Define H C := ⊕F C
l with 1 ≤ l ≤ ν and λ l = λ. This is the strictly dominant eigenspace of L. Define also

F := F C ∩ E and H := H C ∩ E. One can check that F C = F ⊗ R C and H C = H ⊗ R C.
The previous spaces are invariant under L.

For any 1 ≤ l ≤ ν, there is a unique θ l ∈ S := R/2πZ such that λ l = λ exp(iθ l ). We say that θ := (θ 1 , . . . , θ ν ) ∈ S ν is the dominant direction of L. The dominant direction of L n is equal to nθ. Denote by Θ the closed subgroup of S ν generated by θ. It is a finite union of real tori. The orbit of each point θ ∈ Θ under the translation θ → θ + θ is dense in Θ. If λ l = λ for every 1 ≤ l ≤ ν, we have F C = H C , θ = 0 and Θ = {0}. Define

L N := 1 N N n=1 L n n m-1 λ n .
We have the following proposition, see also [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. Proposition 8.1.0.1. The sequence ( L N ) converges to a surjective real linear map L ∞ : E → H. Let (n i ) be an increasing sequence of integers. Then

(n 1-m i λ -n i L n i ) converges if and only if (n i θ) converges. Moreover, any limit of (n 1-m λ -n L n ) is a surjective real linear map from E to F .
Note that surjective linear maps are open and the image of K by such a map is an open convex cone.

We will apply the previous result to the action of a holomorphic map on cohomology groups. Let f be an automorphism on a compact Kähler manifold (X, ω) of dimension k. The pull-back operator f * acts on smooth forms and on currents. It commutes with ∂, ∂ and preserves positivity. Therefore, f * acts as a linear automorphism on H q,q (X, R). The operator push-forward f * is defined in the same way. It coincides with the pull-back (f -1 ) * by f -1 .

Recall that the dynamical degree of order q of f is the spectral radius of f * acting on H q,q (X, R). Let us denote by d q (f ) (or d q if there is no confusion) this degree. We have d q (f n ) = d q (f ) n for n ≥ 1 and d 0 (f ) = d k (f ) = 1. An inequality due to Khovanskii, Teissier and Gromov [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF] implies that the function q → log d q is concave on 0 ≤ q ≤ k, see also [START_REF] Guedj | Equidistribution towards the Green current[END_REF]. In particular, there are two integers p and p with 0 ≤ p ≤ p ≤ k such that

1 = d 0 < • • • < d p = • • • = d p > • • • > d k = 1.
By Gromov and Yomdin [START_REF]On the entropy of holomorphic maps[END_REF][START_REF] Yomdin | Volume growth and entropy[END_REF], the dynamical degrees are related to the topological entropy h t (f ) of f by the formula h t (f ) = max q log d q , see also [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for a more general context.

Let K be the convex cone of the classes in H q,q (X, R) associated to strictly positive closed (q, q)-forms. Then K is salient and totally invariant by f * . Hence, we can apply Proposition 8.1.0.1 to f * (one can also apply it to the cone of the classes associated to strictly positive closed (q, q)-currents). Recall that the bilinear form on H q,q (X, R) × H k-q,k-q (X, R) given by

([β], [β ]) → [β] [β ] := X β ∧ β is non-degenerate. Moreover, we have f * [β] [β ] = [β] f * [β ]
. So, if we consider two basis of H q,q (X, R) and of H k-q,k-q (X, R) which are dual with respect to , then f * acting on H q,q (X, R) and f * acting on H k-q,k-q (X, R) are given by the same matrix. Therefore, these operators have the same spectral radius d q (f ) = d k-q (f -1 ) with the same multiplicity m. Lemma 8.1.0.2. If S is a current in D q then (f n ) * S * ≤ κn m-1 d n q S * where κ > 0 is a constant independent of S. Moreover, if S is a strictly positive current, we have (f n ) * (S) ∼ n m-1 d n q . Proof. We can assume that S is positive. The mass of a positive closed current can be computed cohomologically. Therefore,

(f n ) * S = (f n ) * [S] [ω k-q ] (f n ) * [S]
n m-1 d n q S . This gives the first part of the lemma. For the second one, if S is strictly positive then [S] is in the interior of the cone of the classes of positive closed currents. We deduce from the above discussion on the linear operator L that (f n ) * [S] ∼ n m-1 d n q . The result follows. Note that the previous lemma allows to compute the dynamical degrees using the following formula

d q (f ) = lim n→∞ X (f n ) * ω q ∧ ω k-q 1/n = lim n→∞ X ω q ∧ (f n ) * ω k-q 1/n .

Construction

In this section, we give a new construction of the Green currents using the superpotentials. This approach permits to establish some new properties of the Green currents. The result can be extended to open non-invertible maps, see [START_REF]Pull-back of currents by holomorphic maps[END_REF] for the pull-back operator on currents by non-invertible maps. We use here the notations introduced in Section 8.1.

Theorem 8.2.0.1. Let f be a holomorphic automorphism on a compact Kähler manifold (X, ω). Let d s be the dynamical degrees of f and q an integer such that d q-1 < d q . Let F (resp. H) denote the real dominant (resp. strictly dominant) subspace associated to the operator f * on H q,q (X, R). Then each class c of F can be represented by a current T c in D q with Hölder continuous super-potentials which depends linearly on c and satisfies f * (T c ) = T f * (c) . In particular, we have f * (T c ) = d q T c for c ∈ H. The set of the classes c in F (resp. in H) with T c positive is a closed convex cone with non-empty interior.

The cone of positive closed currents T c with c ∈ H is a closed cone of finite dimension. We say that T c is a Green current of order q of f if T c is a nonzero positif current (this implies that c = 0). By Proposition 2.4.0.4, the Green currents are moderate. We will see that Green currents are the only positive closed currents in their cohomology classes.

Consider now the action of f * on H q,q (X, R) as described in Section 8.1. Let m denote the multiplicity of its spectral radius d q .

Proposition 8.2.0.2. Let S be a current in D q with a continuous super-potential. Let (n i ) be an increasing sequence of integers. Assume that n 1-m i d -n i q (f n i ) * [S] converge to some class c in H q,q (X, R). Then n 1-m i d -n i q (f n i ) * (S) converge SPuniformly to a current T c in D q which depends only on c.

Let α = {α 1 , . . . , α h } be a family of smooth closed real (q, q)-forms such that [α] = {[α 1 ], . . . , [α h ]} is a basis of H q,q (X, R) where h is the dimension of H q,q (X, R). In what follows, we consider the super-potentials normalized by α as in Section 4. Let M denote the h × h matrix whose column of index j is given by the coordinates of f * [α j ] with respect to the basis [α]. Let U j denote the super-potential of f * (α j ) and define U := (U 1 , . . . , U h ). Let A = t (a 1 , . . . , a h ) denote the coordinates of [S] in the basis [α] and U S , U Sn the super-potentials of S and of S n := (f n ) * S respectively. Denote also by Λ the operator f * acting on D 0 k-q+1 .

Lemma 8.2.0.3. We have

U Sn = n-1 l=0 (U • Λ l )M n-l-1 A + U S • Λ n .
Proof. The proof is by induction. For n = 0, we have S 0 = S and the lemma is clear. Assume the lemma for n. We show it for n + 1. Let R be a smooth form in D 0 k-q+1 and U a smooth potential of R normalized by α. So, f * (U ) is a potential of Λ(R) but it is not normalized. Let α ∨ = {α ∨ 1 , . . . , α ∨ h } be a family of smooth real closed forms such that [α ∨ ] is the basis of H k-q,k-q (X, R) which is dual to [α] with respect to . Define

b j := α j , f * (U ) = f * (α j ), U = U j (R) and b := t (b 1 , . . . , b m ) = t U (R).
Then U := f * (U ) -α ∨ b is a potential of Λ(R) normalized by α. We obtain using the induction hypothesis

U S n+1 (R) = S n+1 , U = f * (S n ), U = S n , f * (U ) = S n , U + S n , α ∨ b = U Sn (Λ(R)) + S n , α ∨ b = n l=1 U (Λ l (R))M n-l A + U S (Λ n+1 (R)) + S n , α ∨ b .
We only have to check that the last integral satisfies

S n , α ∨ b = U (R)M n A.
Observe that the integral S n , α ∨ b can be computed cohomologically. Since S is cohomologous to αA, by definition of M ,

S n = (f n ) * S is cohomologous to αM n A. Hence S n , α ∨ b = αM n A, α ∨ b = t bM n A = U (R)M n A.
This completes the proof.

End of the proof of Proposition 8.2.0.2. By Proposition 8.1.0.

1 the limit c of n 1-m i d -n i q (f n i )[S] is a class in F . Write c = t (c 1 , . . . , c h ) with respect to the basis [α]. Then, n 1-m i d -n i q M n i A converges to c. By Lemma 8.2.0.3, the super-potential U n i of n 1-m i d -n i q (f n i ) * (S) is equal to U n i = n 1-m i d -n i q n i -1 l=0 (U • Λ l )M n i -l-1 A + U S • Λ n i = n i -1 l=0 (U • Λ l ) M n i -l-1 A n m-1 i d n i q + n 1-m i d -n i q U S • Λ n i . (8.2.1)
Since U S is continuous, we have

|U S • Λ n (R)| Λ n (R) * δ n R * , (8.2.2) 
where d q-1 < δ < d q is a fixed constant. It follows that the last term in (8.2.1) tends uniformly to 0 on * -bounded sets of R.

Recall that M n ∼ n m-1 d n q . Analogous estimates as in (8.2.2) for U j imply that

M n i -l-1 A n m-1 i d n i q d -l q and (U j • Λ l ) M n i -l-1 A n m-1 i d n i q δ l d -l q . (8.2.3)
Since l≥0 δ l d -l q converges, we can apply the Lebesgue convergence theorem for the sum in (8.2.1). We obtain the uniform convergence on * -bounded sets:

lim i→∞ U n i = l≥0 (U • Λ l )M -l-1 c.
The last series converge because (8.2.3) implies that M -l-1 c d -l q . One can also obtain this inequality using the fact that c is a vector in F and that the matrix of f * |F is conjugate to a diagonal matrix whose eigenvalues are of modulus d q .

Hence, the sequence (n

1-m i d -n i q (f n i ) * (S)
) converges to some current T c . Moreover, the last series defines a super-potential U Tc of T c and U n i converge to U Tc uniformly on * -bounded sets of R. Hence, the convergence of (n

1-m i d -n i q (f n i ) * (S)
) is SP-uniform. Since U Tc depends only on the class c, by Proposition 2.2.0.3, T c depends only on this class. Proposition 8.2.0.4. Let (n i ) be an increasing sequence such that (n 1-m i d -n i q (f n i ) * ) converges on H q,q (X, R). Then for any class c ∈ F there is a smooth form S in D q such that n 1-m i d -n i q (f n i ) * (S) converge SP-uniformly to T c .

Proof. By Proposition 8.1.0.1, one can find a smooth form S in D q such that n Proof. We follow the approach in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] and [321]. Let R be a smooth form in

1-m i d -n i q (f n i ) * [S]
D 0 k-q+1 such that R * ≤ 1. Since f * (α j ) is smooth, its super-potential U j is Lipschitz in the sense that U j (R) ≤ κ R C -1 with κ > 1 independent of R. By definition of • C -1 , we also have Λ(R) C -1 ≤ κ R C -1 for some constant κ > 1.
Let δ be a constant as above with d q-1 < δ < d q . Define ρ := δd -1 q , Λ := δ -1 Λ, λ := -log ρ(log κ-log ρ) -1 and N 0 the integer part of (λ-1) log R C -1 (log κ) -1 . Then the sequence ( Λ l ) l≥0 is bounded with respect to the • * -norm. For R C -1 small enough, we have since

M -l-1 c d -l q | l≥0 (U • Λ l (R))M -l-1 c| N 0 l=0 ρ l U • Λ l (R) + l>N 0 ρ l U • Λ l (R) N 0 l=0 ρ l κ l R C -1 + l>N 0 ρ l κ N 0 R C -1 + ρ N 0 R λ C -1 . Therefore, l≥0 (U •Λ l )M -l-1 c is λ-Hölder continuous with respect to dist -1 .
End of the proof of Theorem 8. 

d -n i q (f n i ) * [S] converge to c then n 1-m i d -n i q (f n i ) * [f * (S)
] converge to f * (c). Applying Proposition 8.2.0.2 to S and to f * (S) yields

f * (T c ) = f * lim i→∞ n 1-m i d -n i q (f n i ) * (S) = lim i→∞ n 1-m i d -n i q (f n i ) * f * (S) = T f * (c) . If c is in H, we have f * (c) = d q c. Hence, f * (T c ) = d q T c .
We deduce easily from the linear dependence of T c on c that the cone C F (resp. C H ) of the classes c in F (resp. in H) with T c positive is convex and closed. It remains to prove that they have non-empty interior. Observe that C F contains the classes c associated to S smooth strictly positive and that the cone K in H q,q (X, R) of such forms S is open. By Proposition 8.1.0.1, any limit

L ∞ of (n 1-m d -n q (f n ) *
) is an open map from H q,q (X, R) to F . Hence,

C F contains the cone L ∞ (K ) which is open in F .
Consider as in Section 8.1 the operators

L N := 1 N N n=1 n 1-m d -n q (f n ) *
on H q,q (X, R) and L ∞ the limit of this sequence which is an open map from H q,q (X, R) to H. Observe that any class in L ∞ (K ) belongs to the closed convex cone generated by the L ∞ (K ). Hence, C F contains L ∞ (K ). We deduce that C H , which is equal to C F ∩ H, contains the open cone L ∞ (K ) of H. This completes the proof of Theorem 8.2.0.1.

Proposition 8.2.0.6. Let S be a current in D q with continuous super-potentials. Let L N be as above and c ∈ H the limit of the sequence ( L N [S]). Then L N (S) converge SP-uniformly to the current T c . Moreover, any current T c with c ∈ H can be obtained as the limit of ( L N [S]) for some S smooth in D q .

Proof. Proposition 8.2.0.2 implies that any limit T of L N (S) belongs to the space generated by the T c with c ∈ F . Hence, T is equal to one of the current T c . On the other hand, T is a current in the class c. We deduce that c = c and that L N (S) converge to T c . The main point here is to show that the convergence is SP-uniform. We follows the proof of Proposition 8.2.0.2. By Lemma 8.2.0.3 the super-potential U L N (S) of L N (S) is equal to

U L N (S) = 1 N N n=1 n 1-m d -n q n-1 l=0 (U • Λ l )M n-l-1 A + U S • Λ n = N -1 l=0 d -l-1 q (U • Λ l ) 1 N N -l-1 n=0 (n + l + 1) 1-m d -n q M n A + (8.2.4) + 1 N N n=1 n 1-m d -n q U S • Λ n . (8.2.5)
Since U S is continuous, the quantity in (8.2.5) tends to 0 uniformly on * -bounded sets. By Proposition 8.1.0.1, the term in the brackets in (8.2.4) converges to the vector of coordinates equal to the coordinates of c in the basis [α]. Denote also by c this vector. We deduce that the expression in (8.2.4) converges uniformly on * -bounded sets to

U T c := l≥0 d -l-1 q (U • Λ l ) c,
which defines a super-potential of T c . Hence, the convergence of L N (S) is SPuniform.

The last assertion of the proposition is deduced from the surjectivity of the map L ∞ in Proposition 8.1.0.1.

Uniqueness and distribution

In this section, we will prove the uniqueness of the Green currents in their cohomology classes. We have the following general result. Theorem 8.3.0.1. Let f be a holomorphic automorphism of a compact Kähler manifold (X, ω) and d s the dynamical degrees of f . Let V be a subspace of H q,q (X, R) invariant by f * . Assume that d q > d q-1 and that all the (real and complex) eigenvalues of the restriction of f * to V are of modulus strictly larger than d q-1 . Then each class in V contains at most one positive closed (q, q)current.

Proof. Let S and S be positive closed currents in the same class in V . Define

λ n := (f n ) * (S) -1 = (f n ) * (S ) -1 , S n := λ n (f n ) * (S) and S n := λ n (f n ) * (S ).
The currents S n , S n are of mass 1. We have

S = λ -1 n (f n ) * (S n ) and S = λ -1 n (f n ) * (S n ). Let δ 1 > δ 2 > d q-1
be constants such that the eigenvalues of f * |V have modulus strictly larger than δ 1 . We deduce that the eigenvalues of f * |V have modulus strictly smaller than δ -1 1 . Therefore, Lemma 8.1.0.2 applied to f * implies that λ n δ n 1 . Let U S , U S , U Sn , U S n denote the super-potentials of S, S , S n and S n respectively.

Assume that S = S . Proposition 2.2.0.3 implies that U S = U S . Then, there is a smooth form R in D 0 k-q+1 such that U S (R) -U S (R) = 0. If we multiply R by a constant, we can assume that U S (R) -U S (R) = 1. Since S and S are cohomologous, they have the same coordinates A in the basis [α]. By Lemma 8.2.0.3, we have

U Sn ((f n ) * R) -U S n ((f n ) * R) = U (f n ) * Sn (R) -U (f n ) * S n (R) = λ n U S (R) -λ n U S (R) = λ n . Define R n := γ -1 n (f n ) * (R)
where γ n is the norm of (f n ) * acting on H q-1,q-1 (X, R). Recall that γ n is also the norm of (f n ) * acting on H k-q+1,k-q+1 (X, R). We have lim n→∞ γ

1/n n = d q-1 < δ 2 . Moreover, R n * is bounded by a constant independent of n. We have for n large enough U Sn (R n ) -U S n (R n ) = λ n γ -1 n ≥ 2δ n 1 δ -n 2 .
It follows that either

|U Sn (R n )| ≥ δ n 1 δ -n 2 or |U S n (R n )| ≥ δ n 1 δ -n 2 .
On the other hand, if κ is a fixed constant large enough, we have f * (R) C 1 ≤ κ R C 1 since f is an automorphism, and by induction

R n C 1 = γ -1 n (f n ) * (R) C 1 κ n ,
for some constant κ. Theorem 2.2.0.6, applied to S n and S n , implies that δ n 1 δ -n 2 n. This is a contradiction because δ 1 > δ 2 .

Observe that in Theorem 8.3.0.1, by linearity, each class of V contains at most one current T = T + -T -with T + , T -positive closed and [T + ], [T -] in V . We apply this theorem to V the maximal subspace of H q,q (X, R) where the eigenvalues of f * are of modulus d q . We obtain the following corollaries.

Corollary 8.3.0.2. Let f , d s and q be as in Theorem 8.2.0.1. Then the Green (q, q)-currents of f are the unique positive closed currents in their cohomology classes. They are the only non-zero positive closed (q, q)-currents which are invariant by d -1 q f * , i.e. satisfying the equation d -1 q f * (T ) = T . Corollary 8.3.0.3. Let f , d s and q be as in Theorem 8.2.0.1. Let T be a Green (q, q)-current of f and C T the set of positive closed (q, q)-currents S such that S ≤ cT for some constant c > 0. Then C T is a salient convex closed cone of finite dimension. Moreover, each current in C T is the unique positive closed current in its cohomology class.

Proof. It is clear that C T is a convex cone. It is salient since the cone of of all positive closed (q, q)-currents is salient. Let E + denote the cone of the classes of currents S in C T and E the space generated by E + . Then E + is convex and salient since it is contained in the cone of the classes of positive closed currents. Since T is a Green current, it is invariant by d -1 q f * and d q f * . If v is a vector in E + , then by definition of E + , (f n ) * v d -n q . Therefore, the eigenvalues of f * restricted to E are of modulus at most equal to d -1

q . We deduce that all eigenvalues of f * have modulus equal to d q . By Theorem 8.3.0.1, S is the only positive closed current in [S]. Moreover, in E + , the current S depends linearly on its class. We deduce from the correspondence S ↔ [S] and the definition of

E + that E + = E + . So, C T is closed.
The following results can be applied to the currents of integration on subvarieties of pure codimension q of X, and give equidistribution properties of their images by f -n . Corollary 8.3.0.4. Let f , d s and q be as in Theorem 8.2.0.1. Let m denote the multiplicity of the spectral radius of f * on H q,q (X, R). Let (S i ) be a sequence of positive closed (q, q)-currents.

If (n i ) is an increasing sequence of integers such that n 1-m i d -n i q (f n i ) * [S i ] converge in H q,q (X, R), then n 1-m i d -n i q (f n i ) * (S i
) converge either to 0 or to a Green (q, q)-current.

Proof. Let c denote the limit of n 1-m i d -n i p (f n i ) * [S i ]. Observe that the sequence of n 1-m i d -n i p (f n i ) * [S i ] is bounded. Hence, the currents n 1-m i d -n i q (f n i ) * (S i
) have mass bounded by a constant independent of i. Then, we can extract convergence subsequences. All the limit currents are in the same class c of F . By Theorem 8.3.0.1, they are equal. This implies the result.

Corollary 8.3.0.5. Let f , d s , q and m be as in Corollary 8.3.0.4. Let S be a positive closed (q, q)-current on X. Then the sequence

1 N N n=1 n 1-m d -n q (f n ) * (S)
converges either to 0 or to a Green (q, q)-current of f .

Proof. It is enough to apply Theorem 8.3.0.1 and to observe that by Proposition 8.1.0.1, the sequence 1

N N n=1 n 1-m d -n q (f n ) * [S]
converges to a class in H. Note that when all the dominant eigenvalues of f * on H q,q (X, R) are equal to d q (i.e. real positive), then

n 1-m d -n q (f n ) * [S] converges to a class c in H. Therefore, n 1-m d -n q (f n ) * (S) converge to 0 if c = 0 or to a Green current otherwise. converge SP-uniformly to a Green (k -p, k -p)-current T -of f -1 .
Since the convergences are SP-uniform, S + N ∧S - N converge to T + ∧T -. Observe that S + N ∧ S - N is a smooth positive measure. In order to prove property 1, we only have to check that the mass of S + N ∧ S - N does not tend to 0. We have

S + N ∧ S - N = 1 N 2 1≤n,l≤N d -n-l p X (f n ) * (ω p ) ∧ (f l ) * (ω k-p ) = 1 N 2 1≤n,l≤N d -n-l p X (f n+l ) * (ω p ) ∧ ω k-p = 1 N 2 1≤n,l≤N d -n-l p (f n+l ) * (ω p ) .
By Lemma 8.1.0.2, the last quantity is bounded from below by a positive constant independent of N . This implies that the mass of S + N ∧ S - N does not tend to 0. Now assume property 1 and let m denote the multiplicity of the spectral radius of f * on H p,p (X, R). By Proposition 8.2.0.4, there are smooth closed (p, p)-form S + and (k-p, k-p)-form S -, not necessarily positive, and an increasing sequence (n i ) such that

T + = lim i→∞ n 1-m i d -n i p (f n i ) * (S + ) and T -= lim i→∞ n 1-m i d -n i p (f n i ) * (S -).
Moreover, the convergences are SP-uniform. We have

T + ∧ T -= lim i→∞ X n 1-m i d -n i p (f n i ) * (S + ) ∧ n 1-m i d -n i p (f n i ) * (S -) = lim i→∞ X n 2-2m i d -2n i p (f 2n i ) * (S + ) ∧ S - = lim i→∞ 2 n i m-1 X (2n i ) 1-m d -2n i p (f 2n i ) * (S + ) ∧ S -.
The last integral can be computed cohomologically. By Lemma 8.1.0.2, it converges to a constant when i tends to infinity. Therefore, if T + ∧ T -is strictly positive, (2/n i ) m-1 does not converge to 0. It follows that m = 1.

When p = 1, using Hodge-Riemann theorem one prove easily that the properties in Proposition 8.4.0.1 are always satisfied. We don't know if this is the case in general. For this question, the reader will find some useful results and techniques developed in [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF][START_REF] Dinh | The mixed Hodge-Riemann bilinear relations for compact Kähler manifolds[END_REF][START_REF] Keum | Conjecture of Tits type for complex varieties and Theorem of Lie-Kolchin type for a cone[END_REF]. Here is the main result of this section. Theorem 8.4.0.2. Let f be a holomorphic automorphism on a compact Kähler manifold (X, ω) of dimension k and d s the dynamical degrees of f . Assume that there is a dynamical degree d p strictly larger than the other ones and that f satisfies the properties in Proposition 8.4.0.1. Then f admits an invariant probability measure µ with Hölder continuous super-potentials. The measure µ is ergodic, hyperbolic and of maximal entropy. If the dominant eigenvalues of f * on H p,p (X, C) are equal to d p then µ is mixing.

We will see that the last assertion holds under a weaker hypothesis: d p is the unique dominant eigenvalue which is a root of a real number. This condition is always satisfied for some iterates of f . The measure µ is called equilibrium measure of f . By Propositions 2.4.0.4 and 2.4.0.5, µ is moderate and has positive Hausdorff dimension when X is projective. Since µ is hyperbolic, a theorem by Katok [334,p.694] says that any point in the support of µ can be approximated by saddle periodic points. Therefore, the saddle periodic points are Zariski dense in X since moderate measures have no mass on proper analytic subsets of X.

Recall that a positive invariant measure µ is mixing if for any test functions φ, ψ (smooth, continuous, bounded or in L 2 (µ)) we have

µ, (φ • f n )ψ → µ -1 µ, φ µ, ψ .
The invariance of µ implies that µ, (φ

• f n )ψ = µ, φ(ψ • f -n ) . So, µ is mixing for f if and only if it is mixing for f -1 .
Mixing is equivalent to the the property that (φ • f n )µ converge to a constant times µ. Indeed, since µ is invariant, we have (φ • f n )µ, 1 = µ, φ ; hence, the above constant should be µ -1 µ, φ . In fact, mixing is also equivalent to the property that any limit value of (φ

• f n )µ is proportional to µ.
If µ is mixing then it is ergodic, that is, µ is extremal in the cone of positive invariant measures. This property is equivalent to the convergence

1 N N n=1 µ, (φ • f n )ψ → µ -1 µ, φ µ, ψ
or to the property that any limit value of

µ N := 1 N N n=1 (φ • f n )µ is proportional to µ. Note that µ is ergodic for f if and only if it is ergodic for f -1 .
We refer to [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF][START_REF] Walters | An introduction to ergodic theory[END_REF] for the notions of entropy and of Lyapounov exponent. An invariant positive measure is hyperbolic if its Lyapounov exponents are non-zero. We recall and introduce some notations that we will use. Let F and H be the dominant and strictly dominant subspaces of H p,p (X, R) for the action of f * . Let F ∨ and H ∨ denote the dominant and strictly dominant subspaces of H k-p,k-p (X, R) for the action of f * . By Theorem 8.2.0.1, we can associate to each class c in F or in H a current in D p with Hölder continuous super-potentials that we denote by T + c . We can also apply this result to f -1 and associate to 

each class c ∨ in F ∨ or in H ∨ a current T - c ∨ in D k-p
+ c ∧ T - c ∨ with c ∈ H and c ∨ ∈ H ∨ . We have dim M ≤ (dim F )(dim F ∨ ) = (dim F ) 2 and dim N ≤ (dim H)(dim H ∨ ) = (dim H) 2 .
Let M + , N + be the closed convex cones of positive measures in M and in N .

The measure µ that we will construct is an extremal element of N + . We first prove the following lemmas.

Lemma 8.4.0.3. For all c ∈ F and c ∨ ∈ F ∨ , we have

f * (T + c ∧ T - c ∨ ) = T + f * c ∧ T - f * c ∨ . If c is in H and c ∨ is in H ∨ , then T + c ∧ T - c ∨ is an invariant measure. Proof. Write as in Proposition 8.2.0.2 T + c = lim i→∞ d -n i p (f n i ) * (S + ) and T - c ∨ = lim i→∞ d -n i p (f n i ) * (S -), with S + , S -smooth. Observe that d -n i p (f n i ) * [S + ] converge to the class c and d -n i p (f n i ) * [S -] converge to c ∨ . Hence, d -n i p (f n i ) * [f * (S + )] converge to f * c and d -n i p (f n i ) * [f * (S -)] converge to f * c ∨ .
Applying Proposition 8.2.0.2 to f * (S + ) and to f * (S -) yields Definition 8.4.0.5. Let µ be an invariant positive measure of f . We say that µ is almost mixing if there is a finite dimensional space V of measures such that for any function φ in L 2 (µ) the limit values of (φ • f n )µ, when n → ∞, belong to V .

f * (T + c ∧ T - c ∨ ) = f * lim i→∞ d -n i p (f n i ) * (S + ) ∧ d -n i p (f n i ) * (S -) = lim i→∞ d -n i p (f n i ) * f * (S + ) ∧ d -n i p (f n i ) * f * (S -) = T + f * c ∧ T - f * c ∨ . When c is in H and c ∨ is in H ∨ , we have f * c = d p c and f * c ∨ = d -1 p c ∨ . Therefore, T + f * c = d p T + c and T - f * c ∨ = d -1 p T - c ∨ . We deduce that f * (T + c ∧ T - c ∨ ) = T + c ∧ T - c ∨ . Since f is an automorphism, this also implies that f * (T + c ∧ T - c ∨ ) = T + c ∧ T - c ∨ . Hence, T + c ∧ T - c ∨ is invariant. Lemma 8.
The above notion does not change if we use the continuous functions or the space L 1 (µ) instead of L 2 (µ) since continuous and L 2 functions are dense in L 1 (µ). Note also that mixing corresponds to the case where V is of dimension 1. We will see in the following lemma that µ is almost mixing if and only if L 2 (µ) can be decomposed into an invariant orthogonal sum W ⊕ W ⊥ with W ⊥ of finite dimension such that (φ•f n )µ → 0 for φ ∈ W . We can deduce that (ψ•f -n )µ → 0 for ψ ∈ W and that µ is also almost mixing for f -1 . The following lemma is valid for a general dynamical system. Lemma 8.4.0.6. Let µ be a positive measure invariant by f . Assume that µ is almost mixing and that µ is ergodic for every f n with n ≥ 1. Then µ is mixing.

Proof. Let V be the smallest space of measures such that for any real-valued continuous function φ the limit values of (φ • f n )µ, when n → ∞, belong to V . This space is invariant by f * and f * . We have to prove that dim V = 1. Let W denote the space of functions ψ ∈ L 2 (µ) with complex values such that µ , ψ = 0 for every µ ∈ V . Let W ⊥ denote the orthogonal of W . The spaces W , W ⊥ are invariant under f * , f * and we have dim C W ⊥ = dim V . Moreover, continuous functions are dense in W . We show that dim C W ⊥ = 1.

Since f * and f * preserve the scalar product in L 2 (µ), all the eigenvalues of f * and of f * have modulus equal to 1. So, if ψ is an eigenvector of f * associated to an eigenvalue λ, we have |ψ| • f = |ψ| and then |ψ| is constant since µ is ergodic. Therefore, ψ n ∈ L 2 (µ) and ψ n • f = λ n ψ n for every n ∈ Z. We claim that W does not contain any eigenvector. Otherwise, there is a function ψ ∈ W \ {0} such that ψ • f = λψ with |λ| = 1. Since ψ can be approximated by continuous functions in W , we deduce from the definition of W that for every φ ∈ L 2 (µ):

| ψµ, φ | = | (ψ • f -n )µ, φ | = | (φ • f n )µ, ψ | → 0.
We get that ψµ = 0, hence ψ = 0. This is a contradiction.

Consider now an eigenvector ψ of f * in W ⊥ associated to an eigenvalue λ. Then, ψ n is an eigenvector associated to λ n for every n ∈ Z. We deduce that

ψ n is a function in W ⊥ . Since W ⊥ is finite dimensional, λ is a root of unity. We have ψ • f n = ψ for some n ≥ 1. Since µ is ergodic for f n , ψ is constant. Hence, λ = 1 and it follows that dim C W ⊥ = 1 because f * is an isometry of W ⊥ .
Consider the automorphism f of X × X given by f (x, y) := (f (x), f -1 (y)). By Künneth formula, we have

H l,l (X × X, C) r+s=l H r,s (X, C) ⊗ H s,r (X, C).
Moreover, f * (f * , f * ) preserves this decomposition. It is shown in [START_REF] Dinh | Distribution des préimages et des points périodiques d'une correspondance polynomiale[END_REF] that the spectral radius of f * on H r,s (X, C) is bounded by √ d r d s . We deduce that d k ( f ) is the maximal dynamical degree of f . It is equal to d 2 p , with multiplicity 1 and is strictly larger than the other ones. So, the results obtained for f can be applied to f . We will deduce several properties for f .

We use analogous notations N , N + ... for f instead of the notations N , N + ... for f . By Theorem 8.2.0.1 and Corollary 8.3.0.2 applied to f , together with the Künneth formula, the family of the Green (k, k)-currents of f is a convex cone with non-empty interior in the real space generated by the currents T + c ⊗T - c ∨ . The Green (k, k)-currents of f -1 is a convex cone with non-empty interior in the real space generated by the currents T - c ∨ ⊗ T + c . Therefore, N is generated by µ ⊗ µ with µ, µ in N and M is generated by µ ⊗ µ with µ, µ in M .

Let S + be a smooth current in D p such that d -n i p (f n i ) * S + converge SPuniformly to T + c for some increasing sequence (n i ). Let S -be a smooth current in

D k-p such that d -n i p (f n i ) * S -converge SP-uniformly to T - c ∨ . Then, we deduce from Proposition 8.2.0.2 applied to f that d -2n i p ( f n i ) * (S + ⊗ S -) converge SP- uniformly to T + c ⊗ T - c ∨ .
We will use this property in the computations involving

T + c ⊗ T - c ∨ .
Lemma 8.4.0.7. Let φ be a continuous real-valued function on X. If µ is a measure in M , then any limit value of (φ•f n )µ is a measure in M . In particular, the measures in N + are almost mixing. If µ is in N , then any limit value of

µ N := 1 N N n=1 (φ • f n )µ is a measure in N .
Proof. Since continuous functions are uniformly approximable by smooth functions, we can assume that φ is smooth. We prove the first assertion. By definition of M , we can assume that µ = T + ∧ T -where T + is a (p, p)-current associated to a class c in F and T -is a (k -p, k -p)-current associated to a class c ∨ in F ∨ as above. It is enough to show that if a subsequence (φ • f 2n i )µ converge, then the limit is a measure in M . Indeed, we obtain the case with odd powers by replacing φ by φ • f . Let ψ be another test smooth function on X. Define Φ(x, y) := φ(x)ψ(y). Since µ is invariant, lifting the integrals on X to ∆ we get

(φ • f 2n )µ, ψ = µ, (φ • f n )(ψ • f -n ) = T + ∧ T -, (φ • f n )(ψ • f -n ) = (T + ⊗ T -) ∧ [∆], Φ • f n ,
decomposition is unique [START_REF] Walters | An introduction to ergodic theory[END_REF] and since N is generated by dim N elements, we deduce that the number of extremal probability measures in N + is equal to dim N and the convex cone N + is generated by these measures. So, N + is a cone with simplicial basis. Assume that d p is the only dominant eigenvalue of f * on H p,p (X, C) which is a root of a real number. Then the spaces H, H ∨ do not change if we replace f by f n . Therefore, N do not change if we replace f by f n . We deduce that µ is ergodic for f n . Lemmas 8.4.0.7 and 8.4.0.6 imply that µ is mixing. This completes the proof of the proposition.

End of the proof of Theorem 8.4.0.2. Let µ be a probability measure which is an extremal element of N + . By Proposition 8.4.0.8, µ is ergodic and is mixing if d p is the only dominant eigenvalue of f * on H p,p (X, C) which is a root of a real number. By definition of N , this measure has Hölder continuous superpotentials. It remains to prove that µ is of maximal entropy. Indeed, by a recent result of de Thélin [START_REF] De Thélin | Un phénomène de concentration de genre[END_REF], the property that µ is of entropy log d p together with the fact that d p is strictly larger than the other dynamical degrees implies that µ is hyperbolic, see also [START_REF] Dinh | Dynamics of horizontal-like maps in higher dimension[END_REF]. More precisely, µ admits p positive Lyapounov exponents larger than or equal to 1 2 log(d p /d p-1 ) and k -p negative exponents at most equal to -1 2 log(d p /d p+1 ). The variational principle [START_REF] Walters | An introduction to ergodic theory[END_REF] implies that the entropy of an invariant measure is bounded from above by the topological entropy of f . By Gromov and Yomdin results [START_REF]On the entropy of holomorphic maps[END_REF][START_REF] Yomdin | Volume growth and entropy[END_REF], the topological entropy of f is equal to log d p . Therefore, if ν is a probability measure in N + then the entropy h(ν) of ν is at most equal to log d p . We will prove that h(ν) = log d p for every probability measure ν in N + .

Let S + be a smooth form in D p and S -a smooth form in D k-p . If S + and S -are strictly positive, by Proposition 8.5.0.2 in the appendix below, any limit value ν of 

ν n := 1 n n l=1 d -n p (f l ) * (S + ) ∧ (f n-l ) * (S -)
+ c ∧ T - c ∨ .
We deduce that M contains N and this implies the result. Remark 8.4.0.9. The property that the equilibrium measures are of maximal entropy can be proved using f . More precisely, using Proposition 8.5.0.3 below for Y := ∆, we can construct equilibrium measures of f with maximal entropy 2 log d p . This together with the Brin-Katok formula applied to f , f -1 and f , see the appendix below and [343, p.99], implies that the equilibrium measures of f are of entropy log d p . The use of f may be a good method in order to study the distribution of periodic points of f by considering the intersection (

f n ) * [∆] ∧ [∆].
Remark 8.4.0.10. The Green currents and the equilibrium measures have been constructed and studied by the authors in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF], for f with a dynamical degree d p strictly larger than the other ones. Guedj considered in [START_REF] Guedj | Equidistribution towards the Green current[END_REF] the situation with the aditional hypothesis that d p is the unique dominant eigenvalue of f * on H p,p (X, C), i.e. dim F = dim H = 1. He claims that when X is projective, the equilibrium measure is of maximal entropy but he didn't give the proof. In this situation, we can find a subvariety Y of dimension p in X such that d -n p (f n ) * [Y ] converge to a Green current T -, see also [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF]. Then, using the SP-uniform convergence d -n p (f n ) * (ω p ) → T + or properties proved in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF], we deduce that

d -n-l p (f n ) * (ω p ) ∧ (f l ) * [Y ]
converge to a constant times the equilibrium measure which, by Proposition 8.5.0.3 below, is of maximal entropy.

Of maximal entropy

This section contains an abstract construction of measures of maximal entropy. Most of the arguments given here are well-known, see Bedford-Smillie [START_REF] Bedford | Polynomial diffeomorphisms of C 2 III[END_REF] and de Thélin [START_REF] De Thélin | Sur la construction de mesures selles[END_REF]. For simplicity, assume that f : X → X is an automorphism as above which satisfies the properties in Proposition 8.4.0.1. The last hypothesis garantees that the construction gives non-zero measures. The method is still valid in a much more general setting, in particular, when f is a non-invertible finite map.

Given > 0 and n ∈ N, define the Bowen ball B n (a, ) by

B n (a, ) := x ∈ X, dist(f i (x), f i (a)) ≤ for 0 ≤ i ≤ n .
Let ν be a probability measure invariant by f . By Brin-Katok [START_REF] Brin | On local entropy[END_REF], the function

h(ν, a) := sup >0 lim n→∞ - 1 n log ν(B n (a, ))
is well-defined ν-almost everywhere and the entropy of ν is equal to

h(ν) = h(ν, a)dν(a).
We have the following Misiurewicz's lemma which is valid for continuous maps on compact metric spaces, see [START_REF] Bedford | Polynomial diffeomorphisms of C 2 III[END_REF][START_REF] De Thélin | Sur la construction de mesures selles[END_REF][START_REF] Walters | An introduction to ergodic theory[END_REF].

Lemma 8.5.0.1. Let (n i ) be an increasing sequence of integers and ν n i probability measures such that the sequence

1 n i n i -1 l=0 (f l ) * (ν n i )
converges to a measure ν. Assume there are constants > 0 and c n i > 0 such that ν n i (B n i (a, )) ≤ c n i for all i and all Bowen ball B n i (a, ). Then ν is an invariant probability measure and its entropy h(ν) satisfies the inequality

h(ν) ≥ lim sup i→∞ - 1 n i log c n i .
We deduce from this lemma and an estimate due to Yomdin [START_REF] Yomdin | Volume growth and entropy[END_REF] the following proposition which was obtained in collaboration with de Thélin. Proposition 8.5.0.2. Let S + be a bounded positive (p, p)-form and S -a bounded positive (k -p, k -p)-form on X, not necessarily closed. Assume there is an increasing sequence (n i ) of integers such that

1 n i n i l=1 d -n i p (f l ) * (S + ) ∧ (f n i -l ) * (S -)
converge to a probability measure ν. Then ν is an invariant measure of maximal entropy log d p .

Proof. Denote by ν n i the positive measure d -n i p (f n i ) * (S + ) ∧ S -. Define ν n i := λ -1 n i ν n i where λ n i is the mass of ν n i . Then ν n i are probability measures and we have

λ n i 1 n i n i -1 l=0 (f l ) * (ν n i ) = 1 n i n i l=1 d -n i p (f l ) * (S + ) ∧ (f n i -l ) * (S -)
which converge to the probability measure ν. We deduce that λ n i converge to 1. Therefore, by Lemma 8.5.0.1, it is enough to prove for any 0 < δ < 1 the existence of positive constants , A such that ν n i (B n i (a, )) ≤ Ad -n i p e δn i for every a ∈ X. For this purpose, we can assume for simplicity that S + = ω p and S -= ω k-p . We have to show that ν n (B n (a, )) ≤ Ae nδ where ν n := (f n ) * (ω p ) ∧ ω k-p . This inequality will be obtained by taking an average on an estimate due to Yomdin.

Let Y ⊂ X be a complex manifold of dimension p smooth up to the boundary.

If ν Y n := (f n ) * (ω p )∧[Y ] then ν Y n (B n (a, )
) is equal to the volume of f n (Y ∩B n (a, )) counted with multiplicity. Yomdin proved in [START_REF] Yomdin | Volume growth and entropy[END_REF] that this volume is bounded by Ae nδ when is small and A is large enough. The estimate is uniform on a and on Y . Now, consider a coordinate system x = (x 1 , . . . , x k ) on a fixed chart of X with |x i | < 2. In the unit polydisc D, up to a multiplicative constant, ω k-p is bounded by (dd c x 2 ) k-p which is equal to a combination of

(idz i 1 ∧ dz i 1 ) ∧ . . . ∧ (idz i k-p ∧ dz i k-p ) with 1 ≤ i 1 < • • • < i k-p ≤ k.
The last form is equal to an average on the currents of integration on the complex submanifolds of D which are given by

x i 1 = a 1 , . . . , x i k-p = a k-p with a i ∈ C.
So, by Yomdin's inequality, ν n restricted to D satisfies ν n|D (B n (a, )) ≤ Ae nδ for some constants , A. Since X can be covered by a finite family of open sets D, we deduce that ν n (B n (a, )) ≤ Ae nδ with A > 0. This completes the proof.

One can prove in the same way the following proposition which is essentially due to Bedford-Smillie [START_REF] Bedford | Polynomial diffeomorphisms of C 2 III[END_REF].

Proposition 8.5.0.3. Let S be a continuous positive (p, p)-form, Y a complex manifold of dimension p in X smooth up to the boundary and χ a bounded positive function on Y . Assume there is an increasing sequence (n i ) such that

1 n i n i l=1 d -n i p (f l ) * (S) ∧ (f n i -l ) * (χ[Y ])
converge to a probability measure ν. Then ν is an invariant measure of maximal entropy log d p .

Lemma 8.5.0.4. Assume that d p is the only dominant eigenvalue of f * on H p,p (X, C) which is a root of a real number. Then, the extremal elements of N + are µ ⊗ µ where µ, µ are extremal elements of N + .

Proof. We have seen N is generated by measures µ ⊗ µ with µ, µ in N . Then dim N = (dim N ) 2 . Assume that µ and µ are mixing. By Proposition 8.4.0.8, it is enough to show that µ ⊗ µ is mixing for f . Let Φ be a continuous function on X × X, we have to show that (Φ • f n )µ ⊗ µ converge to a constant times µ ⊗ µ . The space generated by the functions φ(x)ψ(y) with φ, ψ continuous on X, is dense in the space of continuous functions on X × X. So, it is enough to consider the case where Φ(x, y) = φ(x)ψ(y). In this case, we have

(Φ • f n )µ ⊗ µ = (φ • f n )µ ⊗ (ψ • f -n )µ .
Since µ, µ are mixing, (φ • f n )µ and (ψ • f -n )µ converge to constants times µ or µ respectively. This implies the result.

Chapter 9

Meromorphic maps 9.1 Introduction

Let X be a compact Kähler manifold of dimension k and ω a Kähler form on X so normalized that ω k defines a probability measure on X. Let f : X → X be a meromorphic map. We always assume that f is dominant, i.e. its image contains a non-empty open subset of X. The iterate of order n of f is defined by

f n := f • • • • • f , n times, on a dense
Zariski open set and extends to a dominant meromorphic map on X. Let d p (f ) (or d p if there is no possible confusion), 0 ≤ p ≤ k, the dynamical degree of order p of f . This is a bi-meromorphic invariant which measures the norm growth of the operators (f n ) * acting on the Hodge cohomology group H p,p (X, C) when n tends to infinity, see Section 9.2 for details. We always have d 0 (f ) = 1. The last dynamical degree d k (f ) is the topological degree of f : it is equal to the number of points in a generic fiber of f . We also denote it by d t (f ) or simply by d t . Throughout the paper, we assume that f is with dominant topological degree1 in the sense that d t > d p for every 0 ≤ p ≤ k -1.

It is well-known that for such a map f, the following weak limit of probability measures µ := lim

n→∞ 1 d n t (f n ) * ω k
exists. The probability measure µ is called the equilibrium measure of f. It has no mass on proper analytic subsets of X, is totally invariant: d -1 t f * (µ) = f * (µ) = µ and is exponentially mixing. The measure µ is also the unique invariant measure with maximal entropy log d t . We refer the reader to [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Guedj | Ergodic properties of rational mappings with large topological degree[END_REF] for details.

The first main result of this chapter is the following result. Theorem 9.1.0.1. Let f : X → X be a meromorphic map with dominant topological degree d t . Let µ be the equilibrium measure of f . Let P n (resp. RP n ) denote the set of isolated periodic (resp. repelling periodic) points of period n. Let Q n denote either P n , RP n or their intersections with the support of µ. Then Q n is asymptotically equidistributed with respect to µ: we have

1 d n t a∈Qn δ a → µ as n → ∞,
where δ a denotes the Dirac mass at a. In particular, we have

#Q n = d n t + o(d n t ) as n → ∞.
The last assertion in the above theorem is an important point in our proof. Indeed, when f admits positive dimensional analytic sets of periodic points, the classical Lefschetz formula does not allow to estimate the number of isolated periodic points. The upper bound #Q n ≤ d n t + o(d n t ) is, in fact, obtained using a very recent theory of density of positive closed currents developed by Sibony and Dinh in [START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF].

For the rest of the proof, we need to construct enough repelling periodic points on the support of µ. For this purpose, we will construct in Section 9.3 enough good inverse branches of balls for f n with controlled size, see Proposition 9.3.0.1 below. The construction of inverse branches for holomorphic discs in projective manifolds can be obtained using a method developed by Briend-Duval in [START_REF]Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF].

Here we follow the approach developed by Dinh-Sibony in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF] which also allows to carry out such a construction for discs as well as balls in Kähler manifolds. Then an idea of Buff allows to obtain repelling periodic points [START_REF] Buff | La mesure d'équilibre d'un endomorphisme de P k (C) (d'après Briend et Duval)[END_REF]. The presence of indeterminacy sets for meromorphic maps is the source of several delicate technical points in the proof. For example, the obstruction to the existence of inverse branches for balls, at least in our approach, may be larger than the orbits of critical values and of indeterminacy loci. We will construct and use a positive closed (1, 1)-current R which allows to control this obstruction.

Note that when X is a projective manifold, a weaker version of Theorem 9.1.0.1 was stated in [START_REF] Guedj | Ergodic properties of rational mappings with large topological degree[END_REF]. The author's proof is, however, based on Lemma 3.3 therein whose proof is incomplete (the radius r therein depends on the integer l) and the statement is still an open question. When f is a holomorphic endomorphism of P k , the above theorem was obtained by Briend-Duval in [START_REF] Briend | Exposants de Liapunoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF]. Their proof uses strongly the Hölder continuity of the dynamical Green function. For meromorphic maps, the dynamical Green function, even when it exists, is in general not continuous. The same result for polynomial-like maps of dominant topological degree, in particular for a large family of rational maps on P k , was obtained by Sibony and the first author [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF]. For the case of dimension 1, see Brolin, Freire-Lopes-Mañé, Lyubich and Tortrat [START_REF] Brolin | Invariant sets under iteration of rational functions[END_REF][START_REF] Freire | An invariant measure for rational maps[END_REF][START_REF] Lyubich | Entropy properties of rational endomorphisms of the Riemann sphere[END_REF][START_REF] Tortrat | Aspects potentialistes de l'itération des polynômes[END_REF].

Our construction of inverse branches of balls also allows to study the equidistribution of preimages of points by f n . Let I denote the second indeterminacy set of f , i.e. the set of points z such that f -1 (z) has positive dimension. It is an analytic set of codimension at least equal to 2. The Zariski open set X \ I is the set of points a such that the fiber f -1 (a) contains exactly d t points counted with multiplicity, see Section 9.2 for the definition of the action of f and f -1 on subsets of X.

Define I 0 := I , I n+1 := I 0 ∪ f (I n ) for n ≥ 0 and I ∞ := ∪ n≥0 I n . Note that the set I ∞ is characterized by the following property: the sequence of probability measures µ a 0 := δ a , µ a n+1 := d -1 t f * (µ a n ) for n ≥ 0 is well-defined if and only if a ∈ I ∞ . We have µ a n = d -n t (f n ) * (δ a ). So µ a n is the probability measure equidistributed on the fiber f -n (a) where the points in this fiber are counted with multiplicity. One has to distinguish I ∞ with the set ∪ n≥0 f n (I ) which is a priori smaller.

Let I be the (first) indeterminacy set of f . Define also I 0 := I, I n+1 := I 0 ∪ f (I n ) for n ≥ 0 and I ∞ := ∪ n≥0 I n . The set I ∞ \ I ∞ consists of points a ∈ I ∞ such that the support of µ a n intersects I for some n ≥ 0. We will consider a ∈ I ∞ ∪ I ∞ . Here is the second main result in this paper. Theorem 9.1.0.2. Let f : X → X and µ be as in the statement of Theorem 9.1.0.1. Then there is a (possibly empty) proper analytic set E of X such that for a ∈ I ∞ ∪ I ∞ we have

1 d n t (f n ) * δ a → µ as n → ∞ if and only if a ∈ E .
When X is projective, it was shown by Guedj in [START_REF] Guedj | Ergodic properties of rational mappings with large topological degree[END_REF] that E is a finite or countable union of analytic sets, see also [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for the case of compact Kähler manifolds. The above theorem was obtained for holomorphic endomorphisms of P k in [START_REF]Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF][START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Fornaess | Complex dynamics in higher dimensions[END_REF]. It also holds for polynomial-like maps with dominant topological degree. For the case of dimension 1, see [START_REF] Brolin | Invariant sets under iteration of rational functions[END_REF][START_REF] Freire | An invariant measure for rational maps[END_REF][START_REF] Lyubich | Entropy properties of rational endomorphisms of the Riemann sphere[END_REF][START_REF] Tortrat | Aspects potentialistes de l'itération des polynômes[END_REF]. Note that there are many meromorphic maps with I = ∅ which are not holomorphic. For example, if g : P k → P k is a blow-up of P k and π : P k → P k is a finite holomorphic map, then π • g -1 is not holomorphic but its second indeterminacy set is empty. For holomorphic maps on P k , we have

I = I = ∅.
The article is organized as follows. In Section 9.2 we prepare the background and fix some terminology as well as recall auxiliary results concerning the actions of meromorphic maps on currents and on cohomology and the theory of density for positive closed currents. Section 9.3 is devoted to the construction of good inverse branches of iterates of f, which is one of the main tools of our work. Using these inverse branches we prove Theorems 9.1.0.2 in Section 9.4. After establishing an upper bound on the number of isolated periodic points, we prove Theorem 9.1.0.1 in Section 9.5. In the same section, we also explain how to obtain a lower bound for Lyapounov exponents of µ from our construction of inverse branches for balls.

With currents

In this section we define various operations for meromorphic maps and positive closed currents on compact Kähler manifolds. We also recall some elements of the theory of density of positive closed currents and establish a preparatory result. We refer the reader to Demailly [388], Dinh-Sibony [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] and Voisin [START_REF] Voisin | Hodge theory and complex algebraic geometry[END_REF] for basic notions on positive closed currents and quasi-plurisubharmonic (quasi-p.s.h. for short) functions and basic facts on Kähler geometry.

Let X be a compact Kähler manifold of dimension k and ω a Kähler form on X as above. If T is a current on X and ϕ is a test form of right degree, the pairing T, ϕ denotes the value of T at ϕ. If T is a positive (p, p)-current on X, its mass is given by the formula

T := T, ω k-p .
Note that when T is, moreover, closed, its mass depends only on its cohomology class {T } in H p,p (X, R). Here H p,q (X, C) denotes the Hodge cohomology group of bidegree (p, q) of X and H p,p (X, R) := H p,p (X, C) ∩ H 2p (X, R).

We will write T ≤ T and T ≥ T for two real (p, p)-currents T, T if T -T is a positive current. We also write c ≤ c and c ≥ c for c, c ∈ H p,p (X, R) when c -c is the class of a positive closed (p, p)-current. If V is an analytic subset of pure dimension k -p in X, denote by [V ] the positive closed current of integration on V and {V } its cohomology class in H p,p (X, R). The cup-product in H * (X, C) is denoted by .

Consider now a dominant meromorphic map f : X → X. Recall that f is holomorphic on a Zariski open set and the closure Γ of its graph in X × X is an irreducible analytic subset of dimension k. Let π 1 and π 2 denote the canonical projections from X × X onto its factors. If A is a subset of X define f (A) := π 2 (π -1 1 (A) ∩ Γ) and f -1 (A) := π 1 (π -1 2 (A) ∩ Γ). The (first) indeterminacy set I of f is the complement of the set of all points z ∈ X such that f (z) is of dimension 0, or equivalently, that f (z) contains only one point. The second indeterminacy set I of f is the complement of the set of all points z such that f -1 (z) is of dimension 0, or equivalently, that f -1 (z) contains exactly d t points counted with multiplicity. Both I and I are analytic subsets of X of codimension at least equal to 2.

The map f induces linear operators on forms and currents. The presence of indeterminacy locus makes these operators more delicate to handle. If ϕ is a smooth (p, q)-form on X, then f * (ϕ) is the (p, q)-current defined by

f * (ϕ) := (π 1 ) * (π * 2 (ϕ) ∧ [Γ]).
It is not difficult to see that f * (ϕ) is an L 1 -form smooth outside I. Its singularities along I do not allow to iterate the operation in the same way. Nevertheless, the operation commutes with ∂ and ∂. In particular, when ϕ is closed or exact, so is f * (ϕ). Therefore, f * induces a linear operator on H p,q (X, C). We can iterate the later operator but in general we do not have (f * ) n = (f n ) * . In the same way, the (p, q)-current f * (ϕ) is defined by

f * (ϕ) := (π 2 ) * (π * 1 (ϕ) ∧ [Γ]).
This is an L 1 -form smooth outside the critical values of π 2|Γ . The operator f * also commutes with ∂, ∂ and induces a linear operator f * on H p,q (X, C).

Recall that the dynamical degree of order p of f is defined by

d p = lim n→∞ (f n ) * (ω p ) 1/n = lim n→∞ (f n ) * (ω k-p ) 1/n = lim n→∞ (f n ) * 1/n H p,p (X,C) = lim n→∞ (f n ) * 1/n H k-p,k-p (X,C) .
The above limits exist and do not depend on the choice of ω nor on the norm fixed for H * (X, C). They are bi-meromorphic invariants and play a central role in complex dynamics, see [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF] for details. Recall also that a mixed version of the Hodge-Riemann theorem [START_REF] Dinh | The mixed Hodge-Riemann bilinear relations for compact Kähler manifolds[END_REF][START_REF] Gromov | Convex sets and Kähler manifolds[END_REF][START_REF] Khovanskii | The geometry of convex polyhedra and algebraic geometry[END_REF][START_REF] Teissier | Du théorème de l'index de Hodge aux inégalités isopérimétriques[END_REF][START_REF] Timorin | Mixed Hodge-Riemann bilinear relations in a linear context[END_REF] We will now consider two particular cases of the pull-back operator f * on currents that will be used later on. If φ is a continuous function on X then f * (φ) is a bounded function on X which is continuous outside I . Therefore, if ν is a positive measure without mass on I we can define f * (ν), φ := ν, f * (φ) .

It is not difficult to see that f * (ν) is a positive measure whose mass is equal to d t times the mass of ν since π 2 restricted to Γ defines a ramified covering of degree d t over X \ I . If ν is the Dirac mass at a point a ∈ I , then f * (ν) is the sum of the Dirac masses on the fiber f -1 (a) counted with multiplicity. If ν has no mass on I, the positive measure f * (ν) given by f * (ν), φ := ν, f * (φ) for every continuous function φ on X, is well-defined and has the same mass as ν. If ν is the Dirac mass at a ∈ I, then f * (ν) is the Dirac mass at f (a).

The second situation concerns positive closed (1, 1)-currents. If T is such a current on X, we can write T = α + dd c u where α is a smooth closed (1, 1)-form in the class {T } and u is a quasi-p.s.h. function. Then u • π 2 is a quasi-p.s.h. function on Γ and we define

f * (T ) := f * (α) + (π 1 ) * (dd c (u • π 2|Γ )).
Using a local regularization of T , one can see that f * (T ) is a positive closed (1, 1)-current. The operator is linear and continuous on T . So using Demailly's regularization of (1, 1)-currents on X [START_REF] Demailly | Monge-Ampère Operators, Lelong numbers and Intersection theory in Complex Analysis and Geometry[END_REF], we can easily check that the operator is compatible with cohomology, that is, we have {f * (T )} = f * {T }. The operator f * is defined in the same way on positive closed (1, 1)-currents and is also compatible with the cohomology.

In the rest of this section, we recall basic facts on the theory of density of positive closed currents and give an abstract result which will allow us to bypass Lefschetz's fixed points formula in order to bound the number of periodic points. We will restrict ourselves to the simplest situation that is needed for the present work. The reader is invited to consult [START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF] for details.

Let V be an irreducible submanifold of X of dimension l. Let π : E → V denote the normal vector bundle of V in X. For a point a ∈ V, if Tan a X and Tan a V denote respectively the tangent spaces of X and of V at a, the fiber E a := π -1 (a) of E over a is canonically identified with the quotient space Tan a X/Tan a V. The zero section of E is naturally identified with V . Denote by E the natural compactification of E, i.e. the projectivisation P(E ⊕ C) of the vector bundle E ⊕ C, where C is the trivial line bundle over V . We still denote by π the natural projection from E to V . Denote by A λ the multiplication by λ on the fibers of E where λ ∈ C * , i.e. A λ (u) := λu, u ∈ E a , a ∈ V. This map extends to a holomorphic automorphism of E.

Let V 0 be an open subset of V which is naturally identified with an open subset of the section 0 in E. A diffeomorphism τ from a neighbourhood of V 0 in X to a neighbourhood of V 0 in E is called admissible if it satisfies essentially the following three conditions: the restriction of τ to V 0 is the identity, the differential of τ at each point a ∈ V 0 is C-linear and the composition of

E a → Tan a (E) → Tan a (X) → E a
is the identity, where the morphism Tan a (E) → Tan a (X) is given by the differential of τ -1 at a and the other maps are the canonical ones, see [START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF] for details.

Note that an admissible map is not necessarily holomorphic. When V 0 is small enough, there are local holomorphic coordinates on a small neighbourhood U of V 0 in X so that over V 0 we identify naturally E with V 0 × C k-l and U with an open neighbourhood of V 0 × {0} in V 0 × C k-l (we reduce U if necessary). In this picture, the identity is a holomorphic admissible map. There always exist admissible maps for V 0 := V. However, such a global admissible map is rarely holomorphic.

Consider an admissible map τ as above. Let T be a positive closed (p, p)current on X without mass on V for simplicity. Define T λ := (A λ ) * τ * (T ). The family (T λ ) is relatively compact on π -1 (V 0 ) when λ → ∞: we can extract convergent subsequences for λ → ∞. The limit currents R are positive closed (p, p)-currents without mass on V which are V -conic, i.e. (A λ ) * R = R for any λ ∈ C * , in other words, R is invariant by A λ .

Such a current R depends on the choice of λ → ∞ but it is independent of the choice of τ . This property gives us a large flexibility to work with admissible maps. In particular, using global admissible maps, we obtains positive closed (p, p)-currents R on E. It is also known that the cohomology class of R depends on T but does not depend on the choice of R. This class is denoted by κ V (T ) and is called the total tangent class of T with respect to V . The currents R are called tangent currents of T along V . The mass of R and the norm of κ V (T ) is bounded by a constant times the mass of T .

Let -h denote the tautological (1, 1)-class on E. Recall that H * (E, C) is a free H * (V, C)-module generated by 1, h, . . . , h k-l (the fibers of E are of dimension k -l). So we can write

κ V (T ) = min(l,k-p) j=max(0,l-p) π * (κ V j (T )) h j-l+p
where κ V j (T ) is a class in H l-j,l-j (V, C) with the convention that κ V j (T ) = 0 outside of the range max(0, l -p) ≤ j ≤ min(l, k -p).

Let s be the maximal integer such that κ V s (T ) = 0. We call it the tangential h-dimension of T along V . The class κ V s (T ) is pseudo-effective, i.e. contains a positive closed current on V. The tangential h-dimension of T is also equal to the maximal integer s ≥ 0 such that R ∧ π * (ω s V ) = 0, where ω V is any Kähler form on V. Moreover, if T n and T are positive closed (p, p)-currents on X such that T n → T , then κ V j (T n ) → 0 for j > s and any limit class of κ V s (T n ) is pseudo-effective and is smaller than or equal to κ V s (T ). The following result will allow us to bound the number of isolated periodic points of a meromorphic map. We identify here the cohomology group H 2k (X, C) with C using the integrals of top degree differential forms on X. Proposition 9.2.0.1. Let Γ n be complex subvarieties of pure dimension k -l in X. Assume that there is a sequence of positive numbers d n such that d n → ∞ and d -1

n [Γ n ] converges to a positive closed (l, l)-current T on X. Assume also that the h-tangent dimension of T with respect to V is 0 and that {T } {V } = 1. Then the number δ n of isolated points in the intersection Γ n ∩ V , counted with multiplicity, satisfies

δ n ≤ d n + o(d n ) as n → ∞.
We need the following lemma. Lemma 9.2.0.2. Let Γ be a subvariety of pure dimension k -l in X. Let a 1 , . . . , a N be the isolated points in Γ∩V and m i the multiplicity of the intersection of Γ ∩ V at a i . Then any tangent current of [Γ] along V is larger than or equal to

m i [π -1 (a i )].
Proof. Consider a small open set V 0 in V which contains only one point a i . As above, we identify E (resp. E) over V 0 with V 0 × C k-l (resp. V 0 × P k-l ), and a small neighbourhood of V 0 in X with an open neighbourhood of V 0 × {0} in V 0 × C k-l , and π with the canonical projection of V 0 × P k-l onto its first factor. The identity is then an admissible map. It is clear in this picture that any tangent current of [Γ] along V constructed as above is larger than or equal to m i [π * (a i )]. The lemma follows.

Proof of Proposition 9.2.0.1.

Define T n := d -1 n [Γ n ].
Extracting a subsequence allows us to assume that κ V (T n ) converges to a class κ. Since the h-tangent dimension of T is zero, the above discussion implies that κ = λc, where c is the class of a fiber of E and λ is a positive number. We also have κ V (T ) = π * (κ V 0 (T )). In the above construction of κ V (T ) with a global admissible map, we see that the de Rham cohomology class of T λ in a neighbourhood of V 0 × {0} does not depend on λ when λ → ∞. It follows that {T } {V } = κ V (T ) {V }. This together with the hypothesis {T } {V } = 1 implies that κ V (T ) = c. The above discussion on the upper semi-continuity of κ V s (T n ) implies that λ ≤ 1. By Lemma 9.2.0.2, we can write κ V (T n ) = δ n d -1 n c + c n where c n is a pseudoeffective class. Since κ V (T n ) converges to κ = λc, we deduce that the cluster values of c n are also equal to positive constants times c and then lim sup δ n d -1 n ≤ λ. The proposition follows.

Construction

Consider a map f : X → X as above with dominant topological degree. The purpose of this section is to construct for generic small balls an almost maximal number of inverse branches with respect to f n that we control the size.

Recall that I, I , d p , d t , Γ denote the indeterminacy sets, the dynamical degree of order p, the topological degree and the closure of the graph of f in X × X. By definition, the dynamical degree of order p and the topological degree of f n are equal to d n p and d n t respectively. Denote by I(f n ), I (f n ), Γ n the indeterminacy sets and the closure of the graph of f n . The natural projections from X × X onto its factors are denoted by π 1 and π 2 . Recall also that I 0 := I , I n+1 := I 0 ∪ f (I n ) for n ≥ 0 and I ∞ := ∪ n≥0 I n . One should distinguish I ∞ with the set ∪ n≥0 f n (I ) and the union of I (f n ) which are a priori smaller.

Choose an analytic subset Σ 0 of X containing I, I , f (I), f -1 (I ) such that π 2 restricted to Γ \ π -1 2 (Σ 0 ) defines an unramified covering over X \ Σ 0 . Let B be a connected subset of X, e.g. a holomorphic ball, a holomorphic disc or a family of discs through a point in X. We call2 an inverse branch of order n of B any continuous bijective map g :

B → B -n with B -n ⊂ X such that if we define B -i := f (B -i-1 ) with 0 ≤ i ≤ n -1, then B -i ∩ Σ 0 = ∅ for 0 ≤ i ≤ n, f : B -i → B -i+1 is a bijective map for 1 ≤ i ≤ n, B 0 = B and f n • g = id on B.
Note that f n-i •g : B → B -i is an inverse branch of order i of B and B admits at most d n t inverse branches of order n. The condition B -i ∩ Σ 0 = ∅ implies that the inverse branch can be extended to any small enough open set containing B using local inverses of the map f n . We say that the above inverse branch is of size smaller than λ if the diameter of B -n is smaller than λ. We also call B -n the image of the inverse branch g : B → B -n . Proposition 9.3.0.1. There is a positive closed (1, 1)-current R on X satisfying the following property. Let , ν be strictly positive numbers with ν ≤ 1 and let a be a point in X such that the Lelong number ν(R, a) of R at a is smaller than ν. Then there is a constant r > 0 such that the ball B(a, r) of center a and of radius r admits at least (1 -ν)d n t inverse branches of order n and of size smaller than (d k-1 /d t + ) n/2 for every n ≥ 0.

A theorem by Siu says that {ν(R, a) ≥ c} is a proper analytic subset of X for every c > 0 [START_REF] Siu | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF]. So the above proposition applies for generic points a in X. We will see later in the construction of R that the set {ν(R, a) > 0} contains the orbits of the critical values and of the indeterminacy points which are obviously an obstruction to obtain inverse branches of balls. However, {ν(R, a) > 0} contains a priori other analytic sets which are a less obvious obstruction to the existence of inverse branches. It can be seen as an accumulation locus of the orbits of the indeterminacy points. We give now the proof of the above proposition. The first step is to define the current R.

Recall that the operators (f n ) * act continuously on positive closed (1, 1)currents and these actions are compatible with the actions of (f n ) * on H 1,1 (X, R). If T is a positive closed (1, 1)-current on X, its mass depends only on the cohomology class {T }. Therefore, for a fixed norm on cohomology, the mass of T is comparable with the norm of {T }. We then deduce the existence of a constant c 0 > 0 independent of T, f and n such that

(f n ) * (T ) ≤ c 0 (f n ) * H 1,1 (X,R) T .

By definition of d k-1 , we can fix an integer

N ≥ 1 large enough such that c 0 (f N ) * H 1,1 (X,R) < (θd t ) N , where d k-1 /d t < θ < d k-1 /d t + is any fixed constant strictly smaller than 1.
Define Σ i+1 := f (Σ i ) for 0 ≤ i ≤ N -1 and Σ := ∪ 0≤i≤N Σ i . So any connected and simply connected set outside Σ admits the maximal number d N t of inverse branches of order N with images outside Σ 0 . Choose a desingularization π : Γ → Γ which is a composition of blow-ups of Γ along smooth centers in or over π -1 1 (Σ) ∩ Γ and π -1 2 (Σ) ∩ Γ. Define τ i := π i • π. We can choose π so that τ -1 1 (Σ) and τ -1 2 (Σ) are of pure codimension 1 in Γ. By Blanchard's theorem [START_REF] Blanchard | Sur les variétés analytiques complexes[END_REF], Γ is a compact Kähler manifold. Fix a Kähler form ω on Γ which is larger than τ * i (ω). We also assume that ω is large enough so that each ball of radius 1 in Γ with respect to the metric ω is contained in an open set biholomorphic to a ball in C k .

Denote by Σ and Σ respectively the union of components of codimension 1 and the union of components of codimension ≥ 2 of Σ. Define

S 0 := c 1 θ -N d N t [Σ ] + (τ 2 ) * ( ω) , S := N n=0 (f * ) n (S 0 ) and R := 8 m≥0 (θd t ) -mN (f N ) m * (S).
Here c 1 ≥ δ -1 1 is a constant satisfying Lemma 9.3.0.2 below, and δ 1 is a constant whose exact value will be determined right after Lemma 9.3.0.4 below. By definition of θ, the last current is well-defined. Note that one has to distinguish the operators (f N ) m * and (f N m ) * . The orbit of Σ is the obstruction to construct inverse branches of balls. The following lemma shows that it is visible using the current R. Lemma 9.3.0.2. If c 1 is large enough, then for every a ∈ Σ the Lelong number ν(S 0 , a) of S 0 at a is larger than 1.

Proof. The lemma is clear for a ∈ Σ . Consider now a point a ∈ Σ \ Σ . Since the function ν(S 0 , a) is upper semi-continuous in a with respect to the Zariski topology, it is enough to check that ν(S 0 , a) is positive at generic points a ∈ Σ \ Σ . We then choose c 1 large enough in order to get Lelong numbers larger than 1. So we can assume that a is a regular point of Σ \ Σ and there is a point a ∈ τ -1 2 (a) such that τ -1 2 (Σ ) is a hypersurface smooth at a. Choose local coordinates z = ( z 1 , . . . , z k ) on a neighbourhood of a such that z = 0 at a and τ -1 2 (Σ ) is given by z 1 = 0. Since Σ has codimension ≥ 2, we can choose z so that the hyperplanes H ξ := { z k = ξ} parallel to { z k = 0} are sent to hypersurfaces, denoted by H ξ , which contain Σ in a neighbourhood of a.

The average of [ H ξ ] with respect to the Lebesgue measure on ξ is a smooth form Θ. So it is bounded by a constant times ω. On the other hand, since [H ξ ] has positive Lelong number at a, (τ 2 ) * ( Θ) has positive Lelong number at a. We conclude that (τ 2 ) * ( ω) has positive Lelong number at a. This completes the proof of the lemma.

We show that R satisfies Proposition 9.3.0.1. Fix a point a in X such that ν(R, a) ≤ ν. Fix also local holomorphic coordinates near a. We will first construct inverse branches for flat holomorphic discs through a and then extend these inverse branches to a small ball centered at a. We will identify a neighbourhood of a to the unit ball in C k for simplicity. The following version of Sibony-Wong's theorem is the tool for this extension.

Let B r denote the ball of center 0 and of radius r in C k . The family F of complex lines through 0 is parametrized by the projective space P k-1 which is endowed with the natural Fubini-Study metric. This metric induces a natural probability measure on F that we denote by L . If ∆ is an element of F , denote by ∆ r its intersection with B r . Proposition 9.3.0.3. Let 0 < δ 0 ≤ 1 be a constant. Let F ⊂ F be such that L (F ) ≥ δ 0 , and A the intersection of F with B r . Let h : A → C l be a map which is holomorphic on each ∆ r for ∆ ∈ F and which can be extended holomorphically to a neighbourhood of 0. Then h can be extended to a holomorphic map from B λr to C l , where 0 < λ ≤ 1 is a constant depending on δ 0 but independent of l, F and r. Moreover, if the extension is still denoted by h then sup

B λr h -h(0) ≤ sup A h -h(0) .
In particular, if h -h(0) < ρ and if h(A) does not intersect a complex hypersurface Z of the ball of center h(0) and radius ρ, then h(B λr ) satisfies the same property.

Proof. When l = 1 the result is due to Sibony-Wong [START_REF] Sibony | Some results on global analytic sets[END_REF]. We easily deduce from their result the holomorphic extension of h for any dimension l. In order to get the inequality in the proposition, assume h(0) = 0 for simplicity. Let z be a point in B(0, λr) we have to show that h(z) ≤ sup A h . Composing h with a rotation on C l allows to assume that h(z) = ( h(z) , 0, . . . , 0). We obtain the desired inequality by using Sibony-Wong's theorem for the first coordinate function of h.

For the last assertion, we can write Z = {g = 0} where g is a holomorphic function on the ball of center h(0) and of radius ρ. Sibony-Wong's theorem applied to 1/g • h implies that 1/g • h is holomorphic on B λr . Hence h(B λr ) does not intersect Z. The proposition follows.

In order to control the size of holomorphic discs, we need the following lemma, see [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]Lemma 1.55] for the proof which is valid for any compact complex manifold Y . Lemma 9.3.0.4. Let Y be a compact complex manifold endowed with a fixed Hermitian metric. Let δ 1 > 0 be a constant small enough depending on Y . Let g : ∆ r → Y be a holomorphic map from the disc of center 0 and of radius r in C to Y . Assume that the area of g(∆ r ), counted with multiplicity, is smaller than δ 1 . Then for any > 0, there is a constant 0 < λ < 1 independent of g and r such that the diameter of g(∆ λr ) is at most equal to area(g(∆ r )).

We will apply it to Y = Γ. So from now on we fix a constant δ 1 satisfying the last lemma for Γ.

Note that the current R constructed above can be seen as the obstruction to the existence of good inverse branches for balls in the spirit of Proposition 9.3.0.1. In order to measure the obstruction to the inverse branches of discs through a point a we have to slice this current using complex lines through a. We will need the following known technical result, see Lemma 5.52 in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. Recall that we identify a neighbourhood of a in X to the unit ball in C k for simplicity. Lemma 9.3.0.5. Let T be a positive closed (1, 1)-current on X. Then for any constant 0 < δ 2 < 1 there is a constant r > 0 and a family F ⊂ F , such that L (F ) ≥ 1 -δ 2 , and for every ∆ ∈ F the measure T ∧ [∆ r ] is well-defined and of mass smaller than or equal to ν(T, a) + δ 2 . Here, ν(T, a) denotes the Lelong number of T at a.

Recall that locally we can write T = dd c u with u a p.s.h. function. The measure T ∧ [∆ r ] is well-defined if u is not identically -∞ on ∆ r . This property holds for L -almost every ∆ and we have T ∧ [∆ r ] := dd c (u[∆ r ]).

We are now ready to construct inverse branches for discs through the point a under the hypotheses of Proposition 9.3.0.1. Fix a value of the constant c 1 ≥ δ -1 1 in the definition of S satisfying Lemma 9.3.0.2. We have the following lemma. Lemma 9.3.0.6. There is a number r 0 > 0 and a family F 0 ⊂ F with L (F 0 ) ≥ 1 -ν/2 satisfying the following property. For every complex line ∆ ∈ F 0 and for every n ≥ 0, the disc ∆ r 0 admits at least (1 -ν/2)d n t inverse branches g : ∆ r 0 → ∆ r 0 ,-n of order n such that if we define ∆ r 0 ,-i :

= f n-i (∆ r 0 ,-n ) for 0 ≤ i ≤ n and ∆ r 0 ,-i := τ -1 1 (∆ r 0 ,-i-1 ) for 0 ≤ i ≤ n -1, then ∆ r 0 ,-i ∩ Σ = ∅ for 0 ≤ i ≤ n and the diameters of ∆ r 0 ,-i for 0 ≤ i ≤ n -1 are smaller than 1 2 θ i/2
. Note that since ∆ r 0 ,-i ∩ Σ = ∅ for 0 ≤ i ≤ n, τ 1 defines a biholomorphic map between ∆ r 0 ,-i and ∆ r 0 ,-i-1 and τ 2 defines a biholomorphic map between ∆ r 0 ,-i and ∆ r 0 ,-i . Moreover, since ω ≥ τ * 1 (ω) and ω ≥ τ * 2 (ω), the diameter of ∆ r 0 ,-i is larger than or equal to the diameters of ∆ r 0 ,-i-1 and of ∆ r 0 ,-i . So the diameter of ∆ r 0 ,-i is smaller than 1 2 θ i/2 for 0 ≤ i ≤ n. Proof. Observe that if g is an inverse branch of order n satisfying the properties in the lemma then f • g is an inverse branch of order n -1 satisfying the same properties. So we only have to prove the lemma for n = mN where m is an integer.

By Lemma 9.3.0.4, we only need to bound the area of ∆ r 0 ,-i by θ i /c 1 ≤ δ 1 and then reduce the radius r 0 in order to get the diameter control. The rest of the lemma is obtained by induction on m. We will only consider discs ∆ r through a which are not contained in the orbit of Σ. This property holds for almost every disc.

By Lemma 9.3.0.5 applied to R and to δ 2 := ν/2, we can choose a number r and a family F 0 ⊂ F with L (F 0 ) ≥ 1 -ν/2 such that for ∆ ∈ F 0 the measure R ∧ [∆ r ] is well-defined and of mass smaller than 2ν. Let ν m denote the mass of

d -N m t (f N ) m * (S) ∧ [∆ r ]
. By definition of R, we have m≥0 θ -N m ν m ≤ ν/4. We show by induction on m that for every ∆ ∈ F 0 the disc ∆ r admits at least

γ m := (1 -2 0≤i<m θ -N i ν i )d N m t inverse branches g (s) -n : ∆ r → ∆ (s)
r,-N m of order N m such that the area of ∆ (s) r,-i is smaller than θ i /c 1 and ∆ (s) r,-i ∩ Σ = ∅ for 0 ≤ i ≤ N m. We used here similar notation as the one introduced in the statement of the lemma. The index s satisfies 1 ≤ s ≤ s m for some integer s m with γ m ≤ s m ≤ d N m t . Then the above discussion implies the result. Assume this property for m. The case m = 0 is clear since the choice of F 0 implies that ∆ r is out of Σ. We construct inverse branches of order N (m + 1). t inverse branches of order N (m+1) for ∆. We will count and remove the ones which do not satisfy the area control. We call them large-sized inverse branches. We also have to remove later inverse branches whose images intersect Σ. We first count the number of large-sized inverse branches of order N of ∆ (s) r,-N m for each s. For simplicity, we will drop the letter s for the moment.

The property ∆

Consider all inverse branches g : ∆ r,-N m → ∆ r,-N m-n of order 1 ≤ n ≤ N of ∆ r,-N m such that the area of ∆ r,-N m-i is bounded by θ N m+i /c 1 for i ≤ n -1 but not for i = n. They are completely disjoint in the sense that such two different branches are not extensions of the same branch of lower order of ∆ r,-N m . The extensions of order N (m + 1) of these branches are exactly the large-sized ones. So the number of large-sized branches of order N (m + 1) extending g is d N -n t .

Observe that the area of ∆ r,-N m-n is the mass of [∆ r,-N m-n ] ∧ (τ 2 ) * ( ω). This mass is smaller than or equal to the mass of [∆ r,-N m ] ∧ (f * ) n (τ 2 ) * ( ω) because f n defines a biholomorphic map from a neighbourhood of ∆ r,-N m-n to a neighbourhood of ∆ r,-N m . So the sum of these areas over all these branches g (there are at most d N t such maps) is bounded by c -1 1 θ N times the mass of S ∧ [∆ r,-N m ]. Since the area of ∆ r,-N m-n is larger than θ N m+n /c 1 , the number of considered maps g is at most equal to θ -N m times the mass of S ∧ [∆ r,-N m ]. The number of large-sized inverse branches of order N of ∆ r,-N m to remove is at most equal to θ -N m d N t times the mass of S ∧ [∆ r,-N m ]. Now, the number M of all large-sized inverse branches of order N (m+1) of ∆ r to remove is bounded by θ

-N m d N t times the mass of s S ∧[∆ (s) r,-N m ]
. By the definition of inverse branches, the last mass is bounded by the one of (f

N ) m * (S)∧[∆ r ] which is equal to d N m t ν m . We conclude that M ≤ θ -N m d N (m+1) t ν m .
Therefore, the number of inverse branches of order N (m + 1) satisfying the area control is larger than or equal to

γ m d N t -M ≥ γ m+1 + ν m d N (m+1) t
. It remains to remove the inverse branches whose images intersect Σ. Denote by t m+1 the number of inverse branches g : ∆ r → ∆ r,-N (m+1) of order N (m + 1) such that ∆ r,-N m-i ∩ Σ = ∅ for some 1 ≤ i ≤ N . By Lemma 9.3.0.2, the intersection of [∆ r,-N m-i ] with the current S 0 is a positive measure of mass at least equal to 1.

By definition of inverse branches, the map f n is holomorphic and injective on a neighbourhood of ∆ r,-n with image in a neighbourhood of ∆ r for every n ≤ N (m + 1). We then deduce that the mass of (f N ) m * (S) ∧ [∆ r ] is at least equal to t m+1 . It follows that t m+1 ≤ ν m d N m t . We conclude that the number of inverse branches of order N (m + 1) satisfying the properties in the lemma is at least equal to γ m+1 . This completes the proof of the lemma.

End of the proof of Proposition 9.3.0.1. We now apply Lemma 9.3.0.6 and Proposition 9.3.0.3 for δ 0 = ν/4. Let a

(1) -n , . . . , a (s) 
-n with 0 ≤ s ≤ d n t be the distinct points in f -n (a) such that f i (a (j)

-n ) ∈ Σ for all 0 ≤ i ≤ n and 1 ≤ j ≤ s. If g : ∆ r 0 → ∆ r 0 ,-n is an inverse branch as in Lemma 9.3.0.6, then ∆ r 0 ,-n contains exactly one of the points a (j) -n . We say that a (j)

-n is the center of ∆ r 0 ,-n . Denote by F (j) the set of ∆ ∈ F such that ∆ r 0 admits an inverse branch of order n as in Lemma 9.3.0.6 with center a (j) -n . Let S n denote the set of all j such that L (F (j) ) ≥ ν/4. Let j be an element of S n . We show that B(a, r) admits an inverse branch of order n of size ≤ θ n/2 with center a (j)

-n for a suitable constant r > 0 independent of n.

Let A (j) denote the intersection of F (j) with B(a, r 0 ). The inverse branches of ∆ r 0 with ∆ ∈ F (j) with images centered at a (j)

-n agree at the common intersection point a and form a map g :

A (j) → A (j) -n where A (j)
-n is the union of ∆ r 0 ,-n centered at a (j)

-n with ∆ ∈ F (j) . Define as above a (j)

-i := f n-i (a (j) -n ), A (j) -i := f n-i (A (j) -n ) for 0 ≤ i ≤ n and a (j) -i := τ -1 1 (a (j) -i-1 ), A (j) 
-i := τ -1 1 (A (j) 
-i-1 ) for 0 ≤ i ≤ n -1. By Lemma 9.3.0.6, we have A (j)

-i ∩ Σ = ∅ for 0 ≤ i ≤ n. Therefore, the map τ -1 1 • f n-i-1
• g extends holomorphically to a neighbourhood of A (j) . Moreover, the image of A (j) is equal to A (j)

-i which is contained in the ball of radius 1 2 θ i/2 ≤ 1 centered at a (j) -i and does not intersect the hypersurface τ -1 1 (Σ) ∪ τ -1 2 (Σ). Recall that the metric ω on Γ is chosen so that any ball of radius 1 is contained in an open set biholomorphic to a ball in C k . So Proposition 9.3.0.3 can be applied to this map. According to that proposition, for r small enough (equal to r 0 times a constant independent of n, i, j), all maps f n-i • g and τ -1 1 • f n-i-1 • g extend holomorphically to B(a, r). Moreover, their images, denoted by B(a, r) (j) -i and B(a, r) (j) -i respectively, have diameters smaller than or equal to θ i/2 . We also have B(a, r)

(j) -i ∩ τ -1 1 (Σ) = ∅ and B(a, r) (j) -i ∩ τ -1 2 (Σ) = ∅ for 0 ≤ i ≤ n -1. It follows that B(a, r) (j) -i ∩ Σ = ∅ for 0 ≤ i ≤ n.
So the extension of g defines an inverse branch of order n and of size ≤ θ n/2 on B(a, r).

It remains now to show that S n contains at least (1-ν)d n t elements. By Lemma 9.3.0.6, we have j L (F (j) ) ≥ d n t (1 -ν/2) 2 . Since L (F (j) ) ≤ L (F ) = 1, we deduce that the last sum is bounded by #

S n + (d n t -#S n )ν/4. It follows that #S n + (d n t -#S n )ν/4 ≥ d n t (1 -ν/2) 2 . Hence, #S n ≥ (1 -ν)d n t .
This completes the proof of the proposition.

Exceptional set

In this section, we give the proof of Theorem 9.1.0.2. In what follows, we only consider points a outside I ∞ ∪I ∞ . We need the following result that was obtained in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] in a more general setting. Lemma 9.4.0.1. There is a pluripolar subset E of X containing I ∞ such that if a is out of E then µ a n converges to µ as n goes to infinity.

For every a ∈ I ∞ , define a := sup µ a -µ , where the supremum is taken over all cluster values µ a of the sequence µ a n . So we have µ a n → µ if and only if a = 0. We deduce from the above lemma and Proposition 9.3.0.1 the following property.

Lemma 9.4.0.2. Let a be a point out of I ∞ . Then, we have a ≤ 2ν(R, a). In particular, µ a n → µ if ν(R, a) = 0.

Proof. We have seen that the condition a ∈ I ∞ is necessary to define µ a n . Since we always have a ≤ 2, we only need to consider the case where ν(R, a) < 1. 

-n , . . . , b

(d n t ) -n
where each points are repeated according to its multiplicity. Proposition 9.3.0.1 implies that we can arrange these points so that the distance between a (j)

-n and b (j)

-n is smaller than (d k-1 /d t + ) n/2 for at least (1 -ν)d n t indices j. Here > 0 is a fixed constant small enough. Since (d k-1 /d t + ) n/2 tends to 0, we then deduce that any cluster values of the sequence µ a n -µ b n is a measure of mass at most equal to 2ν. The property holds for every ν > ν(R, a). Hence, the result follows from Lemma 9.4.0.1 which implies that µ b n → µ.

The exceptional set in Theorem 9.1.0.2 is given in the following proposition.

Proposition 9.4.0.3. There is a proper analytic subset E of X, possibly empty, satisfying the following three conditions: (1) no component of E is contained in

I ∞ ∪ I ∞ ; (2) f -1 (E \ I ) ⊂ E ;
(3) any proper analytic subset of X satisfying (1) and ( 2) is contained in E . Moreover, we have

E = f -1 (E \ I ) = f (E \ I).
Proof. Consider the set Y 0 := {ν(R, a) ≥ 1}. By Siu's theorem, Y 0 is a proper analytic subset of X [START_REF] Siu | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF]. Denote for n ≥ 1 the analytic set Y n which is the closure of the set

{z ∈ I ∞ ∪ I ∞ , f -i (z) ∈ Y for 0 ≤ i ≤ n}.
Since the sequence Y n is decreasing, it is stationary: we have Y n = Y n+1 for n large enough. Denote by E := Y n for n large enough.

It is clear that E satisfies the property (1). We have by definition

f -1 (E \ (I ∞ ∪ I ∞ )) ⊂ E . Since f -1 (E \ (I ∞ ∪ I ∞ )) is dense in f -1 (E \ I ), the set E satisfies (2). Denote by E n the closure of f -n (E \ (I ∞ ∪ I ∞ ))
. This is a decreasing sequence of analytic sets satisfying the property (1). So it is stationary: we have E n = E n+1 for m large enough. Since f (E n+1 \ I) is dense in E n , we deduce from the last identity that E n-1 = E n and hence, by induction,

E 1 = E . It follows that E = f -1 (E \ I ) which also implies that E = f (E \ I).
Let E be a proper analytic subset of X satisfying (1) and ( 2). We have to show that E ⊂ E . Property (2) implies that if a is a point in E \ I ∞ then any cluster values of µ a n is supported by E . Since µ has no mass on E , we deduce that a = 2. Lemma 9.4.0.2 implies that a is in Y 0 . So we have E ⊂ Y 0 . Property (2) again, together with the definition of E , implies that E ⊂ E . This completes the proof of the proposition.

We need the following characterization of the exceptional set E . Lemma 9.4.0.4. Let Y be a proper analytic subset of X. Let a be a point in Y which does not belong to I ∞ ∪ I ∞ . Let λ n (a) denote the number of backward orbits a 0 , a -1 , . . . , a -n counted with multiplicity with a 0 = a, a

-i-1 ∈ f -1 (a -i ) for 0 ≤ i ≤ n -1 and a -i ∈ Y for 0 ≤ i ≤ n. If a is not in E then d -n t λ n (a) → 0 as n → ∞.
Proof. Observe that since a is out of I ∞ ∪ I ∞ the same property holds for a -i . By definition, the sequence d -n t λ n (a) is decreasing because each backward orbit of order n + 1 is one of the d t extensions of backward orbits of order n. Since the functions λ n are upper-semi-continuous with respect to the induced Zariski topology on Y \ (I ∞ ∪ I ∞ ), the function λ := lim d -n t λ n is also upper semicontinuous with respect to this topology. Let m denote the maximal value of λ on Consider all backward orbits of a of order l ≤ m of the form

Y \ (I ∞ ∪ I ∞ ∪ E ).
∈ f -1 (a). Therefore, f -1 (Z * ) ⊂ Z and f -1 (Z \ I ) ⊂ Z since f -1 (Z * ) is dense in f -1 (Z \ I ).
O := {a 0 , a -1 , . . . , a -l } with a 0 = a, f (a -i-1 ) = a -i for 0 ≤ i ≤ l -1
such that a -i ∈ Y for i ≤ l-1 and a -l ∈ Y unless l = m. These orbits are counted with multiplicity. Using that µ a n is the probability measure equidistributed on f -n (a), it is not difficult to see that

µ a n = O d -l t µ a -l n-l
for every n ≥ m. By considering the masses of the measures in the above identity, we have

O d -l t = 1.
We then deduce from the same identity that

a ≤ O d -l t a -l .
Let Σ, Σ denote the sets of O with a -l ∈ Y (hence l = m) and with a -l ∈ Y respectively. By definition of λ n , we have

O∈Σ d -l t = d -m t λ m (a) ≤ ν.
On the other hand, we have a -l ≤ 2 for every O and by Lemma 9.4.0.2,

a -l ≤ 2ν for O ∈ Σ . It follows that a ≤ O∈Σ d -l t a -l + O∈Σ d -l t a -l ≤ 2 O∈Σ d -l t + 2ν O∈Σ d -l t ≤ 2ν + 2ν = 4ν.
This completes the proof of the theorem. 

:= E , E n := f (E n-1 ) and E ∞ := ∪ n≥0 E n . If a is a point in E ∞ \ I ∞ ,
then µ a n has positive mass on E for some n ≥ 0. It follows from the invariance properties of E that µ a n does not converge to µ since µ has no mass on E . Lemma 9.4.0.4 still holds for a ∈ E ∞ ∪ I ∞ . We can show that µ a n → µ for such points a. This property is slightly stronger than Theorem 9.1.0.2.

Lyapunov exponents

In this section, we give the proof of Theorem 9.1.0.1 and then a lower bound for the Lyapunov exponents of the equilibrium measure.

We call fixed point of f any point a such that (a, a) belongs to the closure Γ of the graph of f in X × X. A fixed point a is isolated if (a, a) is isolated in the intersection of Γ with the diagonal ∆ of X × X. The multiplicity of an isolated periodic point a is the multiplicity of the intersection Γ ∩ ∆ at (a, a). A fixed point a is regular if it is not an indeterminacy point, that is, a ∈ I. Such a point is called repelling if all the eigenvalues of the differential of f at a have modulus strictly larger than 1. So repelling fixed points are isolated with multiplicity 1.

Periodic points of period n are fixed points of f n . A periodic point a of order n is regular if f i (a) ∈ I for every i ∈ N. Such a point is said to be repelling if it is moreover a repelling fixed point of f n . We need the following upper bound for the number of isolated periodic points. Proposition 9.5.0.1. Let P n denote the number of isolated periodic points of period n of f . Then #P n ≤ d n t + o(d n t ) as n goes to infinity. We first prove the following property. Lemma 9.5.0.2. Let Γ n denote the closure of the graph of f n in X × X. Then the sequence of positive closed (k, k)-currents d -n t [Γ n ] converges to π * 1 (µ) as n goes to infinity. Here, π 1 : X × X → X is the natural projection onto the first factor.

Proof. Denote by z = (z 1 , z 2 ) a general point in X × X with z 1 , z 2 ∈ X. Observe that smooth (k, k)-forms on X × X can be written as a finite combination of forms of types Φ(z

) := u(z)Ω(z 1 ) ∧ α(z 1 ) ∧ Θ(z 2 ) ∧ β(z 2 ),
where u is a smooth function, Ω, Θ are smooth positive forms and α, β are smooth forms of bidegree (p, 0) or (0, p) for some p ≥ 0. We have to check that

d -n t [Γ n ] -π * 1 (µ), Φ → 0.
Case 1. Assume that Ω is a function, Θ is of bidegree maximal (k, k) and p = 0. We may, for simplicity, assume that Ω = 1, α = 1 and β = 1. We have by Fubini's theorem

d -n t [Γ n ], Φ = a∈X d -n t b∈f -1 (a) u(b, a)Θ(a) = a∈X µ a n , u(•, a) Θ(a).
Since the measure associated to Θ has no mass on proper analytic subsets of X, by Theorem 9.1.0.2, for Θ-almost every a, we have µ a n → µ. So the last sum converges to

a∈X µ, u(•, a) Θ(a) = π * 1 (µ), Φ .
The lemma holds in this case. Case 2. Assume that Ω is of bidegree (l, l) with l ≥ 1 and p = 0. For simplicity, we can assume that α = 1, β = 1, |u| ≤ 1, Ω(z 1 ) ≤ ω l (z 1 ) and Θ(z 2 ) ≤ ω k-l (z 2 ). Since π * 1 (µ), Φ = 0 because of bidegree reason on variable z 1 , we have to verify that d -n t [Γ n ], Φ → 0. We have

d -n t [Γ n ], Φ ≤ d -n t [Γ n ], ω(z 1 ) l ∧ ω(z 2 ) k-l = d -n t X (f n ) * (ω k-l ) ∧ ω l .
Clearly, the last integral tends to 0 since f is with dominant topological degree. Case 3. In this last case, assume that p ≥ 1. We also have π * 1 (µ), Φ = 0 because of bidegree reason on variable z 1 . We check that d -n t [Γ n ], Φ → 0. By Cauchy-Swcharz's inequality, we have

d -n t [Γ n ], Φ 2 ≤ d -n t [Γ n ], Φ 1 d -n t [Γ n ], Φ 2 with Φ 1 := |u| 2 α(z 1 ) ∧ α(z 1 ) ∧ Ω(z 1 ) ∧ Θ(z 2 ) and Φ 2 := β(z 2 ) ∧ β(z 2 ) ∧ Ω(z 1 ) ∧ Θ(z 2 ).
Using the previous cases, we see that the first factor in the last product tend to 0 and the second one is bounded. The lemma follows.

End of the proof of Proposition 9.5.0.1. By Proposition 9.2.0.1 and Lemma 9.5.0.2, it is enough to check that {π * 1 (µ)} {∆} = 1 and that the h-tangent dimension of π * 1 (µ) with respect to ∆ is 0. Since µ is a probability measure, its class in H k,k (X) is also the class of a point. So the class of π * 1 (µ) is also the class of fiber of π 1 . Any fiber of π 1 intersects ∆ transversally at a point. So {π * 1 (µ)} {∆} = 1.

To calculate the h-tangent dimension of π * 1 (µ), consider a point a in X. We identify a neighbourhood of a with a domain U in C k endowed with the standard coordinates z = (z 1 , . . . , z k ). They induce a local coordinate system (z, z ) on a neighbourhood of the point (a, a) in ∆. We use a new coordinate system (z, z ) with z := z -z. In these coordinates, a neighbourhood of (a, a) is identified to an open subset of U × C k , ∆ is given by {z = 0} and π 1 is always the natural projection onto U . The normal vector bundle of ∆ is identified to U × C k . The identity map is an admissible local map. So it is not difficult to see that the tangent current of π * 1 (µ) along ∆ is also identified to π * 1 (µ). The h-dimension of this current is clearly 0. This completes the proof of the proposition.

End of the proof of Theorem 9.1.0.1. We can now follow the proof for the case of holomorphic maps presented in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. For the reader's convenience, we give here the details.

First observe that with the notation as in Theorem 9.1.0.1, Proposition 9.5.0.1 implies that any cluster value of the sequence µ n := d -n t a∈Qn δ a is a positive measure of mass at most equal to 1. Therefore, it suffices to consider the case where Q n is the smallest set, i.e. the intersection of RP n with the support supp(µ) of µ. Fix a small constant ν > 0. It suffices to prove that any cluster value µ of µ n satisfies µ ≥ (1 -4ν)µ. Let B be an open subset of X. We have to prove that µ (B) ≥ (1 -4ν)µ(B).

Recall that µ has no mass on proper analytic subsets of X. So it has no mass on

I ∞ ∪ I ∞ nor on {ν(R, •) > 0}.
In what follows, we only consider balls whose centers stay outside these sets and belong to supp(µ), in particular, we have ν(R, a) = 0 for such a center a. By Proposition 9.3.0.1, any small enough ball centered at a admits at least (1-ν)d n t inverse branches of order n of diameter

≤ (d k-1 /d t + ) n/2 . The constant is fixed so that d k-1 /d t + < 1.
We only consider such balls.

Since these balls cover a set of full µ measure, we can find in B a disjoint union of open sets of total µ measure such that each of these open sets is contained in one of the above considered balls and is biholomorphic to a cube in C k . Therefore, for simplicity, we can assume that B is such a cube. We only have to check for µ-almost every point a ∈ X that #Q n ∩ B ≥ (1 -4ν)d n t µ(B) when n is large enough.

Choose a finite family of balls

B i of center b i with 1 ≤ i ≤ m such that µ(B 1 ∪ . . . ∪ B m ) > 1 -ν and each B i admits (1 -νµ(B))d n t inverse branches of order n with diameter ≤ (d k-1 /d t + ) n/2 for n large enough. Choose balls B i B i such that µ(B 1 ∪ . . . ∪ B m ) > 1 -ν.
Fix a constant N large enough. Since d -n t (f n ) * (δ a ) converge to µ for a generic point a in B, the fiber f -N (a) contains at least (1-ν)d N t points in ∪B i . Therefore, B admits at least (1 -2ν)d N t inverse branches of order N with small diameters whose images intersect ∪B j . So the image of such a branch should be contained in one of the B j . Choose an open set B ⊂ B such that µ(B ) > (1 -ν)µ(B). In the same way, we show that for n large enough, each B j admits (1-2ν)µ(B)d n-N t inverse branches of order n-N whose images intersect B and hence are contained in B. Observe that composing an inverse branch of order N of B whose image is contained in B j with an inverse branch of order n -N of B j whose image is contained in B, we obtain an inverse branch of order n of B whose image is contained in B. Consequently, it follows that B admits at least (1 -2ν) 2 µ(B)d n t inverse branches g i : B → B (i) of order n with image B (i) B.

Every holomorphic map g : U → V U on a convex open subset U of C k contracts the Kobayashi metric on U and then admits an attractive fixed point z. Moreover, g l converges uniformly to z and ∩ l≥0 g l (U ) = {z}. Therefore, each g i admits a fixed attractive point a (i) . This point is fixed and repelling for f n . They are different since the B (i) are disjoint. Moreover, by definition of inverse branches, the orbit of a (i) does not intersect Σ 0 ⊃ I. So this is a repelling periodic point of period n for f in our sense.

Finally, since µ is totally invariant, its support satisfies f -1 (supp(µ) \ I ) ⊂ supp(µ). Hence, a (i) , which is equal to ∩ l≥0 g l i (supp(µ) ∩ B), is necessarily in supp(µ). We deduce that

#Q n ∩ B ≥ (1 -2ν) 2 µ(B)d n t ≥ (1 -4ν)d n t µ(B).
This completes the proof.

Remark 9.5.0.3. By Schwarz's lemma, since the diameter of B (i) is smaller than or equal to (d k-1 /d t + ) n/2 all eigenvalues of the differential of g i at a (i) have modulus smaller than or equal to this constant. We deduce that the eigenvalues of the differential of f n at a (i) have modulus larger than or equal to (d k-1 /d t + ) -n/2 . Denote by Q n the set of repelling periodic points in Q n satisfying the last property.

We then have d -n t a∈Q n δ a → µ.

Using Proposition 9.3.0.1, we obtain the following result as in the case of holomorphic maps. Theorem 9.5.0.4. Let f : X → X, d t , d p and µ be as in Introduction. Then the measure µ is hyperbolic. Its Lyapounov exponents are bounded from below by 1 2 log dt d k-1 which is a strictly positive number. The result was stated for projective manifolds in [START_REF] Guedj | Ergodic properties of rational mappings with large topological degree[END_REF] but its proof is incomplete since the author uses again his lemma mentioned in the introduction. It was also stated in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for the general case of compact Kähler manifolds. We give here the details for the reader's convenience, see [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]Th. 1.120]. Note that the result can be also deduced from a more recent theorem by de Thélin [START_REF] De Thélin | Un phénomène de concentration de genre[END_REF]. The cases of endomorphisms of P k and of polynomial-like maps were obtained in [START_REF] Briend | Exposants de Liapunoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF][START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF]. See also [START_REF] Lyubich | Entropy properties of rational endomorphisms of the Riemann sphere[END_REF] for the dimension 1 case.

Proof. Recall that quasi-p.s.h. functions are µ-integrable. Let J(f ) be the Jacobian of f with respect to the Kähler metric ω on X. Then, using a resolution of singularity for the graph of f and local holomorphic coordinates, it is not difficult to show that | log J(f )| ≤ |ϕ| for some quasi-p.s.h. function ϕ. So | log J(f )| is integrable with respect to µ and therefore, we can apply Oseledec's theorem to the natural extension of f (a natural invertible map defined on the space of backward orbits of f ) [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF]. We deduce from this result that the smallest Lyapounov exponent of µ is equal to

χ := lim n→∞ - 1 n log Df n (x) -1
for µ-almost every x, where Df n denotes the differential of f n . Fix a small constant > 0. By Proposition 9.3.0.1, there is a ball B of positive µ measure which admits at least 1 2 d n t inverse branches

g i : B → B (i) -n of order n with diameter ≤ ( d k-1 dt + ) n/2
. By Cauchy's formula, if we reduce slightly the ball B, we can assume that Dg i ≤ A( d k-1 dt + ) n/2 for some constant A > 0. We then deduce that

(Df n ) -1 ≤ A( d k-1 dt + ) n/2 on B (i) -n . The union V n of the B (i)
-n is of measure at least equal to 1 2 µ(B) since µ is totally invariant. Therefore, by Fatou's lemma,

1 2 µ(B) ≤ lim sup n→∞ µ, 1 Vn ≤ µ, lim sup 1 Vn = µ, 1 lim sup Vn .
Hence, for x in the set K := lim sup V n , which has positive µ measure, we have

(Df n ) -1 ≤ A( d k-1 dt + ) n/2
for infinitely many of n. Hence, χ ≥ 1 2 log( dt d k-1 + dt ). We obtain the result by letting to 0.

Chapter 10 Value Distribution

Let f be a non-invertible holomorphic endomorphism of a projective space and f n its iterate of order n. We prove that the pull-back by f n of a generic (in the Zariski sense) hypersurface, properly normalized, converge to the Green current associated to f when n tends to infinity. We also give an analogous result for the pull-back of positive closed (1, 1)-currents and a similar result for regular polynomial automorphisms of C k .

Introduction

Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 on the projective space P k . Let ω denote the Fubini-Study form on P k normalized so that ω is cohomologous to a hyperplane or equivalently

P k ω k = 1.
It is well-known that the sequence of smooth positive closed (1, 1)-forms d -n (f n ) * (ω) converges weakly to a positive closed (1, 1)-current T of mass 1. Moreover, T has locally continuous potentials and is totally invariant, i.e. f * (T ) = dT . We call T the Green current of f . The complement of the support of T is the Fatou set, i.e. the sequence (f n ) is locally equicontinuous there. We refer the reader to the survey [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] for background. Our main results in this chapter are the following theorems, where [•] denotes the current of integration on a complex variety.

Theorem 10.1.0.1. Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 of P k and T the Green current associated to f . There is a proper analytic subset E of P k such that if H is a hypersurface of degree s in P k which does not contain any irreducible component of E then d -n (f n ) * [H] converge to sT in the sense of currents when n tends to infinity. Moreover, E is totally invariant, i.e.

f -1 (E ) = f (E ) = E .
The exceptional set E will be explicitely constructed in Sections 10.6 and 10.7. It is the union of totally invariant proper analytic subsets of P k which are minimal. That is, they have no proper analytic subsets which are totally the case of meromorphic maps on compact Kähler manifolds. At the end of the paper, we will consider the case of regular polynomial automorphisms of C k .

The problem of convergence was first considered by Brolin for polynomials in dimension 1 and then by Lyubich, Freire, Lopes and Mañé for rational maps in P 1 [START_REF] Brolin | Invariant sets under iteration of rational functions[END_REF][START_REF] Lyubich | Entropy properties of rational endomorphisms of the Riemann sphere[END_REF][START_REF] Freire | An invariant measure for rational maps[END_REF]. In dimension k = 2, Fornaess and Sibony proved that E is empty when the local multiplicity of f at every point is ≤ d -1, see [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF]. This implies Theorem 10.1.0.3 in dimension 2 for S n = S. The proof in [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF] can be extended to the general case, see also [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF].

The family of hyperplanes in P k is parametrized by a projective space of dimension k. It follows from Theorem 10.1.0.1 that for a hyperplane H, generic in the Zariski sense, we have d -n (f n ) * [H] → T . Russakovskii and Shiffman have proved this result for H out of a pluripolar set in the space of parameters [START_REF] Russakovskii | Value distribution for sequences of rational mappings and complex dynamics[END_REF]. Analogous results for subvarieties in arbitrary Kähler manifolds were proved by the authors in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. Concerning Theorems 10.1.0.1 and 10.1.0.2, our conditions are not optimal. Indeed, it might happen that the potentials of S are identically -∞ on some components of E and still d -n (f n ) * (S) → T .

In the case of dimension k = 2, our results (except several uniform convergences, e.g. Theorem 10.7.0.1) can be deduced from results by Favre and Jonsson. These authors say that their condition is necessary and sufficient in order to have the previous convergence, see [395], and they give needed tools for the proof in [396, p.310]. In which case, if the Lelong number of S vanishes at generic points on each irreducible component of an exceptional set then d -n (f n ) * (S) → T . The problem is still open in higher dimension. When the Lelong number of S is 0 at every point of P k , the convergence d -n (f n ) * (S) → T was obtained by Guedj [START_REF] Guedj | Equidistribution towards the Green current[END_REF], see also Corollary 10.5.0.9. In these works, the problem of convergence is reduced to the study of sizes of images of balls under iterates of f . This approach was first used in [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF][START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF].

Recall that the self-intersection T p := T ∧ . . . ∧ T , p times, defines a positive closed (p, p)-current which is totally invariant, i.e. f * (T p ) = d p T p , see [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF] for the pull-back operator on currents. It is natural to consider the analogous equidistribution problem towards T p . Conjecture 10.1.0.4. Let f be a holomorphic endomorphism of P k of algebraic degree d ≥ 2 and T its Green current. Then d -pn (f n ) * [H] converge to sT p for every analytic subset H of P k of pure codimension p and of degree s which is generic. Here, H is generic if either H ∩ E = ∅ or codimH ∩ E = p + codimE for any irreducible component E of every totally invariant analytic subset of P k .

We will see later that there are only finitely many analytic sets which are totally invariant. Theorem 10.1.0.1 proves the conjecture for p = 1. Indeed, in that case, it is equivalent to check the condition for E minimal. For p = k, the measure µ := T k is the unique invariant measure of maximal entropy, see [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF][START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. In this case, the conjecture was proved in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF]. Weaker results in this direction were obtained in [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF] and [START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF]. We will give some details in Theorem 10.6.0.6. For 2 ≤ p ≤ k -1, Dinh and Sibony have proved in [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF] that for f in a Zariski dense open set H d ⊂ H d , there is no proper analytic subset of P k which is totally invariant and that the conjecture holds. Indeed, a version of Theorem 10.1.0.3 is proved.

Psh functions

We refer the reader to [START_REF] Hörmander | The analysis of Linear partial differential operators I[END_REF]388,[START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for the basic properties of plurisubharmonic (psh for short) and quasi-psh functions on smooth manifolds. In order to study the Levi problem for analytic spaces X, the psh functions which are considered, are the restrictions of psh functions on an open set of C k for a local embedding of X. Let u : X → R ∪ {-∞} be an upper semi-continuous function which is not identically equal to -∞ on any irreducible component of X. Fornaess-Narasimhan proved that if u is subharmonic or equal to -∞ on any holomorphic disc in X, then u is psh in the above sense [START_REF] Fornaess | The Levi problem on complex spaces with singularities[END_REF]. However, this class does not satisfy good compactness properties which are useful in our analysis. Assume that X is an analytic space of pure dimension p. Let reg(X) and sing(X) denote the regular and the singular parts of X. We consider the following weaker notion of psh functions which is modeled after the notion of weakly holomorphic functions. The class has good compactness properties.

Definition 10.2.0.1. A function v : X → R ∪ {-∞} is wpsh if (a) v is psh on X \ sing(X).
(b) For a ∈ sing(X), v(a) = lim sup v(x) with x ∈ reg(X) and x → a.

Fornaess-Narasimhan's theorem implies that psh functions are wpsh. Wpsh functions are psh when X is smooth. One should notice that the restriction of a wpsh function to an irreducible component of X is not necessarily wpsh. For example, consider X = {xy = 0} in the unit ball of C 2 , let v = 0 on {x = 0}\(0, 0) and v = 1 on {y = 0}, then v is wpsh on X but its restriction to {x = 0} is not wpsh. Consider the (strongly) psh function v n := |x| 1/n on X. The sequence v n converge to v in L 1 (X). So, psh functions on analytic sets do not have good compactness properties. Proposition 10.2.0.2. Let Z ⊂ X be an analytic subset of dimension ≤ p -1 and v a wpsh function on X \ Z. If v is locally bounded from above near Z then there is a unique wpsh function v on X equal to v outside Z.

Proof. The extension to a psh function on reg(X) is well-known. So, we can assume that Z ⊂ sing(X). Condition (b) in Definition 10.2.0.1 implies the uniqueness of the extension of v . Define v(a) = lim sup v(x) with x ∈ Z and x → a. It is clear that v = v out of Z and v satisfies the conditions in Definition 10.2.0.1. Now assume for simplicity that X is an analytic subset of pure dimension p of an open set U in C k . The general case can be deduced from this one. The following results give characterizations of wpsh functions. Proposition 10.2.0.3. Let π : X → X ⊂ U be a desingularization of X. If v is a wpsh function on X then there is a psh function v on X such that v(x) = max π -1 (x) v for x ∈ X. Conversely, if v is psh on X then x → max π -1 (x) v defines a wpsh function on X.

Proof. Define v := v • π outside the analytic set π -1 (sing(X)). This function is psh and is locally bounded above near π -1 (sing(X)). We can extend it to a psh function on X that we also denote by v. For x ∈ X, π -1 (x) is compact. The maximum principle implies that v is constant on each irreducible component of π -1 (x). From the definition of wpsh function, we get v(x) = max π -1 (x) v. The second assertion in the proposition follows from the definition of wpsh functions.

A theorem of Lelong says that the integration on reg(X) defines a positive closed (k -p, k -p)-current [X] on U , see [START_REF] Lelong | Fonctions plurisousharmoniques et formes différentielles positives[END_REF]388]. Let z denote the coordinates in C k . Proposition 10.2.0.4. A function v : X → R ∪ {-∞} is wpsh if and only if the following properties are satisfied :

(a) v is in L 1 loc (X), i.e. K |v|(dd c |z| 2 ) p < +∞ for any compact set K ⊂ X.

(b) v is strongly upper semi-continuous, i.e. for any a ∈ X and any full measure subset X ⊂ X we have v(a) = lim sup v(x) with x ∈ X and x → a.

(c) dd c (v[X]
) is a positive current on U .

Proof. We use the notations in Proposition 2.3. The proposition is known for smooth manifolds, see [388]. Assume that v is wpsh. The function v defined above satisfies properties (a), (b) and (c) on X. It follows that v satisfies (a) and (b) on X.

Since dd c (v[X]) = π * (dd c ( v[ X])), dd c (v[X]) is positive. Hence, v satisfies (c).
Conversely, Properties (a)-(c) imply that v is psh on reg(X). Then, Property (b) implies that v satisfies the conditions of Definition 10.2.0.1. Proposition 10.2.0.5. Let (v n ) be a sequence of wpsh functions on X, locally uniformly bounded from above. Then, there is a subsequence (v n i ) satisfying one of the following properties:

(a) There is an irreducible component Y of X such that (v n i ) converges uniformly to -∞ on K \ sing(X) for any compact set K ⊂ Y .

(b) (v n i ) converges in L q loc (X) to a wpsh function v for every 1 ≤ q < +∞.

In the last case, lim sup v n i ≤ v on X with equality almost everywhere.

Proof. Let π : X → X ⊂ U be as above. We extend the functions v n •π, which are psh on π -1 (reg(X)) to psh functions v n on X. Recall that v n (x) = max π -1 (x) v n . Now, since the proposition holds for smooth manifolds, it is enough to apply it to ( v n ). If a psh function v is a limit value of ( v n ) in L q loc ( X), the function v, defined by v(x) := max π -1 (x) v, satisfies the property (b) in the proposition. If not, v n converge to -∞ locally uniformly on some component of X and the property (a) holds.

The following result is the classical Hartogs' lemma when X is smooth [START_REF] Hörmander | The analysis of Linear partial differential operators I[END_REF].

Lemma 10.2.0.6. Let (v n ) be a sequence of wpsh functions on X. Let u be a continuous function on X such that lim sup v n < u. Then for every compact set K ⊂ X, v n < u on K for n large enough. This holds in particular, if (v n ) converges to a wpsh function v in L 1 loc (X) and v < u.

Proof. Let π and v n be defined as above. These functions v n are psh on X. Define

u := u•π. It is clear that u is continuous and that lim sup v n ≤ lim sup v n •π < u.
We only have to apply the classical Hartogs' lemma in order to obtain v n < u on π -1 (K) for n large enough. This implies the result. The last assertion in the lemma is a consequence of Proposition 10.2.0.5.

The following lemma will be useful.

Lemma 10.2.0.7. Let G be a family of psh functions on U locally uniformly bounded from above. Assume that for each irreducible component of X there is an analytic subset Z such that the restriction of G to Z is bounded in L 1 loc (Z). Then, the restriction of G to X is bounded in L 1 loc (X).

Proof. We can assume that X is irreducible. For (v n ) ⊂ G , define the psh functions v n on X as above. It is clear that v n are locally uniformly bounded from above. Let W U be an open set which intersects Z. The maximal value of v n on π -1 (Z ∩W ) is equal to the maximal value of v n on Z ∩W . It follows from the hypothesis that no subsequence of ( v n ) converges uniformly on compact sets to -∞. Proposition 10.2.0.5 applied to ( v n ), implies that this sequence is bounded in L 1 loc ( X). Applying again Proposition 10.2.0.5 to (v n ) gives the lemma.

Let R be a positive closed (1, 1)-current on U with continuous local potentials, i.e. locally R = dd c v with v psh and continuous. Let R be a positive closed (k -p, k -p)-current on U , 1 ≤ p ≤ k -1. Recall that we can define their intersection by R∧R := dd c (vR ) where v is a local potential of R as above. This is a positive closed (k -p + 1, k -p + 1)-current on U which depends continuously on R . The definition is independent of the choice of v. By induction, if R 1 , . . ., R p are positive closed (1, 1)-currents with continuous local potentials, the intersection ν := R 1 ∧ . . . ∧ R p ∧ [X] is a positive measure with support in X. This product is symmetric with respect to R 1 , . . ., R p . Proposition 10.2.0.8. For every compact sets K and K with K K ⊂ X, there is a constant c > 0 such that if u is wpsh on X we have

max K u ≤ c u L 1 (K ) and K |u|dν ≤ c u L 1 (K ) .
In particular, ν has no mass on analytic subsets of dimension ≤ p -1 of X.

Proof. Choose a compact set L such that K L K and a neighbourhood W of sing(X) small enough. If a is a point in K ∩ W , then we can find a Riemann surface in X containing a and having boundary in L \ W . Indeed, it is enough to consider the intersection of X with a suitable linear plane P of dimension k -p + 1 passing throught a. The maximum principle applied to the lift of u to X (defined above) implies that u(a) ≤ max L\W u and hence max K u ≤ max L\W u. Since L \ W ⊂ reg(X), the submean inequality for psh functions on smooth manifolds implies that max L\W u ≤ c u L 1 (K ) for some constant c > 0. Hence, max K u ≤ c u L 1 (K ) .

We prove now the second inequality. Replacing u by u -c u L 1 (K ) allows us to assume that u ≤ 0 on K. Since the problem is local, we can assume that R i = dd c v i with v i continuous on U . Moreover, we can approximate v i by decreasing sequences (v i,n ) of smooth psh functions. Define R i,n := dd c v i,n . It is well-known that ν n := R 1,n ∧ . . . ∧ R p,n ∧ [X] converge to ν in the sense of measures. Using the same arguments as in the Chern-Levine-Nirenberg inequalities [START_REF] Chern | Intrinsic norms on a complex manifold[END_REF]388,[START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] yields

K udν n ≥ -c v 1,n L ∞ (K ) . . . v p,n L ∞ (K ) u L 1 (K )
where c > 0 is independent of n. When n → ∞, since ν n → ν and since u is upper semi-continuous, we obtain

K udν ≥ -c v 1 L ∞ (K ) . . . v p L ∞ (K ) u L 1 (K ) .
This implies the second inequality in the proposition.

Let Y be an analytic subset of X of dimension ≤ p -1. Then, there is a psh function u on U such that {u = -∞} = Y . The last inequality applied to the restriction of u to X, implies ν(Y ) = 0.

Modulo T

We are going to develop in this section the analogue in the compact case of the local theory in Section 10.2. Consider a (compact) analytic subset X of P k of Lemma 10.3.0.5. Let G be a family of modulo T psh functions on P k uniformly bounded from above. Assume that each irreducible component of X contains an analytic subset Y such that the restriction of G to Y is bounded in L 1 (Y ). Then, the restriction of G to X is bounded in L 1 (X).

Define a positive measure supported on X by µ X := T p ∧ [X]. By Bézout's theorem, the mass of µ X is equal to the degree of X. The same argument implies that µ X has positive mass on any irreducible component of X. The following result is a consequence of Proposition 10.2.0.8. Proposition 10.3.0.6. There is a constant c > 0 such that if u is a modulo T wpsh function on X then

max X u ≤ c(1 + u L 1 (X) ) and |u|dµ X ≤ c(1 + u L 1 (X) ).
In particular, µ X has no mass on analytic subsets of dimension ≤ p -1 of X.

We also have the following useful Proposition and Lemma. Since µ Y has no mass on sing(X), we can replace X by Y and assume that X is irreducible. Define m u := max X u and v := u -m u . Since max X v = 0, Proposition 10.3.0.3 implies that the family of such functions v is bounded in L 1 (X), see also Definition 10.2.0.1(b). On the other hand, we have

|m u | µ X = udµ X -vdµ X ≤ c + vdµ X .
This and Proposition 10.3.0.6, applied to v, imply that

|m u | is bounded. Since u = m u + v, we obtain that G is bounded in L 1 (X).
Lemma 10.3.0.8. Let u be a modulo T wpsh function on X. If X is invariant by f , i.e. f (X) = X, then d -1 u • f is equal out of sing(X) ∪ f -1 (sing(X)) to a modulo T wpsh function w on X. Moreover, w depends continuously on u.

Proof. Consider a point x ∈ X out of sing(X) ∪ f -1 (sing(X)). Since T is totally invariant, if v is a potential of T in a neighbourhood V of f (x) then d -1 v • f is a potential of T in a neighbourhood U of x. Since the function u + v is psh on X ∩V , d -1 (u•f +v •f ) is psh on X ∩U . Hence, dd c ((d -1 u•f )[X]) ≥ -T ∧[X] out
of sing(X) ∪ f -1 (sing(X)). On the other hand, since u is bounded from above, d -1 u • f is bounded from above. Proposition 10.2.0.2 implies the existence of w. That w depends continuously on u follows from Proposition 10.3.0.3.

Corollary 10.3.0.9. Assume that X is invariant. Let G be a family of modulo T wpsh functions on X, bounded in L 1 (X). Then, the family of modulo T wpsh functions on X which are equal almost everywhere to d -n u • f n with n ≥ 0 and u ∈ G , is bounded in L 1 (X). Moreover, if a modulo T wpsh function u on X is a limit value of (d

-n u n • f n ) in L 1 (X) with u n ∈ G , then u ≤ 0 on X and u = 0 on supp(µ X ). The sequence (d -n u n • f n ) converges to 0 in L 1 (µ X ).
Proof. Replacing f by an iterate f n allows us to assume that f fixes all the irreducible components of X. So, we can assume that X is irreducible. For the first assertion, by Propositions 10.3.0.6, we can subtract from each u a constant in order that max X u = 0. So, we can assume that G is the set of such functions u. This is a bounded set in L 1 (X). All the functions d -n u • f n are equal almost everywhere to functions in G . The first assertion follows.

For the second assertion, by Lemma 10.3.0.8, d -n u n • f n is equal outside an analytic set to a modulo T wpsh function v n on X. Propositions 10.3.0.3 and 10.3.0.6 imply that u n ≤ A and |u n |dµ X ≤ A for some constant A > 0. It follows that v n ≤ d -n A, see also Proposition 10.3.0.2(b), and then lim sup v n ≤ 0. Hence, u ≤ 0. On the other hand, since X is invariant and T is totally invariant, we have (

f n ) * (µ X ) = µ X and (d -n u n • f n )dµ X = d -n u n d(f n ) * (µ X ) = d -n u n dµ X ≤ d -n A.
Hence, v n dµ X → 0. By Propositions 10.3.0.7 and 10.3.0.6, (v n ) is bounded from above. This allows us to apply the last assertion in Proposition 10.3.0.3. We deduce from Fatou's lemma and the convergence v n dµ X → 0, that udµ X ≥ 0. This and the inequality u ≤ 0 imply that u = 0 µ X -almost everywhere. By upper semi-continuity, u = 0 on supp(µ X ).

Remark 10.3.0.10. Assume that f is chaotic, i.e. the support of the Green measure µ of f is equal to P k . Then, the previous corollary gives us a simple proof of the following property: for all positive closed (1, 1)-currents S n of mass 1 on P k , we have d -n (f n ) * (S n ) → T . Indeed, we can write S n = T + dd c u n with u n bounded in L 1 (X), and hence d -n u n • f n converge to 0.

Lelong

In this section, we recall some properties of the Lelong numbers of currents and of plurisubharmonic functions, see [388] for a systematic exposition.

Let R be a positive closed (p, p)-current on an open set U of C k . Let z denote the coordinates in C k and B a (r) the ball of center a and of radius r. Then, R ∧ (dd c z 2 ) k-p is a positive measure on U . Define for a ∈ U ν(R, a, r)

:= R ∧ (dd c z 2 ) k-p Ba(r) π k-p r 2(k-p) .
When r decreases to 0, ν(R, a, r) is decreasing and the Lelong number of R at a is the limit ν(R, a) := lim r→0 ν(R, a, r).

The property that ν(R, a, r) is decreasing implies the following property that we will use later

: if R n → R and a n → a, then lim sup ν(R n , a n ) ≤ ν(R, a).
The Lelong number ν(R, a) is also the mass of the measure R ∧ (dd c log za ) k-p at a. It does not depend on the coordinates. So, we can define the Lelong number for currents on any manifold. If R is the current of integration on an analytic set V , by Thie's theorem, ν(R, a) is equal to the multiplicity of V at a. Recall also a theorem of Siu which says that for c > 0 the level set {ν(R, a) ≥ c} is an analytic subset of dimension ≤ k -p of U .

Let S be a current of bidegree ( 1 The function log r → sup Ba(r) v is increasing and convex with respect to log r. It follows that if v is defined on B a (1) and is negative, the fraction in (10.4.1) is decreasing when r decreases to 0. So, if two psh functions differ by a locally bounded function, they have the same Lelong number at every point. Moreover, identity (10.4.1) allows to define the Lelong number for every function which locally differs from a psh function by a bounded function. Let X be an analytic subset of pure dimension p in U and u a wpsh function on X. Then,

S X := dd c (u[X]) is a positive closed (k -p + 1, k -p + 1)-current on U . Define ν X (u, a) := ν(S X , a).
When X is smooth at a, we can also define a positive closed (1, 1)-current on a neighbourhood of a in X by S X := dd c u. We have ν X (u, a) = ν(S X , a) where the last Lelong number is defined on X. Consider a proper finite holomorphic map h : U → U between an open set U of C k and U . Let X be an analytic subset of pure dimension p of U such that h(X ) = X, and a ∈ U a point such that h(a ) = a. It follows from Proposition 10.2.0.2 that u • h is equal almost everywhere to a wpsh function u on X . The continuity of u with respect to u is proved as in Lemma 10.3.0.8. Proposition 10.4.0.1. Let δ denote the local topological degree of h at a . Then

δ -k ν X (u, a) ≤ ν X (u , a ) ≤ δν X (u, a).
Proof. Recall that X and X may be reducible and singular, but one can work on each irreducible component separately. We deduce from the identity h(X ) = X and from the definition of δ that near a :

dd c (u[X]) ≤ h * (dd c (u [X ])) ≤ δdd c (u[X]).
Hence,

ν(dd c (u[X]), a) ≤ ν(h * (dd c (u [X ])), a) ≤ δν(dd c (u[X]), a). (10.4.2)
On the other hand, by Theorems 9.9 and 9.12 in [388], we have

ν(dd c (u [X ]), a ) ≤ ν(h * (dd c (u [X ])), a) ≤ δ k ν(dd c (u [X ]), a ). (10.4.3)
The inequalities in the proposition follow from (10.4.2) and (10.4.3).

Let B X a (r) denote the connected component of B a (r) ∩ X which contains a. We call it the ball of center a and of radius r in X.

Proposition 10.4.0.2. Let G be a family of wpsh functions on X which is compact in L 1 loc (X). Let δ > 0 such that ν X (u, a) < δ for u ∈ G and a ∈ X. Then, for any compact set K ⊂ X, there exist constants c > 0 and A > 0 such that sup

B X a (r)
u ≥ cδ log r -A for u ∈ G , a ∈ K and 0 < r < 1.

Moreover, the constant c is independent of G and of δ.

Proof. Reducing U allows to assume that G is bounded in L 1 (X) and ν X (u, a) ≤ δ -, > 0, on X for every u ∈ G . Moreover, by Proposition 10.2.0.8, G is uniformly bounded from above. So, we can assume that u ≤ 0 for every u ∈ G . If 0 < r 0 < 1 is fixed and r 0 < r < 1, the fact that G is bounded in L 1 (X) implies that sup B X a (r) u ≥ -A for every a ∈ K where A > 0 is a constant. Hence, it is enough to consider r small.

We first consider the case where X is smooth. Since the problem is local we can assume that X is a ball in C p . Up to a dilation of coordinates, we can assume that the distance between K and ∂X is larger than 1. Define s(u, a, r) := sup Ba(r)∩X u log r .

Hence, for a ∈ K and for 0 < r < 1, s(u, a, r) decreases to ν(u, a) when r decreases to 0. For every (a, u) ∈ K × G , since ν(u, a) ≤ δ -, there is an r > 0 such that s(u, a, r ) ≤ δ -/2 for r ≤ 2r. It follows that if a psh function v on X is close enough to u then s(v, a, r) ≤ δ -/4, see Lemma 10.2.0.6. We then deduce from the definition of s(v, a, r) that if b is close enough to a and if r := r -|b -a| then

s(v, b, r) ≤ log r log r s(v, a, r ) ≤ log r log r s(v, a, r) ≤ δ.
The fact that s(v, b, r) is increasing implies that s(v, b, r ) ≤ δ for r ≤ r and for (b, v) in a neighbourhood of (a, u). Since K × G is compact, if r is small enough, the inequality s(u, a, r) ≤ δ holds for every (a, u) ∈ K × G . This implies the proposition for c = 1 in the case where X is smooth. Now consider the general case. Since the problem is local, we can assume that X is analytic in U = D 1 × D 2 where D 1 and D 2 are the unit balls in C p and C k-p respectively. We can also assume that the canonical projection π : Since

D 1 × D 2 → D 1 is proper on X.
dd c u = π * (dd c (u[X]
)) ≥ 0, u is equal almost everywhere to a psh function u . It is easy to check that the family G of these functions u is compact in

L 1 loc (D 1 ). Fix a ball D containing π(K) such that D ⊂ D 1 .
We need the following Lojasiewicz type inequality, see [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF]Proposition 4.11], which implies that z → π -1 (z) ∩ X is Hölder continuous of exponent 1/m with respect to the Hausdorff metric. The lemma is however more precise and is of independent interest. Lemma 10.4.0.3. There is a constant A > 0 such that for z ∈ D and x ∈ X with π(x) ∈ D, we have

dist(π -1 (z) ∩ X, x) ≤ A dist(z, π(x)) 1/m .
Moreover, if y and z are in D we can write π -1 (y) ∩ X = {y (1) , . . . , y (m) } and π -1 (z) ∩ X = {z (1) , . . . , z (m) } so that dist(y

(i) , z (i) ) ≤ A dist(y, z) 1/m for 1 ≤ i ≤ m.
Proof. We prove the first assertion. Let x j , p + 1 ≤ j ≤ k, denote the last k -p coordinates of x. Let z (1) , . . ., z (m) denote the points in π -1 (z) ∩ X and z their last k -p coordinates. Here, the points in π -1 (z) ∩ X are repeated according to their multiplicities. For w ∈ D 1 , define w (i) and w (i) j in the same way. We consider the Weierstrass polynomials on t ∈ C m i=1 (t -w

(i) j ) = t m + a j,m-1 (w)t m-1 + • • • + a j,0 (w) = P j (t, w).
The coefficients of these polynomials are holomorphic with respect to w ∈ D 1 . The analytic set defined by the polynomials P j contains X. In particular, we have P j (x j , π(x)) = 0. We consider the case where z = π(x), otherwise the lemma is clear. We will show the existence of a z (i) with good estimates on z (i) j -x j . Fix a constant c > 1 large enough. There is an integer 2 ≤ l ≤ 4m(k -p) + 2 such that P j (t, π(x)) has no root t with

(l -1)c m z -π(x) < |t -x j | ≤ (l + 1)c m z -π(x)
for every p + 1 ≤ j ≤ k. We call this the security ring. For θ ∈ R define

ξ j := lc m z -π(x) e iθ + x j and G j,c,θ (w) := c -m+1 m i=1 (ξ j -w (i) j ) = c -m+1 P j (ξ j , w).
Observe that G j,c,θ (w) are Lipschitz with respect to w in a neighbourhood of D uniformly with respect to (j, c, θ). Using the choice of l, we have

|G j,c,θ (π(x))| = c -m+1 |P j (ξ j , π(x))| ≥ c z -π(x) .
Hence, if c is large enough, since the G j,c,θ (w) are uniformly Lipschitz, they do not vanish on the ball D of center π(x) and of radius 2 z -π(x) . Note that here we only need to consider the case where z and π(x) are close enough, and we have D D 1 . We denote by Σ the boundary of the polydisc H of center (x p+1 , . . . , x k ) ∈ C k-p and of radius lc m z -π(x) : the P j (t, w) have no zero there when w ∈ D. Then, X does not intersect D × Σ. Since z ∈ D and x ∈ X, by continuity, there is a point z (i) satisfying |z

(i) j -x j | ≤ lc m z -π(x)
. This gives the first assertion of the lemma.

We now prove the second assertion. Fix a point x in π -1 (y) ∩ X and use the above construction. In the box D × H, X is a ramified covering over D of some degree s ≤ m. So we can write with an arbitrary order π -1 (y)∩X ∩ D ×H = {y (1) , . . . , y (s) } and π -1 (z)∩X ∩ D ×H = {z (1) , . . . , z (s) } with the desired estimates on |y (i) -z (i) |, since the diameter of D × H is controled by y -z 1/m . This gives a partial correspondence between π -1 (y) ∩ X and π -1 (z) ∩ X.

Choose another point x ∈ π -1 (y) ∩ X outside D × H and repeat the construction in order to obtain a box D × H . We only replace the constant c by 8[m(k -p) + 1]c. This garantees that either D × H and D × H are disjoint or D × H is contained in D × H because of the security rings. In the last situation, we remove the box D × H. Then, we repeat the construction for points outside the boxes obtained so far. After less than m steps, we obtain a finite family of boxes which induces a complete correspondence between π -1 (y) ∩ X and π -1 (z) ∩ X satisfying the lemma. Lemma 10.4.0.4. We have ν(u , x) < m p δ for every u ∈ G and x ∈ D 1 .

Proof. Consider the functions u ∈ G and u as above, see (10.4.4). Let y be a point in π -1 (x) ∩ X and V a neighbourhood of y such that π -1 (x) ∩ X ∩ V = {y}. We can choose V so that X ∩ V is a ramified covering over π(V ). Let l denote the degree of this covering. Consider the current R := dd c (u[X]) in V . In a neighbourhood of x, dd c u (which is equal to dd c u ) is the sum of the currents π * (R) for y varying in π -1 (x) ∩ X. Since ν(R, y) < δ and l ≤ m, it is enough to prove that ν(π * (R), x) ≤ l p-1 ν(R, y). Assume that y = 0 and x = 0 in order to simplify the notation. If z = (z , z ) = (z 1 , . . . , z p , z p+1 , . . . , z k ) denote the coordinates in C k = C p × C k-p , then the mass of π * (R) ∧ (dd c log z ) p-1 at x = 0 is equal to ν(π * (R), 0). It follows from the definition of π * that the mass of R ∧ (dd c log z ) p-1 at y = 0 is also equal to ν(π * (R), 0). Define v := max(log z , l log z -M ) with M > 0 large enough. Lemma 10.4.0. [388] implies that the mass of R ∧ (dd c v) p-1 at 0 is smaller than the mass of l p-1 R ∧ (dd c log z ) p-1 at 0 which is equal to l p-1 ν(R, 0). This completes the proof.

3 applied to X ∩ V implies that v = log z on X ∩ V . Hence, R ∧ (dd c log z ) p-1 = R ∧ (dd c v) p-1 . Since v ≥ l log z -M , M > 0, the comparison lemma in
End of the proof of Proposition 10.4.0.2. Now, we apply the case of smooth variety to G . If 0 < ρ < 1 then sup B u ≥ m p δ log ρ -const, where B is the ball of center π(a) and of radius ρ in C p . Let B be the connected component of X ∩ π -1 (B) which contains a. This is a ramified covering over B. Since u is negative, we have sup B u ≥ sup B u ≥ sup B u , see Proposition 10.2.0.4(b). Lemma 10.4.0.3 implies that B is contained in the union of the balls of center in π -1 (π(a)) ∩ X and of radius Aρ 1/m , A > 0. In this union, consider the connected component containing a. It has diameter ≤ 2mAρ 1/m . Hence, B is contained in the ball B X a (r) of center a and of radius r := 2mAρ 1/m in X. We have sup

B X a (r) u ≥ m p δ log ρ -const ≥ m p+1 δ log r -const for 0 < ρ < 1.
This gives the estimate in the proposition with c = m p+1 .

Consider the case where X is an analytic subset of pure dimension p of P k . The following proposition is a direct consequence of the last one.

Proposition 10.4.0.5. Let G ⊂ L 1 (X) be a compact family of modulo T wpsh functions on X. Let δ > 0 such that ν X (u, x) < δ for u ∈ G and x ∈ X. Then, there exist constants c > 0 and A > 0 such that sup

B X a (r) u ≥ cδ log r -A for u ∈ G , a ∈ X and 0 < r < 1.
Moreover, the constant c is independent of G and of δ.

The following result is a consequence of an inequality due to Demailly and Méo [388,[START_REF] Méo | Inégalités d'auto-intersection pour les courants positifs fermés définis dans les variétés projectives[END_REF]. It gives a bound for the volume of the set where the Lelong numbers are large.

Lemma 10.4.0.6. Let u be a modulo T wpsh function on an analytic set X of pure dimension p in P k . Let β ≥ 0 be a constant and q the dimension of {ν X (u, x) > β}. Consider a finite family of analytic sets Z r , 1 ≤ r ≤ s, of pure dimension q in X. Assume that ν X (u, x) ≥ ν r for x ∈ Z r where (ν r ) is a decreasing sequence such that ν r ≥ 2β. Assume also that deg Z r ≥ d r where the d r 's are positive and satisfy d r-1 ≤ 1 2 d r . Then

r d r ν p-q r ≤ 2 p-q+1 deg(X) p-q . Proof. Define R := dd c (u[X]) + T ∧ [X], then R is of bidimension (p -1, p -1). Recall that ν X (u, x) = ν(R, x).
The mass of R is equal to deg(X). Define Z 1 := Z 1 and for r ≥ 2, Z r the union of irreducible components of Z r which are not components of Z 1 ∪ . . . ∪ Z r-1 . So, Z i and Z r have no common component for i = r. Let d r denote the degree of Z r . We have

d 1 + • • • + d r ≥ d r for r ≥ 1.
We also have ν(R, x) ≥ ν r on Z r . The inequality of [START_REF] Méo | Inégalités d'auto-intersection pour les courants positifs fermés définis dans les variétés projectives[END_REF] implies that

r (deg Z r )(ν r -β) p-q ≤ R p-q = (deg X) p-q .
Hence, since β ≤ ν r /2, r d r ν p-q r ≤ 2 p-q (deg X) p-q .

On the other hand, using the properties of d r , d r , the fact that (ν r ) is decreasing and the Abel's transform, we obtain

r d r ν p-q r = d 1 (ν p-q 1 -ν p-q 2 ) + (d 1 + d 2 )(ν p-q 2 -ν p-q 3 ) + • • • + +(d 1 + • • • + d s-1 )(ν p-q s-1 -ν p-q s ) + (d 1 + • • • + d s )ν p-q s ≥ d 1 (ν p-q 1 -ν p-q 2 ) + • • • + d s-1 (ν p-q s-1 -ν p-q s ) + d s ν p-q s ≥ 1 2 d 1 ν p-q 1 + • • • + 1 2 d s ν p-q s .
This proves the lemma.

Contraction

In this section, we study the speed of contraction of f n . More precisely, we want to estimate the size of the largest ball contained in the image of a fixed ball by f n . Our main result is the following theorem where the balls in X are defined in Section 10.4.

Theorem 10.5.0.1. Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 of P k and X an analytic subset of pure dimension p, 1 ≤ p ≤ k, invariant by f , i.e. f (X) = X. There exists a constant c > 0 such that if B is a ball of radius r in X with 0 < r < 1, then for every n ≥ 0, f n (B) contains a ball in X of radius exp(-cr -2p d n ).

Corollary 10.5.0.2. Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 of P k . There exists a constant c > 0 such that if B is a ball of radius r in P k with 0 < r < 1, then f n (B) contains a ball of radius exp(-cr -2k d n ) for every n ≥ 0.

Let H be a hypersuface in P k which does not contain any irreducible component of X such that the restriction of f to X \ H is of maximal rank at every point. We choose H containing sing(X) ∪ f -1 (sing(X)). If δ is the degree of H, there is a negative function u on P k psh modulo T such that dd c u = δ -1 [H] -T . Lemma 10.5.0.3. There are positive constants c 1 and c 2 such that if B is a ball of center a and of radius 0 < r < 1 in X then f (B) contains the ball of center f (a) and of radius

c 1 r exp(c 2 u(a)) in X. Moreover, if u(a) = -∞ then the differential at f (a) of f -1 restricted to X satisfies Df -1 |X (f (a)) ≤ c -1 1 exp(-c 2 u(a)).
Proof. The constants c i that we use here are independent of a and r. We only have to consider the case where u(a) = -∞. Observe that when c 1 is small and c 2 is large enough, the ball of center f (a) and of radius c 1 r exp(c 2 u(a)) does not intersect sing(X). Let π : X → X ⊂ P k be a desingularization of X and Since T has continuous local potentials, so does π * (T ). The current π * [H] is supported in π -1 (H) and satisfies dd c u = δ -1 π * [H]π * (T ). Since u = -∞ exactly on π -1 (H) and since π * (T ) has continuous local potentials, the support of π * [H] is exactly π -1 (H). So, π * [H] is a combination with strictly positive coefficients of the currents of integration on irreducible components of π -1 (H). Observe that h is of maximal rank outside π -1 (H). It is enough to prove that h( B) contains the ball of center h( a) and of radius c 1 r exp(c 2 u( a)) in X.

A := π C 1 . If π( a) = a,
We can assume that r is small and work in the local setting. We use holomorphic coordinates x = (x 1 , . . . , x p ) of X and y = (y 1 , . . . , y k ) of P k in small neighbourhoods W and U of a and a respectively. Write h = (h 1 , . . . , h k ) and consider a holomorphic function ϕ on W such that ϕ -1 (0) = π -1 (H) ∩ W . Then, δ -1 π * [H] ≥ dd c log |ϕ| with > 0 small enough. We have dd c ( u-log |ϕ|) ≥ -T . It follows that u -log |ϕ| is a difference of a psh function and a potential of T . Since T has local continuous potentials, u -log |ϕ| is bounded from above. Up to multiplying ϕ by a constant, we can assume that log |ϕ| ≥ u.

If J ⊂ {1, . . . , k} is a multi-index of length p, denote by M J the matrix (∂h j /∂x i ) with 1 ≤ i ≤ p and j ∈ J. Since h is of maximal rank outside π -1 (H), the zero set of J | det M J | 2 is contained in {ϕ = 0}. The Lojasiewicz's inequality [START_REF] Tougeron | Idéaux de fonctions différentiables[END_REF] Proof of Theorem 10.5.0.1. By Corollary 10.3.0.9, the sequence of functions

implies that J | det M J | 2 ≥ c 3 |ϕ| c
(d -n u • f n ) is bounded in L 1 (X). Since d -n (u + u • f + • • • + u • f n-1 ) = n-1 i=0 d -(n-i) (d -i u • f i ), the L 1 (X)-norm of d -n (u + u • f + • • • + u • f n-1 ) is bounded by a constant c > 0 independent of n. If A > 0 is a constant large enough, the set of points x ∈ X satisfying u(x) + u • f (x) + • • • + u • f n-1 (x) ≤ -Ar -2p d n
has Lebesgue measure ≤ c A -1 r 2p . By a theorem of Lelong [START_REF] Lelong | Fonctions plurisousharmoniques et formes différentielles positives[END_REF]388], the volume of a ball of radius r/2 in X is ≥ c r 2p , c > 0. Therefore, since A is large, there is a point b ∈ X, depending on n, such that |b -a| ≤ r/2 and 

u(b) + u • f (b) + • • • + u • f n-1 (b) ≥ -Ar -2p d n . ( 10 
1 2 c n 1 r exp c 2 u(b) + • • • + c 2 u(f n-1 (b)) .
We obtain the result using (10.5.1) and the estimate 1 2 c n 1 r ≥ exp(-c 3 r -2p d n ) for 0 < r < 1, where c 3 > 0 is a constant. Remark 10.5.0.4. With the same argument we also get the following. Let B x denote the ball of center x and of radius 0 < r < 1 in X. Let r n (x) be the maximal radius of the ball centered at f n (x) and contained in f n (B x ). Then, there is a constant A > 0 such that log r n (x)

d n ≥ - A(n + 1) -log r d n + c 2 d n n-1 i=0 u • f i (x).
Consequently, there is a constant c > 0 such that

X log r n (x) d n ω p ≥ -c + log r d n deg X.
We can also replace ω p by any PB measure on X, i.e. a measure such that modulo T wpsh functions are integrable, see [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF].

In the following result, we use the Lebesgue measure vol X on X induced by the Fubini-Study form restricted to X.

Theorem 10.5.0.5. Let f and X be as in Theorem 10.5.0.1. Let Z be a Borel set in X and n ≥ 0. Then there is a Borel set

Z n ⊂ Z with vol X (Z n ) ≥ 1 2 vol X (Z) such that the restriction f n |X of f n to X defines a locally bi-Lipschitz map from Z n to f n (Z n ). Moreover, the differential of the inverse map f -n |X satisfies Df -n |X ≤ exp(cvol(Z) -1 d n ) on f n (Z n
) with a constant c > 0 independent of n and Z. In particular, we have vol X (f n (Z)) ≥ exp(-c vol X (Z) -1 d n ) for some constant c > 0 independent of n and Z.

Proof. As in (10.5.1), there is a subset

Z n of Z with vol X (Z n ) ≥ 1 2 vol X (Z) such that u(b) + u • f (b) + • • • + u • f n-1 (b) ≥ -Avol X (Z) -1 d n for b ∈ Z n ,
where A > 0 is a fixed constant large enough. In particular, we have u 

• f i (b) = -∞ for i ≤ n -1. It
(f n (Z)) ≥ vol X (f n (Z n )) d -kn vol X (Z) exp(-cvol X (Z) -1 d n ) 2p .
The last assertion in the theorem follows.

Remark 10.5.0.6. It is not difficult to extend Theorems 10.5.0.1 and 10.5.0.5 to the case of meromorphic maps or correspondences on compact Kähler manifolds. We can use the continuity of f * on the space DSH in order to estimate the L 1 -norm of u • f n for u ∈ DSH, see [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. The volume estimate in Theorem 10.5.0.5 for meromorphic maps on smooth manifolds was obtained in [START_REF] Guedj | Decay of volumes under iteration of meromorphic mappings[END_REF], see also [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF]395,[START_REF] Guedj | Equidistribution towards the Green current[END_REF] for earlier versions.

Let G be a compact family of modulo T wpsh functions on X. Let H n denote the family of T wpsh functions which are equal almost everywhere to

d -n u • f n , u ∈ G . Define ν n := sup{ν X (u, a), u ∈ H n , a ∈ X}.
We have the following result. and ν n := sup{ν X (u, a), u ∈ H n , a ∈ supp(µ)}.

Corollary 10.3.0.9 implies that lim ν n = 0. On the other hand, by hypothesis, ν 0 = 0. Since P k \ supp(µ) is totally invariant, Proposition 10.4.0.1, applied to X = P k , implies that ν n = 0 for every n. Hence, ν n = ν n and ν n → 0. We apply Proposition 10.5.0.7 in order to conclude. Note that the corollary still holds if we only assume that inf ν n = 0.

We prove as in Proposition 10.5.0.7 the following lemma.

Lemma 10.5.0.10. Let (u n i ) be a sequence of modulo T wpsh functions on X, bounded in L 1 (X). Assume that d -n i u n i • f n i converge to a modulo T wpsh function v. Assume also that for every δ > 0, there is a subsequence (u m i ) ⊂ (u n i ) converging to a modulo T wpsh function w with ν X (w, a) < δ at every point a ∈ X. Then, v = 0.

Proof. Corollary 10.3.0.9 implies that v ≤ 0. Assume that v = 0. Then, since v is upper semi-continuous, there is a constant α > 0 such that v < -2α on a ball of radius 0 < r < 1 on X. As in Proposition 10.5.0.7, for i large enough we have

u n i < -d n i α on a ball B n i of radius exp(-cr -2p d n i ) in X with c > 1.
Fix δ > 0 small enough, and (u m i ) and w as above. The property of w implies that if s is an integer large enough, we have ν X (u m i , a) < δ for every a ∈ X and for i ≥ s. By Proposition 10.4.0.5 applied to the compact family {u m i , i ≥ s} ∪ {w}, there is a constant c > 0 independent of δ, r and a constant A > 0 such that

-c δr -2p d m i -A ≤ sup Bm i u m i ≤ -d m i α for i ≥ s.
This is a contradiction for m i large enough, since δ is chosen small.

Exceptional sets

Let X be an analytic subset of pure dimension p in P k invariant by f , i.e. f (X) = X. Let g : X → X denote the restriction of f to X. We will follow the idea of [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF] in order to define and study the exceptional analytic subset E X of X which is totally invariant by g, see also [START_REF] Dinh | Distribution des préimages et des points périodiques d'une correspondance polynomiale[END_REF][START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF]. The following result can be deduced from Section 3.4 in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF].

Theorem 10.6.0.1. There is a (possibly empty) proper analytic subset E X of X which is totally invariant by g and is maximal in the following sense. If E is an analytic subset of dimension < p of X such that g -s (E) ⊂ E for some s ≥ 1, then E ⊂ E X . In particular, there is a maximal proper analytic subset E P k of P k which is totally invariant by f . We will need some precise properties of E X . So, for the reader's convenience, we recall here the construction of E X and the proof of the previous theorem since the emphasis in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF] is on polynomial-like maps. Observe that g permutes the irreducible components of X. Let m ≥ 1 be an integer such that g m fixes the components of X.

Lemma 10.6.0.2. The topological degree of g m is equal to d mp , that is, g m : X → X defines a ramified covering of degree d mp . In particular, for every x ∈ X, g -m (x) contains at most d mp points and there is a hypersurface Y of X containing sing(X) ∪ g m (sing(X)) such that for x ∈ X \ Y , g -m (x) contains exactly d mp points.

Proof. We can work with each component. So, we can assume that X is irreducible. It follows that g m defines a ramified covering. We want to prove that the degree δ of this covering is equal to d mp . Consider the positive measure (f m ) * (ω p ) ∧ [X]. Its mass is equal to d mp deg(X) since (f m ) * (ω p ) is cohomologous to d mp ω p . The operator (f m ) * preserves the mass of positive measures. We also have

(f m ) * [X] = δ[X]. Hence, d mp deg(X) = (f m ) * (ω p ) ∧ [X] = (f m ) * ((f m ) * (ω p ) ∧ [X]) = ω p ∧ (f m ) * [X] = δ ω p ∧ [X] = δ deg(X).
Therefore, δ = d mp . So, we can take for Y , a hypersurface containing the ramification values of f m and sing(X) ∪ g m (sing(X)).

Let Y be as above. Observe that if g m (x) ∈ Y then g m defines a biholomorphic map between a neighbourhood of x and a neighbourhood of g m (x) in X. Let [Y ] denote the (k -p + 1, k -p + 1)-current of integration on Y in P k . Since (f mn ) * [Y ] is a positive closed (k -p + 1, k -p + 1)-current of mass d mn(p-1) deg(Y ), we can define the following ramification current

R = n≥0 R n := n≥0 d -mnp (f mn ) * [Y ].
By a theorem of Siu [START_REF] Siu | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF]388], for c > 0, the level set E c := {ν(R, x) ≥ c} of the Lelong number is an analytic set of dimension ≤ p -1 contained in X. Observe that E 1 contains Y . We will see that R is the obstruction for the construction of "regular" orbits.

For any point x ∈ X let λ n (x) denote the number of distinct orbits

x -n , x -n+1 , . . . , x -1 , x 0 such that g m (x -i-1 ) = x -i , x 0 = x and x -i ∈ X \ Y for 0 ≤ i ≤ n -1.
These are the "good" orbits. Define λ n := d -mpn λ n . The function λ n is lower semicontinuous with respect to the Zariski topology on X. Moreover, by Lemma An analytic set, totally invariant by g n , is not necessarily totally invariant by g, but it is a union of components of such sets. We deduce from our construction that E P k depends algebraically on f . Corollary 10.6.0.5. There are only finitely many analytic subsets of X which are totally invariant by g. In particular, there is only a finite number of analytic subsets of P k which are totally invariant by f .

Proof. We only have to consider totally analytic sets E of pure dimension q. The proof is by induction on the dimension p of X. Assume that the corollary is true for X of dimension ≤ p -1 and consider the case of dimension p. If q = p then E is a union of components of X. There is only a finite number of such analytic sets. If q < p, by Theorem 14.1.0.1, E is contained in E X . Applying the hypothesis of induction to the restriction of f to E X gives the result.

We now give another characterization of E X . Recall that µ X := T p ∧[X]. This is a positive measure of mass s := deg X. The invariance of T implies that µ is totally invariant by g m , that is, (g m ) * (µ) = d pm µ. Since g m fixes the components of X, we can apply the to each component following result where the second assertion was proved by the authors in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF].

Theorem 10.6.0.6. Assume that X is irreducible. Let δ a denote the Dirac mass at a point a ∈ X. Then d -pmn (g mn ) * (δ a ) converge to s -1 µ X if and only if a is out of E X . In particular, if a is a point in P k then d -kn (f n ) * (δ a ) converge to µ if and only if a is out of E P k .

Since T has continuous local potentials, µ X has no mass on proper analytic subsets of X. It follows that if a ∈ E X , any limit value of d -pmn (g mn ) * (δ a ) has support in E X and is singular with respect to µ X . Consider a point a in X \ E X . We only have to check the convergence to s -1 µ X . Fornaess and the second author proved this convergence for X = P k and for a outside a pluripolar set [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF]. Briend and Duval extended this result to a outside the orbit of the critical set of f [START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF]. They also proposed a geometrical approach in order to prove this property for a outside an analytic set but there is a problem with the counting of multiplicity in their lemma in [383, p.149].

Briend-Duval result can be extended to our situation: for a outside the orbit of Y we have d -pmn (g mn ) * (δ a ) → s -1 µ X . We recall the following proposition, see [START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF] and also [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Distribution des préimages et des points périodiques d'une correspondance polynomiale[END_REF][START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF] for more general cases, in particular, for nonprojective manifolds.

Proposition 10.6.0.7. For any > 0, there is an integer n ≥ 0 such that if a is out of the analytic set Y := Y ∪ g m (Y ) ∪ . . . ∪ g mn (Y ), then any limit value ν of d -pmn (g mn ) * (δ a ) satisfies ν -s -1 µ X ≤ , where • denotes the mass of measure.

Observe that if n ≥ r ≥ 0 then

d -pmn (g mn ) * (δ a ) = d -pmr b∈g -mr (a) d -pm(n-r) (g m(n-r) ) * (δ b ),
where the points in g -mr (a) are counted with multiplicities. So, if a point a does not satisfies the conclusion of Proposition 10.6.0.7 then it admits many preimages in Y . We quantify now this property.

Let N n (a) denote the number of orbits of g m O = {a -n , . . . , a -1 , a 0 } with g m (a -i-1 ) = a -i and a 0 = a such that a -i ∈ Y for every i. Here, the orbits are counted with multiplicities. So, N n (a) is the number of negative orbits of order n of a which stay in Y . Observe that the sequence of functions τ n := d -pmn N n decreases to some function τ . Since τ n are upper semi-continuous with respect to the Zariski topology and 0 ≤ τ n ≤ 1, the function τ satisfies the same properties.

Observe that τ (a) is the probability that an infinite negative orbit of a stays in Y . The following proposition gives also a characterization of E X .

Proposition 10.6.0.8. The function τ is the characteristic function of E X , that is, τ = 1 on E X and τ = 0 on X \ E X .

Proof. Since E X ⊂ Y and E X is totally invariant by g, we have E X ⊂ {τ = 1}. Let θ ≥ 0 denote the maximal value of τ on X \ E X . This value exists since τ is upper semi-continuous with respect to the Zariski topology (indeed, it is enough to consider the algebraic subset {τ ≥ θ 0 } of X which decreases when θ 0 increases).

We have to check that θ = 0. Assume in order to obtain a contradiction that θ > 0. Since τ ≤ 1, we always have θ ≤ 1. Consider the non-empty analytic set

E := τ -1 (θ) \ E X in Y . Let a be a point in E. Since E X is totally invariant, we have g -m (a ) ∩ E X = ∅. Hence, τ (b ) ≤ θ for every b ∈ g -m (a)
. We deduce from the definition of τ and θ that

θ = τ (a ) ≤ d -pm b ∈g -m (a ) τ (b ) ≤ θ.
It follows that g -m (a ) ⊂ E. Therefore, the analytic subset E of Y satisfies g -m (E) ⊂ E. This contradicts the maximality of E X .

End of the proof of Theorem 10.6.0.6. Let a be a point outside E X . Fix > 0 and a constant α > 0 small enough. If ν is a limit value of d -pmn (g mn ) * (δ a ), it is enough to show that ν -s -1 µ X ≤ 2α + . Proposition 6.8 implies that τ (a) = 0. So for r large enough we have τ r (a) ≤ α. Consider all the negative orbits O j of order r j ≤ r

O j = {a (j) -r j , . . . , a (j) -1 , a (j) 0 } with g m (a (j) -i-1 ) = a (j) -i and a (j) 0 = a such that a (j) -r j ∈ Y and a (j) -i ∈ Y for i = r j .
Each orbit is repeated according to its multiplicity. Let S r denote the family of points b ∈ g -mr (a) such that g mi (b) ∈ Y for 0 ≤ i ≤ r. Then g -mr (a) \ S r consists of the preimages of the points a (j) -r j . So, by definition of τ r , we have

d -pmr #S r = τ r (a) ≤ α and d -pmr #(g -mr (a) \ S r ) = d -pmr j d pm(r-r j ) = 1 -τ r (a) ≥ 1 -α. We have for n ≥ r d -pmn (g mn ) * (δ a ) = d -pmn b∈Sr (g m(n-r) ) * (δ b ) + d -pmn j (g m(n-r j ) ) * (δ a (j) -r j ).
Since d -pmn (g mn ) * preserves the mass of any measure, the first term in the last sum is of mass d -pmr #S r = τ r (a) ≤ α and the second term is of mass ≥ 1 -α. We apply Proposition 10.6.0.7 to the Dirac masses at a (j) -r j . We deduce that if ν is a limit value of d -pmn (g mn ) * (δ a ) then

ν -s -1 µ X ≤ 2α + (1 -α) ≤ 2α + .
This completes the proof of the theorem.

Corollary 10.6.0.9. The cone of positive measures on X which are totally invariant by g m , is of finite dimension. In particular, the cone of positive measures on P k which are totally invariant by f , is of finite dimension.

Proof. Replacing f by an iterate allows to assume that g m fixes all the components of every analytic set which is totally invariant by g m . So, all these components are totally invariant. Let ν be an extremal probability measure totally invariant by g m . Let X be the smallest analytic set totally invariant by g m such that ν(X ) = 1. Since ν is extremal, X is irreducible and ν(E X ) = 0. It follows from Theorem 10.6.0.6 and the invariance of ν that ν is proportional to µ X . By Corollary 10.6.0.5, the family of such measures is finite.

The following lemma will be useful in the proof of our main results where n 0 is an index such that E n X = E X for n ≥ n 0 . Lemma 10.6.0.10. There is a constant θ > 0 such that if Z is an analytic subset of pure dimension q ≤ p -1 of X not contained in E X then for every n ≥ 0, g -mn (Z) contains an analytic set Z -n of pure dimension q of degree ≥ θd mn(p-q) . Moreover, if n ≥ n 0 and if x is a generic point in Z -n , then x ∈ reg(X), g m(n-n 0 ) (x) ∈ reg(X) and g m(n-n 0 ) defines a biholomorphism between a neighbourhood of x and a neighbourhood of g m(n-n 0 ) (x) in X.

Lemma 10.7.0.2. There are functions

v n ∈ G such that v n+1 = d -1 v n •f almost everywhere for n ∈ Z.
Proof. Assume that v 0 is the limit of a sequence (d

-n i u n i • f n i ). Then, for n ≥ 0 the sequence (d -n i -n u n i • f n i +n ) converges to d -n v 0 • f n . Lemma 10.3.0.8 implies that d -n v 0 • f n is equal almost everywhere to an element v n of G . If v -1 ∈ G is a limit value of (d -n i +1 u n i • f n i -1 ) then v 0 = d -1 v -1
• f almost everywhere. We construct the functions v -n in the same way by induction. If v -n is the limit of (d

-m i u m i • f m i ) then we obtain v -n-1 as a limit value of (d -m i +1 u m i • f m i -1 ).
Proof of Theorem 10.7.0.1. Let G denote the set of all the modulo T wpsh functions w on X which are limit values of the sequence (v -n ) n≥0 . Since G is compact, we have G ⊂ G . We have to show that v 0 = 0. Assume this is not the case. Since v 0 = d -n v -n • f n almost everywhere, by Lemma 10.5.0.10, there is a constant α 0 > 0 such that max X ν X (w, a) ≥ α 0 for every w ∈ G . Fix a function w 0 ∈ G .

Lemma 10.7.0.3. There are functions w n ∈ G such that w n+1 = d -1 w n • f almost everywhere for n ∈ Z.

Proof. Assume that w 0 is the limit of (v -n i ). Let w 1 and w -1 be modulo T wpsh functions which are limit values of (v -n i +1 ) and (v -n i -1 ) respectively. These functions belong to G . Then, w 0 = d -1 w -1 • f and w 1 = d -1 w 0 • f almost everywhere. We obtain the lemma by induction. If w n is the limit value of (v -m i ) then we obtain w n-1 or w n+1 as limit values of (v -m i -1 ) or (v -m i +1 ) respectively.

For α > 0 and 0 ≤ q ≤ p-1, denote by N α,q (resp. N α,>q ) the family of indices n ∈ N such that {ν X (w -n , a) ≥ α} is a non-empty analytic set of dimension q (resp. > q). From the definition of G , we have ∪ q N α 0 ,q = N. Hence, there is a maximal integer q such that the upper density Θ * (N α,q ) := lim sup n→∞ #N α,q ∩ {0, . . . , n -1} n is strictly positive for some constant α > 0. Fix a constant 0 < β α that we will choose later. The maximality of q implies that Θ * (N β,>q ) = 0. It follows that

δ := Θ * (N α,q \ N β,>q ) = Θ * (N α,q ) > 0.
Hence, for any integer l ≥ 1, there is an integer

n 1 ∈ N α,q \ N β,>q such that #(N α,q \ N β,>q ) ∩ {n 1 , . . . , n 1 + l} ≥ 1 2 δl.
Fix l large enough and choose β = 1 2 d -l-lk 2 α. Replacing w 0 by w -n 1 allows us to assume that n 1 = 0. This simplifies the notation. We are looking for a contradiction using Lemma 10.4.0.6 applied to u := w 0 . The hypothesis on the dimension of {ν(w 0 , a) > β} is satisfied since 0 ∈ N α,q \ N β,>q . Let n 0 be given in Theorem 14.1.0.1 and Lemma 10.6.0.10. Choose integers

n 0 < i 1 < • • • < i s ≤ l, with s ≥ 1 2 δl -n 0 -1, in N α,q \ N β,>q
. Let Z r be an irreducible analytic set of dimension q such that ν X (w -ir , x) ≥ α on Z r . We have seen that w -ir = 0 on E X , hence Z r ⊂ E X . By Lemma 10.6.0.10 (we assumed that m = 1), there are analytic sets Z r ⊂ g -ir (Z r ) of pure dimension q and of degree ≥ θd ir(p-q) =: d r such that if x is a generic point in Z r then x ∈ reg(X), x := g ir-n 0 (x) ∈ reg(X) and g ir-n 0 defines a biholomorphism between neighbourhoods of x and x . We now check the assumption of Lemma 10.4.0.6 that the Lelong number of w 0 is ≥ 2β on Z r .

Since w 0 = d -ir+n 0 w -ir+n 0 • g ir-n 0 , we deduce from the previous property of g ir-n 0 that ν X (w 0 , x) = d -ir+n 0 ν X (w -ir+n 0 , x ).

Define x := g ir (x) = g n 0 (x ). This is a point in Z r . The local topological degree of f n 0 at x is ≤ d n 0 k . Proposition 10.4.0.1 applied to h := f n 0 and the identity

w -ir+n 0 = d -n 0 w -ir • g n 0 imply that ν X (w -ir+n 0 , x ) ≥ d -n 0 -n 0 k 2 ν X (w -ir , x ) ≥ d -n 0 -n 0 k 2 α. It follows that ν X (w 0 , x) ≥ d -ir-n 0 k 2 α =: ν r ≥ 2β. Applying Lemma 10.4.0.6 yields θd -n 0 k 2 (p-q) α p-q s ≤ 2 p-q+1 deg(X) p-q .
This is a contradiction if l is large enough, since s ≥ 1 2 δl -n 0 -1. Proof of Theorem 10.1.0.3. It is enough to prove that for f generic in H d we have E P k = ∅. By Lemma 10.6.0.2 applied to X = E P k , it is enough to show that if f is generic, lim sup d -(k-1)n #f -n (x) = +∞ for every x ∈ P k . Here, we count points without multiplicity. Fix an m ≥ 1 such that d m > 2 k k!. We show for f generic that #f -m (x) > d m(k-1) for every x ∈ P k . This implies the result. Observe that the family of such f is a Zariski open set in H d . So, it is enough to construct an f satisfying this property.

Choose a rational map h :

P 1 → P 1 of degree d such that #h -m (x) ≥ 1 2 d m for every x ∈ P 1 .
To this end, it is enough to take a map h whose critical points are simple and have disjoint orbits. Now, construct the map f using an idea of Ueda [START_REF] Ueda | Fatou sets in complex dynamics on projective spaces[END_REF]. Let π : P 1 × • • • × P 1 → P k denote the canonical map which identifies all points (x 1 , . . . , x k ) with the points obtained by permutation of coordinates. If f is the endomorphism of P 1 × • • • × P 1 , k times, defined by f (x 1 , . . . , x k ) := (h(x 1 ), . . . , h(x k )), then there is a holomorphic map f : 1) . This completes the proof.

P k → P k of algebraic degree d such that f •π = π• f . We also have f m •π = π• f m . Consider a point x in P k and a point x in π -1 (x). We have π -1 (f -m (x)) = f -m (π -1 (x)). Hence, #π -1 (f -m (x)) ≥ # f -m ( x) ≥ 2 -k d mk . Since π has degree k!, we obtain #f -m (x) ≥ 1 2 k k! d mk > d m(k-
Remark 10.7.0.4. Let C denote the compact convex set of totally invariant (1, 1)-currents of mass 1 on P k . Define an operator ∨ on C . If S 1 , S 2 are elements of C , write S i = T +dd c u i with u i psh modulo T on P k such that u i ≤ 0 and u i = 0 on supp(µ), see Corollary 10.3.0.9. Define S 1 ∨ S 2 := T + dd c max(u 1 , u 2 ). It is easy to check that S 1 ∨ S 2 is an element of C . An element S is said to be minimal if S = S 1 ∨ S 2 implies S 1 = S 2 = S. It is clear that T is not minimal if C contains other currents. A current of integration on a totally invariant hypersurface is a minimal element.

Example 10.7.0.5. Let [z 0 : • • • : z k ] denote the homogeneous coordinates of P k and π : C k+1 \ {0} → P k the canonical projection. Consider the map f [z 0 : [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF], or equivalently T = ω + dd c v where

• • • : z k ] := [z d 0 : • • • : z d k ], d ≥ 2. The Green (1, 1)-current T of f is given by π * (T ) = dd c (max i log |z i |), see
v[z 0 : • • • : z k ] := max 0≤i≤k log |z i | - 1 2 log(|z 0 | 2 + • • • + |z k | 2 ).
The currents T i of integration on (z i = 0) belong to C and T j = T + dd c u j with u j := log |z j | -max i log |z i |. These currents are minimal. If α 0 , . . ., α k are positive real numbers such that α := 1 -α i is positive, then S := αT + α i T i is an element of C . We have S = T + dd c u with u := α i u i . The current S is minimal if and only if α = 0. One can obtain other elements of C using the operator ∨. One can also prove that C admits an infinite number of elements which are extremal in the cone of positive closed (1, 1)-currents. This implies that C has infinite dimension. The elements of the set E in this case are just the points [0 :

• • • : 0 : 1 : 0 : • • • : 0].

P-automorphisms

The approach that we used above can be extended to other situations. From now on we consider a polynomial automorphism f : C k → C k of degree ≥ 2 and its extension as a birational map on P k that we also denote by f . Let I + and I - denote the indeterminacy sets of f and f -1 respectively. These are the analytic sets where f and f -1 are not defined; they are contained in the hyperplane at infinity L := P k \ C k . Assume that f is regular, i.e. I + ∩ I -= ∅. We refer the reader to [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] for the basic properties of regular automorphisms. There is an integer 1 ≤ s ≤ k -1 such that I + and I -are irreducible analytic sets of dimension s -1 and k -s -1 respectively. We also have f In this chapter we prove exponential estimates for plurisubharmonic functions with respect to a class of probability measures which contains the measures of maximal entropy for many dynamical systems in several complex variables. This permits to prove the large deviations theorem for these dynamical systems and also sharp decay of correlation estimates. The results seem to be new even in dimension one. This type of exponential estimates should play a role in the study of stochastic properties of dynamical systems in the complex domain.

(L \ I + ) = f (I -) = I - and f -1 (L \ I -) = f -1 (I + ) = I + .
Let X be a complex manifold of dimension k and K a compact subset of X. Let µ be a positive measure on X. If ψ is a plurisubharmonic function and if µ is given by a differential form with coefficients in L p loc , p > 1, then e -αψ restricted to K is integrable with respect to µ for some constant α > 0. The case where X is an open set in C k and µ is the Lebesgue measure is a classical result, see Hörmander [START_REF] Hörmander | The analysis of Linear partial differential operators I[END_REF] and Skoda [START_REF] Skoda | Prolongement des courants positifs, fermés de masse finie[END_REF]. The general case is a direct consequence. These estimates are very useful in complex geometry, see e.g. Demailly's book [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF] and the references therein. They are also very useful in Kähler-Einstein geometry and have been developed by Tian-Yau [START_REF] Tian | On Kähler-Einstein metrics on certain Kähler manifolds with C 1 (M ) > 0[END_REF][START_REF] Tian | Kähler-Einstein metrics on complex surfaces with C 1 > 0[END_REF][START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF].

In this chapter, we consider a class of measures satisfying an analogous property. We first recall some notions, see [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF]. The measure µ is said to be locally moderate if for any open set U ⊂ X, any compact set K ⊂ U and any compact familly F of plurisubharmonic functions (p.s.h. for short) on U , there are constants α > 0 and c > 0 such that K e -αψ dµ ≤ c for ψ ∈ F . This inequality implies that F is bounded in L p loc (µ) for 1 ≤ p < ∞. In particular, µ has no mass on pluripolar sets. The existence of c and α is equivalent to the existence of c > 0 and α > 0 satisfying

µ{z ∈ K, ψ(z) < -M } ≤ c e -α M
for M ≥ 0 and ψ ∈ F . Note that the functions on F are uniformly bounded from above on K, see e.g. [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF]. Applying the above estimates to log z -a , we obtain that the µ-measure of a ball of center a ∈ K and of small radius r is bounded by r α for some α > 0. In the one variable case, this property is equivalent to the fact that µ is locally moderate.

Fix a hermitian form ω, i.e. a smooth strictly positive (1, 1)-form, on X. Let S be a positive closed current of bidegree (p, p) on X. Define the trace measure of S by σ S := S ∧ ω k-p . We say that S is locally moderate if its trace measure is locally moderate. So, if S is given by a continuous differential form then it is locally moderate. Observe that the notion of locally moderate current does not depend on the choice of ω.

Consider a continuous real-valued function u on the support supp(S) of S. The multiplication uS defines a current on X, so the current dd c (uS) is also well-defined. The function u is S-p.s.h. if dd c (uS) is a positive current. If R is a positive closed (1, 1)-current on X, we can locally write R = dd c u where u is a p.s.h. function. We call u a local potential of R. If R has local continuous potentials then the wedge-product R ∧ S is well-defined and is locally given by R ∧ S := dd c (uS). Indeed, it is enough to have that u is locally integrable with respect to the trace measure of S. The wedge-product is a positive closed (p + 1, p + 1)-current which does not depend on the choice of u. We refer the reader to [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF][START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF][START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF][START_REF] Berndtsson | The ∂-equation on a positive current[END_REF][START_REF]Pull-back of currents by holomorphic maps[END_REF] for the intersection theory of currents. Here is one of our main result.

Theorem 11.1.0.1. Let S be a locally moderate positive closed (p, p)-current on a complex manifold X. If u is a Hölder continuous S-p.s.h. function, then dd c (uS) is locally moderate. In particular, if R is a positive closed (1, 1)-current with Hölder continuous local potentials, then R ∧ S is locally moderate.

If u is a continuous p.s.h. function on X, the Monge-Ampère (p, p)-currents, 1 ≤ p ≤ k, associated to u is defined by induction (dd c u) p := dd c u ∧ . . . ∧ dd c u (p times).

These currents are very useful in complex analysis and geometry. We have the following corollary.

Corollary 11.1.0.2. Let u be a Hölder continuous p.s.h. function on X. Then the Monge-Ampère currents (dd c u) p are locally moderate.

We give now an application to dynamics. Consider a non-invertible holomorphic endomorphism f of the projective space P k . Let d ≥ 2 denote the algebraic degree of f . That is, f is induced by a homogeneous polynomial endomorphism of degree d on C k+1 . If V is a subvariety of pure codimension p on P k , then f -1 (V ) is a subvariety of pure codimension p and of degree (counted with multiplicity) d p deg(V ). More generally, if S is a positive closed (p, p)-current on P k then f * (S) is a well-defined positive closed (p, p)-current of mass d p S . Here, we consider the metric on P k induced by the Fubini-Study form ω FS that we normalize by

P k ω k FS = 1.
The mass of S is given by S := S, ω k-p FS . We refer the reader to [START_REF] Méo | Image inverse d'un courant positif fermé par une application analytique surjective[END_REF][START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF] for the definition of the pull-back operator f * on positive closed currents.

Recall some dynamical properties of f and its iterates

f n := f •• • ••f
, n times, see e.g. the survey article [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. One can associate to f some canonical invariant currents. Indeed, d -n (f n ) * (ω FS ) converge to a positive closed (1, 1)-current T of mass 1 on P k . The current T has locally Hölder continuous potentials. So, one can define T p := T ∧ . . . ∧ T , p times. The currents T p are the Green currents associated to f and µ := T k is the Green measure of f . They are totally invariant by f :

d -p f * (T p ) = d -k+p f * (T p ) = T p .
Corollary 11.1.0.3. Let f be a non-invertible holomorphic endomorphism of P k . Then the Green currents and the Green measure associated to f are locally moderate.

This property of the Green measure µ allows us to prove the central limit theorem and the large deviations theorem for a large class of observables. Recall that a quasi-p.s.h. function on P k is locally the difference of a p.s.h. function and a smooth function. A function is called d.s.h. if it is equal outside a pluripolar set to the difference of two quasi-p.s.h. functions. We identify two d.s.h. functions if they are equal out of a pluripolar set. Moreover, d.s.h. functions are integrable with respect to µ, see e.g. [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] and Section 11.3. Recall that µ has no mass on pluripolar sets.

Corollary 11.1.0.4. Let f be a non-invertible holomorphic endomorphism of P k . Let µ denote its Green measure. If a d.s.h. function ψ on P k satisfies µ, ψ = 0 and is not a coboundary, then it satisfies the central limit theorem with respect to µ.

The reader will find more details in Sections 11.3 and 11.4. Corollary 11.1.0.4 was known for ψ bounded d.s.h., and for ψ Hölder continuous, see [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF][START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF]. The result was recently extended by Dupont to unbounded functions ψ with analytic singularities such that e ψ is Hölder continuous [START_REF] Dupont | Bernoulli coding map and singular almost-sure invariance principle for endomorphisms of P k[END_REF]. He uses Ibragimov's approach and gives an application of the central limit theorem, see also [173]. Our result relies on the verification of Gordin's condition in Theorem 11.4.0.1. Some finer stochastic properties of µ (the almost-sure invariance principle, the Donsker and Strassen principles and the law of the iterated logarithm) can be deduced from the so-called Philipp-Stout's condition proved by Dupont [START_REF] Dupont | Bernoulli coding map and singular almost-sure invariance principle for endomorphisms of P k[END_REF] or Gordin's condition that we obtain here, see [START_REF] Hall | Martingale limit theory and its application, Probability and Mathematical Statistics[END_REF]. We refer to [START_REF] Denker | On the transfer operator for rational functions on the Riemann sphere[END_REF][START_REF] Haydn | Convergence of the transfer operator for rational maps[END_REF][START_REF] Makarov | On "thermodynamics" of rational maps. I. Negative spectrum[END_REF][START_REF] Dinh | Dynamics of horizontal-like maps in higher dimension[END_REF][START_REF] Przytycki | Statistical properties of topological Collet-Eckmann maps[END_REF][START_REF] Xia | Remarks on large deviation for rational maps on the Riemann sphere[END_REF] and the references therein for some results in the case of dimension 1. We will prove in Section 11.5 that bounded d.s.h. functions and Hölder continuous functions satisfy the large deviations theorem.

Note that Corollary 11.1.0.3 can be extended to several situations, in particular to Hénon maps, to regular polynomial automorphisms and also to automorphisms of compact Kähler manifolds [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. For a simple proof of the Hölder continuity of Green functions, see [START_REF]Pull-back of currents by holomorphic maps[END_REF]Lemma 5.4.2].

Locally moderate currents

In this section, we give the proof of Theorem 11.1.0.1. Assume that S is moderate and u is a Hölder continuous function on supp(S) with Hölder exponent 0 < ν ≤ 1.

The problem is local. So, we can assume that U = X is the ball B 2 of center 0 and of radius 2 in C k , K is the closed ball B 1/2 of radius 1/2 and ω is the canonical Kähler form dd c z 2 . Here, z = (z 1 , . . . , z k ) is a coordinate system of C k . We replace S by S ∧ ω k-p-1 in order to assume that S is of bidegree (k -1, k -1). We have the following lemma. Lemma 11.2.0.1. Let G be a compact family of p.s.h. functions on B 2 . Then G is bounded in L 1 loc (σ S ). Moreover, the mass of the measure dd c ϕ ∧ S is locally bounded on B 2 , uniformly on ϕ ∈ G .

Proof. Observe that on any compact set H of B 2 , the functions of G are bounded from above by the same constant. Subtracting from these functions a constant allows to assume that they are negative on H. We deduce from the fact that S is locally moderate that H ϕdσ S is bounded uniformly on ϕ ∈ G . Indeed, there is a constant c H > 0 such that | H ϕdσ S | ≤ c H ϕ L 1 (B 2 ) for negative p.s.h. functions ϕ on B 2 . This proves the first assertion.

For the second assertion, consider a compact set H ⊂ B 2 . Let 0 ≤ χ ≤ 1 be a cut-off function, smooth, supported on a compact set L ⊂ B 2 and equal to 1 on H. The mass of dd c ϕ ∧ S is bounded by the following integral

χdd c (ϕS) = dd c χ ∧ ϕS ≤ χ C 2 L |ϕ|dσ S .
We have seen that the last term is bounded uniformly on ϕ.

We will use the following classical lemma. Lemma 11.2.0.2. Let u be a ν-Hölder continuous function on a closed subset F of B 2 . Then u can be extended to a ν-Hölder continuous function on B 1 .

Proof. We can assume that |u| ≤ 1. Define for

x ∈ B 1 u(x) := min{u(y) + A x -y ν , y ∈ F ∩ B 1 } where A > 0 is a constant large enough so that |u(a) -u(b)| ≤ A a -b ν on F ∩ B 1 . It follows that u(x) = u(x) for x ∈ F ∩ B 1 .
We only have to check that u is ν-Hölder continuous.

to assume that ϕ ≤ 0 on B 1 . Define ϕ M := max(ϕ, -M ) and ψ M := ϕ M -1 -ϕ M for ϕ ∈ F and M ≥ 0. Let G denote the family of all these functions ϕ M . This family is compact in L 1 loc . Lemma 11.2.0.1 implies that in B 1 the masses of dd c ϕ M and of dd c ϕ M ∧ S are locally bounded independently of ϕ ∈ F and of M . The function ψ M is positive, bounded by 1, supported in {ϕ < -M + 1}, and equal to 1 on {ϕ < -M }. The mass of dd c (uS) on {ϕ < -M } is bounded by

χψ M dd c (uS)
with χ as in Lemma 11.2.0.3 above. We will show that this integral is e -ανM/3 for some α > 0. This implies the result.

Since S is locally moderate, we have the following estimate for some α > 0

σ S z ∈ B 1-r , ϕ(z) < -M + 1 e -αM .
Lemma 11.2.0.3 implies that

B 1 χψ M dd c (uS) = - B 1-r \B 1-3r dd c χ ∧ ψ M uS - B 1-r \B 1-3r dχ ∧ ψ M d c u ∧ S + B 1-r \B 1-3r d c χ ∧ ψ M du ∧ S + B 1-r χudd c ψ M ∧ S.
The first three integrals on the right hand side are e -αM . This is a consequence of the above estimate on σ S and the smoothness of u on B 1 \ B 1-4r . It remains to estimate the last integral.

We use now the ν-Hölder continuity of u. Define := e -αM/3 . This is a small constant since we only have to consider M big. Write u = u + (u -u ) where u is defined on B 1-r and is obtained from u by convolution with a smooth approximation of identity. The convolution can be chosen so that

u C 2 -2 and u -u ∞ ν = e -ανM/3 . Moreover, the C 2 -norm of u on B 1-r \ B 1-3r is bounded independently of since u = log z on B 1 \ B 1-4r . We have χudd c ψ M ∧ S = χdd c ψ M ∧ Su + χdd c ψ M ∧ S(u -u ) = χdd c ψ M ∧ Su + χ(dd c ϕ M -1 -dd c ϕ M ) ∧ S(u -u ).
By Lemma 11.2.0.1, the last integral is u -u ∞ e -ανM/3 . Using an expansion as above, we obtain

χdd c ψ M ∧ Su = B 1-r \B 1-3r dd c χ ∧ ψ M Su + B 1-r \B 1-3r dχ ∧ ψ M S ∧ d c u - B 1-r \B 1-3r d c χ ∧ ψ M S ∧ du + χψ M S ∧ dd c u .
As above, the first three integrals on the right hand side are e -αM because u has bounded C 2 -norm on B 1-r \ B 1-3r . Consider the last integral. Since ψ M is supported in {ϕ ≤ -M + 1}, the estimate on σ S implies that the considered integral is e -αM u C 2 e -αM -2 = e -ανM/3 . We deduce from all the previous estimates that χudd c ψ M ∧ S e -ανM/3 . This completes the proof.

Remark 11.2.0.4. On a compact Kähler manifold X, one can introduce the notion of (globally) moderate current. For this purpose, in the definition, one replaces local p.s.h. functions by (global) quasi-p.s.h. functions. In the case where X = P k , the first and third authors introduced in [START_REF]Pull-back of currents by holomorphic maps[END_REF] a notion of super-potential for positive closed (p, p)-currents. One can prove that currents with Hölder continuous super-potentials are moderate and the intersection of currents with Hölder continuous super-potentials admits Hölder continuous super-potentials. If a (p, p)-current admits a Hölder continuous potential, it has a Hölder continuous super-potential and then is moderate.

Decay of correlations

Let µ be the Green measure of an endomorphism f of algebraic degree d ≥ 2 of P k . In this section, we will prove that µ is mixing and exponentially mixing in different senses. If φ is a d.s.h. function on P k we can write dd c φ = R + -R - where R ± are positive closed (1, 1)-currents. The d.s.h. norm of φ is defined by

φ DSH := φ L 1 (P k ) + inf R ±
with R ± as above. Note that R + and R -have the same mass since they are cohomologous, and that

• DSH • C 2 .
The following result was proved in [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF][START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for p = +∞. Theorem 11.3.0.1. Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 and µ its Green measure. Then for every

1 < p ≤ +∞ there is a constant c > 0 such that | µ, (ϕ • f n )ψ -µ, ϕ µ, ψ | ≤ cd -n ϕ L p (µ) ψ DSH for n ≥ 0, ϕ in L p (µ) and ψ d.s.h. Moreover, for 0 ≤ ν ≤ 2 there is a constant c > 0 such that | µ, (ϕ • f n )ψ -µ, ϕ µ, ψ | ≤ cd -nν/2 ϕ L p (µ) ψ C ν for n ≥ 0, ϕ in L p (µ) and ψ of class C ν .
The expression µ, (ϕ • f n )ψ -µ, ϕ µ, ψ is called the correlation of order n between the observables ϕ and ψ. The measure µ is said to be mixing if this correlation converges to 0 as n tends to infinity, for smooth observables (or equivalently, for continuous, bounded or L 2 (µ) observables).

Observe that the second assertion in Theorem 11.3.0.1 is a consequence of the first one. Indeed, on one hand, since ψ DSH ψ C 2 , we obtain the second assertion for ν = 2. On the other hand, we have since µ is invariant

| µ, (ϕ • f n )ψ -µ, ϕ µ, ψ | ≤ 2 ϕ L 1 (µ) ψ C 0 ϕ L p (µ) ψ C 0 .
So, the second assertion holds for ν = 0. The theory of interpolation between the Banach spaces C 0 and C 2 [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF] implies that

| µ, (ϕ • f n )ψ -µ, ϕ µ, ψ | d -nν/2 ϕ L p (µ) ψ C ν .
We prove now the first assertion in Theorem 11.3.0.1. Since µ is invariant, the assertion is clear when ψ is constant. Indeed, in this case, the correlations vanish. So, subtracting from ψ a constant allows to assume that µ, ψ = 0. We have to bound | µ, (ϕ • f n )ψ |. Consider the following weak topology on the space DSH(P k ) of d.s.h. functions. We say that the sequence (φ n ) converges to φ in DSH(P k ) if φ n → φ in the sense of currents and if φ n DSH is bounded uniformly on n. Recall here some basic properties of d.s.h. functions, see [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF].

Proposition 11.3.0.2. Let φ be a d.s.h. function. There is a constant c > 0 independent of φ and two negative quasi-p.s.h. functions φ ± such that φ = φ +φ -, φ ± DSH ≤ c φ DSH and dd c φ ± ≥ -c φ DSH ω FS . Moreover, |φ| is d.s.h. and

|φ| DSH ≤ c φ DSH . If φ n → φ in DSH(P k ) then φ n → φ in L p for 1 ≤ p < +∞.
Since µ is locally a Monge-Ampère measure with continuous potential, ψ → µ, ψ is continuous with respect to the considered topology on DSH(P k ). We say that µ is PC. This allows to prove that the DSH-norm of φ is equivalent to the following norm

φ DSH := | µ, φ | + inf R ±
where we write as above dd c φ = R + -R -, see [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. In particular, log |h| is d.s.h. for any rational function h on P k , and similarly for the potential u of any positive closed (1, 1)-current R, i.e a quasi-p.s.h. function u such that dd c u = R -cω for some constant c. Consider the codimension 1 subspace DSH 0 (P k ) of DSH(P k ) defined by µ, φ = 0. On this subspace, one has φ DSH = inf R ± . Recall that µ is totally invariant :

f * µ = d k µ. Then, the space DSH 0 (P k ) is invariant under f * . Recall that f * φ is defined by f * φ(x) := y∈f -1 (x) φ(y)
where the points in f -1 (x) are counted with multiplicities (there are exactly d k points). The mass of a positive closed current on P k can be computed cohomologically. We have

f * R ± = d k-1 R ± and hence f * φ DSH ≤ d k-1 φ DSH on DSH 0 (P k ).
Define also the Perron-Frobenius operator by

Λφ := d -k f * φ.
Since µ is totally invariant, this is the adjoint operator of f * on L 2 (µ). Observe that Λφ DSH ≤ d -1 φ DSH on DSH 0 (P k ). So, Λ has a spectral gap on DSH(P k ): the constant functions correspond to the eigenvalue 1 and the spectral radius on DSH 0 (P k ) is bounded by d -1 < 1.

Proposition 11.3.0.3. There are constants c > 0 and α > 0 such that for ψ ∈ DSH 0 (P k ) with ψ DSH ≤ 1 and for every n ≥ 0 we have µ, e αd n |Λ n ψ| ≤ c.

In particular, there is a constant c > 0 independent of ψ ∈ DSH 0 (P k ) such that

Λ n ψ L q (µ) ≤ cqd -n ψ DSH
for every n ≥ 0 and every 1 ≤ q < +∞. Since e x ≥ x q /q! for x ≥ 0 and 1 ≤ q < +∞, we deduce, using the inequality q! ≤ q q , that d n Λ n ψ L q (µ) ≤ cq for some constant c > 0 independent of ψ, n and q.

End of the proof of Theorem 11.3.0.1. Let 1 < q < +∞ such that p -1 + q -1 = 1. Using a simple coordinate change, Proposition 11.3.0.3 and the Hölder inequality, we obtain that

| µ, (ϕ • f n )ψ | = d -kn | (f n ) * µ, (ϕ • f n )ψ | = | µ, ϕ Λ n ψ | ϕ L p (µ) Λ n ψ L q (µ) d -n ϕ L p (µ) ψ DSH .
This completes the proof.

It is shown in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF] that µ is mixing of any order and is K-mixing. More precisely, we have for every ψ in L 2 (µ)

lim n→∞ sup ϕ L 2 (µ) =1 | µ, (ϕ • f n )ψ -µ, ϕ µ, ψ | = 0.
The reader can deduce the K-mixing from Theorem 11.3.0.1 and the fact that Λ has norm 1 when it acts on L 2 (µ).

The following result gives the exponential mixing of any order. It can be extended to Hölder continuous observables using the interpolation theory.

Theorem 11.3.0.4. Let f , d and µ be as in Theorem 11.3.0.1 and r ≥ 1 an integer. Then there is a constant c > 0 such that

µ, ψ 0 (ψ 1 • f n 1 ) . . . (ψ r • f nr ) - r i=0 µ, ψ i ≤ cd -n r i=0 ψ i DSH for 0 = n 0 ≤ n 1 ≤ • • • ≤ n r , n := min 0≤i<r (n i+1 -n i ) and ψ i d.s.h.
Proof. The proof is by induction on r. The case r = 1 is a consequence of Theorem 11.3.0.1. Suppose the result is true for r -1. We have to check it for r. Without loss of generality, assume that ψ i DSH ≤ 1. This implies that m := µ, ψ 0 is bounded. The invariance of µ and the hypothesis of induction imply that

µ, m(ψ 1 • f n 1 ) . . . (ψ r • f nr ) - r i=0 µ, ψ i = µ, mψ 1 (ψ 2 • f n 2 -n 1 ) . . . (ψ r • f nr-n 1 ) -m r i=1 µ, ψ i ≤ cd -n
for some constant c > 0. In order to get the desired estimate, it is enough to show that µ,

(ψ 0 -m)(ψ 1 • f n 1 ) . . . (ψ r • f nr ) ≤ cd -n .
Observe that the operator (f n ) * acts on L p (µ) for p ≥ 1 and its norm is bounded by 1. Using the invariance of µ and the Hölder inequality, we get for p :

= r + 1 µ, (ψ 0 -m)(ψ 1 • f n 1 ) . . . (ψ r • f nr ) ≤ µ, Λ n 1 (ψ 0 -m)ψ 1 . . . (ψ r • f nr-n 1 ) ≤ Λ n 1 (ψ 0 -m) L p (µ) ψ 1 L p (µ) . . . ψ r • f nr-n 1 L p (µ) ≤ cd -n 1 ψ 1 L p (µ) . . . ψ r L p (µ) ,
for some constant c > 0. Since ψ i L p (µ) ψ i DSH , the previous estimates imply the result. Note that as in Theorem 11.3.0.1, it is enough to assume that ψ i is d.s.h. for i ≤ r -1 and ψ r is in L p (µ) for some p > 1.

We obtain from Proposition 11.3.0.3 the following result. Proposition 11.3.0.5. Let 0 < ν ≤ 2 be a constant. There are constants c > 0 and α > 0 such that if ψ is a ν-Hölder continuous function with ψ C ν ≤ 1 and µ, ψ = 0, then µ, e αd nν/2 |Λ n ψ| ≤ c for every n ≥ 0.

Moreover, there is a constant c > 0 independent of ψ such that

Λ n ψ L q (µ) ≤ cq ν/2 d -nν/2
for every n ≥ 0 and every 1 ≤ q < +∞.

Proof. We only consider the spaces of functions ψ such that µ, ψ = 0. By Proposition 11.3.0.3, since

• DSH • C 2 , we have Λ n ψ L q (µ) ≤ cqd -n ψ C 2 ,
with c > 0 independent of q and of ψ. On the other hand, by definition of Λ, we have

Λ n ψ L q (µ) ≤ Λ n ψ L ∞ (µ) ≤ ψ C 0 .
The theory of interpolation between the Banach spaces C 0 and C 2 [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF] (applied to the linear operator ψ → Λ n ψ -µ, ψ ) implies that

Λ n ψ L q (µ) ≤ A ν [cqd -n ] ν/2 ψ C ν ,
for some constant A ν > 0 depending only on ν and on P k . This gives the second assertion in the proposition.

For the first assertion, assume that ψ C ν ≤ 1. Fix a constant α > 0 small enough. We have µ, e αd nν/2 |Λ n ψ| = q≥0 1 q! µ, |αd nν/2 Λ n ψ| q ≤ q≥0 1 q! α q c q q q . By Stirling's formula, the last sum converges. This implies the result.

Central limit theorem

In this section, we give the proof of Corollary 11.1.0.4. We first recall some facts [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF][START_REF] Walters | An introduction to ergodic theory[END_REF]. Let (M, F , m) be a probability space and g : M → M a measurable map which preserves m, i.e. m is g * -invariant : g * m = m. The measure m is ergodic if for any measurable set A such that g -1 (A) = A we have m(A) = 0 or m(A) = 1. This is equivalent to the property that m is extremal in the convex set of invariant probability measures (if m is mixing then it is ergodic). When m is ergodic, Birkhoff's theorem implies that if ψ is an observable in L 1 (m) then

lim n→∞ 1 n ψ(x) + ψ(g(x)) + • • • + ψ(g n-1 (x)) = m, ψ
for m-almost every x. Assume now that m, ψ = 0. Then, the previous limit is equal to 0. The central limit theorem (CLT for short), when it holds, gives the speed of this convergence. We say that ψ satisfies the CLT if there is a constant σ > 0 such that 1

√ n ψ(x) + ψ(g(x)) + • • • + ψ(g n-1 (x))
converges in distribution to the Gaussian random variable N (0, σ) of mean 0 and of variance σ. Recall that ψ is a coboundary if there is a function ψ in L 2 (µ) such that ψ = ψ -ψ • g. In this case, one easily checks that

lim n→∞ 1 √ n ψ(x) + ψ(g(x)) + • • • + ψ(g n-1 (x)) = lim n→∞ 1 √ n ψ (x) -ψ (g n (x)) = 0
in distribution. So, ψ does not satisfies the CLT (sometimes, one says that it satisfies the CLT for σ = 0). The CLT can be deduced from some strong mixing, see [START_REF] Bonatti | Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective[END_REF][START_REF] Gordin | The Central Limit Theorem for stationary processes[END_REF][START_REF] Liverani | Central limit theorem for deterministic systems[END_REF][START_REF] Viana | Stochastic dynamics of deterministic systems[END_REF]. In the following result, Et(ψ|F n ) denotes the expectation of ψ with respect to F n , that is, ψ → Et(ψ|F n ) is the orthogonal projection from L 2 (m) onto the subspace generated by F n -measurable functions.

Theorem 11.4.0.1 (Gordin). Consider the decreasing sequence F n := g -n (F ), n ≥ 0, of algebras. Let ψ be a real-valued function in L 2 (m) such that m, ψ = 0. Assume that

n≥0 Et(ψ|F n ) L 2 (m) < ∞.
Then the positive number σ defined by

σ 2 := m, ψ 2 + 2 n≥1 m, ψ(ψ • g n )
is finite. It vanishes if and only if ψ is a coboundary. Moreover, when σ = 0, then ψ satisfies the CLT with variance σ.

Note that σ is equal to the limit of

n -1/2 ψ + • • • + ψ • g n-1 L 2 (m) . The last expression is equal to ψ L 2 (m) if the family (ψ • g n ) n≥0 is orthogonal in L 2 (m).
We now prove Corollary 11.1.0.4. Since µ is mixing, it is ergodic. So, we can apply Gordin's theorem to the map f on (P k , B, µ) where B is the canonical Borel algebra.

Lemma 11.4.0.2. Let B n := f -n (B) for n ≥ 0. Then for φ ∈ L 2 (µ) we have Et(φ|B n ) = (Λ n φ) • f n and Et(φ|B n ) L 2 (µ) = Λ n φ L 2 (µ) .
Theorem 11.3.0.1 implies the result. Note that this theorem also implies that the series in the definition for σ 2 and for γ are convergent. Moreover, the previous computation gives that σ 2 is the limit of n

-1 ψ + • • • + ψ • f n-1 2 L 2 (µ)
which is a positive number.

Large deviations theorem

In this section, we prove the large deviations theorem (LDT for short) for the equilibrium measure of holomorphic endomorphisms of P k . We have the following result which holds in particular for C 2 observables.

Theorem 11.5.0.1. Let f be a holomorphic endomorphism of P k of algebraic degree d ≥ 2. Then the equilibrium measure µ of f satisfies the large deviations theorem (LDT) for bounded d.s.h. observables. More precisely, if ψ is a bounded d.s.h. function then for every > 0 there is a constant h > 0 such that

µ z ∈ P k : 1 n n-1 j=0 ψ • f j (z) -µ, ψ > ≤ e -n(log n) -2 h
for all n large enough1 .

We start with the following Bennett's type inequality, see [

.

Lemma 11.5.0.2. Let (M, F , m) be a probability space and G a σ-subalgebra of F . Assume that there is a constant 0 < ν < 1 and an element A ∈ F such that m(A ∩ B) = νm(B) for every B ∈ G . Define s -:= max 1, ν -1 (1 -ν) and s + := max 1, ν(1 -ν) -1 . Let ψ be a real-valued function on M such that ψ L ∞ (m) ≤ b and Et(ψ|G

) = 0. Then Et(e λψ |G ) ≤ νe -s -λb + (1 -ν)e s + λb
for every λ ≥ 0.

Proof. Fix a strictly positive constant λ. Let ψ 0 be the function which is equal to t -:= -s -λb on A and to t + := s + λb on M \ A. We have ψ 2 0 ≥ (λb) 2 ≥ (λψ) 2 . We deduce from the hypothesis on A and the relation -νs

-+ (1 -ν)s + = 0 that Et(ψ 0 |G ) = 0. Let g(t) = a 0 t 2 + a 1 t + a 2 , be the unique quadratic function such that h(t) := g(t) -e t satisfies h(t + ) = 0 and h(t -) = h (t -) = 0. We have g(ψ 0 ) = e ψ 0 .
Since h (t) = 2a 0 -e t admits at most one zero, h admits at most two zeros. The fact that h(t -) = h(t + ) = 0 implies that h vanishes in ]t -, t + [. Hence h admits exactly one zero at t -and another in ]t -, t + [. We deduce that h admits a zero. This implies that a 0 > 0. Moreover, h vanishes only at t -, t + and h (t + ) = 0. It follows that h(t) ≥ 0 on [t -, t + ] because h is negative near +∞. Thus, e t ≤ g(t) on [t -, t + ] and then Et(e λψ |G ) ≤ Et(g(λψ)|G ).

Since a 0 > 0, if an observable φ satisfies Et(φ|G ) = 0, then Et(g(φ)|G ) is an increasing function of Et(φ 2 |G ). Now, using the properties of ψ and ψ 0 , we obtain

Et(e λψ |G ) ≤ Et(g(λψ)|G ) ≤ Et(g(ψ 0 )|G ) = Et(e ψ 0 |G ) ≤ νe -s -λb + (1 -ν)e s + λb ,
which completes the proof.

We continue the proof of Theorem 11.5.0.1. Without loss of generality we may assume that µ, ψ = 0, |ψ| ≤ 1 and ψ DSH ≤ 1. The general idea is to write ψ = ψ + (ψ -ψ • f ) for functions ψ and ψ in DSH 0 (P k ) such that

Et(ψ • f n |B n+1 ) = 0, n ≥ 0
where B n := f -n (B) as above with B the canonical Borel algebra of P k . In the language of probability theory, these identities mean that (ψ •f n ) n≥0 is a reversed martingale difference as in Gordin's approach, see also [START_REF] Viana | Stochastic dynamics of deterministic systems[END_REF]. The strategy is to prove the LDT for ψ and for the coboundary ψ -ψ • f . Theorem 11.5.0.1 is in fact a consequence of Lemmas 11.5.0.4 and 11.5.0.8 below. Define

ψ := - ∞ n=1 Λ n ψ, ψ := ψ -(ψ -ψ • f ).
Using the estimate Λφ DSH ≤ d -1 φ DSH on DSH 0 (P k ), we see that ψ and ψ are in DSH 0 (P k ) with norms bounded by some constant. In particular, they belong to L 2 (µ). However, we loose the boundedness: these functions are not necessarily in L ∞ (µ).

Lemma 11.5.0.3. We have Λ n ψ = 0 for n ≥ 1 and Et(ψ

• f n |B m ) = 0 for m > n ≥ 0.
Proof. We deduce from the definition of ψ that

Λψ = Λψ -Λψ + Λ(ψ • f ) = Λψ -Λψ + ψ = 0. It follows that Λ n ψ = 0 for n ≥ 1. For every function φ in L 2 (µ), since µ is invariant, we have µ, (ψ • f n )(φ • f m ) = µ, ψ (φ • f m-n ) = µ, (Λ m-n ψ )φ = 0,
which completes the proof.

Lemma 11.5.0.6. There is a Borel set A such that µ(A ∩ B) = (1 -d -1 )µ(B) for every B in B 1 .

Proof. Recall that f defines a ramified covering of degree d k . Since µ has no mass on analytic sets, it does not charge the critical values of f . So, there is a Borel set Z of total µ measure such that f -1 (Z) is the union of

d k disjoint Borel sets Z i , 1 ≤ i ≤ d k . Moreover, one can choose Z i so that f : Z i → Z is bijective. Since µ is totally invariant, we have µ(Z i ) = d -k for every i. Define A := ∪ i>d k-1 Z i . Since B is an element of B 1 , we have B = f -1 (B ) with B := f (B). We also have µ(Z i ∩ f -1 (B )) = d -k µ(B ) = d -k µ(B). Therefore, µ(A ∩ B) = i>d k-1 µ(Z i ∩ f -1 (B )) = i>d k-1 d -k µ(B) = (1 -d -1 )µ(B).
This gives the lemma. where c > 0 and α > 0 are constants independent of b.

Proof. For n = 1, define W := {|ψ | > b}, W := f (W ) and W 1 := f -1 (W ).
Since µ is totally invariant and f has topological degree d k , we have µ(f (W )) ≤ d k µ(W ). This and Lemma 11.5.0.5 imply that

µ(W 1 ) = µ(W ) ≤ d k µ(W ) ≤ ce -αδ b
for some constant c > 0. We also have

P k \W 1 e λSt 1 ψ dµ = P k \W 1 e λψ dµ ≤ e λb ≤ d (d -1)e -λb + e λb d .
So, the lemma holds for n = 1. Suppose the lemma for n ≥ 1, we need to prove it for n + 1. Define

W n+1 := f -1 (W n ) ∪ W 1 = f -1 (W n ∪ W ). We have µ(W n+1 ) ≤ µ(f -1 (W n )) + µ(W 1 ) = µ(W n ) + µ(W 1 ) ≤ c(n + 1)e -αδ b .
We will apply Lemma 11.5.0.2 to M : 

= P k , F := B, G := B 1 = f -1 (B), m := µ, ν := 1 -d -1 (see Lemma 11

It follows that

Et(e λψ |B 1 ) ≤ (d -1)e -λb + e (d-1)λb d on P k \ W 1 for λ ≥ 0. Now, using the fact that W n+1 and e λStn(ψ •f ) are B 1 -measurable, we can write

P k \W n+1 e λSt n+1 ψ dµ = P k \W n+1
e λψ e λStn(ψ •f ) dµ

= P k \W n+1
Et(e λψ |B 1 )e λStn(ψ •f ) dµ.

Since

W n+1 = f -1 (W n ) ∪ W 1 , the last integral is bounded by sup P k \W 1
Et(e λψ |B 1 )

P k \f -1 (Wn) e λStn(ψ •f ) dµ ≤ (d -1)e -λb + e (d-1)λb d P k \Wn e λStnψ dµ ≤ d (d -1)e -λb + e (d-1)λb d n+1 ,
where the last inequality follows from the hypothesis of induction for n. So, the lemma holds for n + 1.

The following lemma, together with Lemma 11.5.0.4, implies Theorem 11.5.0.1.

Lemma 11.5.0.8. The function ψ satisfies the LDT.

Proof. Fix an > 0. By Lemma 11.5.0.7, we have, for every λ ≥ 0

µ |St n ψ | ≥ n ≤ µ(W n ) + e -λn P k \Wn e λStnψ dµ ≤ cne -αδ b + de -λn (d -1)e -λb + e (d-1)λb d n .
Take b := log n(log δ) -1 and λ := u b -2 with a fixed u > 0 small enough. We have cne -αδ b = cne -αn ≤ e -αn/2

for n large. Since u is small, λb is small. It follows that

(d -1)e -λb + e (d-1)λb d ≤ (d -1)(1 -λb + λ 2 b 2 ) + (1 + (d -1)λb + (d -1) 2 λ 2 b 2 ) d ≤ 1 + d 2 λ 2 b 2 ≤ e d 2 λ 2 b 2 = e d 2 u 2 2 b -2 . Therefore de -λn (d -1)e -λb + e (d-1)λb d n ≤ de -nu 2 b -2 (1-d 2 u) = de -n(log n) -2 h
for some constant h > 0. We deduce from the previous estimates that

µ |St n ψ | ≥ n ≤ e -n(log n) -2 h
for some constant h > 0 and for n large. So, ψ satisfies the LDT. Now, using Proposition 11.3.0.5 we can prove the LDT for Hölder continuous observables.

Theorem 11.5.0.9. Let f be a holomorphic endomorphism of P k of algebraic degree d ≥ 2. Then the equilibrium measure µ of f satisfies the large deviations theorem for Hölder continuous observables. More precisely, if ψ is a Hölder continuous function then for every > 0 there is a constant h > 0 such that

µ z ∈ P k : 1 n n-1 j=0 ψ • f j (z) -µ, ψ > ≤ e -n(log n) -2 h
for all n large enough.

The proof follows along the same lines of Theorem 11.5.0.1. Fix a ν-Hölder continuous function ψ with 0 < ν ≤ 2 and a constant 1 < δ < d ν/10 . We define as above the function ψ , ψ and ϕ := n≥0 δ 5n |Λ n ψ|. We only have to check that µ, e αϕ ≤ c for some constants α > 0 and c > 0. In fact, this implies the inequality µ, e α|ψ | ≤ c and the crucial estimate in Lemma 11.5.0.5. We deduce the estimate µ, e αϕ ≤ c from Proposition 11.3.0.5 and the following lemma for θ := δ 5 d -ν/2 and η n := αd nν/2 |Λ n ψ|. Lemma 11.5.0.10. Let η n be positive measurable functions and 0 < θ < 1 be a constant. Assume there is a constant c > 0 such that µ, e ηn ≤ c for every

n ≥ 0. If ξ := (1 -θ) n≥0 θ n η n , then e ξ is µ-integrable. Proof. Define ξ m := (1 -θ) n≥m θ n-m η n . We have ξ 0 = ξ and ξ m = (1 -θ)η m + θξ m+1 .
The Hölder inequality implies that µ, e ξm = µ, e (1-θ)ηm e θξ m+1 ≤ µ, e ηm 1-θ µ, e ξ m+1 θ ≤ c 1-θ µ, e ξ m+1 θ .

By induction, this implies that

µ, e ξ 0 ≤ c (1-θ)(1+θ+θ 2 +••• ) ,
which implies the result.

Proof. We decompose the measure m using the fibers of f . For m-almost every x ∈ M , there is a positive measure m x on M

x := f -1 (x) such that if ϕ is a function in L 1 (m) then m, ϕ = M m x , ϕ dm(x).
Since m is invariant by f , we have

m, ϕ = m, ϕ • f = M m x , ϕ • f dm(x) = M m x ϕ(x)dm(x).
Therefore, m x is a probability measure for m-almost every x. Using also the invariance of m, we obtain for ϕ and φ in L 2 (m) that

m, ϕ(φ • f ) = M m x , ϕ(φ • f ) dm(x) = M m x , ϕ φ(x)dm(x) = M m f (x) , ϕ φ(f (x))dm(x).

We deduce that

Et(ϕ|F 1 )(x) = m f (x) , ϕ .

By hypothesis, we have m x , ψ = 0 for m-almost every x. It suffices to check that m x , e λψ ≤ e -λb + e λb 2 Consider first the particular case where there is an element A ⊂ F such that A ⊂ M x and m x (A) = 1/2. Applying Lemma 11.5.0.2 to M x := f -1 (x), m x , A, ν := 1/2 and for G := {∅, M x } the trivial σ-algebra of M x , yields the result. The general case is deduced from the previous particular case. Indeed, it is enough to apply this case to the disjoint union of (M, F , m) with a copy (M , F , m ) of this space, i.e. to the space (M ∪ M , F ∪ F , m 2 + m 2 ) and to the function equal to ψ on M and on M .

Chapter 12 CLT and correlations

Let f be a dominating meromorphic self-map of large topological degree on a compact Kähler manifold. We recall a recent new construction of the equilibrium measure µ of f and prove that µ is exponentially mixing. Then, we deduce the central limit theorem for Lipschitzian observables.

Introduction

Let (X, ω) be a compact Kähler manifold of dimension k. The Kähler form ω is normalized by ω k = 1. Consider a dominating meromorphic self-map f on X, i.e. a map whose image contains a Zariski open set. We assume that the topological degree d t of f is strictly larger than the dynamical degree d k-1 of order k -1. For such a map, one knows that d -n t f n * (ω k ) converges to an invariant measure µ. The measure µ is the unique measure of maximal entropy and does not charge pluripolar sets. Two different constructions of µ are given in [START_REF] Guedj | Equidistribution towards the Green current[END_REF][START_REF] Dinh | Dynamique des applications semi-régulières[END_REF]. See also [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF][START_REF] Russakovskii | Value distribution for sequences of rational mappings and complex dynamics[END_REF][START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF] for the case of projective spaces, [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF] for polynomial-like maps and [START_REF] Gromov | On the entropy of holomorphic maps[END_REF][START_REF] Yomdin | Volume growth and entropy[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for the bounds of the entropy.

The dd c -method that we used in different situations [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Dynamique des applications semi-régulières[END_REF][START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF][START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF] leads us to precise controls of the convergence. For the maps that we consider, it allowed to prove that µ is exponentially mixing for q.p.s.h. observables; in particular, for C 2 observables. We then deduce the central limit theorem (CLT for short) via a classical result of Gordin-Liverani. See [START_REF] Fornaess | Complex dynamics in higher dimensions[END_REF] for holomorphic endomorphisms of P k , [START_REF] Denker | On the transfer operator for rational functions on the Riemann sphere[END_REF][START_REF] Haydn | Convergence of the transfer operator for rational maps[END_REF] and the references therein for the case of dimension 1.

In this chapter, we develop another method (d-method) which gives a new construction of the measure µ and allows to prove analogous statistical results for Lipschitzian observables. We obtain in particular the following result.

The measure µ is exponentially mixing in the following sense: for every > 0, there exists a constant A > 0 such that

| µ, (ψ • f n )ϕ -µ, ψ µ, ϕ | ≤ A ψ ∞ ϕ L ip(d k-1 + ) n/2 d -n/2 t
for all n ≥ 0, every function ψ ∈ L ∞ (µ) and every Lipschitzian function ϕ. In particular, if a real-valued Lipschitzian function ϕ is not a coboundary and verifies µ, ϕ = 0 then it satisfies the CLT theorem. This result is in fact valid for a larger space of test functions (Theorem 6.1 and Corollary 6.2). We recall in section 12.2 the Gordin-Liverani theorem, in section 12.3 some properties of the Sobolev space W 1,2 . The space of test functions W 1,2 * and a subspace W 1,2 * * are introduced in section 12.4. This is the key point of the method. The new space W 1,2 * seems to be useful for complex dynamics in several variables. In complex dimension 1 it coincides with the space W 1,2 . In higher dimension it takes into account, the fact that not all currents of bidegree (1, 1) are closed. It enjoys the composition properties under meromorphic maps, useful for a space of observables. In section 12.5, we give the new construction of µ and in section 12.6 its statistical properties. Note that the geometric decay of correlations for Hénon maps was recently proved in [START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF] using the dd c -method.

Notations. We will use different subspaces of L 1 (X). Most of them carry a canonical (quasi)-norm. For the space C 0 (X) of continuous functions we use the sup-norm, and for the space Lip(X) of Lipschitzian functions the norm .

L 1 + . L ip where ϕ L ip := sup x =y |f (x) -f (y)| dist(x, y) -1 .
We use the norm . E + . F for the intersection E ∩ F of E and F and write L p instead of L p (X) when there is no confusion. The Lp norm of a form is the sum of Lp norms of its coefficients for a fixed atlas of X. The topology, that we consider, is a weak topology. That is, ϕ n → ϕ in E if ϕ n → ϕ in the sense of distributions and ( ϕ n E ) is bounded. The continuity of linear operators Λ : E → F is with respect to these topologies of E and F . The inclusion map E ⊂ L 1 (X) is always bounded for the associated (quasi)-norms and continuous in our sense.

Gordin-Liverani

Let (X, µ) be a probability space. Let f : X → X be a measurable map in the sense that f (A) and f -1 (A) are measurable for every measurable set A.

Assume that µ is invariant (f * (µ) = µ) and ergodic. The classical Birkhoff ergodic theorem says that if ϕ is in L 1 (µ) then 1 n n-1 i=0 ϕ • f i converges almost everywhere to µ, ϕ . In particular, when ϕ is a function in L 1 (µ) such that µ, ϕ = 0, then 1 n n-1 i=0 ϕ • f i converges
almost everywhere to 0. Assume that µ, ϕ = 0. Recall that ϕ is a coboundary if there exists a measurable function ψ such that ϕ = ψ • f -ψ. It is easy to check for a coboundary ϕ that 1 √ n n-1 i=0 ϕ • f i converges to 0 almost surely. We say that a real-valued function ϕ ∈ L 1 (µ) satisfies the central limit theorem if 1 √ n n-1 i=0 ϕ•f i converges in law to a Gaussian random variable of zero mean and variance σ > 0.

That is, for every interval I ⊂ R,

lim n→∞ µ 1 √ n n-1 i=0 ϕ • f i ∈ I = 1 √ 2πσ I exp - x 2 2σ 2 dx.
Such a function is not a coboundary.

Observe that f * acts on L 2 (µ) and preserves the L 2 norm. Hence, we can consider the adjoint Λ of f * , sometimes called the Perron-Frobenius operator. Consider now a real-valued function ϕ ∈ L ∞ (µ) such that µ, ϕ = 0 which is not a coboundary. The theorem of Gordin-Liverani [START_REF] Gordin | The Central Limit Theorem for stationary processes[END_REF], [181, pp.59, 67] 

implies that if n≥0 Λ n ϕ L 1 (µ) < +∞ (12.2.1)
then ϕ satisfies the CLT with

σ 2 = -µ, ϕ 2 + 2 ∞ n=0 µ, ϕ(ϕ • f n ) .

Sobolev space

In this section we recall some properties of the Sobolev space W 1,2 that will be used later on, see [149, pp. 23-27]. Consider a compact Riemannian manifold X of dimension m ≥ 2. The Sobolev space W 1,2 is the space of real-valued functions ϕ in L 2 (X) such that dϕ, which is defined in the sense of currents, has L 2 coefficients.

Let L denote the Lebesgue measure on X that we normalize by L = 1. Define for each L 1 function ϕ its mean value m(ϕ) := ϕdL. We have the following Poincaré-Sobolev inequality: for every real number p, 1 ≤ p ≤ 2m/(m -2), there exists a constant c > 0 such that

X |ϕ -m(ϕ)| p dL 1/p ≤ c dϕ L 2
for every ϕ ∈ W 1,2 . In particular, this holds for p = 1 or 2. One deduces that

ϕ L p ≤ |m(ϕ)| + c dϕ L 2 ≤ ϕ L 1 + c dϕ L 2 .
(12.3.1)

Hence, W 1,2 ⊂ L p . The associated inclusion map is bounded.

We will prove the following proposition for the reader's convenience, see also [START_REF] David | Singular sets of minimizers for the Mumford-Shah functional[END_REF][START_REF] Harvey | Extending analytic objects[END_REF].

Proposition 12.3.0.1. Let I ⊂ X be a compact set whose Hausdorff (m -1)dimensional measure H m-1 (I) is zero. Let ϕ be a real-valued function in L 1 loc (X \ I). Assume that the coefficients of dϕ are in L 2 (X \ I). Then ϕ belongs to W 1,2 . Moreover, there exist a compact set M ⊂ X \ I and a constant c > 0, both independent of ϕ, such that

ϕ L 1 (X) ≤ c ϕ L 1 (M ) + dϕ L 1 (X) .
Proof. First, assume that ϕ ∈ L 1 (X). Then dϕ defines a flat current of degree 1 on X [START_REF] Federer | Geometric Measure Theory[END_REF]. Since dϕ has coefficients in L 2 (X \I), dϕ |X\I defines also a flat current on X. It follows that dϕ-dϕ |X\I is a flat current of dimension m-1 with support in I. Since H m-1 (I) = 0, by the support theorem [324, 4.1.20], this current vanishes. Hence, dϕ = dϕ X\I . Using a regularization and the Poincaré-Sobolev inequality, we can approach ϕ in L 1 (X) by a bounded sequence (ϕ n ) ⊂ W 1,2 . It follows that ϕ ∈ W 1,2 . Now, it is sufficient to prove the estimate in the proposition. Consider a chart D of X that we identify to ] -2, 2[×B 2 where B r is the ball of center 0 and of radius r in R m-1 . Consider also the local coordinates x = (x 1 , x ) with x ∈] -2, 2[ and x ∈ B 2 . We can assume that The Fubini theorem implies that the L 1 norm of χϕ on ] -2, 2[×B 1 is bounded by 4 times the L 1 norm of d(χϕ) on ] -2, 2[×B 1 \ I.

I ∩ D ⊂ {|x 1 | < 1} since H m-1 (I) = 0.

Test functions

Let (X, ω) be a compact Kähler manifold of dimension k and L := ω k . We assume that L = 1. The space of test functions that we consider is a subspace W 1,2 * of the Sobolev space W 1,2 of X. A real-valued function ϕ ∈ W 1,2 is in W 1,2 * if there exists a closed current Θ of bidegree (1, 1) on X such that i∂ϕ ∧ ∂ϕ ≤ Θ. The current Θ is necessarily positive since i∂ϕ ∧ ∂ϕ is positive. We identify two fonctions in W 1,2 * if they are equal out of a subset of L measure zero. For ϕ ∈ W 1,2 * define ϕ * := |m(ϕ)| + inf{ Θ 1/2 , Θ as above}.

Observe that . * is a quasi-norm. Indeed, the Cauchy-Schwarz inequality implies that i(∂ϕ + ∂ψ) ∧ (∂ϕ + ∂ψ) ≤ 2i∂ϕ ∧ ∂ϕ + 2i∂ψ ∧ ∂ψ, 

hence ϕ + ψ * ≤ √ 2( ϕ * + ψ * ). A subset of W 1,2 * is bounded if . * is bounded on this set. We have W 1,2 * ⊂ W 1,2 ⊂ L
:= χ L ip. Then, |χ • ϕ| ≤ a + b|ϕ|. It follows that χ • ϕ is in L 2 . We also have i∂(χ • ϕ) ∧ ∂(χ • ϕ) = i(χ • ϕ) 2 ∂ϕ ∧ ∂ϕ ≤ ib 2 ∂ϕ ∧ ∂ϕ ≤ b 2 Θ
where Θ is the positive closed current associated to ϕ. Hence χ • ϕ ∈ W 1,2 * . We can apply this for the functions χ(x) = max(x, 0), max(-x, 0) or |x| and for a = 0, b = 1. We obtain that ϕ + , ϕ -, |ϕ| belong to W 1,2 * . The estimates on their norms follow the above inequalities and the Poincaré-Sobolev inequality [START_REF] Ahlfors | Riemann Surfaces[END_REF]. For max(ϕ 1 , ϕ 2 ), it is sufficient to write max(ϕ 1 , ϕ 2 ) = max(ϕ 1 -ϕ 2 , 0) + ϕ 2 .

Recall that an L 1 function ϕ : X → R ∪ {-∞} is quasi-plurisubharmonic (q.p.s.h. for short) if it is upper semi-continuous and verifies dd c ϕ ≥ -cω in the sense of currents for some constant c > 0. Note that a q.p.s.h. function is defined at every point of X. Such a function belongs to Lp for every real number p ≥ 1, see [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF][START_REF] Lelong | Fonctions plurisousharmoniques et formes différentielles positives[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. A subset Y of X is called pluripolar if it is contained in the pole set {ϕ = -∞} of a q.p.s.h. function ϕ.

Let DSH denote the space generated by q.p.s.h. functions. That is, d.s.h. functions can be written, outside a plupripolar set, as ϕ = ϕ 1 -ϕ 2 with ϕ i q.p.s.h. We identify two d. Observe that since T + and T -are cohomologous, they have the same mass. Recall that the mass of a positive (p, p)-current S is given by S = S, ω k-p . Lemma 12.4.0.2. We have Lip(X) ⊂ W 1,2 * and DSH ∩ L ∞ ⊂ W 1,2 * . Moreover, the corresponding inclusion maps are bounded and continuous.

Proof. The inclusion Lip(X) ⊂ W 1,2 * and the properties of the associated map are clear. Recall that we use the norm . L 1 + . L ip for Lip(X).

Let ϕ ∈ DSH ∩ L ∞ and T ± as above. We have

2i∂ϕ ∧ ∂ϕ = i∂∂ϕ 2 -2ϕi∂∂ϕ ≤ i∂∂ϕ 2 + 2 ϕ ∞ (T + + T -).
The right hand side is a closed current cohomologous to 4 ϕ ∞ T + . Its mass is equal to 4 ϕ ∞ T + . Hence ϕ ∈ W 1,2 * . We also deduce that

ϕ * ≤ ϕ ∞ + 2 ϕ ∞ ϕ DSH .
It follows that the inclusion map DSH ∩ L ∞ ⊂ W 1,2 * is bounded. The continuity follows.

Let ν be a positive measure on X. We say that ν is WPC if its restriction to smooth real-valued functions can be extended to a linear form on W 1,2 * which is bounded and continuous with respect to the weak topology we consider. Let ν, ϕ * denote the value of this linear form on ϕ ∈ W 1,2 * . We have ν, ϕ * = ν, ϕ for ϕ smooth.

If a continuous function ϕ can be uniformly approximated by a bounded sequence in W 1,2 * of smooth functions, then ν, ϕ * = ν, ϕ . If ν is given by a (k, k)-form with coefficient in L 2 then ν is WPC because W 1,2 * ⊂ L 2 and we can take ν, ϕ * = ν, ϕ .

In general, we don't know if smooth functions are dense in W 1,2 * nor in W 1,2 * ∩ C 0 (X). Hence, we don't know if the extension of µ is unique and a priori we don't have ν, ϕ * = ν, ϕ on W 1,2 * ∩ C 0 (X). The method, used in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] to regularize currents, might give the solution to this question.

The proof of the following proposition is left to the reader. One may apply the classical method of regularization using the diffeomorphisms of X or the holomorphic automorphisms when X is homogeneous. Proposition 12.4.0.3. Smooth functions are dense in Lip(X) for the strong topology. In particular, we have ν, ϕ * = ν, ϕ for ν WPC and ϕ Lipschitzian. When k = 1 or X is homogeneous, smooth functions are dense in W 1,2 * and every function in W 1,2 * ∩ C 0 (X) can be uniformly approximated by a bounded sequence in W 1,2 * of smooth functions. In these cases, ν, ϕ * = ν, ϕ holds for ν WPC and ϕ in W 1,2 * ∩ C 0 (X).

Lemma 12.4.0.4. Let ν be a WPC measure and ϕ be a bounded q.p.s.h. function. Then ν, ϕ * = ν, ϕ .

Proof. We can assume that ϕ is strictly negative. By Demailly's regularization theorem [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF], there exist negative smooth functions ϕ n decreasing to ϕ such that i∂∂ϕ n ≥ -cω where c > 0 is independent of n. It follows that ϕ n → ϕ in DSH ∩ L ∞ (X) for the weak topology that we consider. which are continuous outside a compact set of W-capacity zero. We associate to this space the quasi-norm

. * and the corresponding topology (see Introduction). We have the following proposition.

Proposition 12.4.0.7. If Y is a pluripolar subset of X, then W cap(Y ) = 0. In particular, countable unions of proper analytic subsets of X have W-capacity zero.

Proof. Let ψ be a q.p.s.h. function such that ψ < -4, i∂∂ψ ≥ -ω and ψ = -∞ on Y . Let χ be an increasing convex function on R ∪ {-∞} such that χ = -3 on [-∞, -4], χ(x) = x on [-2, +∞[ and 0 ≤ χ ≤ 1 on [-4, -2]. Define χ n (x) := χ(x + n) -n and ψ n := χ n • ψ. The functions ψ n satisfy ψ n ≤ -3 and decrease to ψ. We have The above proof shows that if ψ is a strictly negative q.p.s.h. function, then the function ϕ := -log(-ψ) is in W 1,2 * . The function ϕ satisfies ν, ϕ * = ν, ϕ and could be unbounded.

i∂∂ψ n = (χ n • ψ)i∂ψ ∧ ∂ψ + (χ n • ψ)i∂∂ψ ≥ (χ n • ψ)i∂∂ψ ≥ -ω.

Equilibrium measure

Let (X, ω) be a compact Kähler manifold of dimension k as in Section 12.4. Consider a dominating meromorphic self-map f on X. Let I n be the indeterminacy set of f n . Define

d p,n := X\In f n * (ω p ) ∧ ω k-p .
In [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF], we proved that the limit d p := lim(d p,n ) 1/n always exists. It is called the dynamical degree of order p of f and is a bimeromorphic invariant. The last degree d t := d k is the topological degree of f . Define

δ n := d k-1,n . For example, if f is a meromorphic map in P 2 , δ n is just the algebraic degree of f n . If f is holomorphic in P k of algebraic degree d, then δ n = d (k-1)n , d k-1 = d k-1 and d t = d k .
Let M be the family of positive measures on X which does not charge proper analytic sets. If ν is such a measure, f n * (ν) is well defined and f n * (ν) = d n t ν since f n is locally biholomorphic outside an analytic set and a generic fiber of f n contains exactly d n t points.

Let M (α), α > 0, denote the set of probability measures ν ∈ M such that | ν, ϕ | ≤ α ϕ * for every ϕ ∈ W 1,2 * ∩ L ∞ (X) which is continuous out of an analytic set. By Poincaré-Sobolev inequality (2), we have ϕ

L 2 ≤ c ϕ * , c > 0. Hence, if ν L 2 ≤ αc -1 then ν ∈ M (α).
The main result of this section is the following theorem.

Theorem 12.5.0.1. Let X and f be as above. Assume that d t > d k-1 . Let ν n be a probability measure in M (α n ). If lim α 2 n δ n d -n t = 0 then d -n t f n * (ν n ) converge weakly to a measure µ. Moreover, µ does not depend on (ν n ) and µ is WPC.

Of course, we have µ = lim d -n t f n * (ω k ). This is the equilibrium measure of f . Theorem 12.5.0.1 and Proposition 12.4.0.7 show that µ does not charge pluripolar sets. The previous relation implies that f * (µ) = d t µ and f * (µ) = µ.

Consider a Zariski open set Ω n of X such that f is locally biholomorphic and proper on f -1 (Ω n ). Let Θ be a positive closed current of bidegree (p, p) on X. Then we can define Θ n := (f n ) * (Θ) on Ω n . If this current has finite mass, its trivial extension is a positive closed current that we denote by (f n ) (Θ). The following lemma shows that this is the case, see also [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. The choice of Ω n is not important. Lemma 12.5.0.2. There exists a constant c > 0 which depends only on (X, ω) such that Θ n ≤ cd k-p,n Θ .

Proof. We can assume that Θ = 1. The following constants c and c depend only on (X, ω). By [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF], there exists a sequence of smooth positive (p, p)forms Ψ m which converges to a current Ψ ≥ Θ and such that Ψ m ≤ c . Hence the classes of Ψ m in H p,p (X, C) are bounded. It follows that there exists c > 0 such that cω p -Ψ m is cohomologous to a positive closed form for every m.

Let Γ n be the graph of f n which is an analytic subset of dimension k of X ×X. If π 1 , π 2 are the canonical projections of X × X onto its factors and [Γ n ] is the current of integration on Γ n then the positive closed currents

(f n ) * (Ψ m ) := (π 2 ) * (π * 1 (Ψ m ) ∧ [Γ n ])
are well defined; they have no mass on analytic sets because they have L 1 coefficients. Since the mass of a positive closed current depends only on its cohomology class, we have

(f n ) * (Ψ m ) ≤ c (f n ) * (ω p ) = c (f n ) * (ω p ) ∧ ω k-p = c ω p ∧ f n * (ω k-p ) = cd k-p,n .
The previous integrals are computed on Zariski open sets where the forms are smooth. Finally, we have

Θ n ≤ lim sup m→∞ (f n ) * (Ψ m ) ≤ cd k-p,n .
For every point z out of an analytic subset of X, f -1 (z) contains exactly d t points. We can define the Perron-Frobenius operator on the space of mesurable functions by

Λϕ(z) := d -1 t f * (ϕ) = 1 d t w∈f -1 (z) ϕ(w).
Since ν n gives no mass to analytic sets, the probability measure d -n t f n * (ν n ) is well defined and we have

d -n t f n * (ν n ), ϕ = ν n , Λ n ϕ
for every ϕ integrable with respect to f n * (ν n ).

Lemma 12.5.0.3. The operator Λ :

W 1,2 * → W 1,2 *
is well defined, bounded and continuous. When ϕ is in W 1,2 * * , so is Λϕ. Proof. Fix a Zariski open set Ω where Λϕ is well defined. The choice of Ω is not important. Fix also a compact set K ⊂ Ω big enough. We have Λϕ ∈ L 1 loc (Ω) and Λϕ L 1 (K) ≤ c ϕ L 1 , c > 0.

If f is the restriction of f * to a suitable Zariski open set, the Cauchy-Schwarz inequality implies that

i∂(Λϕ) ∧ ∂(Λϕ) = d -2 t f (∂ϕ) ∧ f (∂ϕ) ≤ d -1 t f (i∂ϕ ∧ ∂ϕ) ≤ d -1 t f (Θ)
where Θ is a positive closed current such that i∂ϕ ∧ ∂ϕ ≤ Θ and Θ ≤ ϕ 2 * . Lemma 5.2 imply that f (Θ) is positive closed and f (Θ) ≤ cδ 1 ϕ 2 * . In particular, d(Λϕ) has coefficients in L 2 . Proposition 12.3.0.1 implies that Λϕ ∈ W 1,2 and Λϕ

L 1 ≤ c ( Λϕ L 1 (K) + d(Λϕ) L 2 ) ≤ c ϕ * .
It follows that the operator Λ : * * ∩ L ∞ (X) with analytic singularities. The hypothesis on ν n allows the following calculus

W 1,2 * → W 1,2 *
d -n t f n * (ν n ), ϕ = ν n , Λ n ϕ = c 0 + • • • + c n + ν n , ϕ n
and Lemma 12.5.0.4 implies that ν n , ϕ n tends to 0. Hence d -n t f n * (ν n ), ϕ converges to c ϕ . It follows that d -n t f n * (ν n ) converge weakly to a measure µ independent of (ν n ). This measure µ is defined by µ, ϕ := c ϕ for ϕ smooth. The measure µ is WPC since we can extend it to a bounded continuous linear form on W 1,2 * by µ, ϕ * := c ϕ . Lemma 12.5.0.5. We have µ, ϕ * = µ, ϕ for all ϕ ∈ W 1,2 * * .

Proof. We first prove that ϕ is µ-integrable. By Proposition 12.4.0.1, we have ϕ = ϕ + -ϕ -with ϕ ± ≥ 0, ϕ ± ∈ W 1,2 * * and ϕ ± * ≤ c ϕ * . Hence, we can assume that ϕ is positive and continuous out of a compact set

Y of W-capacity zero. If K ⊂ X \ Y is a compact set, the integral of ϕ on K verifies µ, ϕ K ≤ lim sup d -n t f n * (ω k ), ϕ = lim(c 0 + • • • + c n ) + lim sup ω k , ϕ n = c ϕ . Since µ(Y ) = 0, ϕ is µ-integrable and µ, ϕ ≤ c ϕ ≤ A ϕ * . Define b n := -m>n c m and write ϕ n = ϕ + n -ϕ - n as in Proposition 12.4.0.1 with ϕ ± n ≥ 0, ϕ ± n ∈ W 1,2 * * and ϕ ± n ≤ c ϕ n * . We have µ, ϕ ± n ≤ A ϕ ± n * ≤ Ac ϕ n * . Using the properties that µ is WPC and f * (µ) = d t µ, we get | µ, ϕ -c ϕ | = | µ, Λ n ϕ -c ϕ | ≤ |b n | + | µ, ϕ n | ≤ |b n | + µ, ϕ + n + µ, ϕ - n ≤ |b n | + 2Ac ϕ n * .
Lemma 12.5.0.4 implies that the last expression tends to 0. Hence µ, ϕ = c ϕ .

Mixing and CLT

In this section, we prove the geometric decay of correlations for the meromorphic maps that we are considering. We then deduce, via the Gordin-Liverani theorem, the CLT for Lipschitzian observables.

Theorem 12.6.0.1. Let f be as in Theorem 12.5.0.1. Then the equilibrium measure µ of f is exponentially mixing in the following sense: there exists a constant A > 0 such that

| µ, (ψ • f n )ϕ -µ, ψ µ, ϕ | ≤ A ψ ∞ ϕ * δ 1/2 n d -n/2 t
for any n ≥ 0 and every real-valued functions ψ ∈ L ∞ (µ) and ϕ ∈ W 1,2 * * . Proof. Replacing ϕ by ϕ -c ϕ , we can assume that c ϕ = µ, ϕ = 0. Assume also that ϕ * = 1 and ψ ∞ = 1. The constants A i and A below do not depend on n, ψ and ϕ.

We keep the notations of the last section. Recall that

ϕ n * ≤ A 1 δ 1/2 n d -n/2 t
and Λ n ϕ = b n + ϕ n . It is proved in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] that ((cδ n ) 1/n ) is decreasing for c > 0 large enough. Hence, by Lemma 12.5.0.4,

|b n | ≤ A 2 δ 1/2 n d -n/2 t
. As in Lemmas 12.5.0.4 and 12.5.0.5, we get

µ, ϕ ± n = µ, ϕ ± n * ≤ A 3 ϕ ± n * ≤ A 4 δ 1/2 n d -n/2 t .
We obtain from the relation f

* (µ) = d t µ that | µ, (ψ • f n )ϕ | = | µ, ψΛ n ϕ | ≤ |b n | µ, |ψ| + | µ, ψϕ n | ≤ |b n | + µ, |ψ|ϕ + n + µ, |ψ|ϕ - n ≤ A 2 δ 1/2 n d -n/2 t + µ, ϕ + n + µ, ϕ - n ≤ Aδ 1/2 n d -n/2 t .
Corollary 12.6.0.2. Let f and µ be as in Theorem 12.5.0.1. Let ϕ be a bounded function in W 1,2 * * such that µ, ϕ = 0. Then if ϕ is not a coboundary, it satisfies the CLT. In particular, this holds for Lipschitzian functions ϕ which satisfy µ, ϕ = 0 and are not coboundaries.

Proof. If µ, ϕ = 0, then

Λ n ϕ L 1 (µ) = sup ψ ∞≤1 | µ, ψΛ n ϕ | = sup ψ ∞≤1 | µ, (ψ • f n )ϕ |.
Hence, the condition 12.2.1 is a direct consequence of Theorem 6.1. We then apply the Gordin-Liverani theorem.

Remark 12.6.0.3. (a) All results still hold if we replace the closed current Θ in the definition of W 1,2 * by a ∂∂-closed current. The regularization of ∂∂-closed currents [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] allows to prove an analogue of Lemma 12.5.0.2.

(b) We say that a positive measure ν is PC if its restriction to smooth realvalued functions can be extended to a linear continuous form on DSH. One can prove, using Demailly's regularization theorem as in Lemma 12.4.0.4, that d.s.h. functions are ν-integrable and the extension of ν is equal to the integral ν, ϕ on ϕ ∈ DSH. In [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF], we proved that Λ : DSH → DSH is well defined, bounded and continuous. Using Hartogs lemma, one verifies that every ϕ ∈ DSH can be written as ϕ = ϕ + -ϕ -with ϕ ± ≥ 0 and ϕ ± DSH ≤ c ϕ DSH , c > 0. Then, we prove as above that µ is PC and exponentially mixing in the sense that

| µ, (ψ • f n )ϕ -µ, ψ µ, ϕ | ≤ A ψ ∞ ϕ DSH δ n d -n t
for any n ≥ 0, ψ ∈ L ∞ (µ) and ϕ ∈ DSH (see [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF]). Hence, bounded d.s.h. functions satisfy the CLT. One can construct bounded q.p.s.h. functions which are nowhere continuous. They satisfy the CLT. As far as we know, this property is new even for rational fractions in one variable.

(c) The geometric decay of correlations was proved in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF] (see also [START_REF] Fornaess | Complex dynamics in higher dimensions[END_REF]) for a large class of polynomial-like maps. This implies the CLT for bounded p.s.h. functions. For rational fractions, the same problems were solved for Hölder observables. See [START_REF] Denker | On the transfer operator for rational functions on the Riemann sphere[END_REF][START_REF] Haydn | Convergence of the transfer operator for rational maps[END_REF][START_REF] Makarov | On "thermodynamics" of rational maps. I. Negative spectrum[END_REF][START_REF] Ruelle | Spectral properties of a class of operators associated with conformal maps in two dimensions[END_REF] and the references therein.

(d) In [START_REF] Leborgne | Talk in the ACI[END_REF], Cantat and Leborgne have announced the CLT for holomorphic endomorphisms of P k and for Hölder continuous observables. Their idea is to use the Hölder continuity of the Green function of f and a delicate estimate on modulus of annuli in order to apply the Gordin-Livenari theorem.

Chapter 13 Currents Pull-back

We define the pull-back operator, associated to a meromorphic transform, on several types of currents. We also give a simple proof to a version of a classical theorem on the extension of currents.

Introduction

Let X and X be two (connected) complex manifolds of dimensions k and k respectively. A holomorphic map f : X → X induces a pull-back operator f * acting on smooth forms on X with values in the space of smooth forms on X. Our main purpose in this paper is to extend the previous operator to some classes of currents. This is a fundamental question in complex analysis because in many problems, one has to deal with singular objects like subvarieties or more generally positive closed currents.

Our first motivation comes from the theory of complex dynamical systems in higher dimension. Given a holomorphic self-map or more generally a multivalued meromorphic self-map f : X → X, a main problem in dynamics is to construct interesting measures invariant by f . A general strategy is to construct invariant positive closed currents and then obtain invariant measures as intersection of such currents, see [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] for historical comments. So, a necessary step here is to define the pull-back operator on positive closed currents. Theorem 15.1.0.1 below allows to extend the contruction of Green currents in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] to arbitrary holomorphic correspondences with finite fibers between compact Kähler manifolds.

In order to avoid some trivial counter-examples, assume throughout the paper that f is dominant, i.e. its image contains a non-empty open subset of X . Otherwise, one might replace X by f (X) which is a variety immersed in X , possibly with singularities. In [START_REF] Méo | Image inverse d'un courant positif fermé par une application analytique surjective[END_REF], Méo proved that the operator f * can be continuously extended to positive closed currents of bidegree [START_REF] Azonnahin | Conceitos Fundamentais e Métodos Pluripotenciais para Aplicações Cohomologicamente Expansíveis[END_REF][START_REF] Azonnahin | Conceitos Fundamentais e Métodos Pluripotenciais para Aplicações Cohomologicamente Expansíveis[END_REF]. He also constructed an example where one cannot extend f * to positive closed currents of higher bidegree. Our main theorem here is the following result.

Theorem 13.1.0.1. Let f : X → X be a holomorphic map. Assume that each fiber of f is either empty or is an analytic set of dimension dim X -dim X . Then the pull-back operator f * can be extended to positive closed (resp. dd cclosed) (p, p)-currents on X . Moreover, if T is such a current then f * (T ) is a positive closed (resp. dd c -closed) (p, p)-current on X which depends continuously on T for the weak topology on currents. If T has no mass on a Borel set A ⊂ X , then f * (T ) has no mass on f -1 (A).

Observe that f is open hence we can consider that f is surjective by restricting X . Note that when f is a finite map between open subsets of C k , Méo gave in [START_REF] Méo | Image inverse d'un courant positif fermé par une application analytique surjective[END_REF] a definition of f * for positive closed (p, p)-currents. He used potentials of currents and didn't consider the continuity of f * and its independence of coordinates in C k which are crucial here in order to extend f * to the case of manifolds.

We deduce from the previous result the following corollary where {•} denotes the class of a positive dd c -closed (p, p)-current in the cohomology group H p,p (•, C):

Corollary 13.1.0.2. Let f : X → X be a holomorphic map between compact Kähler manifolds. Assume that each fiber of f is an analytic set of dimension dim X -dim X . If T is a positive closed or dd c -closed (p, p)-current on X , then

f * {T } = {f * (T )}.
The linear operator f * : H p,p (X , C) → H p,p (X, C) is induced by the action of f * on smooth forms. Corollary 13.1.0.2 follows from the continuity in Theorem 15.1.0.1 and from our result in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] which says that one can write T = T + -T - where T ± can be approximated by smooth positive dd c -closed forms.

Theorem 15.1.0.1 is also valid for another class of currents, useful in dynamics, that we call dsh currents, see Theorem 13.3.0.4. It is still valid for some meromorphic maps or more generally for some meromorphic transforms, see Theorems 13.4.0.5 and 13.4.0.6. The case of compact Kähler manifolds will be discussed in Section 13.5.

The tools in order to prove the main results give also a simple proof of the following theorem on the extension of currents.

Theorem 13.1.0.3. Let F be a closed subset of a complex manifold X. Let T be a positive (p, p)-current on X \ F . Assume that F is locally complete pluripolar and T has locally finite mass near F . Assume also that there exists a positive (p + 1, p + 1)-current S with locally finite mass near F such that dd c T ≤ S on X \F . Then dd c T has locally finite mass near F . Moreover, if T and dd c T denote the extensions by zero of T and dd c T on X, then

dd c T -dd c T is positive. If T is closed then T is closed.
This result extends a classical Skoda's theorem when T is closed, see [START_REF] Skoda | Prolongement des courants positifs, fermés de masse finie[END_REF], [START_REF] El Mir | Sur le prolongement des courants positifs fermés[END_REF] and [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. For S = 0 it is proved by Dabbek-Elkhadhara-El Mir in [START_REF] Dabbek | Extension of plurisubharmonic currents[END_REF], see also Remark 13.2.0.3, and is due to Alessandrini-Bassanelli [START_REF] Alessandrini | Plurisubharmonic currents and their extension across analytic subsets[END_REF][START_REF] Bassanelli | A cut-off theorem for plurisubharmonic currents[END_REF] when F is an analytic set and dd c T has bounded mass. Under the extra assumption that dT is of order zero, the result was proved by the second author in [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. In this case, we also have the formula d T = dT .

The currents extension

In this section we give a simple proof of Theorem 13.1.0.3. We start with the following lemmas which are versions of the Chern-Levine-Nirenberg inequality [START_REF] Chern | Intrinsic norms on a complex manifold[END_REF]388]. In what follows, ω denotes a hermitian (1, 1)-form on a manifold X of dimension k. If T is a current of order zero, the mass of T on a Borel set K ⊂ X is denoted by T K . The mass of T on X is denoted by T . If T is a positive or a negative (p, p)-current, T K is equivalent to | K T ∧ ω k-p |. We often identify these two quantities. Lemma 13.2.0.1. Let U be an open subset of X. Let K and L be compact sets in U with L K. Assume that T is positive and dd c T has order zero. Then there exists a constant c K,L > 0 such that for every smooth bounded psh function u on U we have the following estimate

L du ∧ d c u ∧ T ∧ ω k-p-1 ≤ c K,L u 2 L ∞ (K) T K + dd c T K .
Proof. We can assume that K is the unit ball in C k and L is the ball of center 0 and of radius 1 -3δ, 0 < δ < 1/4, and ω is the canonical Kähler form on C k . Replacing T by T ∧ ω k-p-1 and u by 1 4 u -1 L ∞ (K) u + 1 4 , we can assume that p = k -1 and 0 ≤ u ≤ 1/2. Let χ be a real-valued smooth function, 0 ≤ χ ≤ 1, supported on K and such that χ = 1 on { z < 1 -δ}. Define

v(z) := max u(z), δ -1 ( z 2 -(1 -2δ) 2 )
where max (x, y) is a smooth function on R 2 , convex increasing on each variable, max (x, y) ≥ max(x, y), and max (x, y) is equal to max(x, y) outside a small neighbourhood of {x = y}. Then v is a positive smooth psh function equal to

δ -1 ( z 2 -(1 -2δ) 2 ) on {1 -δ ≤ z ≤ 1}. In particular, we have v(z) = δ -1 ( z 2 -(1 -2δ) 2 ) on the support supp(dχ) of dχ and v = u on L. Then, since v 2 is psh, L du ∧ d c u ∧ T = L 1 2 dd c v 2 -vdd c v ∧ T ≤ 1 2 dd c v 2 ∧ χT = 1 2 v 2 dd c (χT ) = 1 2 v 2 (χdd c T + T ∧ dd c χ) + 1 2 v 2 (-d c χ ∧ dT -d c T ∧ dχ). Define v(z) := δ -1 ( z 2 -(1 -2δ) 2 ) on C k .
Recall that v = v on supp(dχ). Using an analogous computation as above, we obtain that the last integral is equal to

dd c v 2 ∧ χT -χ v 2 dd c T -v 2 dd c χ ∧ T. Hence L du ∧ d c u ∧ T ≤ 1 2 (v 2 -v 2 )(χdd c T + T ∧ dd c χ) + 1 2 dd c v 2 ∧ χT.
The lemma follows.

Lemma 13.2.0.2. Under the assumptions of Lemma 13.2.0.1, we have

dd c u ∧ T L ≤ c K,L u L ∞ (K) T K + dd c T K
where c K,L > 0 is a constant independent of u and T .

Proof. Write

dd c u ∧ T := udd c T -dd c (uT ) + d(d c u ∧ T ) -d c (du ∧ T ). (13.2.1) 
Hence, Cauchy-Schwarz inequality and Lemma 13.2.0.1, applied to L := supp(χ), imply

dd c u ∧ T L ≤ χdd c u ∧ T = χudd c T -dd c χ ∧ uT -dχ ∧ d c u ∧ T + d c χ ∧ du ∧ T u L ∞ (K) T K + dd c T K .
End of the proof of Theorem 13.1.0.3-Recall that a complete locally pluripolar set is locally the pole set {ϕ = -∞} of a psh function ϕ. Since the problem is local, we can assume that X is a ball in C k . Then, there is a sequence of smooth psh functions u n , 0 ≤ u n ≤ 1, vanishing near F and increasing to 1 on X \ F , see e.g. [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. We have u n T → T and as in (13.2.1)

u n dd c T -dd c (u n T ) = dd c u n ∧ T -d(d c u n ∧ T ) + d c (du n ∧ T ). (13.2.2)
We first show that ∂u n ∧ T → 0. This implies that ∂u n ∧ T → 0 by conjugaison. We can assume that p = k -1. Indeed, one only has to test forms of type ϕΩ with ϕ a smooth function and Ω a smooth positive closed form. Then we reduce the problem to the case p = k -1 by replacing T by T ∧ Ω.

Let α be a test smooth (0, 1)-form with support in a compact subset K of X. We have to show that ∂u n ∧ α ∧ T converge to zero. Fix an > 0 and a neighbourhood U of F such that

U iα ∧ α ∧ T ≤ 2 .
Since u n converge locally uniformly to 1 on X \ F , Lemma 13.2.0.1, applied to (u n -1), implies that locally on X \ F the mass of ∂u n ∧ T tends to zero. Hence,

lim n→∞ X\U ∂u n ∧ α ∧ T = 0.
On the other hand, Cauchy-Schwarz inequality gives

U i∂u n ∧ α ∧ T ≤ K i∂u n ∧ ∂u n ∧ T 1/2 U iα ∧ α ∧ T 1/2 .
The second factor is bounded by . So it is enough to show that the integral on K is uniformly bounded with respect to n. We cannot apply directly Lemma 13.2.0.1 since we don't know that dd c T has finite mass. Let χ be a cutoff function, 0 ≤ χ ≤ 1 and χ = 1 on K. We have, using a computation as in (13.2.1),

I n := χ 2 i∂u n ∧ ∂u n ∧ T ≤ 1 2 χ 2 i∂∂u 2 n ∧ T = 1 2 u 2 n i∂∂(χ 2 T ) ≤ 1 2 u 2 n χ 2 i∂∂T + i∂∂χ 2 ∧ T + 2 u n ∂u n ∧ ∂χ 2 ∧ T
The first term in the last line is bounded uniformly since 0 ≤ u n ≤ 1 and dd c T ≤ S. The identity ∂χ 2 = 2χ∂χ and the Cauchy-Schwarz inequality imply that the last integral is bounded by

2 χ 2 i∂u n ∧ ∂u n ∧ T 1/2 i∂χ ∧ ∂χ ∧ u 2 n T 1/2 .
Since the last integral is uniformly bounded we have

I n ≤ const(1 + I 1/ 2 
n ) and hence I n is bounded.

We have proved that ∂u n ∧ T → 0 and ∂u n ∧ T → 0. Identity (13.2.2) implies that

u n (dd c T -S) -dd c u n ∧ T = -u n S + dd c (u n T ) -d(d c u n ∧ T ) + d c (du n ∧ T ).
The right hand side converges to -S + dd c T where S is the trivial extension by zero of S on X. Since both terms on the left hand side are negative currents their limit values are negative. We then deduce that -S + dd c T is negative and hence dd c T has finite mass near F . Finally the left hand side of (13. Proof. Since the problem is local we can assume that 0 ∈ V and prove the lemma for a small ball L of center 0. Let P be a complex plane of codimension l in C k × C k such that π restricted to V ∩ P is discrete. Shrinking B k and B k allows to assume that, for every small pertubation P of P , π restricted to V ∩ P defines a finite ramified covering of degree d t over B k . Slicing by P reduces the problem to the case where l = 0 and π |V defines a ramified covering of the same degree d t .

Observe that u := (π |V ) * ( w 2 ) is a continuous psh function bounded by 2d t . Let K be a compact subset of B k such that L := π(L) K. Then

V ∩L π * (T ) ∧ (dd c w 2 ) k -p ≤ L T ∧ π * (dd c w 2 ) k -p ≤ L T ∧ (dd c u) k -p .

PULL-BACK OPERATOR

Using Lemma 13.2.0.2 and the fact that T is smooth, a simple induction on r gives

L T ∧ (dd c u) r ∧ (dd c w ) k -p-r ≤ c( T + dd c T ),
where the constant c > 0 depends only on L and d t (this is important for the slicing). When r = k -p, we obtain the lemma.

We define now the space of dsh currents. Definition 13.3.0.2. A (p, p)-current T on a complex manifold X of dimension k, 0 ≤ p ≤ k -1, is dsh if there exist negative (p, p)-currents T i and positive closed (p + 1, p + 1)-currents Ω ± i such that

T = T 1 -T 2 and dd c T i = Ω + i -Ω - i for i = 1, 2. (13.3.1)
Let DSH p (X) denote the space of dsh (p, p)-currents on X. We say that the dsh (p, p)-currents T (n) converge in DSH p (X) to T if T (n) → T in the sense of currents and if we can write as in (13.3.1)

T (n) = T 1,n -T 2,n and dd c T i,n = Ω + i,n -Ω - i,n for i = 1, 2
so that the masses of T i,n and Ω ± i,n are locally uniformly bounded. Dsh currents have been introduced in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF]. They are stable under push-forward by holomorphic proper maps and under pull-back by holomorphic submersions. A good example of dsh currents to have in mind is the product (ϕ 1 -ϕ 2 )T where ϕ 1 , ϕ 2 are bounded quasi-psh functions and where T is a positive closed current. Recall that ϕ is quasi-p.s.h. if locally it is a difference of a p.s.h. function with a smooth one. 

(T n ) ∧ [V ] converge in DSH k-l+p (B k × B k ) to a current S.
If T has no mass on a Borel set A then S has no mass on π -1 (A).

Proof. Since the problem is local it is sufficient to consider the case where 0 belongs to V and where L is a small ball of center 0 as in Lemma 13.3.0.1. Let Π : C k × C k → C l a generic linear projection. Observe that test (k + l -p, k + l -p)forms with support in L are generated by forms of type ϕ ∧ Π * (ψ) where ϕ is a form of small support in B k × B k and ψ is a form of maximal degree on C l . It follows that slicing by fibers of Π reduces the problem to the case where l = 0 and π |V defines a finite ramified covering of degree d t over B k . We use here the Lebesgue convergence theorem in order to show that if the slices converge pointwise for a fixed Π and the mass is dominated then we have the convergence. The problem is to show that there is a unique cluster point for the sequence

π * (T n ) ∧ [V ].
Let Σ ⊂ V be the smallest analytic subset such that π * (T n ) ∧ [V ] converge to a positive current τ 0 on B k × B k \ Σ. Lemma 13.3.0.1 applied to T n and dd c T n implies that τ 0 and dd c τ 0 have finite masses near Σ. Consider the extensions by zero of τ 0 throught Σ that we denote also by τ 0 . By Theorem 13.1.0.3, dd c τ 0 has order zero. We want to prove that Σ = ∅. Assume that Σ = ∅. Replacing B k × B k by a small neighbourhood of some generic (in the Zariski sense) point a ∈ Σ allows to assume that Σ is smooth and π |Σ is injective. Now, consider a limit value

τ of π * (T n ) ∧ [V ] in B k × B k .
Then τ -τ 0 is a positive current with support in Σ. Lemma 13.3.0.1 applied to dd c T n implies that dd c (τ -τ 0 ) has order zero. The support theorem in [START_REF] Alessandrini | Plurisubharmonic currents and their extension across analytic subsets[END_REF] extends Federer's theorem on flat currents [START_REF] Federer | Geometric Measure Theory[END_REF] to currents of order zero with dd c of order zero. It implies that τ -τ 0 is a current of Σ. Let ϕ be a test (k -p, k -p)-form with compact support in B k . We have

lim n→∞ π * (T n ) ∧ [V ], π * (ϕ) = lim n→∞ T n , π * π * (ϕ) ∧ [V ] = lim n→∞ T n , d t ϕ = d t T, ϕ . (13.3.2)
Hence, τ -τ 0 , π * (ϕ) is independent of the choice of τ . Since τ -τ 0 is a current on Σ and since π |Σ is injective, the last identity implies that τ -τ 0 is independent of the choice of τ . In other words, π * (T n ) ∧ [V ] converge. This contradicts the property that Σ = ∅. Now we prove that S has no mass on π -1 (A). By slicing, one can assume that π |V is finite. Let Σ ⊂ V be an analytic set such that S has no mass on π -1 (A)\Σ. One can choose Σ minimal in the sense that no proper analytic set in Σ satisfies the same property. As above, if Σ is not empty, we can assume that it is a smooth submanifold of B k × B k and π |Σ is injective. Let τ 0 be the restriction of S to B k × B k \ Σ and let τ 0 its extension by zero. Then Remark 13.2.0.3 implies that τ 0 is dsh and hence S |Σ := S -τ 0 is a positive dsh current with support in Σ. By the support theorem [START_REF] Alessandrini | Plurisubharmonic currents and their extension across analytic subsets[END_REF], this is a current on Σ. One deduces from identity (13.3.2) that S |Σ , π * (ϕ |A ) = d t T, ϕ |A∩π(Σ) . Hence, since T has no mass on A, the previous integrals vanish. The property that π |Σ is injective implies that S |Σ has no mass on π -1 (A) which contradicts the definition of Σ.

End of the proof of Theorem 15.1.0.1-Let π 1 : X × X → X and π 2 : X × X → X denote the canonical projections. Let Γ denote the graph of f in X × X . For T smooth, we have f

* (T ) = (π 1 ) * π * 2 (T ) ∧ [Γ] .
We have to show for the general case that π * 2 (T ) ∧ [Γ] is well defined and then define f * (T ) := (π 1 ) * π * 2 (T ) ∧ [Γ] . Note that since π 1 is proper on Γ, the operator (π 1 ) * is well defined on currents supported on Γ.

On a small open subset U of X , we approximate T by smooth positive closed (resp. dd c -closed) forms T n and define

π * 2 (T ) ∧ [Γ] := lim n→∞ π * 2 (T n ) ∧ [Γ] in π -1 2 (U ).
Lemma 13.3.0.3 implies that the limit exists and does not depend on the choice of T n . This implies also that if U and U are small open subsets of X , our construction gives two currents which coincide in π is well defined, continuous and commutes with dd c . Moreover, if a dsh current T on X has no mass on a Borel set A ⊂ X then f * (T ) has no mass on f -1 (A).

Remark 13.3.0.5. If g : X → X is another holomorphic map with fibers of pure dimension dim X -dim X then the continuity of the pull-back operator implies that

(g • f ) * (T ) = f * (g * (T ))
for the classes of current under consideration. Indeed, this identity holds for smooth forms.

Meromorphic transforms

Meromorphic transforms (MT for short) were considered in [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF] in order to treat with the same method different problems in dynamics and in the study of distribution of varieties (see also [START_REF] Dinh | Distribution des préimages et des points périodiques d'une correspondance polynomiale[END_REF][START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF]). In this Section we recall the definition of MT and introduce the pull-back operator on currents associated to a MT.

Definition 13.4.0.1. 1 A meromorphic transform F of codimension l, 0 ≤ l ≤ k -1, from X onto X is a finite holomorphic chain Γ = Γ i such that -Γ i is an irreductible analytic subset of dimension k + l of X × X .
-π 1 restricted to each Γ i is proper.

-π 2 restricted to each Γ i is dominant.

1 this definition differs slightly from the definitions given in the previous references

The second item is always verified when X is compact. We do not assume that the Γ i are smooth or distinct. Of course we can write Γ = n j Γ j where n j are positive integers and Γ j are distinct irreducible analytic sets. Then a generic point in the support ∪Γ j of Γ belongs to a unique Γ j and n j is called the multiplicity of Γ at x. In what follows we always write Γ as Γ i . The indices i allow to count the multiplicities.

Define formally F := π 2 • (π 1|Γ ) -1 and for A ⊂ X and B ⊂ X

F (A) := π 2 (π -1 1 (A) ∩ Γ) and F -1 (B) = π 1 (π -1 2 (B) ∩ Γ).
So a generic fiber F -1 (x ) is either empty or an analytic subset of pure dimension l of X. The sets

I 1 := {x ∈ X, dim π -1 1 (x) ∩ Γ > k + l -k} and I 2 := {x ∈ X , dim π -1 2 (x )
∩ Γ > l} are the first and second indeterminacy sets of F , they are of codimension ≥ 2.

When I 2 = ∅ we say that F is pure. When π 1 restricted to each Γ i is surjective, we say that F is complete. A complete MT F of codimension 0 between manifolds of same dimension is called a meromorphic correspondence. If moreover π 1 restricted to Γ is a finite map, then F is called holomorphic correspondence. If generic fibers of π 1|Γ contain only one point we obtain a dominant meromorphic map from X onto X .

The following proposition extends known results, see e.g. [START_REF] Méo | Image inverse d'un courant positif fermé par une application analytique surjective[END_REF].

Proposition 13.4.0.2. Let ϕ be a quasi-psh function on X and Φ be a (p, q)form, k + l -k ≤ p, q ≤ k , whose coefficients are dominated by |ϕ|. Let F be a MT as above. Then the

(k -k -l + p, k -k -l + q)-current F * (Φ) := (π 1 ) * π * 2 (Φ) ∧ [Γ]
is well defined and has locally finite mass. Let Φ n be a sequence of (p, q)-forms whose coefficients are dominated by ϕ. If Φ n → Φ in the sense of currents, then

F * (Φ n ) → F * (Φ). If F is complete then F * (Φ) has L 1 loc coefficients. Proof.
Observe that (π 1 ) * acts continuously on currents with support in Γ since π 1 restricted to Γ is proper. So, we only have to define π * 2 (Φ) ∧ [Γ]. The function ϕ•π 2 is quasi-psh on X ×X . Its restriction to any component of Γ is not identically -∞. Hence, ϕ • π 2 is a quasi-psh function on Γ. In particular, this function is [Γ]-integrable. For quasi-psh functions on singular varieties, see [START_REF] Fornaess | The Levi problem on complex spaces with singularities[END_REF]. We can also use a desingularization τ : Γ → Γ and replace π i by π i • τ in order to reduce the integrability of ϕ • π 2 to the smooth case.

We deduce that π * 2 (Φ) restricted to Γ is a form with coefficients bounded by a quasi-psh function. It follows that π * 2 (Φ)∧[Γ] is well defined and has locally finite continuously on T . Moreover, if T has no mass on F (A), with A ⊂ X a Borel set, then F * (T ) has no mass on A. If X and X are compact Kähler manifolds, we have {F * (T )} = F * {T }.

Theorem 13.4.0.6. Let F and A be as in Theorem 13.4.0.5. Then the pull-back operator

F * : DSH p (X ) → DSH k-k +p-l (X)
is well defined, continuous and commutes with dd c . Moreover, if a dsh current T on X has no mass on F (A), then F * (T ) has no mass on A.

The compact Kähler manifolds case

In general it is not possible to define the pull-back of a current under a holomorphic map, in a consistent way. A simple example in [START_REF] Méo | Image inverse d'un courant positif fermé par une application analytique surjective[END_REF] shows that the mass of the pull-back could be infinite around exceptional fibers. However the situation in the compact case is different.

From now on (X, ω) and (X , ω ) denote compact Kähler manifolds of dimension k and k respectively. Consider a MT F : X → X of codimension l of graph Γ. Let C be the analytic subset of Γ defined by the property that π 2 restricted to Γ \ C has locally only empty fibers or fibers of dimension pure l. Let π denote the restriction of π 2 to Γ \ C . If T is a positive closed (resp. dd c -closed) current of bidegree (p, p), k + l -k ≤ p ≤ k , on X , then by Theorem 13.4.0.5, the current π * (T ) is well defined on Γ \ C . We will show that π * (T ) has finite mass; this allows us to extend π * (T ) through C . Denote by (π 2|Γ ) (T ) the trivial extension of π * (T ). By Theorem 13.1.0.3, dd c (π 2|Γ ) (T ) ≤ 0. In our situation, since X is compact Stokes formula implies that for any closed form Ω of right bidegree

dd c (π 2|Γ ) (T ), Ω = (π 2|Γ ) (T ), dd c Ω = 0.
In particular, the mass of dd c (π 2|Γ ) (T ) is zero, then (π 2|Γ ) (T ) is dd c -closed. We call the strict transform of T by F the current F (T ) := (π 1 ) * (π 2|Γ ) (T ).

Proposition 13.5.0.1 (see also [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]). Let F and T be as above. Then F (T ) is positive closed (resp. dd c -closed). Moreover, there exists a constant c > 0 independent of T such that F (T ) ≤ c T . The operator T → F (T ) is lower semi-continuous in the sense that if T n → T then every cluster value τ of F (T n ) satisfies τ ≥ F (T ). If F is complete and if T has no mass on analytic sets then F (T ) has no mass on analytic sets.

Proof. We first prove that (π 2|Γ ) (T ) has finite mass. By [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] Let E i be components of codimension 1 of f -1 (I 2 ). We have to show that the classes {E i } are linearly independent. Let c i ∈ R such that the class of c i E i vanishes. Then there is an integrable function u such that

dd c u = c i [E i ]. This function is pluriharmonic out of f -1 (I 2 ).
Let Ω be a closed smooth (k-k , k-k )-form on X. Then f * (uΩ) is dd c -closed. It follows that the current f * (uΩ) is equal to a function which is pluriharmonic out of I 2 . Since I 2 has codimension ≥ 2 this function can be extended to a pluriharmonic function on the compact space X and hence should be constant.

We show that u is constant on each generic fiber of f . The case k = k is clear. One consider the case k > k . In a neighbourhood of a generic point x ∈ X one can find a coordinate system (z, z ) so that x = 0 and f (z, z ) = z . If ϕ is a smooth function with support in this neighbourhood, then Ω := dd c ϕ ∧ (dd c z 2 ) k-k -1 is a closed form. Since f * (uΩ) is a constant function vanishing near I 2 , we have f * (uΩ) = 0. It follows that u(z, 0)dd c ϕ(z, 0) ∧ (dd c z 2 ) k-k -1 = 0 for every ϕ. Hence u(z, 0) is constant. Since generic fibers of f are connected, u is constant on each generic fiber of f . Then there is a function u on X such that u = u • f almost everywhere. Now consider a strictly positive closed form Ω. We have f * (uΩ) = u f * (Ω). On the other hand, since f * (Ω) is a closed (0, 0)-current, it is given by a constant function. This function is not zero because Ω is strictly positive. Finally, the fact that f * (uΩ) is given by a constant function implies that u is constant and then u is constant. Consequently, c i = 0 for every i.

Proof of Theorem 13.5.0.4. We can assume that the graph Γ of F is irreducible and that Γ is smooth. Otherwise, we consider a blow-up τ : Γ → Γ and use π i • τ instead of π i|Γ .

By [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF], T is a difference of currents which can be approximated by smooth positive dd c -closed (1, 1)-forms. We can assume that T is the limit of smooth positive dd c -closed (1, 1)-forms T n . Recall that F * is well defined on smooth forms. Then the uniqueness in the theorem is clear.

The masses of (π 2|Γ ) * (T n ) are computed cohomologically; they are bounded uniformly on n. We only have to show that (π 2|Γ ) * (T n ) converge. If τ is a limit value then {τ } = (π 2|Γ ) * {T } and τ -(π 2|Γ ) (T ) is a pluriharmonic (1, 1)-current with support in π -1 2 (I 2 ) ∩ Γ. If the E i are components of codimension 1 of π -1 2 (I 2 ) ∩ Γ then there are real numbers c i such that τ = (π 2|Γ ) (T )

+ c i [E i ].
distance is the diameter of P k which is a finite number. A priori, the constant A depends on λ and α. Note also that we have the estimate

A 1 + log + 1 dist(a, E ) α/2 ≤ A 1 + log + 1 dist(a, E ) for 0 < α ≤ 2.
It is known that the measure µ has no mass on algebraic sets, in particular, on E . So, the above result is optimal in the sense that µ a n does not converge to µ when a ∈ E . We can show that there is a finite family of probability measures, independent of a, such that any limit value of µ a n is an element of this family. However, the choice of the limit measures depends on a. For example, in dimension k = 1, if f (z) = z -d , we have E = {0, ∞}, µ is the Haar measure on the unit circle and the above family contains three measures: µ, the Dirac mass at 0 and the Dirac mass at ∞.

We also deduce from the above theorem that µ a n converges to µ locally uniformly for a ∈ P k \ E . The simple convergence without speed estimate was obtained in dimension 1 by Brolin [START_REF] Brolin | Invariant sets under iteration of rational functions[END_REF] for polynomials, by Lyubich [START_REF] Lyubich | Entropy properties of rational endomorphisms of the Riemann sphere[END_REF], Freire-Lopes-Mañé [START_REF] Freire | An invariant measure for rational maps[END_REF] for general maps and in higher dimension by Fornaess-Sibony [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF], Briend-Duval [START_REF] Briend | Exposants de Liapunoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF] and Dinh-Sibony [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF].

The following corollary gives us a geometric interpretation of the above result. So, if µ(U ) > 0, a, b are two generic points and n is large enough, the number of points of f -n (a) in U is almost equal to the same quantity associated to b, i.e.

lim n→∞ #(f -n (a) ∩ U ) #(f -n (b) ∩ U ) = 1.
We have the following version of Theorem 14.1.0.3 which is in our opinion more important. Theorem 14.1.0.5. Let f , µ and µ a n be as above. Let 1 < λ < d be a fixed constant. There is an invariant proper algebraic subset E λ , possibly empty, of P k such that if a is a point out of E λ and if ϕ is a C α function on P k with 0 < α ≤ 2, then

| µ a n -µ, ϕ | ≤ A 1 + log + 1 dist(a, E λ ) α/2 ϕ C α λ -αn/2 ,
where A > 0 is a constant independent of n, a, ϕ.

the following norm ϕ := inf S ± , S ± positive closed (1, 1)-currents such that dd c ϕ = S + -S -.

The classical exponential estimate for p.s.h functions implies the following. Lemma 14.2.0.1. There is a positive constant C such that if ϕ is a function in F with ϕ ≤ 1, then ω k FS , e |ϕ| ≤ C. The following consequence is crucial in the proof of Theorem 14.1.0.5. It is already interesting when U = P k . The estimate can be extended to ϕ in any compact family of d.s.h. functions. It is important to observe that we get a pointwise estimate and this allows us to get an analog in the infinite dimensional case, i.e. for super-potentials. Proposition 14.2.0.2. Let ϕ be a function in F such that ϕ ≤ 1. Assume that ϕ is Hölder continuous on an open set U : |ϕ(x) -ϕ(y)| ≤ M dist(x, y) β for some constants M ≥ 1, 0 < β ≤ 1 and for x, y in U . Then, there is a constant A 0 > 0 independent of ϕ, U , M and β such that

|ϕ(a)| ≤ A 0 β -1 (1 + log M )
for every point a such that dist(a, P k \ U ) ≥ M -1/β . Proof. Let A 0 > 2 be a constant large enough. If the above estimate were false, then there is a function ϕ and a point a as above such that |ϕ(a)| ≥ A 0 β -1 (1 + log M ). So, the ball B of center a and of radius M -1/β is contained in U . We deduce from the Hölder continuity of ϕ that for every b ∈ B

|ϕ(b)| ≥ A 0 β -1 (1 + log M ) -1 ≥ 1 2 A 0 β -1 (1 + log M ) ≥ 1 2 A 0 + 1 2 A 0 β -1 log M.
This contradicts the exponential estimate in the previous lemma.

The mass of a positive closed (1, 1)-current S in P k is defined by S := S, ω k-1

FS . It depends only on the cohomology class of S in H 1,1 (P k , C) C. Using the Bézout theorem, we can show that f * acts on H 1,1 (P k , C) as multiplication by d k-1 . We can deduce from these properties and the total invariance of the measure µ the following lemma. Lemma 14.2.0.3. The endomorphism f induces a linear operator f * :

F → F such that f * ≤ d k-1 .
Recall that if ϕ is a function on P k then the function f * (ϕ) is defined by

f * (ϕ)(a) := b∈f -1 (a) ϕ(b),
where the points in f -1 (a) are counted with multiplicity. For ϕ continuous, f * (ϕ) is continuous. If ϕ is an L 1 function and ν is the Radon measure given by a smooth volume form, we have

ν, f * (ϕ) = f * (ν), ϕ .
For a general Radon measure ν, we can define another Radon measure f * (ν) using the same identity with ϕ continuous.

We now define the exceptional set E λ . Let κ n (x) denote the multiplicity of f n at x, i.e. the local topological degree of f n at x, for n ≥ 0. More precisely, for z generic near f n (x), f -n (z) has κ n (x) points near x. Define

κ -n (x) := max y∈f -n (x)
κ n (y).

It was shown in [START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF] that the sequence κ 1/n -n converges to a function κ -which is upper semi-continuous with respect to the Zariski topology.

Moreover, for any δ > 1, the level set {κ -≥ δ} is an invariant proper algebraic subset of P k . Define E λ := {κ -≥ d/λ}. So, there is a constant 1 < δ 0 < d/λ such that κ n 0 < δ n 0 0 outside f -n 0 (E λ ) for a fixed integer N 0 large enough. In what follows, without loss of generality, we replace f, d, λ, δ 0 by f n , d n , λ n , δ n 0 for n large enough in order to assume that the multiplicity of f at any point outside f -1 (E λ ) is smaller than δ 0 and that 20k 2 δ 0 < d/λ.

The previous property of multiplicity allows us to prove a version of the classical Lojasiewicz inequality adapted to our situation. Denote by V t the tneighbourhood of E λ . Proposition 14.2.0.4. There is an integer N ≥ 1 and a constant A 1 ≥ 1 such that if 0 < t < 1 is a constant and if x, y are two points outside V t , then we can write f -1 (x) = {x 1 , . . . , x d k } and f -1 (y) = {y 1 , . . . , y

d k } with dist(x i , y i ) ≤ A 1 t -N dist(x, y) 1/δ 0 .
Finally, we have the following proposition where we assume that ϕ is a function in F such that ϕ C 2 ≤ 1. Define Λ := d 1-k f * . Proposition 14.2.0.5. The function Λ n (ϕ) is Hölder continuous on P k \ E λ . Moreover, there is a constant A 2 ≥ 1 such that for every n ≥ 0 and 0 < t ≤ 1

|Λ n ϕ(x) -Λ n ϕ(y)| ≤ A N n 2 2 t -N n dist(x, y) δ -n 0 for x, y out of V t .
Proof. Since E λ is invariant, it is not difficult to see that for a constant c > 0 small enough, we have

dist(f -1 (x), E λ ) ≥ c dist(x, E λ ).
Define A 2 := dA 1 /c. The proof is by induction on n. The case n = 0 is clear. Assume that the proposition holds for n. We show it for n + 1. Let x, y be two points out of V t . By Proposition 14.2.0.4, we can write f -1 (x) = {x 1 , . . . , x d k } and f -1 (y) = {y 1 , . . . , y d k } so that dist(x i , y i ) ≤ A 1 t -N dist(x, y) 1/δ 0 . Observe that x i and y i are out of V ct . We deduce from the definition of Λ and the induction hypothesis that

|Λ n+1 ϕ(x) -Λ n+1 ϕ(y)| ≤ d 1-k |Λ n ϕ(x i ) -Λ n ϕ(y i )| ≤ d 1-k A N n 2 2 (ct) -N n dist(x i , y i ) δ -n 0 ≤ dA N n 2 2 c -N n t -N n A δ -n 0 1 t -N δ -n 0 dist(x, y) δ -n-1 0 ≤ A N (n+1) 2 2 t -N (n+1) dist(x, y) δ -n-1 0 .
This completes the proof.

End of the proof of Theorem 14.1.0.5. First observe that from the theory of interpolation between Banach spaces (in our case between C 0 and C 2 ), it is enough to consider the case α = 2. Indeed, if L is a continuous linear form on the space of continuous functions on P k , it defines also a continuous linear form on C α and we have the inequality

L C α ≤ A L 1-α/2 ∞ L α/2
C 2 , where A > 0 is a constant independent of L, see [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF] for details. In our situation, it is enough to apply this inequality to the Radon measures d -kn (f n ) * (δ a ) -µ.

So, assume that α = 2 and ϕ is a function of class C 2 . Since the theorem is clear for constant test functions, subtracting from ϕ a constant allows us to assume that ϕ is a function in F . Moreover, by linearity, we can assume that ϕ ≤ 1 and ϕ C 2 is bounded. We use here that C 2 . By Lemma 14.2.0.3, we have Λ n (ϕ) ≤ 1.

We also obtain from the definition of Λ that

d -kn (f n ) * (δ a ), ϕ = d -n Λ n ϕ(a). Define l := 1 + log + 1 dist(a, E λ ) •
We need to show that |Λ n ϕ(a)| ≤ Alλ -n d n for some constant A > 0 and for n ≥ 1. Define t := e -l . Observe that dist(a, V t ) ≥ t. Therefore, Propositions 14.2.0.5 and 14.2.0.2 yields

|Λ n ϕ(a)| ≤ A 0 δ n 0 1 + log(A N n 2 2 t -N n ) lλ -n d n since δ 0 < d/λ and l ≥ 1.
for every test form Φ of class C α with 0 < α ≤ 2, where C > 0 is a constant depending on f, λ, V and α.

We refer to the original paper by Taflin for the explicit construction of E i λ . Note that the convergence without speed was proved by Fornaess-Sibony [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF] and in dimension k = 2 and by Dinh-Sibony [START_REF] Dinh | Dynamique des applications semi-régulières[END_REF] in any dimension. In this case, we can replace the family of E i λ by the family of minimal totally invariant algebraic sets, see also Para [START_REF] Para | The Jacobian cocycle and equidistribution towards the Green current[END_REF].

A key point in the proof is to write, in a unique way,

deg(V ) -1 [V ] -T = dd c u
with u a function in F . The uniqueness of the solution of such an equation and the total invariance of T imply that

deg(V ) -1 d -n (f n ) * [V ] -T = dd c (d -n u • f n ).
So, the problem is reduced to prove the convergence of the sequence of functions d -n u • f n to 0 in a weak sense and to estimate the speed of convergence.

Taflin proved and used some version of exponential estimates for non-compact families of d.s.h. functions. Moreover, the proof contains an induction on the dimension, that is, he has to check the convergence on some algebraic subsets of P k which may be singular. This requires precise versions of Lojasiewicz inequality in order to handle different technical difficulties.

The above conjecture is still open in the general case. We have nevertheless the following result [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] which proves the conjecture for generic maps1 . Recall that the parameter space for holomorphic endomorphisms of algebraic degree d is a connected complex quasi-projective manifold H d (P k ). 

(P k ) of H d (P k ) such that if f is an element in this open set, then deg(V ) -1 d -pn (f n ) * [V ] converge to T p
in the sense of currents for any algebraic set V of pure codimension p. Moreover, we have

deg(V ) -1 d -pn (f n ) * [V ] -T p , Φ ≤ C Φ C α λ -nα/2 , for every test form Φ of class C α with 0 < α ≤ 2. Here, C is a positive constant independent of V .
The set H λ d (P k ) is defined as a set of maps where the local multiplicity is not too big.

A main difficulty is that the above theory of plurisubharmonic functions is not enough to handle algebraic cycles of arbitrary dimension. So, for this purpose, we introduced and developed a theory of super-potentials for positive closed currents and we applied it in the dynamical setting. Roughly speaking, this is a theory of quasi-p.s.h. functions in infinite dimension. We are able for example to get a version of the exponential estimate in Proposition 14.2.0.2. In order to obtain the solution of Conjecture 14.3.0.1, we still have to get a version of the Lojasiewicz inequality which seems to be a difficult problem.

Chapter 15

Distribution open problems

Distribution of the orbits of points, subvarieties or of periodic points in complex dynamics is a fundamental problem. It is often related to strong ergodic properties of the dynamical system and to a deep understanding of analytic cycles, or more generally positive closed currents, of arbitrary dimension and degree. The later topic includes the study of the potentials and super-potentials of positive closed currents, their intersection with or without dimension excess. In this paper, we will survey some results and tools developed during the last two decades. Related concepts, new techniques and open problems will be presented.

Introduction

Let X be a compact Kähler manifold of dimension k with a Kähler form ω on X. We will use the Riemannian metric on X induced by this Kähler form. Let f be a dominant meromorphic self-map or self-correspondence on X. Their formal definitions will be given in the next section. It is useful to notice that in general, f has an indeterminacy set and then it may not be continuous. By correspondence, we mean a multi-valued map.

The iterate of order n of f is roughly given by f

n := f • • • • • f , n times.
The adjoint correspondence is denoted by f -1 . Its graph in X × X is obtained as the image of the graph of f by the involution (x 1 , x 2 ) → (x 2 , x 1 ). In general, correspondences do not satisfy that f • f -1 is the identity map on X. Define f -n as the iterate of order n of f -1 which is also the adjoint correspondence of f n . Note that the discussion is already interesting when f is a meromorphic or holomorphic map but even in this case, f -1 may not be a meromorphic map but a meromorphic correspondence. So for convenience, we will work in the correspondence setting.

Periodic points of period n are given by the intersection of the graph Γ n of f n with the diagonal ∆ of X × X, when we identify ∆ with X in the canonical way. This is an analytic subset of X. Since dim Γ n = dim ∆ = k, at least in generic situations, we expect that Γ n ∩ ∆ is of dimension 0, i.e., is a finite set. However, in general, this intersection may have positive dimension. Let Q n denote the set of isolated periodic points of period n, i.e., isolated points in the intersection Γ n ∩ ∆. We will count the points in Q n with their multiplicities. Periodic points are fundamental objects in dynamics. Since their orbits are simple (finite), they help us to understand more complicated orbits. Moreover, they are strongly related to the topological entropy of the map or correspondence and to the dependence of the system under a perturbation on the map, see [START_REF] Berteloot | Dynamical stability and Lyapunov exponents for holomorphic endomorphisms of P k[END_REF][START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF] and the references therein. Here is the first basic question on periodic points. Problem 1. Estimate the cardinality #Q n of Q n when n goes to infinity.

When the set of periodic points of period n of f is finite, all of them are isolated and #Q n can be computed using the classical Lefschetz fixed point formula. Equivalently, this number is equal to the intersection number of the cohomology classes {Γ n } and {∆} associated to Γ n and ∆ in X × X. The computation is then easier in this particular case. When Γ n ∩ ∆ is of positive dimension, it is not clear how to evaluate the contribution of the components of positive dimension in the last intersection. We will see later the reason to consider the following question which is a particular case of the last problem.

Problem 1a. Find a good upper bound for #Q n .

More precisely, denote by L(f n ) the Lefschetz number for f n which is the intersection number of the cohomology classes {Γ n } and {∆} in X × X. As mentioned above, this is the number of periodic points of period n counting with multiplicity, in the case where these points are all isolated. So in this case, we have

#Q n = L(f n ) := {Γ n } {∆},
where the last cup-product is the intersection number of the cohomology classes associated to Γ n and ∆. We don't know if the following property holds in general.

Problem 1b. Do we always have

#Q n ≤ L(f n ) + o(L(f n ))
as n goes to infinity ?

Or, find sufficient conditions on f so that this property holds.

A final goal in the dynamical study is to show that, under suitable hypotheses, the points in Q n are distributed according to a canonical probability measure when n tends to infinity. One also has to understand the long term behavior of the dynamical system with respect to this probability measure. This is an analogue to the distribution of torsion points on Abelian varieties or other special points in algebraic geometry. Consider the sequence of probability measures

µ n := 1 #Q n a∈Qn δ a ,
where δ a stands for the Dirac mass at a.

Problem 2. Under suitable hypotheses on f , show that µ n converges weakly to a canonical invariant probability measure µ of f . More precisely, for any continuous or smooth test function φ on X, we have

lim n→∞ µ n , φ = µ, φ .
Note that if the last convergence holds and if µ has no mass on proper analytic subsets of X, then periodic points of f are Zariski dense in X. More generally, the "fatness" of µ in terms of pluripotential theory is known in several situations presented in the next sections.

A strategy to solve the last problem is to solve Problem 1a or 1b and then to construct a good family Q good n of isolated periodic points, using tools from dynamics or complex analysis. This means #Q good n is close to an upper bound of #Q n and the points in Q good n are equidistributed along a law canonically associated to the dynamical system. Such a construction will automatically give us a good lower bound for #Q n . So the question of lower bound of #Q n is currently not a priority. Here is the type of statement that we will discuss in detail in the next sections.

Theorem 15.1.0.1. Let f be a dominant meromorphic correspondence on a compact Kähler manifold X. Let Q n be the set of isolated periodic points of period n of f . Then 1. The cardinality of Q n grows at most exponentially fast with n. Moreover, its exponential rate of growth is bounded from above by the algebraic entropy of f , which is finite.

2. In many cases, the points in Q n are asymptotically equidistributed with respect to a canonical invariant probability measure µ, i.e. the sequence µ n converges to µ when n goes to infinity.

Note that even when f is a holomorphic map, the first statement is new. In general, when f is a meromorphic map, it is not even continuous and it is not obvious that the entropy is finite. On the other hand, a surprising recent result by Kaloshin says that, for smooth non-holomorphic maps, #Q n may grow arbitrarily fast. His result contradicts the philosophy that the growth of dynamical objects should be controlled by entropy, which is finite for smooth maps. See [START_REF] Kaloshin | Generic diffeomorphisms with superexponential growth of number of periodic orbits[END_REF] for details. However, we still believe that the philosophy holds for holomorphic, meromorphic maps or correspondences.

A main tool in complex dynamics in higher dimension is pluripotential theory, started by Lelong-Oka in 1950's. This is a powerful tool in complex analysis and geometry. The main objects in this theory are the positive closed currents which are generalizations of effective algebraic cycles in algebraic geometry. The theory is well developed for currents of bidegree (1, 1), i.e. currents of hypersurface type. So the first works using pluripotential theory in several complex variables dynamics were mostly using convergence theorems for plurisubharmonic functions and their strong compactness properties.

However, unless we assume strong hypotheses on X or f , we need to work with positive closed currents of arbitrary bidegree. Simultaneously with complex dynamics, which is becoming quite geometric, the pluripotential theory is also developed. One of our goals is to elaborate a calculus on spaces of positive closed currents which are compact and contain the analytic cycles of arbitrary degree. We have to consider the analogue of movable cycles and give estimates on the dimension excess phenomenon, i.e higher dimensional intersection multiplicity. These questions are unavoidable even to understand the distribution of periodic points of polynomial automorphisms of C k . So we need mostly to study the geometric theory for currents which is of an independent interest.

In this chapter, we will focus our discussion on Theorem 15.1.0.1 and other related equidistribution problems. We will avoid technical points and emphasize the conceptual difficulties and ideas to overcome them, together with the necessary development in the theory of currents. Basic notions and techniques will be introduced in the next three sections. In particular, we have seen that the considered problems are related to the cohomology classes of the graphs of f n and hence to the action of f n on the cohomology on X. Crucial invariants like dynamical degrees and algebraic entropy will be introduced.

To see the link between the distribution of orbits of varieties and the distribution of isolated periodic points, let us mention roughly a new strategy to solve Problem 2. The first step is to consider the current of integration on the graph Γ n of f n , that we denote by [Γ n ]. In the interesting cases, the volume of Γ n grows to infinity exponentially fast. We will normalize [Γ n ] by dividing it by a suitable constant d n and try to show that d -1 n [Γ n ] converges to a positive closed current T in X × X. Imagine now that T is a generalized variety of dimension k. Its intersection with ∆ is expected to have zero dimension. The next step is to show that there is no dimension excess for the last intersection. But here, we face a deep problem "how to see the dimension excess of the intersection of a current with a variety or more generally with another current"? A solution to this problem is given by our theory of densities of currents that we will briefly report on in Section 15.3. The final step is, roughly, to show that

lim n→∞ d -1 n [Γ n ] ∧ [∆] = lim n→∞ d -1 n [Γ n ] ∧ [∆].
The left hand side of the last identity is the intersection in the sense of currents and it roughly represents the probability measure µ n equidistributed on Q n . The situation will be more delicate when Γ n ∩ ∆ is of positive dimension. We should "extract" from the intersection the part of the right dimension. The right hand side is the intersection of T with ∆ and we expect to get a canonical invariant probability measure of f when we identify ∆ with X in the canonical way. Proving the last identity is a very difficult problem in general and uses heavily the dynamical properties of the sequence Γ n . Now, consider the correspondence F (x 1 , x 2 ) := (f (x 1 ), f -1 (x 2 )) on X × X. We can check that Γ n = F -n/2 (∆), at least in a Zariski open set. The case where n is odd is just a simple technical issue. Therefore, the convergence in the first step of our approach is directly related to the equidistribution of the orbits of varieties under the action of F n . Such a convergence can be proved using similar results for the correspondence f on X.

The equidistribution of the orbits of varieties will be presented in Section 15.6. Finally, in the last section, a list of open problems is given. Some of them require new ideas or new techniques.

Algebraic stability

Let (X, ω) be a compact Kähler manifold of dimension k as above. Let π 1 and π 2 denote the canonical projections from X × X to its two factors. Consider an effective k-cycle Γ = Γ i , where Γ i 's are irreducible analytic sets of dimension k in X × X. We only consider here finite sums and the Γ i 's are not necessarily distinct. We assume that the restriction of π 1 to each Γ i is surjective. Definition 15.2.0.1. Let Γ be as above. We say that Γ defines a meromorphic correspondence or self-correspondence f on X and Γ is its graph. More precisely, if A is any subset of X, we define

f (A) := π 2 (π -1 1 (A) ∩ Γ) and f -1 (A) := π 1 (π -1 2 (A) ∩ Γ).
We say that f is dominant if the restriction of π 2 to each Γ i is surjective. In this case, we also say that f -1 is the adjoint correspondence of f .

Note that when f is dominant, f -1 is also a meromorphic correspondence on X. Its graph is symmetric to Γ with respect to the diagonal ∆ of X × X, i.e. the image of Γ by the involution (x 1 , x 2 ) → (x 2 , x 1 ). Definition 15.2.0.2. Let Γ and f be as above. When π 1 restricted to Γ is generically 1:1, then f is a meromorphic map and when it is 1 : 1, f is a holomorphic map.

From now on, the correspondences we consider are all dominant. We introduce also two indeterminacy sets

I(f ) := {x ∈ X, dim f (x) > 0} and I(f -1 ) := {x ∈ X, dim f -1 (x) > 0}.
They are respectively the indeterminacy sets for f and f -1 . It is not difficult to see that dim π -1 1 (I(f )) ∩ Γ < k. It follows that dim I(f ) ≤ k -2 and a similar property holds for I(f -1 ). If f is a dominant meromorphic map such that I(f ) = ∅, then f is a holomorphic map. In this case, we can show that I(f -1 ) is also empty but the property is true neither for correspondences nor for meromorphic maps. The reader can find in the papers by Oguiso and Truong [START_REF] Oguiso | Pisot units, Salem numbers and higher dimensional projective manifolds with primitive automorphisms of positive entropy[END_REF][START_REF] Oguiso | Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy[END_REF] some recent examples of dynamically interesting meromorphic maps.

Consider now two dominant meromorphic correspondences f and f on X. We can define the correspondence f • f in the following way. Choose a Zariski open set Ω in X such that for x ∈ Ω the set f (x) is finite. It is not difficult to see that f (Ω) is a Zariski open set of X. By reducing Ω, we can also assume that f (x) is finite for x ∈ f (Ω). We will define (f • f )(x) as the set f (f (x)) for x ∈ Ω. The graph of this multi-valued map is an effective cycle in Ω × X. Let Γ be the closure of this cycle in X × X which is, by definition, the graph of the dominant correspondence f • f on X.

The construction of f • f can be obtained in a more geometrical way. Let Γ and Γ denote the graphs of f and f in X × X. Consider the product Γ × Γ in X 4 and let (x 1 , x 2 , x 3 , x 4 ) denote a point in X 4 . Consider the projection Γ of the intersection (Γ × Γ ) ∩ {x 2 = x 3 } into the product of the first and the last factors in X 4 . We obtain Γ from Γ by removing components of dimension larger than k and components whose projections onto the factors of X × X are not surjective. This is the graph of the composition f • f , see Definition 15.2.0.1.

We can define the iterate f n := f •• • ••f , n times, for every n ≥ 1. Denote also by f -n the adjoint of f n which is also the iterate of order n of the correspondence f -1 . We will discuss now the notion of algebraic stability of f which plays an important role in our study.

Let S be a (p, q)-current on X. We define formally the pull-back of S by f by

f * (S) := (π 1 ) * (π * 2 (S) ∧ [Γ]),
when the last expression makes sense. Note that the operators π * i and (π i ) * are well-defined on all currents. Therefore, the last definition is meaningful when the wedge-product π * 2 (S) ∧ [Γ] is meaningful. We also define the push-forward operator f * as the pull-back operator (f -1 ) * associated to f -1 .

Consider the particular case of a continuous or smooth differential (p, q)form φ on X. The wedge-product π * 2 (φ) ∧ [Γ] is well-defined because π * 2 (φ) is a continuous form and [Γ] is a current of order 0. So f * (φ) is well-defined in the sense of currents. However, the value of f * (φ) at a point x is roughly the sum of the values of π * 2 (φ) on the fiber π -1 1 (x) ∩ Γ. We can check that f * (φ) is in general an L 1 form but it may be singular at the critical values of the map π 1 restricted to Γ which contain the indeterminacy set I(f ). So we cannot iterate the operator f * on continuous or smooth forms : for example, the expression f * (f * (φ)) is not meaningful in general. So it is necessary to establish a calculus.

Recall that the Hodge cohomology group H p,q (X, C) of X can be defined using either smooth forms or singular currents. Observe that when φ is closed or exact then f * (φ) is also closed or exact. Therefore, the above operator f * induces a linear map from H p,q (X, C) to itself, that we still denote by f * . The operator f * on H p,q (X, C) is defined to be (f -1 ) * . We can iterate those operators as for every linear operator on a vector space. The following definition is a slight extension of a notion introduced by Fornaess and the second author, see [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF]. Definition 15.2.0.3. We say that a meromorphic correspondence f is algebraically p-stable, 0 ≤ p ≤ k, if we have (f n ) * = (f * ) n on H p,p (X, C) for every n ≥ 1. We say that f is algebraically stable if it is algebraically 1-stable and f is totally algebraically stable if it is algebraically p-stable for every p.

Note that f is always algebraically p-stable for p = 0 and p = k. If f is a dominant holomorphic map then it is totally algebraically stable. There exist meromorphic maps which are not algebraically stable. For example, in dimension k = 2, if a curve is sent to an indeterminacy point then the map is not algebraically stable. In some situations, the algebraic stability can be easily checked but in general this seems to be a difficult question since we need to check the identity (f n ) * = (f * ) n for all n, see also Nguyen [START_REF] Nguyên | Algebraic degrees for iterates of meromorphic self-maps of P k[END_REF].

Recall that in the construction of the graph of the composition of two correspondences, one step is to eliminate bad components of some analytic cycles. This step is in fact the cause of the algebraic instability. The reader can observe the phenomenon with the rational involution f on P 2 given on C 2 by f (z 1 , z 2 ) = (1/z 1 , 1/z 2 ). The algebraic instability makes the dynamical study of f much more difficult. Therefore, in many results, the algebraic stability is assumed. It is verified for large classes of maps. For example, in a projective space, the set of algebraically unstable maps of a fixed degree form a countable union of analytic sets in the parameter space.

Finally, observe that if ϕ and ψ are smooth differential forms of bidegrees (p, q) and (k -p, k -q) respectively, we have

f * (φ), ψ = φ, f * (ψ) .
It follows that the operator f * : H p,q (X, C) → H p,q (X, C) is dual to the operator f * : H k-p,k-q (X, C) → H k-p,k-q (X, C) via the Poincaré's duality. So the algebraic stability can be also expressed in terms of (f n ) * .

Densities and super-potentials

In this section, we will report on some recent techniques used to deal with positive closed currents of arbitrary bidegree. We refer the reader to [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF][START_REF] Hörmander | The analysis of Linear partial differential operators I[END_REF][START_REF] Siu | Analyticity of sets associated to Lelong numbers and the extension of closed positive currents[END_REF] for basic notions and results of pluripotential theory and to [START_REF] Voisin | Hodge theory and complex algebraic geometry[END_REF] for Hodge theory. Positive closed currents can be seen as positive closed differential forms with distribution coefficients. This is a common point of view in the analytic aspect. Locally, positive closed currents can be approximated by smooth positive closed forms using the standard process of convolution. Computation with positive closed currents is possible thanks to an appropriate control of the regularization process.

On a compact Kähler manifold, it is more convenient to work in the global setting rather than in the local setting. There are two reasons. The first one is that one often use the integration by parts or more generally the Stokes formula. Working in the global setting allows us to avoid boundary terms. The second reason is even more important. In a compact Kähler manifold (X, ω) of dimension k, if T is a positive closed (p, p)-current, the pairing T, ω k-p depends only on the (Hodge or de Rham) cohomology classes of T and of ω. This quantity is equivalent to the mass of T which is, by definition, the norm of T as a linear operator on the space of continuous (k -p, k -p)-forms. Therefore, a large part of computations with positive closed currents and even for positive dd c -closed currents reduces to a computation with cohomology classes which is often simpler.

Except for homogeneous manifolds, the convolution process doesn't work in the global setting. Moreover, in general, we cannot regularize positive closed currents without loosing the positivity. The following result gives us a regularization with a control of the positivity loss, see [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF][START_REF] Dinh | Regularization of currents and entropy[END_REF]. For convenience, we also call T := T, ω k-p the mass of T .

Theorem 15.3.0.1 (Demailly for p = 1, Dinh-Sibony for p ≥ 1). Let (X, ω) be a compact Kähler manifold. There is a constant c > 0 depending only on X and ω satisfying the following property. If T is a positive closed (p, p)-current on X, there are positive closed (p, p)-currents T + and T -which can be approximated by smooth positive closed (p, p)-forms and such that

T = T + -T - and T ± ≤ c T .
The theorem also holds for other classes of currents, e.g. positive dd c -closed currents. It is similar to the known fact in algebraic geometry that any cycle can be written as the difference of movable effective cycles. The regularization process hidden in the last theorem preserves good properties of T when they exist. For example, if T is smooth in some open set U , then T ± are also smooth there and the approximation of T ± by smooth positive closed forms on X is uniform on compact subsets of U . Specific needs can be obtained by going through the details of the proof of the above theorem, see [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF][START_REF] Dinh | On the dynamical degrees of meromorphic maps preserving a fibration[END_REF][START_REF] Dinh | Regularization of currents and entropy[END_REF].

We will discuss now the notion of super-potentials. The starting point is that the pluripotential theory is well developed for positive closed currents of bidegree (1, 1) thanks to the notion of plurisubharmonic (p.s.h. for short) functions. More precisely, if T is a positive closed (1, 1)-current, then we can write locally T = dd c u in the sense of currents, where u is a p.s.h. function and d c := i 2π (∂ -∂). Working with a pointwise defined function is more confortable than working directly with a current. For example, it allows more operations like multiplying a positive current S by u. One just has to assume that u is integrable with respect to the trace measure of S. But when T is of higher bidegree, the potentials is just an L 1 -form, one cannot consider their wedge-product with S if S is singular.

In the global setting, if α is a real smooth closed (1, 1)-form in the cohomology class of T , we can write globally

T = α + dd c u,
where u is a quasi-p.s.h. function, i.e., locally the sum of a p.s.h. function and a smooth one. This function u is unique up to an additive constant. So if we normalize u by the condition X uω k = 0 then u is unique. We call u the normalized quasi-potential of T . One of the key technical point in the use of quasi-p.s.h. functions is the control of their singularities. The most useful general property is perhaps the following consequence of a theorem by Skoda.

Theorem 15.3.0.2 (Skoda). Let X, ω and α be as above. Then there are constants c > 0 and λ > 0 such that if T is a positive closed (1, 1)-current in the cohomology class of α and u is its normalized quasi-potential, then we have

X e λ|u| ω k ≤ c.
It is easy to deduce estimates of the L p -norm of u for all 1 ≤ p < ∞. Refined versions of this theorem can be found in [START_REF] Dinh | Exponential estimates for plurisubharmonic functions and stochastic dynamics[END_REF][START_REF] Kaufmann | A Skoda-type integrability theorem for singular Monge-Ampère measures[END_REF][START_REF] Vu | Complex Monge-Ampère equation for measures supported on real submanifolds[END_REF]. So quasi-p.s.h. functions are almost as good as bounded functions. When the above estimate is verified for a probability measure ν, in place of ω k , we say that the measure ν is moderate. The support of a moderate measure is Zariski dense. Super-potentials are functions which play the role of quasi-potentials for positive closed currents of arbitrary bidegree. We will introduce them briefly and refer the reader to [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF][START_REF] Dinh | Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms[END_REF] for details. Let α be a real smooth closed (p, p)-form. Let T be a positive closed (p, p)-current in the cohomology class of α. Let C k-p+1 (X) denote the set of positive closed currents of bidegree (k -p + 1, k -p + 1) and mass 1 in X and C k-p+1 (X) the set of currents in C k-p+1 (X) which are smooth forms. The normalized super-potential of T is a real-valued function which is defined at least on C k-p+1 (X) and may be extended to a function in a larger set of currents. It is denoted by U T and given by

U T (R) := U T , R for R ∈ C k-p+1 (X), where U T is a normalized quasi-potential of T , that is, U T is a (p-1, p-1)-current such that dd c U T = T -α and U T , ω k-p+1 = 0.
Note that when p > 1 the quasi-potential U T also exists but is not unique. However, we can show that the definition of U T does not depend on the choice of U T . So the super-potential U T is a canonical function associated to T and α. It enjoys several properties similar to quasi-p.s.h. functions but we don't quote all of them here. Since it is defined on a space of infinite dimension, it is not clear how to get a similar property as the above Skoda's estimate for quasi-p.s.h. functions. The following result gives the answer to this question, see [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF][START_REF] Dinh | Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms[END_REF].

Theorem 15.3.0.3 (Dinh-Sibony). Let X, ω and α be as above. There is a constant c > 0 such that if T is a positive closed (p, p)-current in the cohomology class of α and U T is its normalized super-potential, then

|U T (R)| ≤ c(1 + log + R C 1 ),
where log + := max(log, 0). Super-potentials also allow to define the intersection of positive closed currents of arbitrary bidegree. For example, if the super-potential U T of T can be extended to a continuous function on C k-p+1 (X), then for any positive closed (q, q)-current S in X with 1 ≤ q ≤ k -p, using the theory one shows that the wedge-product T ∧ S is well-defined and depends continuously on S. This notion was used in dynamics to define invariant measures as the intersection of positive closed invariant currents. We refer to [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF][START_REF] Dinh | Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms[END_REF][START_REF] Vu | Intersection of positive closed currents of higher bidegree[END_REF] for details.

In the rest of this section, we will briefly introduce the theory of densities for positive closed currents, see [START_REF] Dinh | Density of positive closed currents, a theory of nongeneric intersections[END_REF] for details. As we have seen in the introduction, the study of periodic points of a map or correspondence is strongly related to the so called dimension excess of the intersection of analytic cycles. If V 1 and V 2 are two analytic subsets of X of co-dimension respectively p 1 and p 2 , then their intersection is expected to be empty when p 1 + p 2 > k. Otherwise, if their intersection is non-empty, its dimension is expected to be k -p 1 -p 2 . In general, this dimension is at least equal to k -p 1 -p 2 . However, in the first case, the intersection may be non-empty and in the second case the dimension may be larger than k -p 1 -p 2 . We refer to this well-known phenomenon as the dimension excess.

The starting point of the theory of densities for positive closed currents is to determine if such a phenomenon happens for general positive closed currents. The theory is crucial in dynamics because even when we want to understand algebraic cycles we cannot limit ourself to cycles of bounded degree and therefore positive closed currents appear naturally as limits of normalized cycles. It is also convenient to work with the space of positive closed currents of bidegree (p, p) because it admits good compactness properties.

There exists a particular case for which we first explain our point of view. This is the notion of Lelong number. If T is a positive closed (p, p)-current in X and a is a point in X, then the Lelong number ν(T, a) of T at a represents the density of T at the point a. In our point of view, when this number is strictly positive, the "intersection" of T with the point a has a dimension excess. When T is given by a subvariety of X, this phenomenon appears only when a belongs to this variety. Lelong number was originally defined using local holomorphic coordinates near a. The following result is fundamental in the theory.

Theorem 15.3.0.4 (Lelong, Siu). Let X, T and a be as above. Then 1. The Lelong number ν(T, a) is intrinsic, i.e. it does not depend on the choice of local coordinates.

2. The Lelong number ν(T, a) is upper semi-continuous with respect to T . In particular, it is bounded by a constant times the mass of T .

3. For every c > 0, the upper level set {a ∈ X, ν(T, a) ≥ c} is an analytic subset of X.

We describe now the case where the point a is replaced by a submanifold V of dimension l of X. The aim is to see if there is a dimension excess for the "intersection" between T and V . Let N V |X be the normal vector bundle of V in X. We identify its zero section with the manifold V . Let τ denote a smooth map from a neighbourhood of V in X to a neighbourhood of V in N V |X such that the restriction of τ to V is the identity and the induced map from N V |X to itself is also identity. Denote by N V |X the natural compactification of N V |X and by A λ : N V |X → N V |X , for λ ∈ C * , the map which is the multiplication by λ in each fiber of N V |X . This map extends to an automorphism of N V |X .

Let T be a positive closed (p, p)-current. For simplicity, assume that it has no mass on V . Consider now the family of currents T λ := (A λ ) * τ * (T ) in open sets of N V |X . The domain of definition of T λ increases to N V |X when |λ| tends to infinity. In general, these currents are not positive nor of bidegree (p, p). However, we obtain the following result.

Theorem 15.3.0.5 (Dinh-Sibony). Let X, V, N V |X , τ, A λ and T be as above.

1. The family {T λ } is relatively compact in the sense that for any sequence λ n → ∞, there is a subsequence λ n i such that T λn i converges to a current T ∞ on N V |X .

2. The current T ∞ does not depend on the choice of the map τ . Moreover, it is a positive closed (p, p)-current which can be extended by 0 to a positive closed (p, p)-current on N V |X , that we still denote by T ∞ . The mass of the last current is bounded by a constant times the mass of T .

3. The cohomology class of T ∞ in H p,p (N V |X , C), denoted by κ V (T ), is intrinsic, i.e. it does not depend on the choice of τ nor on the choice of the sequence λ n . Moreover, it is upper semi-continuous with respect to T .

The class κ V (T ) is called the total tangent class of T along V . It represents the density of T near V . Note that the bi-dimension of T is (k -p, k -p). So if p > l, we expect, at least in the generic case, that this class vanishes or equivalently T ∞ = 0. In other words, there is no dimension excess for the "intersection" between T and V . When this class is not zero, we conclude that there is a dimension excess. This situation corresponds to the case of positive Lelong number when V is reduced to a point.

Consider now the case where p ≤ l. It is a little bit more subtle to observe the phenomenon of dimension excess. By Künneth theorem, the Hodge cohomology class κ V (T ) can be identified to a polynomial with coefficients κ V j (T ) in H l-j,l-j (V, C) for l -p ≤ j ≤ l. Let s denote the maximal number such that κ V s (T ) = 0. We take s = l -p if all κ V j (T ) vanish. This number is called the tangential h-dimension of T along V . In the generic situation, we expect it to be minimal, i.e. equal to l -p. When this dimension is larger than l -p, we conclude that there is a dimension excess for the intersection between T and V .

We can define the densities between two positive closed currents T and S by considering the densities of T ⊗ S along the diagonal ∆ in X × X. Note also that the theory of densities of currents also allows to define intersection of positive closed currents of arbitrary bidegree under suitable conditions, including the absence of the dimension excess. This is a promising research direction which may offer the most general setting where we can define the wedge-product of currents. The reader will find in [START_REF] Dinh | Density of positive closed currents, a theory of nongeneric intersections[END_REF] a more detailed exposition.

Algebraic and topological degrees

In complex dynamics, a crucial question is to understand the action of the map or correspondence on positive closed currents. This action, if it is well-defined, is often compatible with the action on cohomology and permits to deal with the distribution of orbits and to construct dynamically significant invariant measures. Moreover, the mass of a positive closed current depends only on its cohomology class. Therefore, in order to control the mass of these currents, it is very useful to understand the action of the map or correspondence on cohomology. We will give in this section some general basic properties. Note that although we work with linear actions on finite dimensional vector spaces, it is a difficult problem to describe their behaviour when we iterate the map or correspondence because of the algebraic instability mentioned in Section 15.2.

Let (X, ω) be a compact Kähler manifold of dimension k as above. Let f be a dominant meromorphic correspondence on X. We also fix some norms on the Hodge cohomology groups. Definition 15.4.0.1. We call dynamical degree of order p of f the following limit

d p (f ) := lim n→∞ (f n ) * : H p,p (X, C) → H p,p (X, C) 1/n
and algebraic entropy of f the following constant

h a (f ) := max 0≤p≤k log d p (f ).
The last topological degree d k (f ) is also called topological degree because it is equal to the number of points in f -1 (a) for a generic point a in X.

Note that the discussion at the end of Section 15.2 implies that

d p (f ) := lim n→∞ (f n ) * : H k-p,k-p (X, C) → H k-p,k-p (X, C) 1/n = d k-p (f -1 ).
Therefore, we also have h a (f ) = h a (f -1 ).

We have the following general result.

Theorem 15.4.0.2 (Dinh-Sibony). The limit in the above definition of d p (f ) always exists. It is finite and doesn't depend on the choice of the norm on H p,p (X, C). Moreover, the dynamical degrees and the algebraic entropy are bimeromorphic invariants of the dynamical system. That is, if π : X → X is a bi-meromorphic map from a compact Kähler manifold X to X, then

d p (π -1 • f • π) = d p (f ) and h a (π -1 • f • π) = h a (f ).
We also have for n ≥ 1 that

d p (f n ) = d p (f ) n and h a (f n ) = nh a (f ).
Note that when X is a projective space, the first statement was used by Fornaess and the second author for p = 1 in order to construct the Green dynamical (1, 1)-current [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF]. Also for projective spaces, it was extended by Russakovskii-Shiffman for higher degrees [START_REF] Russakovskii | Value distribution for sequences of rational mappings and complex dynamics[END_REF]. In this case, the group H p,p (X, C) is of dimension 1 and the action of (f n ) * is just the multiplication by a constant d p,n . Therefore, we easily get d p,n+m ≤ d p,n d p,m which implies the result. The proof of the above theorem in the general case uses in an essential way a computation with positive closed currents and Theorem 15.3.0.1 plays a crucial role. We refer to [START_REF] Dinh | On the dynamical degrees of meromorphic maps preserving a fibration[END_REF][START_REF] Dinh | Regularization of currents and entropy[END_REF][START_REF] Dinh | Upper bound for the topological entropy of a meromorphic correspondence[END_REF][START_REF] Truong | Relative) dynamical degrees of rational maps over an algebraic closed field[END_REF][START_REF] Truong | Relative dynamical degrees of correspondences over a field of arbitrary characteristic[END_REF] for details and some extensions of this result. We also obtained in these works the following result, which has been obtained by Gromov for holomorphic maps [START_REF]On the entropy of holomorphic maps[END_REF].

Theorem 15.4.0.3 (Gromov, Dinh-Sibony). Let X and f be as above. Then the topological entropy h t (f ) of f is bounded from above by its algebraic entropy h a (f ). In particular, the topological entropy of f is finite.

The topological entropy measures the rate of divergence of the orbits of points. Its definition for meromorphic maps or correspondences is the same as the Bowen's definition for continuous maps, except that we don't consider orbits which reach the indeterminacy set. Therefore, it is not obvious that the entropy of a meromorphic map is finite. Note also that when f is a holomorphic map, the above result combined with a theorem by Yomdin [START_REF] Yomdin | Volume growth and entropy[END_REF] implies that the topological entropy is indeed equal to the algebraic one. We expect that such a property still holds for large families of meromorphic maps and correspondences. We don't know if in general, there is always a map or correspondence f bi-meromorphically conjugate to f such that h t ( f ) = h a ( f ). If X is a projective manifold, by composing holomorphic projections from X to P k with the adjoints of such maps, it is easy to construct correspondances of positive topological entropy on X.

Observe that the action of f n on H p,q (X, C) is not explicitly used in the above property of entropies when p = q. This can be explained by the following inequality obtained by the first author in [START_REF] Dinh | Distribution des préimages et des points périodiques d'une correspondance polynomiale[END_REF] lim sup

n→∞ (f n ) * : H p,q (X, C) → H p,q (X, C) 1/n ≤ d p (f )d q (f ).
Dynamical degrees are not easy to compute except in the case of algebraically p-stable correspondences. The following result was obtained by the authors for automorphisms in [START_REF] Dinh | Groupes commutatifs d'automorphismes holomorphes d'une variété kählérienne compacte[END_REF] and for meromorphic maps in unpublished lecture notes. It implies that for a holomorphic family of algebraically p-stable correspondences the dynamical degree of order p is constant. Proposition 15.4.0.4. Let f be an algebraically p-stable correspondence on a projective manifold X. Then the dynamical degree d p (f ) of f takes values in a discrete subset of algebraic integers in [0, +∞).

Let N S p (X, R) be the Néron-Severi subspace of H p,p (X, C) spanned by the classes of algebraic (k -p)-cycles in X. Then the action of f on N S p (X, R) preserves the lattice spanned by the algebraic (k -p)-cycles with integer coefficients. Since f is algebraically stable, we can show that d p (f ) is the spectral radius of the action f * on N S p (X, R) and therefore is the largest root of a monic polynomial with integer coefficients. The degree of this polynomial is the dimension of N S p (X, R). The proposition follows easily. When the map or correspondence is not algebraically p-stable, the following problem seems to be difficult. Problem 3. Let f be an arbitrary dominant meromorphic map or correspondence on a compact Kähler manifold. Are its dynamical degrees always algebraic integers ?

We continue our discussion on dynamical degrees. Recall that a direct consequence of the mixed Hodge-Riemann theorem applied to the graphs of f n , see e.g. [START_REF] Dinh | The mixed Hodge-Riemann bilinear relations for compact Kähler manifolds[END_REF][START_REF] Gromov | Convex sets and Kähler manifolds[END_REF], implies that, when f is a meromorphic map, the function p → log d p (f ) is concave. Equivalently, we have

d p (f ) 2 ≥ d p-1 (f )d p+1 (f ) for 1 ≤ p ≤ k -1.
In particular, we have 1

≤ d p (f ) ≤ d 1 (f ) p , h a (f ) > 0 if and only if d 1 (f ) > 1,
and there are two numbers r and s with 0 ≤ r ≤ s ≤ k such that

1 = d 0 (f ) < • • • < d r (f ) = • • • = d s (f ) > • • • > d k (f ).
The property still holds for a correspondence f when the graphs of f n are irreducible.

If V is an analytic subset of pure dimension k -p in X, the compactification of f (V \ I(f )) is also an analytic subset of pure dimension k -p. We call it the strict transform of V by f . Similarly, if T is a positive closed (p, p)-current on X, we can define the push-forward of T by f restricted to X \ I(f ). Using Theorem 15.3.0.1, one can show that the obtained current can be extended by 0 to a positive closed (p, p)-current on X, see [START_REF] Dinh | Pull-back currents by holomorphic maps[END_REF] for details. This is the so-called strict transform of T by f . Let V be an analytic subset of pure dimension p and T a positive closed (k-p, k-p)-current on X. Let > 0 be any constant. It is possible to prove, using again Theorem 15.3.0.1, that the 2p-dimensional volume (resp. the mass) of the strict transform of V (resp. T ) by f n is smaller than a constant times (d p (f )+ ) n . Moreover, d p (f ) is the smallest constant satisfying this property. Therefore, if r and s are as above, the dynamical system f has roughly r expanding directions, s -r neutral directions and k -s contracting directions. In dynamics, neutral directions often make the study more difficult. Definition 15.4.0.5. Let f be a dominant meromorphic correspondence on X. We say that f is algebraically hyperbolic if it admits a dynamical degree d p (f ) which is strictly larger than the other ones. If moreover, this is the last dynamical degree, we say that f is algebraically expanding or with dominant topological degree. Let f be algebraically hyperbolic as above and assume that the action of f * on H p,p (X, C) has only one eigenvalue of maximal modulus which is simple and equal to d p (f ). We say that the action of f on cohomology is simple or f is algebraically simple, see [START_REF] Dinh | Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms[END_REF].

Note that in some references, one uses the word "cohomologically" instead of "algebraically". However, we think the second choice is more appropriate because the action of f on cohomology is not hyperbolic in the usual sense because it often has eigenvalues of modulus 1. Most of results in complex dynamics are obtained under the condition that the action of the map on cohomology is simple. Note that when f is algebraically expanding, then its action on cohomology is simple because dim H k,k (X, C) = 1.

Finally, though analytic tools are dominant in the study of the objects introduced in this section, many questions are of algebraic nature and can be asked for maps or correspondences which are defined over fields different from C. The reader will find in [START_REF] Esnault | Automorphisms of elliptic K3 surfaces and Salem numbers of maximal degree[END_REF][START_REF] Esnault | Algebraic versus topological entropy for surfaces over finite fields[END_REF][START_REF] Truong | Relations between dynamical degrees, Weil's Riemann hypothesis and the standard conjectures[END_REF] and the references therein some recent algebraic counterparts of the topics presented in this paper.

Theorem 15.5.0.3 (Dinh-Nguyen-Truong). Let f be a meromorphic correspondence on X. Assume that f is algebraically expanding, i.e. the last dynamical degree d k (f ) of f is strictly larger than the other dynamical degrees. Then we have

L(f n ) = d k (f ) n +o(d k (f )) n and #Q n ≤ d k (f ) n +o(d k (f )) n = L(f n )+o(L(f n )).
The result was stated in [START_REF] Dinh | Equidistribution for meromorphic maps with dominant topological degree[END_REF] for maps but the proof is the same for correspondences. This is the solution to Problem 1b in the considered setting. We will see later that the last inequality is in fact an equality. The first identity is not difficult to obtain using the action of (f n ) * on cohomology described in Section 15.4, in particular, the action on H p,q (X, C) with p = q.

The key point in the proof of the inequality in the theorem is that the sequence of currents

d k (f ) -n [Γ n ] converges to a positive closed (k, k)-current T in X × X which is equal to π * 1 (µ)
for some probability measure µ on X. The current T is "transverse" to the diagonal ∆ and therefore there is no dimension excess between T and ∆. We easily see that the total tangent class of T along ∆ is equal to the cohomology class of a fiber of the bundle N ∆|X 2 . Then, the inequality in the last theorem follows from the upper semi-continuity property in Theorem 15.3.0.5.

In the following situation, we also have a satisfactory answer to Problem 1b, see [START_REF] Dinh | Equidistribution for meromorphic maps with dominant topological degree[END_REF].

Theorem 15.5.0.4 (Dinh-Nguyen-Truong). Let f be a dominant meromorphic map on a compact Kähler surface X. Assume that f is algebraically stable and that its first dynamical degree d 1 (f ) is strictly larger than its topological degree d 2 (f ). Then we have

L(f n ) = d 1 (f ) n +o(d 1 (f )) n and #Q n ≤ d 1 (f ) n +o(d 1 (f )) n = L(f n )+o(L(f n )).
The proof of this theorem follows the same strategy. We show that the limit T in this case has the form T + ⊗T -where T ± are positive closed (1, 1)-currents on X, which cannot both have mass on the same analytic curve. The last property allows us to show that there is no dimension excess for the intersection of T with ∆. This is the key point in the proof. The result can be extended to meromorphic correspondences under the condition that its action on cohomology is simple.

The reader will find some related results in Favre [START_REF] Favre | Points périodiques d'applications birationnelles de P 2[END_REF], Iwasaki-Uehara [START_REF] Iwasaki | Periodic points for area-preserving birational maps of surfaces[END_REF], Saito [START_REF] Saito | General fixed point formula for an algebraic surface and the theory of Swan representations for two-dimensional local rings[END_REF], Xie [START_REF] Xie | Periodic points of birational transformations on projective surfaces[END_REF] and the references therein. Note that in some references, periodic points which are indeterminacy points may not be counted. Here we count them and they can be the only intersection points of the graphs Γ n and ∆. This this the case for the rational extension to P 2 of the polynomial map f (z, w) = (z + 1, z 2 + w).

We will now consider some situations where the equidistribution of periodic points is known. The following result was obtained in the case of holomorphic endomorphisms of P k by Briend-Duval [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF]. The general version used Theorem 15.5.0.3 above was obtained by Nguyen, Truong and the first author in [START_REF] Dinh | Equidistribution for meromorphic maps with dominant topological degree[END_REF] for maps but the proof can be extended to correspondences. This result shows that isolated periodic points of order n of f are equidistributed with respect to µ when n goes to infinity. It solves Problem 2 in this situation. The statement still holds if we replace Q n by the subset of repelling periodic points of period n.

There are different ways to construct the measure µ : the theorem gives one way to obtain it and we can also get it as the probability measure such that the sequence of currents d k (f ) -n [Γ n ], considered above, converges to π * 1 (µ). So µ can be seen as the intersection of the limit of d k (f ) -n [Γ n ] with the diagonal ∆ of X ×X. We will see in the next section another way to produce this measure. It is known that this measure has no mass on proper analytic subsets of X. Therefore, periodic points are Zariski dense in X. Similar properties hold for other situations that we consider below.

In order to prove this theorem, using Theorem 15.5.0.3, we only need to construct a good family of periodic points. At least in the case where X is a projective manifold, the strategy described in the introduction works quite well. The construction used in the original proof of this theorem follows the approach developed in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF], which is based on the construction of the inverse branches of f n defined on balls in X. The construction is quite delicate because of the needed size control. Note that the measure µ here doesn't have mass on proper analytic subsets of X and satisfies f * (µ) = d k (f )µ.

Here is another simple situation where we can solve Problem 2.

Theorem 15.5.0.6. Let f be a holomorphic automorphism of a projective surface X. Assume that its first dynamical degree d 1 (f ) is larger than one or equivalently its topological and algebraic entropies are positive. Let Q n denote the set of isolated periodic points of period n of f , counted with multiplicity. Then there is an invariant probability measure µ such that

lim n→∞ 1 d 1 (f ) n a∈Qn δ a = µ.
The upper bound for the cardinality of Q n is given in Theorem 15.5.0.3. For the construction of a good family of periodic points, see Dujardin [322]. The measure µ can be obtained as an intersection of invariant currents or as the intersection of the limit of d 1 (f ) -n [Γ n ] with the diagonal ∆ of X × X. We can also replace Q n in the theorem by the subset of saddle periodic points.

The reader will find more results for surfaces in [START_REF] Diller | Dynamics of meromorphic maps with small topological degree III: geometric currents and ergodic theory[END_REF]322,[START_REF] Jonsson | On the complex dynamics of birational surface maps defined over number fields[END_REF] which are too technical to state in this paper. Notice that the upper bound for the number of isolated periodic points is crucial for the equidistribution property. It is sometimes overlooked in literature. We think that the strategy described in the introduction can be extended to holomorphic automorphisms or correspondences on projective manifolds of arbitrary dimension, whose actions on cohomology are simple. The needed techniques were recently developed in order to prove the following result.

Let f be a polynomial automorphism of C k . We extend it to a birational map on the projective space P k which is the natural compactification of C k . Denote by I(f ) and I(f -1 ) the indeterminacy sets of f and f -1 respectively. They are analytic subsets of the hyperplane at infinity P k \ C k . The following notion was introduced by the second author under the name of regular automorphisms, see [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. Definition 15.5.0.7. We say that f is a Hénon-type automorphism if f is not an automorphism of P k and I(f

) ∩ I(f -1 ) = ∅.
This is a large family of totally algebraically stable maps. The condition in the definition is easy to check. Moreover, in dimension 2, all polynomial automorphisms of C 2 are conjugated to Hénon-type maps or to elementary maps whose dynamics is simple to study, see Friedland-Milnor [START_REF] Friedland | Dynamical properties of plane polynomial automorphisms[END_REF]. Consider a Hénontype map f as above. It is not difficult to show that there is an integer p such that dim I(f ) = k -p -1 and dim I(f -1 ) = p -1. The action of f on cohomology is simple and d p (f ) is the largest dynamical degree. Moreover, one can prove that I(f n ) = I(f ), I(f -n ) = I(f -1 ) for n ≥ 1, and then deduce that all periodic points of order n of f are isolated.

The following result was obtained by Bedford-Lyubich-Smillie [START_REF] Bedford | Distribution of periodic points of polynomial diffeomorphisms of C 2[END_REF] for k = 2 and by the authors in the general case [START_REF] Dinh | Equidistribution of saddle periodic points for Hénontype automorphisms of C k[END_REF].

Theorem 15.5.0.8 (Bedford-Lyubich-Smillie, Dinh-Sibony). Let f be a Hénontype map on C k as above and let Q n be the set of periodic points of period n of f counted with multiplicity. Then there is an invariant probability measure µ with compact support in C k such that

lim n→∞ 1 d p (f ) n a∈Qn δ a = µ.
This is the most difficult equidistribution property we obtained. In this theorem, we can also replace Q n by the subset of saddle periodic points. One may have periodic points at infinity but they are negligible for the above equidistribution property. Most of periodic points are in a compact subset of C k . The measure µ can be obtained as the intersection of invariant positive closed currents or as the intersection of the limit of d p (f ) -n [Γ n ] with the diagonal ∆ of P k × P k . It is known that the measure µ here is moderate. In particular, the support of µ is Zariski dense in C k .

In higher dimensions, the proof of the theorem requires a use of positive closed currents of arbitrary bidegree and is much more subtle than a simple technical issue. We follow the strategy described in the introduction and the most difficult step is to show that lim

n→∞ d p (f ) -n (F n/2 ) * [∆] ∧ [∆] = lim n→∞ d p (f ) -n (F n/2 ) * [∆] ∧ [∆].
In general, the two operations "taking a limit of currents" and "taking the wedge-product with a current" do not commute. The main difficulty is the critical values of the projection from Γ n (to an imaginary space) following the direction of ∆. In order to deal with this difficulty, we lift the dynamical system F : P k × P k → P k × P k to a suitable jet bundle associated to P k × P k . This allows us to include the above "critical values" into the system. The behaviour of the lifts of Γ n , or equivalently, of the orbit of ∆ by F , to the jet bundle plays a crucial role in the proof of the above identity. A key point is that the volume of the lift of Γ n is of the same order of magnitude than the volume of Γ n . One of the difficulties is that the ergodicity properties we can get for the new system on the jet bundle are weaker than what we can obtain for F . To overcome these difficulties we use in particular the theory of densities of currents and some results by de Thélin [START_REF] De Thélin | Sur la construction de mesures selles[END_REF] on estimates of Lyapounov exponents in order to prove the above identity.

For the rest of this section, we will discuss the case of modular correspondences, where Problem 2 has a satisfactory solution. Let G be a connected Lie group and let Λ be a lattice in G. Define X := Λ\G. Let g ∈ G be an element such that g -1 Λg is commensurable with Λ, that is, Λ g := g -1 Λg ∩ Λ has finite index in Λ. Denote by d g this index.

The map x → (x, gx) induces a map from Λ g \G to X × X. Let Γ g be its image. The natural projections from Γ g onto the factors of X × X define two unramified coverings of degree d g . Therefore, it is the graph of a correspondence f on X which is called an (irreducible) modular correspondence. When the group generated by g and Γ is dense in G, we say that f is an exterior correspondence. Let K be a maximal compact subgroup of G. Since the left-multiplication and right-multiplication on G commute, the correspondence f can descend to a correspondence f on the locally symmetric space X := X/K. We also say that f is a modular correspondence on X. Several characterizations of modular correspondences on Hermitian locally symmetric spaces and related problems were considered in Clozel-Ullmo [START_REF] Clozel | Correspondances modulaires et mesures invariantes[END_REF], Huang-Yuan [START_REF] Huang | Holomorphic isometry from a Kähler manifold into a product of complex projective manifolds[END_REF], Mok [START_REF] Mok | Local holomorphic isometric embeddings arising from correspondences in the rank-1 case[END_REF][START_REF] Mok | Extension of germs of holomorphic isometries up to normalizing constants with respect to the Bergman metric[END_REF] and Mok-Ng [START_REF] Mok | Germs of measure-preserving holomorphic maps from bounded symmetric domains to their Cartesian products[END_REF]. The following result was obtained in [START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF].

Theorem 15.5.0.9 (Dinh). Let f be an exterior modular correspondence on a locally symmetric space X as above. Let Q n denote the set of isolated periodic points of period n of f . Assume also that f has at least one isolated periodic point. Then

lim n→∞ 1 #Q n a∈Qn δ a = µ,
where µ is the Haar (probability) measure on X.

Note that the theorem holds also when X is not Hermitian or not compact. The proof of this theorem uses an analysis of the inverse branches of f n on balls of X, similar to the one in Theorem 15.5.0.5. However, since f is locally isometric with respect to an invariant Riemannian metric on X, the problem is technically simpler. A key point in the proof is the equidistribution of the orbits of points with respect to the measure µ which was obtained by Clozel-Otal in [START_REF] Clozel | Unique ergodicité des correspondances modulaires[END_REF].

Orbits and varieties

As mentioned in the introduction, the equidistribution of periodic points is closely related to the equidistribution of the orbits of points and varieties. In this section, we will discuss some situations where we have a satisfactory answer to the following problem. Let f be a dominant meromorphic correspondence on a compact Kähler manifold X of dimension k as above.

Problem 5. Let V be an analytic subset of X of pure codimension p. Study the convergence and rate of convergence of the currents of integration on f -n (V ), properly normalized, when n goes to infinity.

Note that for convenience, we state the problem for the negative orbit of V by f . The study of the positive orbit of V by f is equivalent to the study of the negative orbit of V by f -1 .

Recall that the mass of a positive closed current depends only on its cohomology class. So the mass of the current [f -n (V )] grows at most as the norm of the operator (f n ) * on H p,p (X, C). Hence, concretely, we want to study the convergence and the rate of convergence of d -1 n [f -n (V )] for a suitable sequence (d n ) of positive numbers which is equivalent to the sequence of norms (f n ) * : H p,p (X, C) → H p,p (X, C) .

In the situations we will consider, the correspondence is algebraically p-stable. We also have d p > d l for l < p except for the case of modular correspondences. Unless we use strong geometric hypotheses or other conditions, the case without algebraic stability seems not to be accessible for the moment. Without the condition d p > d l , the nature of the problem changes. The reader can, for example, compare the case of the orbits of points by a Hénon-type automorphism with the statements below. We first discuss the cases of orbits of points and hypersurfaces which only require classical tools from complex analysis and geometry for the proofs.

Theorem 15.6.0.1. Let f be a non-invertible holomorphic map on P k . Let d k (f ) denote its topological degree. Then 1. There is a maximal proper analytic subset E of P k which is totally invariant, i.e. we have f -1 (E ) = f (E ) = E .

2. There is an invariant moderate probability measure µ of f (called equilibrium measure) such that

lim n→∞ 1 d k (f ) n a∈f -n (z)
δ a = µ if and only if z ∈ E , where the points in f -n (z) are counted with multiplicity.

3. The convergence in the previous statement for z ∈ E is exponentially fast.

More precisely, if ϕ is a Hölder continuous function on P k then the integral

1 d k (f ) n a∈f -n (z)
δ a -µ, ϕ tends to 0 exponentially fast as n goes to infinity. This result was obtained by the authors using strong compactness properties of quasi-p.s.h. functions (see Theorem 15.3.0.2) which are used as test functions for measures and also some analysis of the critical set in order to localize the exceptional set E . We refer the reader to [START_REF] Dinh | Equidistribution speed for endomorphisms of projective spaces[END_REF] for more precise statements and history of the problem. The similar statement with the same proof holds for algebraically expanding holomorphic maps on compact Kähler manifolds. The convergence in the second assertion has been obtained by Fornaess and the second author for z outside a pluripolar set and by Briend-Duval for z outside a countable union of analytic subsets, see [START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF][START_REF] Fornaess | Complex dynamics in higher dimensions[END_REF]. For the case of dimension 1, see Brolin, Freire-Lopes-Mañé and Lyubich [START_REF] Brolin | Invariant sets under iteration of rational functions[END_REF][START_REF] Freire | An invariant measure for rational maps[END_REF][START_REF] Lyubich | Entropy properties of rational endomorphisms of the Riemann sphere[END_REF].

Consider now a more general setting. Let f be an algebraically expanding map on a compact Kähler manifold X of dimension k. Let d k (f ) denote its topological degree. Let I(f ) and I(f -1 ) denote the indeterminacy sets of f and f -1 . Denote by I ∞ (f ) the positive orbit of I(f ) and I ∞ (f -1 ) the one of f -1 . We will consider points outside those sets. The following result was obtained by Nguyen, Truong and the first author using a geometrical approach, originally used in dimension 1, see [START_REF] Dinh | Equidistribution for meromorphic maps with dominant topological degree[END_REF]. The convergence has been obtained by the authors for z outside a pluripolar set and by Guedj for z outside a countable union of analytic sets, see [START_REF] Dinh | Distribution des valeurs d'une suite de transformations méromorphes et applications[END_REF][START_REF] Guedj | Ergodic properties of rational mappings with large topological degree[END_REF].

Theorem 15.6.0.2. Let f be an algebraically expanding map as above. There is an invariant probability measure µ of f (equilibrium measure) and a proper analytic subset E of X such that if z is outside I ∞ (f ) ∪ I ∞ (f -1 ), then

lim n→∞ 1 d k (f ) n a∈f -n (z)
δ a = µ if and only if z ∈ E , where the points in f -n (z) are counted with multiplicity.

Note that when z is outside I ∞ (f )∪I ∞ (f -1 ), the condition z ∈ E is equivalent to the condition that z doesn't belong to the orbit of E because E satisfies a strong invariant property : f -1 (E \ I(f -1 )) ⊂ E . The result can be extended to algebraically expanding correspondences but in this case E doesn't satisfy such an invariant property and therefore we need to replace the condition z ∈ E with the condition that z is not in the positive orbit of E by f . Consider now the case of a modular correspondence which plays the central role in the proof of Theorem 15.5.0.9. The following result was obtained by Clozel-Otal in [START_REF] Clozel | Unique ergodicité des correspondances modulaires[END_REF], see also Clozel-Ullmo [START_REF] Clozel | Correspondances modulaires et mesures invariantes[END_REF].

Theorem 15.6.0.3 (Clozel-Otal). Let f, X and µ be as in Theorem 15.5.0.9. Let d be the topological degree of f . Then for every z ∈ X we have

lim n→∞ 1 d n a∈f -n (z)
δ a = µ.

We discuss now the case of orbits of hypersurfaces. The following result was obtained by Favre-Jonsson in the case of dimension 2 and by the authors in the general case [START_REF] Dinh | Equidistribution towards the Green current for holomorphic maps[END_REF]395].

Theorem 15.6.0.4 (Favre-Jonsson, Dinh-Sibony). Let f be a non-invertible holomorphic map on P k . Let d 1 (f ) denote its first dynamical degree. Then there is a totally invariant proper analytic set E 0 such that if V is a hypersurface of degree deg(V ) of P k which doesn't contain any component of E 0 then

lim n→∞ 1 deg(V )d 1 (f ) n (f n ) * [V ] = T,
where T is the dynamical Green (1, 1)-current of f . So the negative orbit of V is equidistributed with respect to the current T . There are different ways to construct this invariant positive closed (1, 1)-current. The above theorem shows that it is the limit of deg(V ) -1 d 1 (f ) -n (f n ) * [V ] for generic hypersurfaces V . If α is a closed (1, 1)-form with bounded coefficients in P k which is cohomologous to a hyperplane, then d 1 (f ) -n (f n ) * (α) also converges to T in the sense of currents, see e.g. [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF] for more details.

Note that for generic hypersurfaces V , Taflin proved that the convergence of the currents deg(V ) -1 d 1 (f ) -n (f n ) * [V ] towards T is exponentially fast, see [START_REF] Taflin | Equidistribution speed towards the Green current for endomorphisms of P k[END_REF] for a precise statement. Note also that all the above results can be extended to Hénon-type automorphisms of C k , see [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF][START_REF] Taflin | Equidistribution speed towards the Green current for endomorphisms of P k[END_REF].

The key point in the proof is to use normalized quasi-potentials of positive closed (1, 1)-currents. The convergence of these currents is equivalent to the convergence of their normalized quasi-potentials. Compactness of quasi-p.s.h. functions and other classical tools from complex geometry allow to obtain the above results.

Consider now the case of analytic sets V of arbitrary dimension. The theory of super-potentials described in Section 15.3 substitutes the use of quasi-p.s.h. functions. In particular, we use Theorem 15.3.0.3 instead of Theorem 15.3.0.2. We however need to overcome more technical difficulties than in the hypersurfaces case.

Let H d denote the family of all holomorphic self-maps of P k such that the first dynamical degree is d > 1. This can be identified to a Zariski open subset of a projective space. The following result was obtained by the authors in [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF], see also Ahn [23] for some extension.

Theorem 15.6.0.5 (Dinh-Sibony). There is an explicit dense Zariski open subset H d of H d such that for every f in H d and every analytic subset V of pure codimension p of P k we have

lim n→∞ 1 d p deg(V ) (f n ) * [V ] = T p ,
where T p is the p-th power of the dynamical Green (1, 1)-current of f . Moreover, the convergence is exponentially fast and uniform on V .

In the case of Hénon-type maps, the critical values of f n are easier to understand and we obtain in the same way a stronger property. Let f be a Hénon-type automorphism of C k as in Theorem 15.5.0.8. Recall that I(f -1 ) is attractive for f . Let U (f ) denote the basin of I(f -1 ) which is an open neighbourhood of I(f -1 ) in P k . The set K (f ) := C k \ U (f ) is the set of all points z ∈ C k whose positive orbits by f are bounded in C k . It is also known that the closure K (f ) of K (f ) in P k is the union of K (f ) with I(f ). Recall that dim I(f ) = k -p -1 and dim I(f -1 ) = p-1. The following result was obtained by Fornaess and the second author for the case of dimension 2 in [START_REF] Fornaess | Complex dynamics in higher dimensions[END_REF] and by the authors for the general case in [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF], see also [START_REF] Bedford | Polynomial diffeomorphisms of C 2 . IV. The measure of maximal entropy and laminar currents[END_REF][START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF].

Theorem 15.6.0.6 (Fornaess-Sibony, Dinh-Sibony). Let V be an analytic subset of pure dimension k -p and degree deg(V ) in P k such that V ∩ I(f -1 ) = ∅. Then deg(f ) -1 d p (f ) -n (f n ) * [V ] converges exponentially fast to a positive closed (p, p)-current T (f ). Moreover, T (f ) is the unique positive closed (p, p)-current of mass 1 with support in K (f ).

In the case of dimension 2, the last statement also holds if we replace positive closed currents by positive dd c -closed currents, see [START_REF] Dinh | Rigidity of Julia sets for Hénon type maps[END_REF]. Note that we can also apply the theorem for f -1 . The equilibrium measure µ considered in Theorem 15.5.0.8 can be obtained as the intersection of T (f ) and T (f -1 ). In general, the map F = (f, f -1 ) on C k × C k is not a Hénon-type map but its dynamics can be studied in a similar way. A version of the last theorem for F is a crucial point in the proof of Theorem 15.5.0.8 following the general strategy described in the introduction. In particular, the sequence of currents d p (f ) -n [Γ n ] converges to the current T (f ) ⊗ T (f -1 ). The intersection of the last current with the diagonal of P k × P k can be identified with the measure µ.

Note that one can obtain similar properties for holomorphic automorphisms of a compact Kähler manifold, see [START_REF] Cantat | Dynamique des automorphismes des surfaces K3[END_REF][START_REF] Dinh | Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms[END_REF][START_REF] Dinh | Rigidity of Julia sets for Hénon type maps[END_REF] for details.

Open problems

In previous sections, we already mentioned several general open problems. We will give in this section some other concrete questions which require new ideas or important technical tools. In order to keep the presentation simple, some problems are stated for particular families of maps but the reader can easily generalize them to other maps and correspondences or their restrictions to certain open subsets, e.g. to the basin of an attracting set, see [START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF][START_REF] Taflin | Speed of convergence towards attracting sets for endomorphisms of P k[END_REF]. Problem 6. Let f be a holomorphic automorphism of positive entropy on a compact Kähler surface or more generally a holomorphic automorphism of positive entropy on a compact Kähler manifold with a simple action on cohomology. Show that its periodic points are equidistributed with respect to an invariant probability measure.

We have seen in Theorem 15.5.0.6 that this property holds when X is a projective surface. Likely, the techniques in the proof of Theorem 15.5.0.8 allow to solve the problem when X is a projective manifold. However, the general case of Kähler manifolds requires a new technical idea whose interest may be greater than the solution of the last question, see e.g. the next problem.

Consider a holomorphic endomorphism f of P k with the first dynamical degree d > 1. Let Q n denote the set of periodic points of period n of f counted with multiplicity. Note that in this case, all the periodic points of period n are isolated and we have #Q n = d kn + O(d (k-1)n ). The same ideas used in the proof of Theorem 15.5.0.8 can be applied to get the last convergence property. The situation is even much simpler in this case.

Several steps of the proof are already quantitative but at the end, we use some non-quantitative arguments from complex geometry. One should improve the techniques in order to get a quantitative result. This part may be related to Problem 6.

Recall that T p is the dynamical Green (p, p)-current of f , see Theorem 15.6.0.5. Its support is called the Julia set of order p of f . De Thélin and the first author proved that the topological entropy of f on any compact subset disjoint from supp(T p ) is at most equal to (p -1) log d, see [START_REF] De Thélin | Sur la construction de mesures selles[END_REF][START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF]. The following question is directly related to the last one. Note that Fornaess showed that one may have an infinite number of periodic points outside the support of the equilibrium measure µ = T k when k ≥ 2, see [START_REF] Fornaess | Dynamics of P 2 (examples). Laminations and foliations in dynamics, geometry and topology[END_REF]. It is well-known that in dimension k = 1 there are only finitely many of such points.

The following folklore conjecture has been solved in some particular cases, see Hwang-Nakayama [START_REF] Hwang | On endomorphisms of Fano manifolds of Picard number one[END_REF] and the references therein. We believe that the existence of repelling periodic points can be used to study the problem. Indeed, the existence of repelling periodic points obtained in Theorem 15.5.0.5 implies that X contains infinitely many non-degenerate holomorphic images of C n , where dim X = n. Conjecture 15.7.0.1. Let X be a Fano manifold with Picard number 1. Assume that X admits a non-invertible holomorphic endomorphism. Then X should be a projective space.

Concerning the equidistribution property in Theorem 15.6.0.5, the following conjecture was stated in [START_REF] Dinh | Equidistribution towards the Green current for holomorphic maps[END_REF]. It is open for 2 ≤ p ≤ k -1.

Conjecture 15.7.0.2. Let V be an irreducible analytic subset of dimension k -p of P k . Assume that V is generic in the sense that V ∩ E = ∅ or codimV ∩ E = p + codimE for any irreducible component E of every totally invariant analytic subset of P k . Then

lim n→∞ d -pn (f n ) * [V ] = T p .
We can also investigate the rate of the last convergence. Note that one proved that there are only finitely many of analytic subsets E of P k which are totally invariant, i.e. f -1 (E) = f (E) = E, see e.g. [START_REF] Dinh | Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings[END_REF]. In comparison with the known case of hypersurface with p = 1, super-potentials can replace quasi-p.s.h. functions. However, we still need to extend some arguments from classical complex geometry (e.g. Lojasiewicz's inequality) to the space of positive closed currents which is of infinite dimension.

Note that we can extend the conjecture to the case of Hénon-type maps by considering totally invariant sets for the restriction of the map to the indeterminacy set of its inverse.

Properties of totally invariant analytic subsets of P k may be useful for the last question. The following problem is still open in dimension k ≥ 3. For the case of dimension 2, see [START_REF] Cerveau | Hypersurfaces exceptionnelles des endomorphismes de CP(n)[END_REF][START_REF] Fornaess | Complex dynamics in higher dimension. I[END_REF] and also [START_REF] Amerik | Exceptional points of an endomorphism of the projective plane[END_REF][START_REF] Zhang | Invariant hypersurfaces of endomorphisms of projective varieties[END_REF]. Problem 9. Let E be an analytic subset of P k which is totally invariant by f . Is E always a union of linear analytic subspaces of P k ? Find an upper bound for the degree of E (or for #E when E is finite) which depends only on k. Note that we don't assume that E is irreducible.

We will end this section with the particular case of Hénon-type maps. Let f be a Hénon-type map as in Theorem 15.5.0.8. Theorem 15.6.0.6 shows that K (f ) satisfies a very strong rigidity property. For p = k -1, i.e. dim I(f ) = 0, we know that there are holomorphic entire maps with values in K (f ). Using Nevanlinna's theory, one can produce positive closed current of bidimension (1, 1) with support in K (f ). By Theorem 15.6.0.6, this current is proportional to the dynamical Green (k -1, k -1)-current of f whose support is contained the boundary of K (f ). This support is exactly the boundary of K (f ) when k = 2 and p = 1. In the following problem, the first question is open for p < k -1, i.e. dim I(f ) > 0, and the second one is open for p > 1.

Problem 10. Let τ : C k-p → K (f ) be a non-degenerate holomorphic map. Does the closure of τ (C k-p ) contain the support of the dynamical Green (k -p, k -p)current of f ? Is the support of this current equal to the boundary of K (f ) ?

Nevanlinna's theory is well developed for holomorphic maps on C but the theory doesn't seem to work for general holomorphic maps on C k-p . Some aspects can be extended to higher dimension under conditions which are difficult to check. The last problem may lead to a setting where one can develop the theory with applications.

surfaces are parabolic if and only if they do not admit non-constant, bounded, subharmonic functions.

We consider positive currents S r = S j,r of bidimension (j, j) on Y defined by < S r , ϕ >= 1 c r X u r (dd c τ ) k-j ∧ φ * (ϕ) (16.1.1) where ϕ is a test form of bidegree (j, j), and where we may take u r = (1 -τ r ) + , a plurisuperharmonic function on B r := {z ∈ X | τ (z) < r} for all r. The constant c r = X u r (dd c τ ) k-j φ * (ω j ) is a normalizing constant to have S r /c r of mass 1. When X is parabolic of dimension k, for example, we show that for j = 1, the currents S r /c r have at least one positive d-closed current among their cluster points. The averaged characteristic function, or simply characteristic function, T j (r) is defined as These characteristic functions are modeled on those of Nevannlina and later, in higher dimensions, of Chern, for example [START_REF] Chern | On holomorphic mappings of hermitian manifolds of the same dimension[END_REF].

T j (r) =
Define the d-mass ratio I j (r) of degree j as follows: We show, for arbitrary p.s.h. exhaustion τ , that if lim r →+∞ I j (r ) = 0, then all cluster points of the currents S r /c r of bidimension (j, j) are positive closed currents, cf. Theorem 16.2.0.2.

I j (r) =
The question of the existence of closed currents for images of C k has been explored recently by de Thélin [START_REF] De Thelin | Ahlfors' currents in higher dimensions[END_REF], where limit currents similar to those described above are called Ahlfors currents. The difference between [START_REF] De Thelin | Ahlfors' currents in higher dimensions[END_REF] and here is that we weight the integral in the definition of S r with the factor u r , which is smoother than the characteristic function of B r used in [START_REF] De Thelin | Ahlfors' currents in higher dimensions[END_REF]. The condition guaranteeing the existence of closed limit currents seems more tractable than that of [START_REF] De Thelin | Ahlfors' currents in higher dimensions[END_REF] since it involves only the relative growth of t j and t j-1 , and not their derivatives, although cf. Theorem 2 of [START_REF] De Thelin | Ahlfors' currents in higher dimensions[END_REF] on this point, and compare it to Theorem 16.7.0.2 below. Note that Theorem 16.7.0.2 produces dd c -closed currents. Only the maximal dimensional case j = k, i.e., S r of bidimension (k, k) is examined in [START_REF] De Thelin | Ahlfors' currents in higher dimensions[END_REF], and only the case of d-closed limits. It turns out that for questions of value distribution, it can often be just as useful to find cluster points which are dd c -closed, a situation to which we turn next.

Assume τ = log σ, and redefine B r = {σ < r}, and the current S r = S j,r of bidimension (j, j) in the dd c -case as S r (ψ) = Br log + r σ (dd c τ ) k-j ∧ φ * (ψ) (16.1.5) for ψ of bidegree (j, j), with normalizing constant c r = S r (ω j ). Define the dd c -mass ratio J j (r) of degree j by J j (r) = t j-1 (r) T j (r) , (16.1.6) where the denominator is the classical characteristic function (16.1.3). Our main result here is Theorem 16.3.0.2, which gives the following result.

Main Theorem 16.3.0.2 If J j (r ) → 0, then all cluster points of S r /c r are dd c -closed. Moreover, dd c S r /c r , ψ → 0 when ψ is a bounded form.

In particular, we find conditions which ensure that there is a dd c -closed current associated with a holomorphic map φ : B k (1) → Y , with B k (1) the unit ball in C k . A consequence of these conditions is the following Brody type result. Theorem 16.4.0.2 Let φ n : B k (1) → Y be a sequence of holomorphic maps. Then either the graphs of the φ n form a normal family of analytic sets, or there is a j, 1 ≤ j ≤ k, and sequences r → R -, n → ∞ such that S j,r /c j,r = S φn ,j,r /c n ,j,r converges to a dd c -closed current.

These results lead to several consequences in value distribution theory, and we record just one here, describing the value distribution of points. Then there exists a "small" exceptional set E such that for a / ∈ E, then In particular, the (2n-2+δ)-dimensional Hausdorff measure of E is 0, for any δ > 0.

Here N (a, r) is the classical logarithmic average of the number of preimages of a in the τ -ball of radius r (c.f. (16.5.16)), and T k (r) = r 0 t k (s) ds s , the appropriate characteristic function for this dimension. The smallness of E is measured by a capacity, for which E is of capacity 0. In fact, we get for every codimension j an exceptional set E j of "zero j-capacity" such that outside of E j one has defect zero, in the sense of a dimension-appropriate case of a result similar to (16.1.8), provided that the appropriate J j (r) has lim inf J j (r) = 0. It seems that in previous work (see Shabat [19], Griffiths-King [START_REF] King | Nevanlinna theory and holomorphic mappings between algebraic varieties[END_REF]), the claim is that "most" points are covered without a quantitative measure of the size of the defect locus. For analytic sets there are earlier results in this direction for the average growth of a hyperplane section, see Gruman [START_REF]La géométrie globale des ensembles analytiques dans C n[END_REF], Molzon-Shiffman-Sibony [START_REF] Molzon | Average growth estimates for hyperplane sections of entire analytic sets[END_REF].

Theorem 16.5.0.2 and other results in section 16.5 are sharper than stated here, since we give estimates for the rates of convergence. For these the second half of Theorem 16.3.0.2 is crucial, and gives a formulation of the proximity term in the First Main Theorem of value distribution in our context, and an estimation in terms of mass ratios.

Here is an outline of the chapter. In section 16.2 we estimate dS r , ψ /c r , and arrive at the d-mass ratios of degree j as a useful bound. The rest of the section is devoted to estimating these mass ratios in concrete cases. The situation is especially clear when the domain X of φ is parabolic, and when X is furthermore of dimension one, our results are complete.

Section 16.3 is very analogous to section 16.2, but for dd c -closed cluster currents. Of particular interest is the precise estimate in THeorem 16. In particular, because we can estimate dd c S j,r for all intermediate j, and not just j = k, we arrive at a "multichotomy": either one of the j, 1 ≤ j ≤ k gives rise to a positive, dd c -closed limit current of S j,r /c j,r or we get an estimate on the volume of the graph of φ. This follows from the inductive structure of the various dd cmass ratios, and their relation to the mixed volumes calculation of the volumes of graphs in X × Y . The Brody-type result described above follows. Section 16.5 deals with the value distribution applications, and includes one corollary about the behavior of leaves of singular holomorphic foliations of P m . Section 16.6 examines the size of the set of limit currents constructed here using results in complex dynamics. The result is a kind of higher dimensional equidistribution according as a limit current is unique. The final section 16.7 relates the mass ratio conditions which this chapter is based on to a couple of examples of classical order of growth conditions, such as finite order, on maps φ.

in bidegrees (j, j -1) and (j -1, j), and is real, and because secondly any such ψ can be written as a finite sum (with an a priori bounded number of terms),

ψ = N ν=1 θ ν ∧ β j-1 ν + N ν=1 θ ν ∧ β j-1 ν , (16.2.3) 
where θ ν , β ν are as claimed. We note that this can be done in such a way that With small technical modifications, we can allow X to be a singular analytic space. We formalize this condition. First set I j (r) equal to (the essential part of ) the right hand side of (16.2.7), that is, I j (r) = ( Br dv r ∧ d c v r ∧ (dd c τ ) k-j ∧ φ * (ω j-1 ))( Br (dd c τ ) k-j ∧ φ * (ω j ))

( Br u r (dd c τ ) k-j ∧ φ * (ω j )) 2 .

(16.2.8) We have proved the following basic theorem. With (16.2.11) in hand, we can express relatively natural conditions on the growth or decay of ratios of volumes, similar in spirit to the original Ahlfors conditions, which guarantee that I(r ) → 0 along some suitable sequences r → ∞. For convenience, set c r = c below. Then there is a sequence r → ∞ such that S r /c converges to a positive closed current. Moreover, dS r /c , ψ → 0, for any bounded test form ψ. Then there is a sequence r → ∞ such that S r /c converges to a positive closed current. Moreover, dS r /c , ψ → 0, for any bounded test form ψ. Then there is a sequence r → ∞ such that S r /c converges to a positive closed current. Moreover, dS r /c , ψ → 0, for any bounded test form ψ.

Proof. We write out the case j = k; the others proceed similarly. For notational simplicity, set A(r) = r 0 t k (s) ds. We see that I(r) ≥ c is equivalent to 1 One might have to assume r ≥ some r 1 to guarantee A(r) = 0 in the arguments below. We will assume, WLOG, that r 1 = 0. on suitable sequences of r → R. If lim t k-1 (r) A(r) = 0, we get a contradiction for some R >> 0. 

1 A r r 0 ≤ 1 A(R 0 ) < ∞,
which leads again to a contradiction and proves 3.

We examine next another case where we can analyze the condition I(r ) → 0 by manipulation of ratios of volume growth. We start from the simple observation that (16. We conclude that a condition which is interesting since it is independent of φ. Note that this condition can also be used for j = 1 and arbitrary k to construct closed limit currents of bidimension (1, 1). Therefore, as a special case, we have the following corollary.

1 c A -δ (r 0 ) ≥ δ r r 0 A 1-δ (
Corollary 16.2.0.6. If dim X = k, R = ∞ and τ is a parabolic exhaustion of X, then φ admits closed positive limit currents of bidimension (1, 1) as limit points of S 1,r /c 1,r , for any Y, φ and ω.

Proof. If τ is a parabolic exhaustion, i.e., (dd c τ ) k = 0, for τ ≥ some r 0 , then t 0 (r) = Examining the proof of corollary 16.2.0.6 shows the conclusions to hold whenever (16.2.21) is verified, and the corollary lets one interperet (16.2.21) as a weak form of parabolicity for the pair X, τ , since it is independent of φ, Y, ω. Along the same lines, suppose that the denominator r 0 t k-1 (s) ds of the integrand of (16.2.20) is bounded, but that A(r) is unbounded (as in the parabolic case), then for δ ∈ (0, 1), (16.2.19) gives 1-δ ds, 0 < r, δ < 1, is unbounded. Then there is a positive, d-closed current of bidimension (1,1) among the cluster currents of S 1,r,n /c 1,n,r .

1 c A -δ (r 0 ) ≥ δ r r 0 A 1-δ (t)
The situation for X of dimension k = 1 and R = ∞ divides very neatly by corollary 16.2.0.6 into two cases, according as X φ * ω < +∞ or X φ * ω = +∞.

Corollary 16.2.0.8. In corollary 16.2.0.6, if X φ * ω is finite, then the currents S r /c r converge weakly to the current S(ϕ) := X φ * (ϕ)/ X φ * ω.

Proof. Write S r (ω) as

Br χ(v r ) φ * ω = X φ * ω - X (χ(v r ) -1)φ * ω
where lim r→+∞ X (χ(v r ) -1)φ * ω = 0, by dominated convergence. The same observation applied to S r (ϕ) gives the corollary.

Notice, however, that X φ * ω unbounded does not imply the existence of a positive closed cluster current if X is not parabolic. For example, a generic (singular) holomorphic foliation F of P 2 does not have a directed positive closed current even though all leaves of F have infinite area. See [FS] for details.

Recall that a Riemann surface is parabolic if there is no non-constant bounded subharmonic function on it, equivalently, if it does not admit a Green's function. ( [START_REF] Ahlfors | Riemann Surfaces[END_REF], p. 204). Thus, in the case of the generic foliation F of P 2 , for example, the non-existence of directed positive closed currents implies by Corollary 16.2.0.6 that all leaves must admit non-trivial bounded subharmonic functions and must admit Green's functions. Remark 16.2.0.9. In the situation of corollary 16.2.0.8 when X is an open Riemann surface with a parabolic exhaustion function in the sense of Stoll [START_REF] Stoll | Value Distribution on Parabolic Spaces[END_REF], that is, when the exhaution log τ is harmonic and has no critical points outside a compact set, then X can be compactified to X by adding a finite number of points at infinity, and if the area of φ(X) is finite, the mapping φ can be extended across these finitely many points. It suffices to observe that the graph of φ has finite area, and hence Bishop's extension theorem [START_REF] Bishop | Conditions for the analyticity of certain sets[END_REF] says that its closure is an analytic set. In this case the current S of corollary 16.2.0.8 is given by integrating over the image φ( X), counting multiplicities. Corollary 16.2.0.10. In corollary 16.2.0.6, if X φ * ω = ∞, then the support of S is contained in the intersection ∩ r≥r 0 φ(X \ B r ). A point p ∈ Y is a φ-density point if and only if it is in the support of a cluster current of the family S r /c r . The case j = k = m of Theorem 16.2.0.2 then has the conclusion that every p ∈ Y is a φ-limit point, which adds some quantitative refinement to the mere density of φ(X).

It is natural in the present context to consider the closed set of all the positive closed currents which arise by the construction above. Definition 16.2.0.13. Let C j (φ) denote the space of all positive closed currents of bidimension (j, j) on Y which are cluster points of currents of the form S j,r /c j,r associated to φ.

In Section 16.6 below we consider one case where C j is shown to consist of one element using results from complex dynamics. Remark 16.2.0.14. In principle, of course, functional manipulations of (16.2.15) other than (16.2.17) and following can be made which might lead to interesting conditions on φ for producing closed positive currents among the limit points of S r /c r . Other simple forms of u r as at the top of this section, or in remark 16.2.0.11 above, are useful for producing other kinds of limit currents. In section 16.3 below we consider mainly the case of dd c -closed limit currents, but also one case of d-closed currents, in Theorem 16.3.0.3.

Limit currents which are dd c -closed

In this section we take weighting functions much as in section 16.2 above, but which lead to dd c -closed currents of bidimension (j, j), 1 ≤ j ≤ k = dim X. In many cases these can be as useful as the closed currents of section 16.2 above, and in the equidimensional case j = k = m = dim Y , they are equivalent.

Assume now that log σ is a plurisubharmonic exhaustion of X, set v r = log r σ , u r = χ(v r ) = log + r σ , where χ = max(t, 0). As in (16.1.5) we set S r (ψ) = Br u r (dd c log σ) k-j φ * (ψ), (

where ψ is a test (j, j)-form on Y and B r := {σ < r}, and define the dd c -mass ration J j (r) by As in (16.1.2), call the numerator in (16.3.2) t j-1 (r) and the denominator T j (r). Thus T j (r) = c j,r = Br log + r σ (dd c log σ) k-j ∧ φ * (ω k ) = r 0 1 s t j (s) ds, as in (16.1.3), and so things simplify to: for any bounded test form ψ of bidegree (j -1, j -1), where the constant C > 0 is independent of r, ψ, φ.

J j (r) = t j-1 (r) T j (r) . ( 16 
Proof. We would like to get estimates on 1 cr dd c S r , ψ . To do so, we will first smooth out the function χ. For r > 0, let v r = log r σ , and for each δ > 0, let u δ,r = χ δ (v r ), where χ δ is a convex, increasing function which is ≡ 0, on (-∞, 0), and χ (s) = 1 δ χ [0,δ] , where χ [0,δ] is the characteristic function of [0, δ], and δ will tend to 0 later. We write the proof out only in the case j = k, the others being completely similar. We set c k,r = c r , and suppress the index δ on χ δ for the moment. where we have used log r < log(r + α) in the first line, and log(1 + y) ≤ y, y > 0, in the last step. Since δ > 0 was arbitrary, we conclude Applying this inequality gives the proof of the theorem.

|I 2 | ≤ 1 r C ψ ∞ t k-1 (r) T k (r) . ( 16 
Before going on to analyze the dd c -mass ratios J j (r), let us remark that one can also construct some d-closed cluster currents using the weight u r = log + r σ . Theorem 16.3.0.3. Suppose lim inf r→R - log r t j-1 (r)t j (r) (T j (r)) 2 = 0. (16.3.13)

Then there exist positive d-closed cluster currents of mass 1 for S j,r /c j,r . Note that we use u r = log + r σ for the definition of the S j,r . Proof. We will just write out the case j = k. It suffices to estimate dS r , ψ with ψ = θ ∧ β k-1 , as in (16.2.3), where θ is a (1, 0)-form and β an arbitrary Kähler form, with bounds as in (16.2.4). Then we have to estimate ∂S r , θ ∧ β k-1 . As in the proof of (16.2.7), we get

1 cr | ∂S r , θ ∧ β k-1 | ≤ 1 cr Br d log σ ∧ d c log σ ∧ φ * (β k-1 ) 1 2
× Br φ * (β k-1 ) ∧ θ ∧ θ) The second term on the right is bounded by C ψ ∞ t k (r) We have assumed for convenience that log σ ≥ 0, so this last becomes Observe that when the exhaustion is bounded the term log r on the right of (16.3.16) disappears.

1 c 2 r | dS r , θ ∧ β k-1 | 2 ≤ C 2 ψ
To analyze J(t) in a fashion similar to that of I(t) in equations (16.2.17) to (16.2.20), we start, for 0 ≤ j ≤ k, from T j (r) = r 0 t j (s) s ds.

(16.3.17)

Then r T j (r) = t j (r). (16.3.18) Since the denominator of J j (r) is just T j (r), we can write J j (t), using (16.3.18), as follows:

J j (r) = t j-1 (r) T j (r) = t j-1 t j • t j (r) T j (r) = t j-1 t j • rT j (r) T j (r) . (16.3.19) If there is no subsequence r → ∞ such that J j (r ) → 0, then there is a c > 0 such that J j (r) ≥ c for all r. We have therefore The techniques developed in this section may be applied to study the intersection of the dd c -closed and positive currents constructed in this section with hypersurfaces in Y . Let Z ⊂ Y be a hypersurface such that φ(X) is not contained in Z. Let [Z] denote the current of integration over the hypersurface, and {Z} the cohomology class of Z, of bidegree (1, 1). {T } denotes the cohomology class of bidegree (m -1, m -1) determined by T of bidimension (1, 1). We use here that Y is compact and Kähler. The dd c -lemma on such varieties then gives the class {T } by duality. Proof. We have the equation of currents

T j T j ≥ 1 c t j r t j-1 , (16. 
[Z] -α = dd c U, (16.3.28) where α is a smooth (1, 1)-form representing the class {Z}, and where U can be assumed ≤ 0 on Y , and U • φ is not identically -∞. The pairing in the theorem is given by {T }, {Z} := T, α = lim →∞ S r , α /c r . We now use the smoothings χ δ from the proof of Theorem 16.3.0.2, and set u δ,r = χ δ (log r σ ). Note that u δ,r → u r when δ → 0, and we set S δ,r , α = Br u δ,r (dd c log σ) k-1 ∧ α. Thus, lim δ→0 + S δ,r , α = S r , α . This said, we proceed to analyze S δ,r , α : S δ,r , α = S δ,r , α + dd c U -S δ,r , dd c U ≥ -S δ,r , dd c U . (16.3.29) We have used here the obvious positivity inequality for the finite intersections S δ,r , α + dd c U = Br ∩φ -1 (Z) u δ,r (dd c log σ) k-1 ≥ 0, (16.3.30) where φ -1 (Z) is counted with multiplicities. Now we use the fact that u δ,r is compactly supported on X, and we integrate dd c by parts to get, as in the proof of Theorem 16. which was to be proved.

In the case that we can guarantee the existence of a dd c -closed cluster point of S r /c r , namely, lim inf r→R t 0 (r) T 1 (r) = 0, we get that the left hand side of (16.5.9) goes to 0 along a subsequence r → R -, and hence, lim for ν-almost every point a in the support of ν. Thus the exceptional set of a for which (16.5.11) does not hold must be a set E of capacity 0 for the kernels K(z, a) = log z a | z,a | , that is, E does not carry a probability measure µ for which U ν in (16.5.5) is bounded. In particular, as already noted, a non-pluripolar set E is too large to be exceptional in this sense, cf. [START_REF] Molzon | Average growth estimates for hyperplane sections of entire analytic sets[END_REF]. Now let us consider defect relations such as (16.5.11) for dimensions other than k -1, i.e., for D of dimension other than m -1. The cases different from D a divisor are all formally similar, and not as precise as the case of divisors D above. The most interesting is the case of points, i.e., where we consider a non-degenerate holomorphic map φ : X → P m , m ≥ k = dim X, and we let D a ⊂ P m be a linear subspace of dim D a = m -k, where a is parametrized by the Grassmannian Gr := Gr(m + 1, m -k + 1). We will consider this case in what follows.

We consider a potential U a , i.e., a (k -1, k -1)-form on P m with integrable coefficients, satisfying the following analogue of the Poincaré-Lelong formula

dd c U a = ω k -[D a ],
(16.5.12)

where we take ω to be the normalized Fubini-Study class which gives an integral generator of H 2 (P m , Z). We can choose U a ≥ 0, and is obtained as

U a = D a (ζ), K(z, ζ) , (16.5.13) 
where the singularity of the kernel can be bounded by | log |z -ζ|| • |z -ζ| -2k+2 , see Dinh-Sibony [START_REF]Distribution des valeurs de transformations méromorphes et applications[END_REF] for a detailed estimate of the kernel. We introduce a capacity C k on Gr as follows. For a probability measure ν on Gr, set where M(A) is the space of probability measures supported on A ⊂ P m . It turns out that C(A) > 0 if and only if there is a probability measure ν on A such that U ν (z) ≤ 2 C(A), for every z ∈ P m , independently of z, see [START_REF]Distribution des valeurs de transformations méromorphes et applications[END_REF]. For example, if m = k, it is enough that which proves all the claims of the theorem.

Remark 16.5.0.3. 1. When k = m, we get in particular that if lim inf r→R -t k-1 (r) T k (r) = 0, then the map φ omits a set of Hausdorff measure ≤ 2k -2 + , for any > 0. 3. The potentials U ν in (16.5.5) and (16.5.14) play the role here of the proximity function in the classical theory. One might refer to them as proximity potentials.

We close this section with a corollary on the behavior of holomorphic foliations by Riemann surfaces.

Corollary 16.5.0.4. Let F be a holomorphic foliation of P m by Riemann surfaces with finitely many singularities. Assume that all singularities are hyperbolic, and that there are no algebraic (compact) leaves. Fix a leaf L. There is a pluripolar set E L ⊂ Pm such that for a / ∈ E L the corresponding hyperplane D a intersects L infinitely many times with the estimate given by Theorem 16.5.0.2.

Proof. The assumptions imply that all leaves are uniformized by the unit disk [FS]. It is further shown in [FS] that if φ : → L is the universal covering, then 

Distribution results

In this section we would like to consider some equidistribution results for maps φ : X → Y , where dim Y = m > k = dim X. For example, we might have a birational map f : Y → Y, and φ : C m → Y parametrizes some stable manifold associated with f , e.g., the stable manifold of a periodic point of f , or a Pesin stable manifold (cf. [START_REF] Katok | Introduction to the Modern Theory of Dynamical Systems[END_REF], for example). We give a specific example from dynamics. Let f : C m → C m be a polynomial automorphism, and denote also by f its extension P m • • • → P m as a birational map. Let I ± be the indeterminacy sets of f, f -1 , respectively, in the hyperplane at infinity of P m . One calls f regular if I + ∩ I -= φ, in which case we have an integer p such that dim I + = m -p -1, and dim I -= p -1. Let Then we recall from [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF] the following theorem. In particular the automorphism f can have an attractive fixed point z 0 ∈ C m . The domain of attraction U (z 0 ) is then biholomorpic to C m and is contained in K + . It is called a Fatou-Bieberbach domain. Clearly it is not dense in C m . Moreover it follows from the previous results that any positive closed current of bidimension (1, 1) constructed as in this paper using images of a parabolic manifold X, by any holomorphic map φ : X → K + ⊂ Y = P m in any dimension 1 ≤ k ≤ m by taking limit points of the currents S 1,r /S 1,r (ω) will be equal to a multiple of T p -. That is, for all such φ, X, one has C 1 (φ) = {T p + } (cf., definition 16.2.0.13).

K + = {z ∈ C m | {f n (z)|n ∈ N} is bounded ⊂ C m }.

Examples: growth conditions

We give here some simple examples of the theorems above, compared both to the usual growth conditions of the theory of entire functions. Let us first fix the terminology.

Definition 16.7.0.1. The map φ is of exponential growth (or of finite order) if t k (r) r d , some d, as r → +∞.

Here we use the unaveraged order function t k (r) for the dd c case, Another example is given by another, slower order of growth. 

FS and U S , ω k- p+1 FS

 p+1 

  [n] : lov(f ) := lim n→∞ log vol(Γ [n] ) 1/n .

  (u rs • u r ) * (S) = (f • f ) * |U (S).

  n→∞ log vol(Γ [n] ) 1/n = lim sup n→∞ log Γ [n] 1/n .

4

 4 

S

  C -l := sup Φ C l ≤1 | S, Φ | and dist l (S, S ) := S -S C -l

Proposition 2 .

 2 2.0.3. Let S and S be two currents in D p such that [S] = [S ]. If they have the same α-normalized super-potential then they are equal.

Proposition 2 .

 2 4.0.2. Let S, S be currents in D p and D p , p + p ≤ k, having Hölder continuous super-potentials. Then S ∧ S has a Hölder continuous superpotential.

  as above, gives the second inequality in the lemma. When p = k, C k is the convex of the probability measures on P k and its extremal elements are the Dirac masses. One can identify the set of extremal elements of C k with P k . Let δ a , δ b denote the Dirac masses at a, b and a -b the distance between a, b induced by the Fubini-Study metric. Lemma 3.1.0.3. We have dist α (δ a , δ b ) a -b min{α,1} .

  R θy := (τ θy ) * R. If R is positive and closed, then R θy and R θ are also positive and closed. Observe that since ρ is radial, R θ = R θ when |θ| = |θ |. Lemma 3.1.0.5. When θ tends to 0, R θy and R θ converge weakly to R. If the restriction of R to an open set W ⊂ P k is a form of class C α , then R θy and R θ converge to R in C α (W ) for any W W .

1 .

 1 The integral S, U R does not depend on the choice of U R with a fixed mean m. It defines an affine continuous function U S on C k-p+1 . Moreover, if U S is a smooth quasi-potential of S with mean m, then U S (R) = U S , R . In particular, we have U S (ω k-p+1 ) = m.

Proposition 4 .

 4 1.0.6 implies also that U S (R) = u(0). By Proposition 4.1.0.4 and Lemma 4.1.0.5, we have

Lemma 4 .

 4 3.0.2. If S is a form of class L s with s > k, then S has continuous super-potentials.

Proposition 4 . 3 .0. 4 .

 434 Let S and S be currents in C p such that S ≤ cS for some positive constant c. If S has bounded super-potentials, then S has bounded super-potentials. If S has continuous super-potentials, then S has continuous super-potentials. Proof. Write S = λS + (1 -λ)S with 0 < λ ≤ 1 and S a current in C p . Let U S , U S and U S denote the super-potentials of mean 0 of S, S , and S . By definition of super-potentials, we have λU S + (1 -λ)U S = U S on smooth forms R. Corollary 4.1.0.

  This notion is related to the directional Lelong numbers of S developed in [306]. Consider a classical example. Example 5.2.0.12. Let S be a current in C 1 and u be a quasi-potential of S. We have S = ω + dd c u. If R is the current of integration on a projective line D which is not contained in {u = -∞}, then S and [D] are wedgeable and ν [D] (S, a) exists for every a. It is equal to the mass of S ∧ [D] = dd c (u[D]) + ω ∧ [D] at a, i.e. to the mass of dd c (u[D]) at a.

Lemma 5 . 4 . 0 . 2 .

 5402 The previous definition coincides with the definition given in Paragraph 5.2.

Theorem 7 .

 7 3.0.11. Let f and T be as in Theorem 7.3.0.10. Then, T is the only f * -invariant current in C k-p+1 which has bounded super-potentials. Moreover, it is extremal in the convex set of f * -invariant currents in C k-p+1 .

Lemma 7 .

 7 4.0.2. Let K be a metric space with finite diameter and Λ :K → K be a Lipschitz map: Λ(a) -Λ(b) ≤ A a -b with A > 0.Let U be an α-Hölder continuous function on K. Then, n≥0 d -n U • Λ n converges pointwise to a function which is β-Hölder continuous on K for every β such that β < α and β ≤ log d/ log A.

  expression is a -b β with β := log d/ log A. Therefore, the function is β-Hölder continuous. Define L := d -p f * and Λ := d -p+1 f * . Recall that L : C p → C p and Λ : C k-p+1 → C k-p+1 are well-defined and are continuous. Lemma 7.4.0.3. The operator Λ is Lipschitz with respect to the distance dist α on C k-p+1 for α > 0.

  Lipschitz. By Lemmas 8.2.0.5 and 7.4.0.3, the later sum defines a Hölder continuous function on C k-p+1 . It follows that the last identity holds everywhere on C k-p+1 . So, T p has Hölder continuous super-potentials.

Theorem 7 . 4 .0. 4 .

 744 There is a Zariski dense open set H * d

  (T + ) = d + T + and f * (T -) = d -T -. The selfintersections T p + and T k-p are positive closed currents of mass 1 with support in the boundaries of K + and K -respectively. The probability measure µ :

Theorem 7 . 5 . 0 . 4 .

 7504 The current T p + is the unique positive closed current of bidegree (p, p) of mass 1 supported in K + . The current T k-p is the unique positive closed current of bidegree (k -p, k -p) of mass 1 supported in K -.

m

  l = h, such that the restriction L l of L to E C l is defined by a Jordan block J λ l ,m l . Up to a permutation of the E C l , we can assume that the (|λ l |, m l ) are ordered so that either |λ l | > |λ l+1 | or |λ l | = |λ l+1 | and m l ≥ m l+1 for every 1 ≤ l ≤ r -1.

  with Hölder continuous superpotentials. By Proposition 2.4.0.2, the measure T + c ∧ T - c ∨ has Hölder continuous super-potentials. Denote by M the real space generated by T + c ∧ T - c ∨ with c ∈ F and c ∨ ∈ F ∨ and N the real space generated by T

4 .0. 4 .

 44 The cones M + and N + have non-empty interior in M and N respectively.Proof. Consider c ∈ F and c ∨ ∈ F ∨ . Observe that if T + c or T - c ∨ is approximable by smooth positive closed currents then T + c ∧ T - c∨ is positive and belongs to M + . We have seen that the sets of such classes have non-empty interiors in F and F ∨ . Hence, M is generated by such positive measures T + c ∧ T - c ∨ . It follows that M + has non-empty interior. The case of N + is treated in the same way.

  N m ∩ Σ = ∅ and the definition of Σ allow us to define the maximal number d N t inverse branches of order N for each ∆ (s) r,-N m . Composing them with the inverse branches of order N m of ∆ gives γ m d N

  Fix a constant ν(R, a) < ν ≤ 1. Let B(a, r) be a ball as in the conclusion of Proposition 9.3.0.1. Choose also a point b in B(a, r) \ E. Such a choice is always possible since E is pluripolar. Write f -n (a) = a

  It is enough to show that m = 0. Assume that m > 0. Denote by Z * the set of points a ∈ Y \(I ∞ ∪I ∞ ∪E ) such that λ(a) ≥ m. The closure Z of Z * is an analytic subset of Y . No irreducible component of Z is contained in E . Consider a point a ∈ Z * . The invariance properties of E imply that f -1 (a) ∩ E = ∅. Using the definition of λ and of m, we have m = λ(a) = d -1 t b∈f -1 (a)∩Y λ(b). Since λ(b) ≤ m and #f -1 (a) = d t , we deduce that f -1 (a) ⊂ Z and λ(b) = m for b

Remark 9 . 4 .0. 5 .

 945 Define by induction E 0

Proposition 10 .

 10 3.0.7. A family G of modulo T wpsh functions on X is bounded in L 1 (X) if and only if there is a constant c > 0 such that | udµ Y | ≤ c for u ∈ G and for any irreducible component Y of X. Proof. Proposition 10.3.0.6 implies that µ Y has no mass on sing(X). If G is bounded in L 1 (X) then it is bounded in L 1 (Y ). We have seen that the restriction of u ∈ G to Y is equal outside sing(X) to a modulo T wpsh function on Y . By Proposition 10.3.0.6, there is a constant c > 0 such that | udµ Y | ≤ c for u ∈ G . Conversely, assume that | udµ Y | ≤ c for u ∈ G and for any irreducible component Y of X.

, 1 )

 1 and v a potential of S on U . Define the Lelong number of v at a by ν(v, a) := ν(S, a). We also have ν(v, a) = lim r→0 sup Ba(r) v(z) log r . (10.4.1)

  Hence, π : X → D 1 defines a ramified covering. Let m denote the degree of this covering. For u ∈ G , define a function u on D 1 by u (x) := z∈π -1 (x)∩X u(z). (10.4.4)

  and if B is the ball of center a and of radius r := A -1 r then π( B) is contained in the ball B. Define h := f •π, u := u•π and T := π * (T ).

4

 4 for some constants c 3 > 0 and c 4 > 0. Up to a permutation of the coordinates y, we can assume that | det M ( a)| ≥ c 5 |ϕ( a)| c 2 /2 ≥ c 5 exp(c 2 u( a)/2) where c 2 , c 5 are positive constants and M is the matrix (∂h j /∂x i ) 1≤i,j≤p . Define h := (h 1 , . . . , h p ). The precise version of the implicit function theorem [413, p.106] implies that h defines a bijection from an open subset of B to a ball of center h ( a) and of radius c 6 r| det M ( a)| 2 , c 6 > 0. This proves the first assertion in the lemma. For the second one, we have Dh -1 | det M ( a)| -1 at h ( a) which gives the result.

.5. 1 )

 1 Lemma 10.5.0.3 applied inductively to balls centered at f i (b) implies that f n (B) contains the ball of center f n (b) of radius

  follows from the definition of u that f n |X defines a bijection between a neighbourhood of b and a neighbourhood of f n (b) in X. Hence, f n |X : Z n → f n (Z n ) is locally bi-Lipschitz. Applying Lemma 10.5.0.3 inductively gives the estimate on Df -n |X at f n (b). Since the fibers of f n contains at most d kn points, the estimate on Df -n |X implies vol X

  The maps f n and f -n are also regular. The algebraic degrees d + and d -of f and f -1 satisfy the relation d k-s + = d s -. The Green currents of bidegree (1, 1) associated to f and f -1 are denoted by T + and T -. They are limits in the sense of currents of d -n + (f n ) * (ω) and d -n -(f n ) * (ω) respectively. The current T + has locally continuous potentials outside I + , the current T -has locally continuous potentials outside I -. We also have 10

Proof.

  Since • DSH and • DSH are equivalent, we assume for simplicity that ψ DSH = 1. Observe that d n Λ n ψ belongs to the family of functions in DSH 0 (P k ) with • DSH norm bounded by 1. It follows from Proposition 11.3.0.2 that d n |Λ n ψ| belongs to a compact family of d.s.h. functions. By Theorem 11.1.0.1 and Proposition 11.3.0.2, there are positive constants α and c such that µ, e αd n |Λ n ψ| ≤ c.

  Lemma 11.5.0.7. For every b ≥ 1, there are Borel sets W n such that µ(W n ) ≤ cne -αδ b and P k \Wn e λStnψ dµ ≤ d (d -1)e -λb + e (d-1)λb d n .

  .5.0.6) and to the function ψ * such that ψ * = ψ on P k \ W 1 and ψ * = 0 on W 1 . By Lemma 11.5.0.3, we have Et(ψ * |G ) = Et(ψ * |B 1 ) = 0 since W 1 is an element of B 1 . Observe that |ψ | ≤ b on P k \ W 1 . Hence, |ψ * | ≤ b. By Lemma 11.5.0.2, we have Et(e λψ * |B 1 ) ≤ (d -1)e -λb + e (d-1)λb d on P k for λ ≥ 0.

  Let χ be a smooth positive function with compact support in ] -2, 2[ such that χ = 1 on [-1, 1]. We need only to bound the L 1 norm of χϕ in ]-2, 2[×B 1 by a multiple of the L 1 norm of d(χϕ) in ] -2, 2[×B 1 \ I. Consider the projection π : D → B 2 defined by π(x) := x . Then, π(I ∩ D) is a closed subset of B 2 with H m-1 (π(I ∩ D)) = 0. Hence, since ϕ ∈ L 1 loc (X \ I), for almost every a ∈ B 1 , the restriction of χϕ and d(χϕ) to L a := π -1 (a) are of class L 1 . Since (χϕ) |La has compact support in ] -2, 2[, we have (χϕ) |La L 1 ≤ 4 d(χϕ) |La L 1 .

2

 2 and the associated inclusion maps are bounded and continuous. Observe also that real-valued Lipschitzian functions belong to this space and whenk = 1 we have W 1,2 * = W 1,2 .We have the following proposition Proposition 12.4.0.1. Let χ : R → R be a Lipschitzian function and ϕ be a function in W 1,2 * . Then χ • ϕ belongs to W 1,2 * . In particular, ϕ + := max(ϕ, 0), ϕ -:= max(-ϕ, 0) and |ϕ| belong to W 1,2 * . Moreover, there exists a constant c > 0 independent of ϕ such that ϕ + * ≤ c ϕ * , ϕ - * ≤ c ϕ * and |ϕ| * ≤ c ϕ * . If ϕ 1 , ϕ 2 are in W 1,2 * , we have max(ϕ 1 , ϕ 2 ) ∈ W 1,2 * . Proof. Since χ is Lipschitzian, there exist a ≥ 0, b ≥ 0 such that |χ(x)| ≤ a+b|x|. We can choose a := χ(0) and b

  s.h. functions if they are equal outside a pluripolar set. If ϕ is d.s.h. then i∂∂ϕ = T + -T -where T ± are positive closed (1, 1)-currents. Define a norm on DSH by ϕ DSH := |m ϕ | + inf{ T + , T ± as above}.

  Lemma 4.2 implies that ϕ n → ϕ in W 1,2 * . Hence ν, ϕ = lim ν, ϕ n = lim ν, ϕ n * = ν, ϕ * . Proposition 12.4.0.5. Let ν = α + ∂u + ∂v be a positive measure on X where α, u and v are forms with coefficients in L 2 . Then ν is WPC.Proof. If ϕ is smooth, we haveν, ϕ = α, ϕ + u, ∂ϕ + v, ∂ϕ .The right hand side can be extended to a continuous linear form on W 1,2 * . Hence ν is WPC. Lemma 12.4.0.2 and Proposition 12.4.0.5 imply the following corollary. Corollary 12.4.0.6. Let ν = α + i∂∂u ∧ β be a positive measure on X where α and β are closed real-valued continuous forms of bidegree (k, k) and (k -1, k -1) respectively, and u is a bounded d.s.h. function. Then ν is WPC. Let Y ⊂ X be a Borel set. Define the W-capacity of Y by W cap(Y ) := sup{ν(Y ), ν a WPC probability measure}. Let W 1,2 * * denote the space of functions ϕ ∈ W 1,2 *

  Define ϕ := -log(-ψ) and ϕ n := -log(-ψ n ). The functions ϕ n decrease to ϕ and satisfy ψ n < -1. The function ϕ is in L 2 since ψ ≤ ϕ < 0. We havei∂ϕ ∧ ∂ϕ = iψ -2 ∂ψ ∧ ∂ψ and i∂∂ϕ = -iψ -1 ∂∂ψ + iψ -2 ∂ψ ∧ ∂ψ. It follows that i∂ϕ ∧ ∂ϕ ≤ i∂∂ϕ + iψ -1 ∂∂ψ ≤ i∂∂ϕ + ω. The positive closed current i∂∂ϕ + ω is cohomologous to ω;its mass is equal to 1. The functions ϕ n satisfy a similar inequality. Hence ϕ n converge to ϕ in W 1,2 * . This and Lemma 4.4 imply that ν, ϕ = lim ν, ϕ n = lim ν, ϕ n * = ν, ϕ * for every WPC measure ν. Hence ν(Y ) = 0 and W cap(Y ) = 0 since ϕ = -∞ on Y . When Y is a proper analytic subset of X, by [372], Y is pluripolar. Then W cap(Y ) = 0. Remark 12.4.0.8. (a) Proposition 12.4.0.7 shows that the integral ν, ϕ makes sense for every WPC measure ν and every bounded d.s.h. function ϕ. Such a function is defined out of a pluripolar set which has ν measure zero. (b)

.

  is bounded. The continuity follows. When ϕ ∈ W 1,2 * * , Lemma 12.4.0.7 implies that Λϕ ∈ W 1,2 * * . Consider a function ϕ ∈ W 1,2 * . Define c 0 := m(ϕ), ϕ 0 := ϕ -c 0 , c n+1 := m(Λϕ n ) and ϕ n+1 := Λϕ n -c n+1 . We haveΛ n ϕ = c 0 + • • • + c n + ϕ n .Lemma 12.5.0.4. There exists a constant A > 0 independent of ϕ such that|c n | ≤ A ϕ * δ 1/2 n-1 d -(n-1)/2 t for n ≥ 1 and ϕ n * ≤ A ϕ * δ 1/2 n d -n/2 t for n ≥ 0.Proof. Let Θ be as above. Define Θ n := d -n t (f n ) (Θ). Lemma 12.5.0.2 implies that Θ n ≤ A 2 ϕ 2 * δ n d -n t where A > 0 is a constant. As in Lemma 12.5.0.3, we obtain i∂ϕ n ∧ ∂ϕ n ≤ Θ n . Since m(ϕ n ) = 0, we have ϕ n * ≤ Θ n 1/2 . Hence ϕ n * ≤ A ϕ * δ We then deduce from Lemma 12.5.0.3 that |c n | ≤ Λϕ n-1 * ≤ A ϕ * δ for some constant A > 0. Define c ϕ := n≥0 c n . Lemmas 12.5.0.3 and 12.5.0.4 imply that c ϕ depends continuously on ϕ ∈ W 1,2 * and |c ϕ | ≤ A ϕ * for some constant A > 0. Now, assume that ϕ is smooth. Then ϕ n ∈ W 1,2

  2.2) converges to dd c T -dd c T and hence the right hand side converge to lim dd c u n ∧ T which is positive. Hence dd c T -dd c T is positive. When T is closed, we have d T = lim du n ∧ T = 0, hence T is closed. Remark 13.2.0.3. If S is closed then S is closed. It follows from Theorem 13.1.0.3 that -dd c T + S is positive and closed. Hence T is dsh, see Section 13.3 for the definition. If F is an analytic subset of codimension ≥ p + 2 and if T is dd c -closed then T is dd c -closed. Indeed, in this case, -dd c T is a positive closed (p + 1, p + 1)-current; it should vanish on sets of codimension ≥ p + 2.

13. 3

 3 Pull-back operatorWe give here the proof of Theorem 15.1.0.1. We first consider a general local situation. Let B k denote the unit ball in C k and B k (r) denote the ball of center 0 and of radius r inC k . Let π : C k × C k → C k be the canonical projection. Consider a subvariety V of pure dimension k + l in B k × B k . Wewill denote by [V ] the current of integration on V . Assume that the fibers of π |V are either empty or of pure dimension l. Let w = (z, z ) denote the coordinates in C k × C k . Let C denote the critical set of π |V which contains the singularities of V . The set C is defined by the property that π |V is locally a submersion at every point w ∈ V \ C . Lemma 13.3.0.1. Let L be a compact subset of B k × B k . Then, there exists c L > 0 such that if T is a positive smooth (p, p)-form on B k then V ∩L π * (T ) ∧ (dd c w 2 ) k +l-p ≤ c L T + dd c T .

  Lemma 13.3.0.3. Let (T n ) be a sequence of positive smooth (p, p)-forms on B k which converge in DSH p (B k ) to a current T . Then π *

-1 2 (

 2 U ∩ U ). Hence, π * 2 (T ) ∧ [Γ] and f * (T ) are globally well defined. Since π * 2 (T n ) ∧ [Γ] are positive and closed (resp. dd c -closed), π * 2 (T )∧[Γ] and f * (T ) are positive and closed (resp. dd c -closed). The continuity of T → π * 2 (T ) ∧ [Γ], and then the continuity of T → f * (T ), follow from Lemma 13.3.0.3. If T has no mass on a set A ⊂ X , Lemma 13.3.0.3 shows also that π * 2 (T ) ∧ [Γ] has no mass on π -1 2 (A) ∩ Γ. Hence f * (T ) has no mass on f -1 (A). Using Lemma 13.3.0.3, we prove in the same way the following result. Theorem 13.3.0.4. Let f be as in Theorem 15.1.0.1. Then the pull-back operator f * : DSH p (X ) → DSH p (X)

Corollary 14 . 1 .0. 4 .

 1414 Let U be an open subset of P k such that µ has no mass on the boundary of U . Then, if a is a point outside E , we have #(f -n (a) ∩ U ) = µ(U )d kn + o(d kn ).

  Theorem 14.3.0.3. Let 1 < λ < d be a constant. There is a non-empty Zariski open set H λ d

Theorem 15 .

 15 5.0.5(Briend-Duval, Dinh-Nguyen-Truong). Let X, f, d k (f ) and Q n be as in Theorem 15.5.0.3. Then there is an invariant probability measure µ such that limn→∞ 1 d k (f ) n a∈Qn δ a = µ,where δ a denotes the Dirac mass at a.

Problem 7 .

 7 Study the rate of the following convergence lim

Problem 8 .

 8 Let K be a compact set which is disjoint from supp(T p ). Do we always havelim sup n→∞ 1 n log #(Q n ∩ K) ≤ (p -1) log d.

  Definition 16.1.0.1. Define the unaveraged characteristic function t j (r) = Br (dd c τ ) k-j ∧ φ * (ω j ). (16.1.2)

r 0 t j- 1 2 . ( 16 . 1 . 4 )

 121614 (s) ds • t j (r) ( r 0 t j (s)ds) See (16.2.8) and (16.2.11) for the origin and derivation of (16.1.4).

  Theorem 16.5.0.2 Let φ : C k → P k be a non-degenerate holomorphic map. Assume that lim inf r→+∞ t k-1 (r) T k (r) = 0. (16.1.7)

  3.0.2, | dd c S j,r , ψ /c r | ≤ C ψ ∞ t j-1 (r) T j (r) ,valid for all bounded test forms ψ of bidegree (j, j), which is central in much of what follows, especially in section 16.5. The section closes with a theorem on the positivity of intersection of the cluster currents constructed in bidimension (1, 1) with analytic hypersurfaces which meet the image of φ non-trivially. This generalizes a result of McQuillan's for X = C or a finite branched cover of C. Section 16.4 studies the effect of scaling on the estimates we use on dd c S r .

i 2 θ 2 ×| 2 × 2 ≤ C ψ 2 ∞×( 2 .( 16 . 2 . 7 )

 2222221627 ν ∧ θ ν ≤ C ψ 2 ∞ ω, and 0 ≤ β ν ≤ ω, ν = 1, . . . , N. (16.2.4) By the Schwarz inequality, we get| dS r , ψ | = X χ (v r ) dv r ∧ (dd c τ ) k-j ∧ φ * (θ) ∧ φ * (β j-1 ) ≤ Br χ (v r ), dv r ∧ d c v r ∧ (dd c τ ) k-j ∧ φ * (β j-1 ) 1 Br χ (v r )φ * (θ) ∧ φ * ( θ) ∧ (dd c τ ) k-j ∧ φ * (β j-1 ) dS r , ψ | ≤ C ψ ∞ Br dv r ∧ d c v r ∧ (dd c τ ) k-j ∧ φ * (ω j-1 ) 1 Br (dd c τ ) k-j ∧ φ * (ω j ) Br dvr∧d c vr∧(dd c τ ) k-j ∧φ * (ω j-1 ))( Br (dd c τ ) k-j ∧φ * (ω j )) ( B t ut (dd c τ ) k-j ∧φ * (ω j ))Remark 16.2.0.1.

Theorem 16 . 2 . 0 . 4 .

 16204 Let φ, X, Y, τ be as above.1. Assume R = ∞, and that lim t j-1 (r)

2 .

 2 Assume R = ∞, and let α = α(s) be a continuous function such that∞ 0 ds α(s) = ∞. Assume further that lim inf α( r 0 t j (s) ds) • r 0 t j-1 (s)ds ( r 0 t j (s) ds) 2 = 0.(16.2.13)

2 . 2 r

 22 Recall that since A is increasing, then A (r) ≤ α(A(r)) outside a set E of finite length. If E = {r | A (r) > α(A(r))}, one has measure(E) ≤ 1 (s) ds,which is a contradiction.3. If c ≤A A 0 t k-1 (s) ds, with r > R 0 , then

  k-1 (s) ds , for any δ > 0.(16.2.17)Integrating (16.2.17) on [r 0 , r], one gets -δ (r 0 ) -A -δ (r) ≥

r 0 (

 0 dd c τ ) k = {r 0 <τ <r} (dd c τ ) k + Br 0 (dd c τ ) k = Cfor r ≥ r 0 >> 0. In particular, r 0 dt t 0 t 0 (s) ds diverges logarithmically, verifying condition(16.2.21).

0

 0 1-δ dt is unbounded. The same considerations apply to a bounded situation as follows. Let φ n : → Y be a sequence of maps from the unit disk to Y . Proposition 16.2.0.7. Let φ n be a sequence of maps from to Y . Assume that A n,δ := r Ds φ * n (ω)

Proof. 1 χ

 1 Fix any r 1 ≥ r 0 , and write, for r > r 1 , S r (ψ) =Br χ(v r )φ * ψ = Br (v t ) φ * ψ + Br\Br 1 χ(v t ) φ * ψ = O(1) + Br\Br 1 χ(v r ) φ * ψ (16.2.23) If X φ * (ω) = ∞,this last shows that any cluster point of S r (•)/S r (ω) is supported in φ(X \ B r 1 ). Since r 1 was arbitrary, the result follows.Remark 16.2.0.11. We can localize these arguments in dimension 1 as follows.Let ∆ * ρ = {z ∈ C | 0 < |z| < ρ}. Replace X above by the punctured disk ∆ * = ∆ * 1 and take v t = 1 t log 1 z 2 ,which is a parabolic exhaustion. Applying the arguments above directly to a holomorphic map φ : ∆ * → Y , we arrive at the dichotomy: for ρ ∈ (0, 1), either ∆ * ρ φ * ω < +∞, and φ has a meromorphic extension across 0 ∈ ∆, or ∆ * ρ φ * ω = +∞ and there is a closed, positive current S on Y with support contained in ∩ ρ∈(0,1) φ(∆ * ρ ). If dim Y = 1, this implies, in particular, the classical Casorati-Weierstrass theorem, but is sharper, since the identification of the limit current in the equidimensional case with 1 c [Y ] gives a result on the equidistribution of values. To be more precise about the last remark, make a definition. Definition 16.2.0.12. A point p ∈ Y is a φ-density point if for every δ > 0 there is a constant κ δ > 0 such that lim inf r→R - Br φ * (χ B δ (p) ω k ) Br φ * (ω k ) ≥ κ δ . (16.2.24)

J 1 .

 1 j (r) := Br (dd c log σ) k-j+1 ∧ φ * (ω j-1 ) Br u r (dd c log σ) k-j ∧ φ * (ω j ) We say that φ, σ, ω satisfy condition dd c -MR if lim inf J j (r) = 0.(16.3.3) 

.3. 4 )

 4 Theorem 16.3.0.2. Suppose φ, σ, ω, r satisfy condition dd c -MR, and Y is a compact kähler manifold. Then any cluster point S ∞ of S r /c r is a positive dd c -closed current supported on φ(X). Furthermore,1 c r | dd c S r , ψ | ≤ C ψ ∞ t j-1 (r)T j (r) ,(16.3.5) 

1 c r≤ C ψ ∞ 1 r

 11 dd c S r , β = 1 c r X dd c (χ(v r )) ∧ φ * (ψ) = 1 c r X (χ (v r )dd c v r ∧ φ * (ψ) + χ (v r )dv r ∧ d c v r ) ∧ φ * (ψ) = 1 c r X -χ (v r )dd c log σ ∧ φ * (ψ) + 1 c r X χ (v r )d log σ ∧ d c log σ ∧ φ * (ψ) = I 1 + I 2 .(16.3.6)Looking first at I 1 , we remark that there is a constantC > 0, independent of ψ, φ such that |φ * (ψ)| ≤ C ψ ∞ φ * (ω k-1 ). Since 0 ≤ χ ≤ 1, we get |I 1 | ≤ C ψ ∞ 1 c r Br dd c log σ ∧ φ * (ω k-1 ) = C ψ ∞ t k-1 (r) T k (r) . (16.3.7)Passing to I 2 , we seeT k (r)|I 2 | = 1 δ | {r<σ<r+δ} d log σ ∧ d c log σ ∧ φ * (ψ)| ≤ C ψ ∞ δ {r<σ<r+δ} d log σ ∧ d c log σ ∧ φ * (ω k-1 ) = C ψ ∞ δ {r<σ<r+δ} [d(log σ d c log σ) -log σ dd c log σ] ∧ φ * (ω k-1 ) = C ψ ∞ δ [log(r + δ) t k-1 (r + δ) -log r t k-1 (r)] -C ψ ∞ δ {r<σ<r+δ} log σ dd c log σ ∧ φ * (ω k-1 ) (16.3.8)We next examine the right hand term in the last line more closely:{r<σ<r+δ} log σ dd c log σ ∧ φ * (ω k-1 ) = log(r + α)[t k-1 (r + δ) -t k-1 (r)],(16.3.9) for some α ∈ (0, δ), by the mean value theorem. Hence, resuming from(16.3.8) we getT k (r) I 2 ≤ C ψ ∞ δ [log(r + δ) t k-1 (r + δ) -log r t k-1 (r)] -C ψ ∞ δ [log r(t k-1 (r + δ) -t k-1 (r))] ≤ C ψ ∞ δ[log(1 + δ r )t k-1 (r + δ)] t k-1 (r + δ),(16.3.10) 

2 r| 2 ∞ c 2 r= C 2 ψ 2 ∞ c 2 r

 22222 dS r , θ ∧ β k-1 | 2 ≤ C 2 ψ t k (r) Br d log σ ∧ d c log σ ∧ φ * (β k-1 ) t k (r) Br (d(log σ d c log σ) -log σ dd c log σ) ∧ φ * (β k-1 )

2

 2 

∞ c 2 r= C 2 ψ 2 ∞ c 2 r 2 ,

 2222 t k (r) ∂Br log σ d c log σ ∧ φ * (β k-1 ) t k (r) log r Br dd c log σ ∧ φ * (β k-1 ) = C 2 ψ 2 ∞ log r t k-1 (r) t k (r) dS r , ψ | ≤ C ψ ∞ log r t k-1 (r) t k (r) T 2 k (r)1(16.3.16) which proves the Theorem 16.3.0.3

3 . 20 )≥ 1 c r r 0 t

 3200 which we integrate over the interval [r 0 , r] to obtain log T j (s)] r r 0 j (s)st j-1 (s) ds. (16.3.21) It is interesting to compare the criteria obtained here and in Theorem 16.3.0.2. Let φ : → Y be a holomorphic map. By Theorem 16.3.0.2 we obtain a dd cclosed current if J(r) = |ζ|<r (r -|ζ|) + |φ (ζ)| 2 dλ(ζ) → +∞, while we get a d-closed current if |ζ|<r |φ (ζ)| 2 dλ(ζ) J(r) 2 → 0.

Theorem 16 . 3 . 0 . 6 .

 16306 Notation as above, we have 1.) if X is parabolic, then {T }, {Z} ≥ 0. (16.3.26) 2. if (dd c log σ) k = 0 outside a compact set in X, and then {T }, {Z} ≥ 0.

3 .0. 2 : 1 + 2 ≥ 1 T 1 = 1 - 1 T 1 (r) r 0 dss= 1 - 1 T 1 (r) r 0 dss

 32121111101110 -S δ,r , dd c U = -dd c S δ,r , U= Br χ δ (dd c log σ) k U • φ -1 δ {r<σ<r+δ} d log σ ∧ d c log σ ∧ (dd c log σ) k-1 U • φ = I δ,r I δ,r 2 .(16.3.31) Now, I δ,r 0, because U ≤ 0, for any δ, r . As for I δ,r 1 , suppose first that X is parabolic. Then (dd c log σ) k is compactly supported on X, and we get, since U • φ is quasi-psh and hence locally integrable,S r , α ≥ Br (dd c log σ) k U • φ ≥ -C,where C is a positive constant, and then limr →∞ S r , α /c r ≥ lim r →∞ -C c r = 0, since c r → ∞, for X parabolic.In the second case in the theorem, one still has X (dd c log σ) k U • φ bounded and c r = T 1 (r ) → ∞. Remark 16.3.0.7. 1. When X = C or a finite branched cover of C, the previous result is due to McQuillan [17]. It seems new even for the case X parabolic of dimension 1. Note that, strictly speaking, McQuillan uses the average currents Sr in remark 16.2.0.14. The proof works the same in either case. 2. The result holds if we replace {Z} by the class of a closed and positive current R of bidimension (n -1, n -1), provided we can write R = α + dd c U, as above, where α is smooth, and U • φ is not identically -∞. Theorem 16.5.0.1. Let φ be a holomorphic map φ : X → P m . Let E be a set of hyperplanes D a ⊂ P m of positive capacity with respect to the kernel K(z, a) = log z a | z,a | . Then |1 -Pm N (D a , r) T 1 (r) dν(a)| ≤ C U ν || ∞ t 0 (r) T 1 (r) . (16.5.6)Proof. Consider the bounded function U ν of equation 16.5.5. We getdd c Sr T 1 (r) , U ν = Sr T 1 (r) , dd c U ν = (r) S r , ω -Pm [D a ] dν(a) = 1 -1 T 1 (r) Pm S r , [D a ] dν(a) = 1 -1 T 1 (r) Pm{ Br∩φ -1 (Da) log + r |z| (dd c τ ) k-1 }dν(a) Pm { Bs∩φ -1 (Da) (dd c τ ) k-1 } dν(a) Pm n(D a , s) dν(a).

( 16 . 5 . 7 )

 1657 Since U ν is bounded, by Theorem 16.3.0.2 we get| dd c S r T 1 (r) , U ν | ≤ C U ν ∞ t 0 (r) Pm n(D a , s)dν(a) | ≤ C U ν ∞ t 0 (r) T 1 (r) ,(16.5.9)

U

  ν (z) = Gr U a (z) dν(a). (16.5.14) Define sup U ν (z), z ∈ P m , as the infimum of all C > 0 such that U ν (z) ≤ Cω k-1 (z), and let U ν ∞ = sup z∈P m sup U ν (z). Let C(A)

Gr| 1 .

 1 log |z -a|| |z -a| 2k-2 dν(a) ≤ C, so, if the Hausdorff dimension of A is strictly larger than 2k-2, one can construct such a measure, and C(A) > 0. See[START_REF] Carlson | A moving lemma for the transcendental Bezout problem[END_REF].If we define, similar to the classical case,N (D a , r) = a , r) = 1 -N (D a , r) T k (r) , (16.5.17) and finally the defect δ(D a ) = lim sup r→R - δ(D a , r), (16.5.18)then we have the following analogue of theorem 16.5.0.Theorem 16.5.0.2. Let φ : X → P m be as above. Let ν be a probability measure on Gr such thatU ν := Gr U a dν(a) has bounded coefficients, U ν ∞ < C < ∞, then Gr |δ(D a , r)| dν(a) ≤ C U ν ∞ t k-1 (r) T k (r) . (16.5.19)In particular, δ(D a ) = 0, for ν-a.e. a, if lim sup r→R -t k-1 (r)T k (r) = 0, andν({a | δ(D a , r) > }) ≤ C t k-1 (r) T k (r) .(16.5.20)Proof. We havedd c U a = ω k -[D a ]. S r , ω k -S r , [D a ] ] = 1 c r dd c S r , U a .We integrate this last relation with respect to ν and get 1 -Gr N (a, r) dν(a) T k (r) = 1 c r dd c S r , U ν . Using Theorem 16.3.0.2, we get the defect estimate Gr |δ(a, r)| dν(a) ≤ C U ν ∞ t k-1 (r) T k (r) , (16.5.21)

2 .

 2 Instead of a fixed map, we can consider a sequence of maps φ n : X → P m of holomorphic, non-degenerate maps. Iflim →∞ t k-1 (φ n , r ) T k (φ n , r ) = 0,cf. the similar comment in remark 16.3.0.7, part 3., for the notation. Then we get an estimate| Gr δ(φ n , D a , r ) dν(a)| ≤ C U ν ∞ t k-1 (r ) T k (r ) → 0.

( 1 -

 1 |z|)|φ (z)| 2 dλ(z) = +∞,where λ is Lebesgue measure on . Thus, for the map φ and exhaustion of given by |z| 2 , we have limr→1 - t 0 (r) T 1 (r)= 0, and we can apply Theorem 16.5.0.2.

16. 7 .

 7 EXAMPLES: GROWTH CONDITIONSThen K + is closed in C m , and K+ ⊂ P m = K + ∪ I + . Furthermore, if deg f = d + , deg f -1 = d -, then d p + = d k-p -. Finally, define T + = lim (f n )

Theorem 16 .

 16 6.0.1. (Dinh-Sibony) T p + is the unique closed positive current of bidimension (p,p) and mass 1 supported on K+ . Note also the following corollary of theorem 16.6.0.1 from [7]. Corollary 16.6.0.2. (Dinh-Sibony) If p = m-1, and φ : X → K+ ⊂ P m , with X a parabolic Riemann surface (k = 1), then the image of X is dense in K+ . In fact, all the closed cluster currents (S 1,r /c 1,r ) of Corollary 16.2.0.6 coincide with T m-1 + .

  t j (r) = Br (dd c log σ) k-j ∧ φ * (ω j ) in the case j = k, cf. (16.3.0.1) and following. For convenience let us define H k (φ) = {dd c -closed limit currents of S r /c r }. Theorem 16.7.0.2. Suppose φ of exponential growth, andt k (r) t k-1 (r) → ∞, as r → +∞. Then H k (φ) is non-empty.Proof. Under these hypotheses, T k (r) = r 0 t k (s) ds s r d , and hence log T k (r) d log r. In this case, then, we can say 1 log T k (r) r → +∞. Taking note of corollary 16.3.0.4, this proves the theorem.
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  ]. There is a Zariski dense open set H * d (P k ) in H d (P k ) such that if f is in H * d (P k

	Theorem 0.0.0.2.

  Definition 2.4.0.3. A positive measure ν on X is moderate if there are constants λ > 0 and A > 0 such that ν, e

λ|φ| ≤ A for every d.s.h. function φ on X such that φ DSH ≤ 1. A measure is moderate if it is a difference of moderate positive measures. A positive closed (p, p)-current S is moderate if its trace measure S ∧ ω k-p is moderate and a current in D p is moderate if it is a difference of moderate positive closed (p, p)-currents. Proposition 2.4.0.4. Let S be a positive closed (p, p)-current. Assume that S has a Hölder continuous super-potential. Then S is moderate. Proof. By Proposition 2.4.0.2, the trace measure of S has a Hölder continuous super-potential. Replacing S by its trace measure allows to assume that S is a positive measure, i.e. p = k. Let φ be a d.s.h. function with φ DSH ≤ 1. Define ψ

  2-2k where x are local coordinates such that x = 0 at a. The problem is local. Since M ≤ t -1/2 , we can assume that V is a hypersurface in a neighbourhood of the unit ballB. It is sufficient to prove that Vt∩B |x| 2-2k (dd c |x| 2 ) k t 3/2 .Let A be a maximal subset of V ∩ B such that the distance between two points in A is ≥ t. The balls of radius 2t with center in A cover V ∩B and the ones of radius 3t cover V t ∩ B. Let A n be the set of points p ∈ A such that nt ≤ |p| < (n + 1)t and m n the number of elements of A n . Observe that the m 0 + • • • + m n balls of radius t/2 with center in A 1 ∪ . . . ∪ A n are disjoint.

	They cover an open subset of
	V ∩ {|x| ≤ (n + 2)t}. Using Lelong's estimate in Example 3.1.0.1, see also

  Lemma 3.3.0.11. Let R be a current in C p and U be a quasi-potential of mean m of R. Let R θy = (τ θy ) * (R) be defined as in Paragraph 3.1. Then, there is a quasi-potential U θy of R θy of mean m such that U θy -(τ θy ) * (U ) is a smooth form with U θy -(τ θy ) * (U ) C 2 ≤ c U |θ| where c > 0 is a constant independent of R, U , θ and y. θy such that Ω θy C 2 |θ| and dd c Ω θy = (τ θy ) * (ω p ) -ω p . It is clear that the mean m of Ω θy is of order |θ|. Set U θy := (τ θy ) * (U ) + Ω θy . So, the mean m of U θy satisfies |m

	Proof. Since (τ θy ) * (ω p ) -ω p	C 2	|θ|, there is a (p -1, p -1)-form Ω

  It is clear that S n → S, supp(S n ) → supp(S) and m n → m. Define U n := U Sn + m n -m. This is the super-potential of mean m n of S n .

	• S n converge to S and m n → m;
	• (U n ) is a decreasing sequence;
	Moreover, if S n , m n and U n satisfy the last two properties, then U n (R) converge
	to u(0). In particular, if R is a smooth form in C k-p+1 , then U n (R) converge to
	U S (R).	
	Proof. Consider S n := S θn where (θ n ) is a sequence in ∆ * such that |θ n | decrease
	to 0 and that	|θ n | is finite. Define
		∞
		m n := m + A|θ n | 2 + 2c	|θ i |
		i=n
	where c and A are the constants introduced in Lemma 4.1.0.5 and in the proof of
	Proposition 4.1.0.4. Lemma 4.1.0.5 implies that
	Proposition 4.1.0.6. There is a sequence of smooth forms (S n ) in C p with super-
	potentials U n of mean m n such that
	• supp(S n ) converge to supp(S);

  Definition 4.2.0.3. Let S n , S, U Sn , U S , m n and m be as in Proposition 4.2.0.2. If U Sn ≥ U S for every n, we say that S n converge to S in the Hartogs' sense or S n H-converge to S for short. If a current S in C p admits a super-potential U S such that U S ≥ U S we say that S is more H-regular than S or simply S is more diffuse than S. By Lemma 4.2.0.5 below, the property that U Sn converge pointwise to U S implies that m n → m and S n → S. If S n H-converge to S as in Definition 4.2.0.3, by Proposition 4.2.0.2, U Sn → U S pointwise. If U Sn decrease to U S , then S n H-converge to S, see also Corollary 4.2.0.7 below. We have seen in Proposition 4.1.0.6 that S θ H-converge to S when θ → 0. Let (S n ) be a sequence in C p and U Sn be super-potentials of mean m n of S n . Assume that U Sn converge to a finite function U on smooth forms in C k-p+1 . Then, m n converge to a constant m, S n converge to a current S and U is equal to the super-potential of mean m of S on smooth forms in C k-p+1 .

	Remarks 4.2.0.4. Lemma 4.2.0.5.

  If a super-potential U S of S is finite everywhere, then it is bounded. A current S is PB if and only if the super-potentials of S are bounded. A current S is PC if and only if the super-potentials of S are continuous.Proof. Subtracting a constant from U S , we can assume U S ≤ 0. Assume that U S is unbounded. Then, there are currents R n such that U S

	k-p (P k ). A sequence (Φ n )
	converges to Φ in DSH k-p (P k ) if Φ n → Φ in the sense of currents and Φ n DSH
	is uniformly bounded. A positive closed (p, p)-current S is said to be PB if there
	is a constant c > 0 such that
	| S, Φ | ≤ c Φ DSH
	for smooth real forms Φ of bidegree (k -p, k -p). We say that S is PC if it can
	be extended to a linear form on DSH k-p (P k ) which is continuous with respect to
	the weak topology on DSH k-p (P k ).
	Proposition 4.3.0.1.

  Proposition 4.3.0.5. Let S be a current with bounded super-potentials. Then, S has no mass on pluripolar sets of P k . In particular, S does not give mass to proper analytic subsets of P k .

7 implies that this equality holds for every R. Since U S is bounded from above, if U S is bounded, it is clear that U S is bounded. If U S is continuous, since U S and U S are u.s.c., they are continuous.

  p times. The following proposition implies that generic maps in M d (P k ) \ H d (P k ) are algebraically p-stable. Proposition 7.3.0.6. The family of finite meromorphic maps of algebraic degree d ≥ 2 on P k whose dynamical degrees d s satisfy d 1

  p+1 which does not depend on R n and has continuous super-potentials. Proof. Proposition 7.3.0.5 implies that f is algebraically (p -1)-stable. Hence, λ p-1 = d p-1 . It follows from Proposition 7.2.0.6 that the operator Λ : C b k-p+1 → C b k-p+1 is well-defined. By Proposition 7.2.0.4, L : C p → C p is well-defined and is continuous, but we do not have necessarily that

  converge to c. It is enough to apply Proposition 8.2.0.2. Lemma 8.2.0.5. The current T c in Proposition 8.2.0.2 has Hölder continuous potential.

  2.0.1. By Proposition 8.2.0.4, T c depends linearly on c because it depends linearly on S. By Lemma 8.2.0.5, T c has Hölder continuous super-potentials. Observe that if n 1-m

	i

  is proportional to an invariant probability measure of maximal entropy log d p . By Proposition 8.2.0.2, the space M generated by these measures ν is of finite dimension. Let M P denote the convex of probability measures in M . Since the entropy h(ν) is an affine function on ν [343, p.183], all the measures in M P are of entropy log d p . It suffices to show that M contains N . Observe that since ν n depends linearly on S + , S -, the space M contains also the limit values of ν n when S + , S -are not necessarily positive. When S + is in a class c ∈ H and S -is in a class c ∨ ∈ H ∨ , by Proposition 8.2.0.2, ν n converge to T

  Proposition 9.4.0.3 implies that Z ⊂ E . This is a contradiction. The lemma follows.End of the proof of Theorem 9.1.0.2. Let a be a point out ofI ∞ ∪ I ∞ . If a is in E , it is clear that µ an does not converge to µ. So assume that a ∈ E . We have to show that a = 0. Fix a constant ν > 0. It is enough to prove that a ≤ 4ν. Define Y := {ν(R, •) ≥ ν}. By Siu's theorem, this is a proper analytic subset of X. By Lemma 9.4.0.2, the case where a ∈ Y is clear. From now on assume that a ∈ Y . By Lemma 9.4.0.4 applied to Y , we have λ m (a) ≤ νd m t for some integer m large enough.

  , there are positive closed (resp. dd c -closed) smooth forms T ± n with cohomology classes bounded by Proof. By Stein's factorization theorem [252, E.G.A III 4.3.3], there exist a normal space Y , a holomorphic map h : X → Y and a finite morphism g : Y → X such that f = g • h. Moreover generic fibers of h are connected. We can replace X by Y and assume that generic fibers of f are connected, but X may have singularities .

  We show that (16.2.15) contradicts, in turn, each of the three hypotheses in the statement of Theorem 16.2.0.4. The final comments about convergence for bounded test forms follow directly from (16.2.7) and(16.2.11).

								1
			c ≤	A (r) A 2 (r)	0	r	t k-1 (s) ds.	(16.2.15)
	1. We integrate (16.2.15) from 1 to r and get
	c(r -1) ≤ -1 A(t)	t 0 t k-1 (s) ds	r 1	+	r 1	t k-1 (s) A(s) ds	(16.2.16)
	≤	r 1	t k-1 (s) A(s) ds + O(1),

  t) then inequality(16.2.19) fails for some δ > 0, r ∈ (0, R). Since c > 0 was arbitrary, we obtain the following corollary of Theorem 16.2.0.2. Corollary 16.2.0.5. If (16.2.20) holds, then there are closed, positive currents S among the cluster points of S r /c r . Focusing next on the case δ = 1 in (16.2.19), if then we can apply corollary 16.2.0.5. If furthermore k = 1, this last becomes

				R R 0	1 0 t k-1 (s) ds t	dt = +∞,
					R R 0	1 0 t 0 (s) ds t	dt = +∞,	(16.2.21)
				t 0 t k-1 (s) ds	dt, for any δ > 0.	(16.2.19)
	In particular, if							
	sup δ>0,r<R	δ	r r 0	A 1-δ (t) 0 t k-1 (s) ds t	dt = sup δ>0,r<R		r r 0	(	t 0 t k (s) ds) 1-δ t 0 t k-1 (s) ds	dt = +∞,
										(16.2.20)

  Theorem 16.7.0.3. If t k (t) (log t) p , and Diving both sides by log T k (r), we see that as r → +∞, we get .e., condition(16.3.22). By corollary 16.3.0.4, we conclude H k (φ) is non-empty.

	t k (r) t k-1 (r) (log t) Integrating (16.7.1) against ds c ≥ s , we get
		r r 0	t k (s) t k-1 (s)	ds s	≥ c	r r 0	1 (log s) β	ds s	∼	c 1 -β	(log r) (1-β)
	lim r→+∞	1 log T k (r)	r r 0	t k (s) t k-1 (s)	ds s	c (1 -β)(p + 1)	(log r) 1-β log log r	→ +∞,

β , β < 1, 0 < c, (16.7.1) then H k (φ) is non-empty.

Proof. Under these hypotheses, we have log T k (r) (p + 1) log log r. i

in [321] one calls U S the super-potential of mean 0 of S.

if we take (x, z) ∈ X × X, we may obtain components whose projections are not equal to X; this is the case for the iterates of non algebraically stable maps in the sense of[START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] 

this hypothesis is in fact not necessary, but the proof for the general case needs a theory of intersection of currents that we will develop in chapter 5; for meromorphic maps this hypothesis is clearly satisfied

in this case, this quantity is equivalent to the mass norm for currents of order 0, see[START_REF] Federer | Geometric Measure Theory[END_REF].

the definition is meaningful for any current S of order 0 and • C -0 is equivalent to the mass norm in the usual sense, see[START_REF] Federer | Geometric Measure Theory[END_REF].

this is equivalent to the notion of PC current introduced in[START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF].

there is a slip at the end of[392, p.310]; the measure that was constructed is only ergodic, almost mixing and mixing when the dominant eigenvalues of f * on H p,p (X, R) are equal to d p .

In some references, such a map is said to be with large topological degree; one thinks the word "dominant" is more appropriate.

We can weaken the conditions in the definition but the ones given here are simple and sufficient for our purpose.

10.6.0.2, we have 0 ≤ λ n ≤ 1 and λ n = 1 out of the analytic set ∪ n-1

in the classical large deviations theorem for independent random variables, there is no factor (log n) -2 in the previous estimate

The speed of convergence is not precisely stated in[START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF], but the proof gives Theorem 14.3.0.3.

Mixing and hyperbolicity

In this section, we assume that f admits a dynamical degree d p strictly larger than the other ones. We have

Then, we can construct Green (q, q)-currents of f for 1 ≤ q ≤ p and Green (q, q)-currents associated to f -1 for 1 ≤ q ≤ k -p.

If T + is a Green (p, p)-current of f and T -is a Green (k -p, k -p)-current associated to f -1 , then as it is noticed in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF], we can define the intersection T + ∧ T -, see also Section 5. This gives an invariant measure. However, we cannot prove that this measure does not vanish. One introduced in [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] another construction which always gives an ergodic probability measure 1 . This measure is the intersection of a Green current T + with (1, 1)-currents with Hölder continuous potentials. The main result in [START_REF]Exponential estimates for plurisubharmonic functions and stochastic dynamics[END_REF] implies that the measure is moderate. Here is a criterion for the non-vanishing of T + ∧ T -, see also [START_REF] Guedj | Equidistribution towards the Green current[END_REF].

Proposition 8.4.0.1. If f is as above, then the following properties are equivalent 1. There is a Green (p, p)-current T + of f and a Green (k -p, k -p)-current T -of f -1 such that T + ∧ T -is a positive non-zero measure.

2. The spectral radius of f * on H p,p (X, R) is of multiplicity 1.

3. The spectral radius of f * on H k-p,k-p (X, R) is of multiplicity 1.

Proof. To say that the multiplicity of the spectral radius is 1 means that the Jordan blocks associated to the eigenvalues of maximal modulus are reduced to these eigenvalues. As it is showed in Section 8.1, if we consider a basis of H p,p (X, R) and H k-p,k-p (X, R) which are dual with respect to the cup-product , then f * acting on H p,p (X, R) and f * acting on H k-p,k-p (X, R) are given by the same matrix. Therefore, properties 2 and 3 are equivalent.

Assume that properties 2 and 3 hold. Then, by Proposition 8.2.0.6, the currents

converge SP-uniformly to a positive closed (p, p)-current T + . By Lemma 8.1.0.2, the cohomology class of T + is non-zero. Therefore, T + is a Green (p, p)-current.

In the same way, we prove that

where in order to obtain the last line we use a SP-uniform approximation of T + ⊗ T -by smooth currents as above. We have

Observe that d n p (f n ) * T + belongs to a bounded family of currents constructed in Theorem 8.2.0.1. An analogous property holds for d n p (f n ) * T -. Therefore, the limit values of (

are measures in M . It follows that (φ•f 2n i )µ, ψ converge to a finite combination of µ + ⊗ µ -, Φ = const µ -, ψ with µ + , µ -in M . We deduce that (φ • f 2n i )µ converge to a combination of µ -. So, the limit values of (φ • f 2n )µ are in M . This completes the proof of the first assertion.

For the last assertion, we follow the same approach with T + associated to a class in H and T -associated to a class in H ∨ . In this case, T + , T -are invariant and any limit value of

is a measure in N . We deduce as above that the limit values of µ N are in N .

Proposition 8.4.0.8. Let µ be a probability measure in N + . Then µ is ergodic if and only if it is an extremal element of N + . Moreover, the number of extremal probability measures in N + is equal to dim N and the convex cone N + is generated by these measures. When d p is the only dominant eigenvalue of f * on H p,p (X, C) which is a root of a real number, then µ is mixing if and only if it is an extremal element of N + .

Proof. If µ ergodic, µ is extremal in the cone of invariant positive measures. Therefore, µ is extremal in N + . Assume now that µ is extremal in N + . We show that it is ergodic. Let φ be a positive continuous function. The measures µ N , defined as above, are positive and bounded by φ ∞ µ. By Lemma 8.4.0.7, any limit value of µ N is a measure in N + and it is bounded by φ ∞ µ. Since µ is extremal in N + , these limit values are proportional to µ. Therefore, µ is ergodic.

Recall that N + is a salient convex closed cone in N with non-empty interior. Moreover, any element ν of N + is an integral over extremal elements of mass 1. So, we get a decomposition of ν into ergodic probability measures. Since this invariant, see Example 10.7.0.5. That example shows that E is not the maximal totally invariant analytic set. The previous result is in fact a consequence of the following one, see also Theorem 10.7.0.1 for a uniform convergence result.

Theorem 10.1.0.2. Let f be a holomorphic endomorphism of algebraic degree d ≥ 2 of P k and T the Green current associated to f . There is a proper analytic subset E of P k , totally invariant, such that if S is a positive closed (1, 1)-current of mass 1 in P k whose local potentials are not identically -∞ on any irreducible component of

The space H d of holomorphic maps f of a given algebraic degree d ≥ 2 is an irreducible quasi-projective manifold. We will also deduce from our study the following result due to Fornaess and Sibony [START_REF] Fornaess | Complex dynamics in higher dimension. II. Modern methods in complex analysis[END_REF], see also [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF].

The rough idea in order to prove our main results is as follows. Write S = dd c u+T . Then, the invariance of

So, we have to study the asymptotic contraction (à la Lojasiewicz) by f n . The main estimate is obtained using geometric estimates and convergence results for plurisubharmonic functions, see Theorem 10.5.0.1. If d -n u•f n do not converge to 0, then using that the possible contraction is limited, we construct a limit v with strictly positive Lelong numbers. We then construct other functions w -n such that the current dd c w -n +T has Lelong numbers ≥ α 0 > 0 and w 0 = d -n w -n • f n . It follows from the last identity that w 0 has positive Lelong numbers on an infinite union of analytic sets of a suitable dimension. The volume growth of these sets implies that the current associated to w 0 has too large self-intersection. This contradicts bounds due to Demailly and Méo [START_REF] Demailly | Monge-Ampère Operators, Lelong numbers and Intersection theory in Complex Analysis and Geometry[END_REF][START_REF] Méo | Inégalités d'auto-intersection pour les courants positifs fermés définis dans les variétés projectives[END_REF]. (One should notice that the Demailly-Méo estimates depend on the L 2 estimates for the ∂-equation; they were recently extended to the case of compact Kähler manifolds by Vigny [START_REF] Vigny | Lelong-Skoda transform for compact Kähler manifolds and selfintersection inequalities[END_REF]). The previous argument has to be applied inductively on totally invariant sets for f , which are a priori singular and on which we inductively show the convergence to 0, starting with sets of dimension 0. So, we also have to develop the basics of the theory of weakly plurisubharmonic functions on singular analytic sets which is probably of independent interest. The advantage of this class of functions is that it has good compactness properties.

One may conjecture that totally invariant analytic sets should be unions of linear subspaces of P k . The case of dimension k = 2 is proved in [START_REF] Cerveau | Hypersurfaces exceptionnelles des endomorphismes de CP(n)[END_REF][START_REF] Shiffman | On totally invariant varieties of holomorphic mappings of P n[END_REF]. These authors complete the result in [START_REF] Fornaess | Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems (Rio de Janeiro[END_REF]. If this were true for k ≥ 3, our proof would be technically simpler. It is anyway interesting to carry the analysis without any assumption on the totally invariant sets since our approach may be extended to pure dimension p. Recall that the Green current T of f has locally continuous potentials. Observe that in what follows (except for Lemma 10.3.0.8, Corollary 10.3.0.9 and Remark 10.3.0.10), T could be an arbitrary positive closed (1, 1)current of mass 1 with continuous potentials, and P k could be replaced by any compact Kähler manifold. We will use the following notion that allows us to simplify the notations. Definition 10.3.0.1. A function u : X → R ∪ {-∞} is wpsh modulo T if locally it is the difference of a wpsh function on X and a potential of T . If X is smooth, we say that u is psh modulo T .

The following result is a consequence of Proposition 10.2.0.4.

If S is a positive closed (1, 1)-current on P k of mass 1, then it is cohomologous to T and we can write S = T + dd c u where u is a modulo T psh function on P k . The restriction of such a function u to X is either wpsh modulo T or equal to -∞ on at least one irreducible component of X.

The following proposition is a consequence of Proposition 10.2.0.5. Proposition 10.3.0.3. Let (u n ) be a sequence of modulo T wpsh functions on X, uniformly bounded from above. Then there is a subsequence (u n i ) satisfying one of the following properties:

(1) There is an irreducible component Y of X such that (u n i ) converges uniformly to -∞ on Y \ sing(X).

(2) (u n i ) converges in L q (X) to a modulo T wpsh function u for every 1 ≤ q < +∞.

In the last case, lim sup u n i ≤ u on X with equality almost everywhere.

The Hartogs' lemma 10.2.0.6 implies the following.

Lemma 10.3.0.4. Let (u n ) be a sequence of modulo T wpsh functions on X converging in L 1 (X) to a modulo T wpsh function u. If w is a continuous function on X such that u < w, then u n < w for n large enough.

The following lemma is deduced from Lemma 10.2.0.7.

MODULO T

Proposition 10.5.0.7. Assume that inf ν n = 0. Then,

for all u n ∈ G . In particular, the hypothesis is satisfied when there is an increasing sequence

Proof. Consider a sequence (d -n i u n i • f n i ) converging in L 1 (X) to a modulo T wpsh function u. Corollary 10.3.0.9 implies that u ≤ 0. We want to prove that u = 0. If not, since u is upper semi-continuous, there is a constant α > 0 such that u ≤ -2α on some ball B of radius 0 < r < 1 in X. By Lemmas 10.3.0.4 and 10.3.0.8, for i large enough, we have

Fix δ > 0 small enough and m such that ν m < δ. Consider only the n i larger than m. Then, d -m u n i • f m ≤ -d n i -m α almost everywhere on f n i -m (B). By Theorem 10.5.0.1,

almost everywhere on B i . It follows from Proposition 10.3.0.2(b) that this inequality holds everywhere on B i . By Proposition 10.4.0.5, there is a constant c > 0 independent of G , r, δ, m, and a constant A > 0 such that

This is a contradiction if δ is chosen small enough and if n i is large enough.

Assume now that d -n i u n i • f n i converge to 0 in L 1 (X) for all u n i ∈ G . Then, for every > 0, we have ν(u, a) < for u ∈ H n i , a ∈ X and for i large enough. Therefore, inf ν n = 0. Here, we use that if positive closed currents R n converge to R and a n → a then lim sup ν(R n , a n ) ≤ ν(R, a).

Corollary 10.5.0.8. Let F be a family of positive closed (1, 1)-currents of mass 1 on P k . Assume that there is an increasing sequence of integers

Proof. Observe that the hypothesis implies that d -n i (f n i ) * (S n i ) → T for all S n i ∈ F . So, we can replace F by F and assume that F is compact. To each current S ∈ F we associate a modulo T psh function u on P k such that dd c u = S -T . Subtracting from u some constant allows us to have max P k u = 0. Proposition 10.3.0.3 and Lemma 10.3.0.4 imply that the family G of these functions u is compact. The hypothesis and Corollary 10.3.0.9 imply that d -n i u n i • f n i → 0 for u n i ∈ G . Proposition 10.5.0.7 gives the result.

Corollary 10.5.0.9. Let F be a compact family of positive closed (1, 1)-currents of mass 1 on P k . Assume that for any S ∈ F , the Lelong number of S vanishes at every point out of supp(µ). Then,

Proof. Let G and H n be defined as above. Define also ν n := sup{ν X (u, a), u ∈ H n , a ∈ supp(µ)} 10.6. EXCEPTIONAL SETS i=0 g mi (Y ). The sequence (λ n ) decreases to a function λ, which represents the asymptotic proportion of orbits in X \ Y .

Lemma 10.6.0.3. There is a constant γ > 0 such that λ ≥ γ on X \ E 1 .

Proof. We deduce from the Siu's theorem, the existence of a constant 0

points. In the same way, we define F 4 , . . ., F n with #F n ≥ (1-ν i )d mpn . Hence, for every n we get the following estimate:

This proves the lemma.

End of the proof of Theorem 14.1.0.1. Let E n X denote the set of x ∈ X such that g -ml (x) ⊂ E 1 for 0 ≤ l ≤ n and define E X := ∩ n≥0 E n X . Then, (E n X ) is a decreasing sequence of analytic subsets of E 1 . It should be stationary. So, there is n 0 ≥ 0 such that E n X = E X for n ≥ n 0 . By definition, E X is the set of x ∈ X such that g -mn (x) ⊂ E 1 for every n ≥ 0. Hence, g -m (E X ) ⊂ E X . It follows that the sequence of analytic sets g -mn (E X ) is decreasing and there is n ≥ 0 such that g -m(n+1) (E X ) = g -mn (E X ). Since g mn is surjective, we deduce that g -m (E X ) = E X and hence E X = g m (E X ).

Assume as in the theorem that E is analytic with g -s (E) ⊂ E. Define E := g -s+1 (E) ∪ . . . ∪ E. We have g -1 (E ) ⊂ E which implies g -n-1 (E ) ⊂ g -n (E ) for every n ≥ 0. Hence, g -n-1 (E ) = g -n (E ) for n large enough. This and the surjectivity of g imply that g -1 (E ) = g(E ) = E . By Lemma 10.6.0.2, the topological degree of (g m ) |E is at most d m (p-1) for some integer m ≥ 1. This, the identity g -1 (E ) = g(E ) = E together with Lemma 10.6.0.

Remark 10.6.0.4. The maximality of E X in Theorem 14.1.0.1 implies that it does not depend on the choice of m and of the analytic set Y satisfying Lemma 10.6.0.2. Moreover, E X is also the exceptional set associated to g n for every n ≥ 1.

Proof. Let P be a generic projective plane in P k of dimension k -q. Consider a point a in Z ∩ P \ E X . Since E X = E n 0 X , we have g -ml (a) ⊂ E 1 for some 0 ≤ l ≤ n 0 . Then, by Lemma 10.6.0.3, #g -mn (a) contains at least γd mp(n-n 0 ) distinct points x satisfying the last property in the lemma. Let Z -n denote the union of the irreducible components of g -mn (Z) which contain at least one such point x. Then, Z -n satisfies the last property in the lemma. We have #Z -n ∩ f -mn (P ) ≥ γd mp(n-n 0 ) . Since deg f -mn (P ) = d mnq , we obtain that deg Z -n ≥ θd m(p-q)n for θ := γd -mpn 0 .

Convergence

In this section, we will prove the main results. Define the exceptional set E as the union of proper analytic subsets E of P k which are totally invariant by f and are minimal in the following sense. The set E does not contain non-empty proper analytic sets which are totally invariant by f . Theorem 14.1.0.1 and Corollary 10.6.0.5 imply that E is a totally invariant analytic set and it does not change if we replace f by an iterate of f , see also Remark 10.6.0.4. We have the following result which implies Theorems 10.1.0.1 and 10.1.0.2.

Theorem 10.7.0.1. Let f , T , E be as above. Let G be a family of modulo T psh functions on P k which is bounded in L 1 (P k ). Assume that the restriction of G to each component of E is a bounded family of modulo T wpsh functions. Then,

Let m ≥ 1 be an integer such that f m fixes all the irreducible components of all the totally invariant analytic sets. By Proposition 10.5.0.7, we can replace f by f m and assume that f fixes all these components. Let X p denote the union of totally invariant sets of pure dimension p. We will prove by induction on p that d -n u • f n converge to 0 in L 1 (X p ) uniformly on u ∈ G . We obtain the theorem for p = k and X k = P k . Assume this convergence on X 0 , . . ., X p-1 (the case p = 0 is clear). Define X := X p and E X as in Section 10.6. From the induction hypothesis, on each component

. So, we can apply Corollary 10.3.0.9 to G .

Let G denote the set of all the modulo T wpsh functions on X which are limit values in L 1 (X) of a sequence (d -n u n • f n ) with u n ∈ G . For every u ∈ G , Corollary 10.3.0.9 implies that u ≤ 0. Since E X ⊂ X, by induction hypothesis we have convergence on E X . The last assertion of Proposition 10.3.0.

We will consider the problem of convergence towards T + , the case of T -is obtained in the same way.

Let g : X → X denote the restriction of f to X := I -. The positive measure µ

This implies that g has topological degree d k-s-1 + . We construct as above the families X 0 , . . ., X k-s-1 of totally invariant sets associated to g with X k-s-1 = I -. Let E + denote the union of minimal components in {X 0 , . . . , X k-s-1 }. We have the following result, see [START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF] for the case of dimension 2.

Theorem 10.8.0.1. Let S be a positive closed (1, 1)-current of mass 1 on P k . Assume that the local potentials of S are not identically equal to -∞ on any irreducible component of E + . Then, d -n + (f n ) * (S) converge to T + . The proof follows the same lines as above. We will describe the difference with the case of holomorphic endomorphisms and leave the details to the reader. There is a neighbourhood V of I + with smooth boundary, which can be chosen arbitrarily small, such that f (P k \ V ) P k \ V , see [START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF]. If S is as above, there is a modulo T + psh function u such that S = T + + dd c u. This function is defined and is locally bounded from above on P k \ I + . Denote by G the set of modulo T + psh functions on P k which are limit values of

On the other hand, for v ∈ G , we prove as in the previous sections that v ≤ 0 and v = 0 on X = I -. It follows that v = 0 on L \ I + since we can write

The upper semi-continuity of the Lelong number implies that for every δ > 0, there is an m such that the Lelong number of d -m + u • f m is smaller than δ on P k \ V . We want to prove that v = 0 on P k \ V .

Assume that v = lim d -n i + u • f n i and that v ≤ -2α with α > 0, on a ball B ⊂ P k \ V of radius r. Then as in Proposition 10.5.0.7, we will have that

+

); this contradicts Proposition 10.4.0.2 for δ small and n i large. We can also obtain a uniform convergence for regular automorphisms as in Theorem 10.7.0.1.

Consider two points x and x in B 1 such that u(x) ≤ u(x ). The aim is to bound u(x )-u(x). Let y be a point in F ∩B 1 such that u(x) = u(y)+A x-y ν . By definition of u(x ), we have

This completes the proof.

We continue the proof of Theorem 11.1.0.1. For simplicity, let u denote the extension of u to B 1 as above for F = supp(S). Subtracting from u a constant allows to assume that u ≤ -1 on B 1 . Define v(z) := max(u(z), A log z ) for a constant A large enough. Observe that since A is large, v is equal to u on B 2/3 and to A log z near the boundary of B 1 . Moreover, v is ν-Hölder continuous. We are interested in an estimate on B 1/2 . So, replacing u by v allows us to assume that u = A log z on B 1 \ B 1-4r for some constant 0 < r < 1/16. Fix a smooth function χ with compact support in B 1-r , equal to 1 on B 1-2r and such that 0 ≤ χ ≤ 1.

Proof. Observe that u is smooth on B 1 \ B 1-4r . So, all the previous integrals make sense, see also Lemma 11.2.0.1. On the other hand, one can approximate ϕ by a deacreasing sequence of smooth p.s.h. functions (one reduce slightly B 2 if necessary). Therefore, it is enough to prove the lemma for ϕ smooth. A direct computation gives

The fact that dd c χ, dχ, d c χ are supported in B 1-r \ B 1-2r and χ is supported in B 1-r imply the result.

End of the proof of Theorem 11.1.0.1. Since F is compact, it is locally bounded from above. Subtracting from each function ϕ ∈ F a constant allows

The computation also shows that the previous supremum is reached when

End of the proof of Corollary 

Hence, by Lemma 11.4.0.2, the Gordin's condition in Theorem 11.4.0.1 is a consequence of the condition n≥1 Λ n ψ

In particular, Hölder continuous observables satisfy the CLT, see Proposition 11.3.0.5 and [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF] for meromorphic maps.

The following proposition gives us the next term in the expansion of the L 2norm of Birkhoff's sums.

Proposition 11.4.0.4. Let ψ be a d.s.h. or an ν-Hölder continuous function, with 0 < ν ≤ 2, such that µ, ψ = 0. Let σ ≥ 0 and γ be the constants defined by 

Consequently, for a given > 0, we have using the invariance of µ

Hence, ψ • f -ψ satisfies the LDT.

It remains to show that ψ satisfies the LDT. Fix a number δ such that 1 < δ 5 < d. We will use the following lemma for a positive constant b of order O(log n). 

Consequently, we deduce that

Therefore, by definition of ψ , since |ψ| ≤ 1 ≤ l and µ is invariant, we obtain

This implies the lemma.

In order to apply Lemma 11.5.0.2, we will need the following property.

Remark 11.5.0.11. In the main estimate of Theorem 11.5.0.9, we can remove the factor (log n) -2 if Λ n ψ L ∞ (µ) tends to 0 exponentially fast when n → ∞. This is the case in dimension 1, see Drasin-Okuyama [START_REF] Drasin | Equidistribution and Nevanlinna theory[END_REF] and when f is a generic map in higher dimension, see [START_REF]Pull-back of currents by holomorphic maps[END_REF]. LDT was recently proved for Lipschitz observables in dimension 1 by Xia-Fu [START_REF] Xia | Remarks on large deviation for rational maps on the Riemann sphere[END_REF]. It seems there is a slip in their paper: they state the main result for Hölder continuous observables.

Abstract version

In this section, we give a version of the large deviations theorem in an abstract setting. Let (M, F , m) be a probability space and f : M → M a measurable map which preserves m, i.e. f * (m) = m. Define F 1 := f -1 (F ). We say that f has bounded jacobian if there is a constant κ > 0 such that m(f (A)) ≤ κm(A) for every A ∈ F . Observe that f * defines a linear operator of norm 1 from L 2 (m) into itself.

Theorem 11.6.0.1. Let f : (M, F , m) → (M, F , m) be a map with bounded jacobian which preserves m as above. Let Λ denote the adjoint of f * on L 2 (m).

Let ψ be a bounded real-valued measurable function. Assume there are constants δ > 1 and c > 0 such that m, e δ n |Λ n ψ-m,ψ | ≤ c for every n ≥ 0.

Then ψ satisfies the large deviations theorem, that is, for every > 0, there exists a constant h > 0 such that

for all n large enough.

The proof follows the same steps as in Section 11.5. The details are left to the reader. We only notice two important points. The property that f is of bounded jacobian allows to prove an analog of Lemma 11.5.0.7. Indeed, in the proof of that lemma, the inequality µ(W ) ≤ d k µ(W ) should be replaced by m(W ) ≤ κm(W ). The following version of the Bennett's inequality replaces Lemma 11.5.0.2. 

which implies the convergence in the proposition. When F is complete, F * (Φ) has no mass on sets of Lebesgue measure zero. Hence, it has coefficients in L 1 loc . Note that when F is not complete we can have "vertical" components of Γ.

Corollary 13.4.0.3. Let F , p and q be as above. Assume that X and X are compact Kähler manifolds. Then the operator

is well defined and is linear.

Proof. When Φ is a smooth closed (p, q)-form then F * (Φ) is well defined and is a closed current of bidegree (k -k -l + p, k -k -l + q) since F * commutes with the operators ∂ and ∂. It follows that F * is well defined on the cohomology groups.

Assume that k -k -l + 1 ≥ 0. This condition is necessary so that the pullback operator on (1, 1)-currents is meaningful. The definition of this operator on positive closed (1, 1)-currents under a holomorphic map is classical [START_REF] Méo | Image inverse d'un courant positif fermé par une application analytique surjective[END_REF] and it can be extended easily to the case of a MT. Proof. We can write locally T = dd c u with u psh and define

Since u • π 2 is psh, the current (u • π 2 )[Γ] is well defined. Hence, F * (T ) is well defined. Since dd c and (π 1 ) * commutes, the definition is independent of the choice of u. The current π * 2 (T ) ∧ [Γ] is positive and closed. Hence, so is F * (T ). If T n → T , we can write locally T n = dd c u n with and u n → u in L 1 . So the continuity is clear. The assertion on {F * (T )} follows from this continuity and a regularization of T , see [388,[START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. Using Lemma 13.3.0.3, we easily extends Theorems 15.1.0.1 and 13.3.0.4, and Corollary 13.1.0.2 to the case of a pure MT. In particular, the following results hold for dominant meromorphic maps with finite fibers. Theorem 13.4.0.5. Let F : X → X be a pure MT of codimension l between complex manifolds X, X of dimensions k and k respectively. Let T be a positive closed (resp. dd c -closed) (p, p)-current on X . Then F * (T ) is a positive closed (resp. dd c -closed) current of bidegree (k -k + p -l, k -k + p -l) which depends c T , c > 0, such that T ± n → T ± and T + -T -= T . We have

Since the cohomological classes {T + n } of T + n are uniformly bounded with respect to n, (π 2 ) * (T + n ) ∧ [Γ] , which can be computed cohomologically, are uniformly bounded. More precisely, we have (π 2 ) * (T + n ) ∧ [Γ] ≤ c T , c > 0, for n large enough. Hence F (T ) is well defined and F (T ) ≤ c T with c > 0 independent of T .

By definition, (π 2|Γ ) (T ) = lim(π 2|Γ ) (T n ) on Γ \ C . Since (π 2|Γ ) (T ) has no mass on C , it follows that (π 2|Γ ) (T ) is smaller than any cluster value of (π 2|Γ ) (T n ). Hence τ ≥ F (T ). The last statement follows from Theorem 13.4.0.5. Definition 13.5.0.2. If {F (T )} = F * {T } we say that F * (T ) is well defined and we write F * (T ) := F (T ). We call F * (T ) the total transform of T .

For currents in a projective space, this definition has been used in order to study the dynamics of birational maps [START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF] (see also [START_REF] Alessandrini | Transforms of currents by modifications and 1-convex manifolds[END_REF]). The following result justifies the previous definition.

Proposition 13.5.0.3. The operator F * is continuous in the following sense. Let T n and T be positive closed (dd c -closed) currents such that T n → T . Assume that F * (T n ) and F * (T ) are well defined in the above sense. Then F * (T n ) → F * (T ).

Proof. As in Proposition 13.5.0.1, F * (T n ) is bounded uniformly on n. We can assume that F * (T n ) converge to a current τ . Proposition 13.5.0.1 implies that τ ≥ F * (T ). On the other hand, since F * acts continuously on cohomology groups, we have

It follows that τ = F * (T ) and hence τ = F * (T ). Now we study the case of dd c -closed (1, 1)-currents.

Theorem 13.5.0.4. Let F : X → X be a MT between compact Kähler manifolds. If T is a positive dd c -closed (1, 1)-current on X . Then there is a unique dd c -closed extension F * (T ) of F (T ) such that T → F * (T ) is continuous for the weak topology on currents. Moreover, we have {F * (T )} = F * {T }.

For the proof we need the following fact.

Proposition 13.5.0.5. Let f : X → X be a holomorphic surjective map between compact Kähler manifolds of dimension k and k . Let I 2 be the set of x ∈ X such that dim f -1 (x ) > k -k . Then the components of codimension 1 of f -1 (I 2 ) are cohomologically independent.

Chapter 14

Distribution of varieties

Let f be a non-invertible holomorphic endomorphism of the complex projective space P k and f n its iterate of order n. Let V be an algebraic subvariety of P k which is generic in the Zariski sense. We give here a survey on the asymptotic equidistribution of the sequence f -n (V ) when n goes to infinity.

Introduction

Let P k denote the complex projective space of dimension k. Consider an endomorphism f : P k → P k which is holomorphic and non-constant. Such a map is always induced by a polynomial map F = (F 0 , . . . , F k ) from C k+1 to C k+1 where the F i are homogeneous polynomials of the same degree such that F -1 (0) = {0}. Indeed, if π : C k+1 \ {0} → P k is the canonical projection, the map f is defined by the relation f • π = π • F . We refer to [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Fornaess | Dynamics in several complex variables[END_REF][START_REF] Sibony | Dynamique des applications rationnelles de P k[END_REF] for the basic properties of these endomorphisms.

From now on, we assume that the algebraic degree of f , i.e. the common degree d of the F i , is at least 2. Otherwise, f corresponds to an invertible matrix and its dynamics is easy to study. The parameter space for these endomorphisms with a given algebraic degree d is a Zariski open set of a projective space P N that we denote by H d (P k ). Using the Bézout theorem, it is not difficult to see that an endomorphism f as above defines a ramified covering of degree d k over P k . In other words, f -1 (a) contains exactly d k points counted with multiplicity.

Let ω FS denote the Fubini-Study form on P k normalized so that ω k FS is a probability measure. Let

) be the iterate of order n of f . It is well-known that the sequence of probability measures d -kn (f n ) * (ω k FS ) converges to a probability measure µ which is totally invariant:

It is called the equilibrium measure or the Green measure of f , see e.g. [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF].

Consider a point a in P k . We are interested in the asymptotic distribution of the fibers f -n (a) of a when n goes to infinity. We will survey results on the equidistribution of these sets. The proof for the main results in this section was CHAPTER 14. DISTRIBUTION OF VARIETIES given in [START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF]. We will sketch it in Section 14.2 with some simplification of the arguments. Equidistribution for higher dimension subvarieties will be discussed in Section 15.6. We also refer to Yuan [START_REF] Yuan | Algebraic Dynamics, Canonical Heights and Arakelov Geometry[END_REF] for analogous equidistribution problems in number theory.

We have the following result which was proved in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF], see also [START_REF] Dinh | Suites d'applications méromorphes multivaluées et courants laminaires[END_REF].

Theorem 14.1.0.1. Let f be a non-invertible holomorphic endomorphism of P k . Then, there is a finite number of algebraic subsets E ⊂ P k which are totally invariant, i.e. f -1 (E) = E = f (E). In particular, there is a maximal proper algebraic subset E , possibly empty, which is totally invariant.

Note that E is totally invariant if and only if f -1 (E) ⊂ E. We do not assume here that E is irreducible nor of pure dimension. The set E is in fact the union of all totally invariant proper algebraic sets of f . These sets are a posteriori of bounded degree and we can construct them explicitly. However, they are far from being understood. The following folklore conjecture is still open in dimension k ≥ 3, see [START_REF] Fornaess | Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems (Rio de Janeiro[END_REF][START_REF] Cerveau | Hypersurfaces exceptionnelles des endomorphismes de CP(n)[END_REF] for the dimension 2 case. Conjecture 14.1.0.2. Any totally invariant algebraic subset for a map f as above is a union of linear projective subspaces.

One also expects that the degrees of these totally invariant sets are bounded by a constant which depends only on k. This is known for the case where the codimension of E is 1 or 2 or in some others situations, see [START_REF] Amerik | Exceptional points of an endomorphism of the projective plane[END_REF][START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Fornaess | Complex dynamics in higher dimension. I. Complex analytic methods in dynamical systems (Rio de Janeiro[END_REF]. In dimension 1, E contains 0,1 or 2 points, e.g. if f (z) = z ±d then E = {0, ∞}.

Denote by δ a the Dirac mass at a and µ a n := d -kn (f n ) * (δ a ) the probability measure which is equidistributed on the fiber f -n (a). The points in f -n (a) are counted with multiplicity. Here is the first main result [START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF].

Theorem 14.1.0.3. Let f , µ and E be as above. There is a constant λ > 1 such that if a is a point out of E , then µ a n converges to µ exponentially fast, that is, if ϕ is a C α function on P k with 0 < α ≤ 2, we have

where A > 0 is a constant independent of n, a and ϕ.

Here, we use the notation µ, ϕ := ϕdµ.

The simple convergence µ a n → µ is equivalent to the convergence of the integral µ a n -µ, ϕ to 0. The above theorem gives us the exponential speed of convergence. Note that the distance dist(a, E ) is with respect to the Fubini-Study metric on P k . When E is empty (this is the case for generic f ), by convention, this From Theorem 14.1.0.5, we can deduce several fundamental statistical properties of the measure µ. Recall that locally this measure can be written as a Monge-Ampère measure with Hölder continuous potential. It is shown by Nguyen and the authors in [START_REF]Exponential estimates for plurisubharmonic functions and stochastic dynamics[END_REF] that µ is moderate, i.e. it satisfies some exponential estimate for plurisubharmonic functions à la Hörmander as in Lemma 14.2.0.1 where we replace ω k FS by µ and |ϕ| by a constant times |ϕ|. Therefore, in our setting, we can work with µ as if it were the Lebesgue measure.

Theorem 14.1.0.5 implies a slightly weaker estimate than the following exponential mixing of µ which were proved in [START_REF] Dinh | Dynamique des applications d'allure polynomiale[END_REF][START_REF] Fornaess | Complex Hénon mappings in C 2 and Fatou-Bieberbach domains[END_REF] 

The mixing implies the ergodicity and then, by Birkhoff's theorem, if a is a µ-generic point in P k , the orbit of a is equidistributed in the support of µ. More precisely, we have

We can also deduce more precise informations about this convergence, namely, it is possible to obtain the central limit theorem and the large deviations theorem which were proved in [START_REF]Exponential estimates for plurisubharmonic functions and stochastic dynamics[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF].

14.2 Sketch of the proof of Theorem 14.1.0.5

The use of Proposition 14.2.0.2 below is new and it simplifies the original proof of Theorem 14.1.0.5. Note also that Theorem 14.1.0.3 is a consequence of the last one. For the details, we refer to [START_REF] Dinh | Une borne supérieure pour l'entropie topologique d'une application rationnelle[END_REF]. The main tool we use is pluripotential theory. We recall here some results and refer to [START_REF] Demailly | Regularization of closed positive currents and intersection theory[END_REF][START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF][START_REF] Hörmander | The analysis of Linear partial differential operators I[END_REF] for the details.

Let ϕ : X → R ∪ {∞} be a function on a connected complex manifold X which is not identically -∞. It is called plurisubharmonic (p.s.h. for short) if its restriction to any holomorphic disc is either subharmonic or equal to -∞. It is called quasi-p.s.h. if it is locally the difference of a p.s.h. function with a smooth function. So, C 2 functions are quasi-p.s.h. A set E in P k is pluripolar if it is contained in the pole set {ϕ = -∞} of a quasi-p.s.h. function ϕ.

Recall that a function ϕ on P k , defined out of a pluripolar set, is d.s.h. if it is equal to the difference of two quasi-p.s.h. functions. We identify two d.s.h. functions if they are equal outside of a pluripolar set. We summarize here some properties of these functions, see [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF] for details. If ϕ is d.s.h., there are two positive closed (1, 1)-currents S ± of the same mass such that dd c ϕ = S + -S -. Conversely, if S ± are positive closed (1, 1)-currents of the same mass, there is a d.s.h. function ϕ, unique up to a constant, such that

In what follows, we only consider the space F of d.s.h. functions ϕ such that µ, ϕ = 0, where µ is the equilibrium measure of f . This space is endowed with

Equidistribution

In this section we survey the results on equidistribution of varieties. Recall that the sequence d -n (f n ) * (ω FS ) converges to a canonical invariant positive closed (1, 1)-current T of mass 1. We call it the Green current of f . For any integer 1 ≤ p ≤ k, the sequence d -pn (f n ) * (ω p FS ) converges to the positive closed (p, p)current T p := T ∧. . .∧T (p times) that we call the Green current of order p or the Green (p, p)-current of f , see e.g. [START_REF] Dinh | Distribution des valeurs de transformations méromorphes et applications[END_REF]. When p = k we obtain the equilibrium measure µ = T k considered above.

Note that the operators f * and f * are well-defined on positive closed currents [START_REF] Dinh | Pull-back of currents by holomorphic maps[END_REF]. If S is a positive closed (p, p)-current on P k , we have f * (S) = d p S and f * (S) = d k-p S . If V is an algebraic set of pure codimension p, the integration on its regular part defines a positive closed (p, p)-current [V ]. The mass of [V ] is equal to the degree of V . We conjecture the following. Conjecture 14.3.0.1. Let V be generic in the Zariski sense among algebraic sets of pure codimension p and of a given degree. Then, deg(V )

converge to T p in the sense of currents when n goes to infinity. Moreover, the convergence is exponentially fast.

Fix a constant 1 < λ < d. We expect a much stronger property: there is a finite family of algebraic sets E 1 λ , . . . , E m λ such that if V intersects E i λ properly, i.e. the intersection is empty when dim E i λ < p and the intersection is of dimension dim E i λ -p otherwise, then

for any test form Φ of class C α with 0 < α ≤ 2.

If we replace the family of E i λ by the family of all totally invariant algebraic sets, we also expect the exponential convergence with rate λ -nα/2 for some λ > 1.

The conjecture says in particular that if U is an open set such that T p has positive mass on U but no mass on ∂U and if V, V are two generic algebraic sets of codimension p, of the same degree, then the volume of f -n (V ) ∩ U is almost equal to the one of f -n (V ) ∩ U when n is large enough. Here, by volume we mean the Hausdorff 2(k -p)-dimensional measure with respect to a fixed Hermitian metric on P k .

We have seen that the conjecture holds for the case of points, i.e. p = k. The conjecture was recently confirmed in the case of hypersurfaces, i.e. p = 1, by Taflin in [START_REF] Taflin | Equidistribution speed towards the Green current for endomorphisms of P k[END_REF]. Taflin's theorem is as follows.

Theorem 14.3.0.2. Let λ be a constant such that 1 < λ < d. There is a finite family of algebraic sets E 1 λ , . . . , E m λ satisfying the following property. If V is a hypersurface which does not contain any E i λ , then

Isolated periodic points number

In this section, we will discuss in detail Theorem 15.1.0.1 stated in the introduction. We first have the following general result recently obtained in [START_REF] Dinh | Growth of the number of periodic points for meromorphic maps[END_REF].

Theorem 15.5.0.1 (Dinh-Nguyen-Truong). Let f be a dominant meromorphic correspondence on a compact Kähler manifold X and let h a (f ) be the algebraic entropy of f . If Q n denotes the set of isolated periodic points of period n of f counted with multiplicity, then we have

In particular, f is an Artin-Mazur correspondence, that is, the cardinality of Q n grows at most exponentially fast with n.

The proof of this theorem uses the theory of densities for positive closed currents, described in Section 15.3. Let [Γ n ] denote the current of integration on the graph Γ n of f n . We can show that its mass (or equivalently the 2k-dimensional volume of Γ n ) is O(e nλ ) for every constant λ > h a (f ). It follows that the family of currents e -nλ [Γ n ] is bounded. So their densities along the diagonal ∆ are also bounded. On the other hand, by definition, the total tangent class of [Γ n ] along ∆ is at least equal to #Q n times the cohomology class of a fiber of the bundle N ∆|X 2 . We then deduce that #Q n = O(e nλ ), which implies the theorem.

The following result is an immediate consequence of the last theorem.

Corollary 15.5.0.2. Let f, X and Q n be as in Theorem 15.5.0.1. Then the zeta-function associated to f

The following question is related to the existence of some recurrence property of the sequence #Q n . A positive answer is known in some situations where #Q n can be computed explicitly. Problem 4. Does the zeta-function ζ f always admit a meromorphic or rational extension to the whole complex plane C ? We can ask the same question for the zeta-function defined with the sequence of Lefschetz numbers L(f n ).

We continue the discussion on Problems 1a and 1b. The theory of densities of currents can be used to get more precise estimates. We will give here two examples. The following result was obtained in [START_REF] Dinh | Equidistribution for meromorphic maps with dominant topological degree[END_REF]. Recall the Lefchetz number L(f n ) is the intersection number associated to Γ n and ∆.

Chapter 16

Limit currents

We construct d-closed and dd c -closed positive currents associated to a holomorphic map φ via cluster points of normalized weighted truncated image currents. They are constructed using analogues of the Ahlfors length-area inequality in higher dimensions. Such classes of currents are also referred to as Ahlfors currents. We give some applications to equidistribution problems in value distribution theory.

Introduction

Let X be a complex manifold of dimension k, and (Y, ω) a compact kähler manifold of dim m ≥ k. We consider a non-degenerate holomorphic map φ : X → Y . We are interested in the distribution of pre-images of subvarieties of Y under φ. When k = m = 1, the theory is very well-developed, see, for example, [START_REF] Hayman | Meromorphic Functions[END_REF]. In higher dimensions many questions remain open, but cf., Griffiths [START_REF] Griffiths | Entire Holomorphic Mappings in One and Several Complex Variables[END_REF], Shabat [START_REF] Shabat | Distribution of values of holomorphic mappings (Russian)[END_REF].

We first construct some positive d-closed or dd c -closed currents associated to φ. When X = C, Ahlfors's length-area estimate implies that for appropriate subsequences r n → +∞ the currents φ * [D rn ]/c rn cluster at positive closed currents of bidimension [START_REF] Azonnahin | Conceitos Fundamentais e Métodos Pluripotenciais para Aplicações Cohomologicamente Expansíveis[END_REF][START_REF] Azonnahin | Conceitos Fundamentais e Métodos Pluripotenciais para Aplicações Cohomologicamente Expansíveis[END_REF]. Here D r is the disk of radius r, [D r ] is the current of integration over this disk, and c r is a normalizing factor to guarantee mass 1. Such currents are useful in dynamics [START_REF]Distribution des valeurs de transformations méromorphes et applications[END_REF], [START_REF] Sibony | Dynamique des applications rationelles de P k[END_REF] and value distribution theory [START_REF] Mcquillan | Diophantine approximation and foliations[END_REF], for example. The present paper centers around extensions of Ahlfors' idea to higher dimensions, especially when X is parabolic, or a bounded domain.

Let τ be a plurisubharmonic (p.s.h.) exhaustion function on X,

where R could be finite. Recall that a manifold X is parabolic if it admits a p.s.h. exhaustion function τ with R = +∞, and such that (dd c τ ) k vanishes outside a compact set. An example is X = C k , τ = log z outside a compact set. Riemann Remark 16.1.0.2. In what follows, we will have considerable flexibility in how we construct the limit currents. There are at least two forms of growth measurements one might use, depending on whether one uses averaged or unaveraged characteristic functions. The averaged functions arise when one averages out the currents S r via

for test forms ψ of bidegree (j, j), where the only difference between the d-case and the dd c -case is in the choice of u r as above. In practice, there are only minor technical differences in these cases, and we content ourselves with mentioning the averaged currents here and in remark 16.3.0.7 below. The differences in arguments between the d-closed limits and the dd c -closed limits are more substantial, and we carry out more or less parallel arguments in these two cases in sections 16.2 and 16.3, respectively. The dd c case requires a regularization of u r .

First limits: d-closed currents

Let X be a complex manifold of dimension k, and (Y, ω) a compact Kähler manifold of dimension m ≥ k. We assume X, Y conected. Let φ : X → Y be a non-degenerate holomorphic map, i.e., the rank of dφ(x 0 ) = k at some x 0 ∈ X. Let τ : X → [0, R), 0 < R ≤ +∞ be a smooth plurisubharmonic exhaustion function. Set B r = {x | τ (x) ≤ r}, which is compact for r < R. For convenience, we will usually assume that τ ≥ r 0 > 0. (16.2.1)

Let u r be a family of continuous positive plurisuperharmonic functions on B r , r ∈ [0, R). We consider the family of positive currents of bidimension (j, j) on Y defined by

where ψ is a smooth test form of bidegree (j, j) on Y , and set c r = c j,r = S j,r (ω j ). We will study the cluster points of the family of normalized positive currents S r (•)/c r of mass 1. Different choices of u r will prove useful in what follows.

In this section we consider cases where the proper choice of u r , and suitable conditions on φ, τ, ω, lead to d-closed currents as cluster points of the normalized S r 's.

In particular, we will work mainly in this section with u r := (1 -τ r ) + = χ(v r ), where v r = 1 -τ r , and χ = max(t, 0). We want to find conditions which guarantee that dS r /c r → 0, for suitable sequences r → R. For this it is enough to estimate dS r on test forms of the type ψ = θ ∧ β k-1 , with θ a (1,0)-form and β an arbitrary kähler form. This is because we can first assume ψ has components only Theorem 16.2.0.2. If the exists a sequence r → ∞ such that I j (r ) → 0, then any limit current of S r /c r is a closed and positive current of mass 1. Moreover, lim r →∞ 1 cr dS r , ψ = 0, for any bounded test form ψ of degree 2j -1. We are thus led to study the ratios I(r) = I j (r) of (16.2.8). Let us introduce characteristic functions appropriate to all dimensions as in (16.1.2) and (16.1.3) above. Similar notions have been used in the holomorphic dynamics literature under the name of dynamical degrees: when f is a meromorphic self-map of a compact Kähler manifold Y of dimension k, then the j-th dynamical degree λ j is defined as 

We express the components of the I j (t)'s in terms of these t j 's. We write out the case of j = k only; the others are similar. First

Thus we can re-express I(r) as If R = +∞, we can draw some simple conclusions. If k = dim X = 1, then

.3.23)

If R = +∞, then T 1 (r) log r as r → ∞. If, in addition, σ is a parabolic exhaustion of X, so that σ is harmonic outside a compact subset of X, then by (16.3.23) we get that any limit point S ∞ of S r /c r is a dd c -closed positive current. If dim Y = 1 also, then this must be a positive constant times the current [Y ] of integration on Y .

As an illustration in a case where R < +∞, consider X = B 1 ⊂ C, and σ = |z|. In this case, the condition that lim inf r→R J(r) = 0 is equivalent to which can also be written as 1 0 t 1 (s)ds = +∞. This condition was considered in [FS] in connection with the study of laminations. For domain B k , k arbitrary, one would need the condition

Remark 16.3.0.5. These last results may be localized. For example, if

→ +∞, (16.3.25) as n → +∞, then the corresponding currents have among their clusterpoints a dd c -closed positive current of bidemension (k, k) and mass 1.

3. If instead of a fixed map φ, we suppose we have a sequence of maps φ n : → Y from the unit disk to Y . Assume that there are sequences n , r such that n → ∞, and r → 1 -, and such that

and that U • φ n does not converge to -∞ uniformly. Then once again, any dd cclosed cluster point T of S r (φ n )/c r (φ n ) will verify T, α ≥ 0. This is because we still have X (dd c log σ) k U • φ n bounded. 4. If the hypersurface Z is an ample divisor on Y , then we get {T }, {Z} = T, α > 0, because we can take α to be a kähler form on Y , and then T, α is just the mass of T with respect to the Kaehler metric underlying α. Similarly, if {Z} is represented by a form α which is only non-negative, then {T }, {Z} ≥ 0, with equality if and only if the support of T is contained in the zero locus of α. It would be interesting to know if there were other examples of geometric conclusions one could draw from the condition T, α = 0.

Effect of scaling on the limits

In this section we want to change scales slightly when we compare the various volume measures we have discussed up to now. We will apply them to sequences of holomorphic maps φ n with X and τ fixed, using dd c -closed limits in all intermediate dimensions. To this end, set S j,n,r (ψ) = Br log + r σ (dd c log σ) k-j ∧ φ * n (ψ), where ψ is a test form on Y of bidegree (j, j), and set c j,n,r = S j,n,r (ω j ). Finally, set t j (φ n , r) = Br (dd c log σ) k-j ∧ φ * n (ω j ),

T j (φ n , r) = r 0 t j (φ n , r) ds s , and J j (φ n , r) = t j-1 (φ n , r) T j (φ n , r) .

Consider the condition that for some constant c > 1, we have that lim inf n→∞,r→R - t j-1 (φ n , r) t j (φ n , r/c) = 0. (16.4.1)

Note that this is similar to the condition in the hypotheses of corollary 16.7.0.2 below, except that here we are assuming that even a fixed fraction of the t j will dominate t j-1 , and considering a sequence of maps.

Theorem 16.4.0.1. If condition (16.4.1) is verified, then there is a dd c -closed positive cluster current of mass 1 for the family {S j,n,r /c j,n,r }.

Proof. We estimate J j (φ n , r) directly.

J j (φ n , r) = Br (dd c log σ) k-j+1 ∧ φ * n (ω j-1 )

Br log + r σ (dd c log σ) k-j ∧ φ * n (ω k ) ≤ Br (dd c log σ) k-j+1 ∧ φ * n (ω j-1 )

B r/c log + r σ (dd c log σ) k-j ∧ φ * n (ω j )

≤ Br (dd c log σ) k-j+1 ∧ φ * n (ω j-1 ) log c B r/c (dd c log σ) k-j φ * n (ω j ) = 1 log c

• t j-1 (φ n , r) t j (φ n , r/c) . Then either for some j, 1 ≤ j ≤ k there is a positive, dd c -closed current T which is a cluster point of S j,n,r /c j,n,r , or a subsequence of any sequence of graphs of the φ n is convergent in the Hausdorff metric over any compact set in B k (1).

Proof. Suppose that, for 1 ≤ j ≤ k, there are no such cluster currents. Then for any j and for n >> 0, and arbitrary r < 1, by Theorem 16. 

Applications to value distribution

In this section we would like to apply some of the results above to classical value distribution. Some of the concepts above have clearly been motivated by this, and we start by recalling some of the classical definitions and results to make this explicit. We have t j (s) = Bs (dd c τ ) k-j ∧ φ * (ω j ), and T j (r) = Such measures can be supported on very small sets, for example, any set of positive Lebesgue measure on a real analytic arc in Pm not contained in a hyperplane, or supported on any non-pluripolar set, cf. [START_REF] Molzon | Average growth estimates for hyperplane sections of entire analytic sets[END_REF]. Given such a measure ν, we can state a precise theorem in this context. (The definition of positive capacity is reviewed below, in (16.5.15))