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Abstract

This note deals with the problem of controlling a simple one-degree-of-freedom (1-dof) juggling robot (a system that belongs to the
class of nonsmooth hybrid complementary-slackness dynamical systems), when some physical parameters such as the object mass and
the restitution coe$cient are not exactly known. The proposed adaptive controller is based on so-called dead-beat viable controllers
previously studied, in which the sequence of desired `robota pre-impact velocities is suitably modi"ed. The dynamics of a simple 1-dof
hopper is shown to be controllable by the proposed control algorithm. Numerical simulations support the theoretical
results. 
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1. Introduction

The analysis and control of nonsmooth hybrid mech-
anical systems with unilateral constraints (that give rise
to complementarity conditions) has recently been
the object of various studies (ten Dam, Dwarshuis,
& Willems, 1997; van der Schaft & Schumacher, 1996),
and still represents an open topic with many problems
unsolved yet. In this note we focus our attention on
a very simple case of such complementary}slackness
systems, a one-degree-of-freedom (1-dof) juggler. This
belongs to a much more general class of nonsmooth
models named complementary}slackness juggling mech-
anical systems (Brogliato & Zavala-RmHo, 2000), that
encompasses `truea jugglers as well as hoppers, non-
prehensile manipulators, robots with passive dynamical
environments, simple models of controlled buildings, etc.
In particular it is shown that the 1-dof juggler dynamics
matches with that of a (simpli"ed) 1-dof hopper. The
control problem for such systems has been studied in
Zavala-RmHo and Brogliato (1999) and Zavala-RmHo (1997)

where a class of hybrid dead-beat controllers has been
proposed and thoroughly analyzed (see also these refer-
ences for a review of juggler control). In Brogliato and
Zavala-RmHo (2000) a more general point of view on com-
plementary-slackness juggling systems has been taken,
and some controllability criteria have been proposed.
Roughly, they hinge on the analysis of an impact
PoincareH map that represents the object dynamics from
one impact to the next, considering the pre-impact velo-
city of the robot as an intermediate input. When this
discrete-time map is controllable with the robot velocity
as input, the object has been de"ned to be controllable via
impacts. In this note, it is shown that a suitable extension
of the dead-beat controllers allows one to derive an
adaptive scheme which permits to relax the a priori
knowledge on the object mass and on the restitution
coe$cient, while guaranteeing convergence of the pro-
cess state towards its desired (discrete-time) orbit.

2. One-degree-of-freedom juggler

Let us begin by recalling the 1-dof juggler dynamics
(see Fig. 1)
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Fig. 1. One-dof juggler.
Fig. 2. One-dof hopper.
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where the object and the robot dynamics are in (1) and (2)
with u as the control input force, the complementarity
conditions between the distance � and the Lagrange
multiplier � are in (3), and the restitution law is in (4)
where e3[0,1] is the restitution coe$cient. The comp-
lementarity conditions in (3) mean that all gluing or
magnetic e!ects are excluded from the model, so that the
contact force � has to be zero whenever the distance
� becomes positive. On the contrary a positive contact
force � implies contact between the two bodies. The name
complementary-slackness systems is simply taken from
some standard terminology in convex analysis (Rockafel-
lar, 1970). Collisions take place at impact times t

�
if and

only if �(t
�
)"0 and �� (t�

�
)(0 (Brogliato, 1999), yielding

(Zavala-RmHo, 1997; Brach, 1991)
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where mOm
�
/m

�
. Subsequently in this study, f (k) will

stand for f 's post-impact values f (t�
�
) ( f (t

�
) if f denotes

a position). Pre-impact values f (t�
�
) will be referred ex-

plicitly.

Remark 1. Let us apply Lemma 4 of Brogliato and
Zavala-RmHo (2000) to the 1-dof juggler dynamics, i.e.
consider the new coordinate system (q

�
, q

�
) where
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"�. Then (1)}(4) is transformed into
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where m�
�
"1/m

�
. Now, let us consider the 1-dof hopper

in Fig. 2. It is easy to show that in the coordinate system
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)"(y
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, y
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, its dynamics are also modeled by (6) with
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"1/(m
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�
) and u"m

�
g#u

�
. Therefore,

a dead-beat-algorithm-based input and impact control
strategies equivalent to those to be presented in Sections
3 and 4 can be gotten for this simple 1-dof hopping robot.
Let us notice that we have implicitly assumed that the
bar is long enough so that y

�
(t)'0, ∀t*0, whatever the

control may be. Clearly, further studies should incorpor-
ate y

�
!y

�
'R for some R'0. But then one would

have to deal with possible multiple shocks, which may
complicate the wellposedness of the model (Brogliato,
1999). In Brogliato and Zavala-RmHo (2000), the multiple
constraint case is discussed.

3. Dead-beat force input

The following proposition brie#y recalls the control
strategy proposed in Zavala-RmHo and Brogliato (1999)
(see also other references therein). It mixes a "nite-time
convergent input based on the robot's controllability
gramian inversion, and some logic to cope with the
object's ballistic constraints. Such controllers may be
seen as two-stages inputs (Brogliato & Zavala-RmHo, 2000):
the "rst stage is to design an intermediate control signal,
that is the robot pre-impact velocity, whose desired value
is denoted as y� H

�
(k). The second stage is the design of the

control input force u. In the next section, we shall focus
on an adaptive version of y� H

�
(k) that relaxes the a priori

knowledge on certain physical parameters. Details on the
meaning of the various terms appearing in the expression
of the control input are given after Proposition 1. As
pointed out in Brogliato and Zavala-RmHo (2000), other
"nite-time inputs can be designed. In the following, the
signals with upper index * denote values that the state
(y

�
, y

�
,y�

�
,y�

�
) is forced to track at all impact times. They

di!er from the signals with lower index d, which denote
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the desired trajectory of the object. The reason for this
discrepancy is that one has to incorporate the ballistic
constraints of the object in the control design (the least
requirement being that the intersection between the de-
sired discrete-time orbit and the real orbit of the object, is
not empty).

Proposition 1. Consider the dynamical system in (1)}(4).
Suppose that the initial conditions and u are such that there
exists an impact or contact time t

�
*0. Let (y

�
,y�

�
) be the

desired position and post-impact velocity of the object. Let
us dexne the following control input:
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∀k*0, where y(k)"y
�
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(k) (since �(k)"0), and

r and y� H
�
(k#1) are chosen such that y(k)#r(h

�
, and
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�
(k#1)'!�(k), (15)

∀k*0. Then,
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�
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∀k*0. Moreover, if y� H
�
(k#1) is dexned as follows:
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∀k*0, with y�
�
'0, then,

(5) y�
�
(k#1)"y� H

�
(k#1), ∀k*0,

(6) (y(k#1), y�
�
(k#1))"(y

�
,y�

�
), ∀k*1.

Proof. See Zavala-RmHo and Brogliato (1999). �

Let us provide some insights on properties (1)}(6) of
Proposition 1:

� Property 1 means that no unexpected collision takes
place at any time within (t

�
, t

�
#d

�
). This is known as

the viability condition, and is very important for the
overall scheme to work. In Zavala-RmHo (1997) and
Wang (1993), more detailed and general explanations
about viability and/or viability conditions can be found.
These are fundamental in the study of vibro-impact
systems (Babitsky, 1998) and have sometimes been
forgotten (Shaw & Rand, 1989; Masri & Caughey,
1966).

� Property 2 means that, given a collision time t
�
, the

next impact takes place immediately after a #ight time
d
�
. In other words, the #ight times are prede"ned at

every shock through the value of d
�
determined by

(11). This expression is such that the object never goes
upwards at impact times. The term �(k) in (12) is
a calculation (according to the ballistic trajectory of
the object), in absolute value, of the object pre-impact
velocity at t

���
, i.e. �(k)"�y�

�
(t�
���
)�. It is calculated

through yH(k#1) which in turn is chosen such that the
object never be motionless at collision times (see (13)
and (14)), hence �(k)'0, ∀k*0 (the object always
goes downwards at controlled shock times).

� Property 3 means that the next impact position is
arbitrarily prede"ned within the ballistic trajectory of
the object through a suitable value of yH(k#1). The
highest position that the object can reach during any
#ight time is given by h

�
(see (14)). It would not make

any sense to try to hit the object at a position that is
not on its trajectory (a position higher than h

�
).

Eq. (13) assures that yH(k#1)(h
�
.

� Property 4 means that the surface is forced to collide
the object with an arbitrary pre-impact velocity
through the value of y� H

�
(k#1) satisfying (15). Such

condition essentially arises from the pre-impact
velocity necessary condition: �� (t�

���
)(0. Further-

more, it appears to be fundamental in the proofs of
viability and contact loss too (Zavala-RmHo & Brogliato,
1999).
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� Property 5 means that the object post-impact
velocities are arbitrarily prede"ned through the value
of y� H

�
(k#1) in (16) (provided that (15) is satis"ed,

which is ensured by (17)).
� Property 6 means that the object impact PoincareH map
orbit converges to the desired trajectory (y

�
,y�

�
) after

one impact.

4. Direct adaptive control

In this section, the signal y� H
�
( ) ) that appears in (9) and

(10) is suitably modi"ed to relax its dependence on the
restitution coe$cient e (see (16)).

Proposition 2. Let us dexne ¸(k)Ob#(1#M)�(k)#
(M!b)�(k)/y�

�
, where �(k)O�2g(y

�
!yH(k#1)), and

M is any value larger than mOm
�
/m

�
. Let y� H

�
(k#1) be

dexned as follows (instead of (16)):

y� H
�
(k#1)"y�

�
a(k)#b(�(k)!y�

�
), (18)

where y�
�
'0 and b3(!1,!0.5). a(k) is an auxiliary state

which dynamics are dexned as

a(k#1)"a(k)#
c

y�
�

(�(k)!y�
�
) (19)

with c3(b#0.5,0). Its initial conditions must be dexned
according to the following criterion:

(1) If h
�
'y

�
: a(0) is taken such that a(0)*¸(0) (and (19)

is computed at every impact ∀k*0).
(2) If h

�
)y

�
: xrst, at k"0, a(0) is taken such that

a(0)*¸(0) and (19) is not computed; next, at k"1,
a(1) is taken such that a(1)*¸(1) (and (19) is computed
at every impact ∀k*1).

Then, for any e3[0,1] and m3[0,M): y(k)"y
�
, ∀k*2,

and lim
���

(y�
�
(k), a(k))"(y�

�
, aH), where aH"(1!e#

2m)/(1#e).

Before the proof of Proposition 2, let us comment on
the meaning of ¸(k). The expression de"ned as ¸(k) is
such that a(k)*¸(k) represents a su$cient condition
(given the uncertainty of e and m) to assure h

���
'y

�
.

This will be made clear within the proof. The importance
of ensuring h

�
'y

�
during two initial subsequent impacts

will also be highlighted within the proof.

Proof. From (5a), the object dynamics integrated in time
from t

�
to t

�
#d

�
, (11), and properties 2 and 4 of Proposi-

tion 1, we get

y�
�
(k#1)"!

m!e

1#m
�(k)#

1#e

1#m
y� H
�
(k#1) (20)

which is a valid expression for any yH(k#1)(h
�
and

y� H
�
(k#1) satisfying condition (15). Both conditions will

appear to be satis"ed later in the proof. Indeed, on the
one hand, one can easily verify that the desired impact
position trajectory de"ned in (13) yields, at every impact,
values of yH(k#1) lower than h

�
(see (14)). On the other

hand, the proposed expression for y� H
�
(k#1) in (18) will be

proved to guarantee: y�
�
(k#1)'0, ∀k*0. Then, from

(20), it follows that:

y�
�
(k#1)'0 � y� H

�
(k#1)'

m!e

1#e
�(k). (21)

Notice that for any m*0 and e3[0,1]: [(m!e)/(1#e)]
�(k)'!�(k). Hence, any value of y� H

�
(k#1) greater

than [(m!e)/(1#e)]�(k) is even greater than !�(k).
From this fact and (21), we have

y�
�
(k#1)'0� y� H

�
(k#1)'

m!e

1#e
�(k)

Ny� H
�
(k#1)'!�(k),

which proves that any value or expression of y� H
�
(k#1)

guaranteeing y�
�
(k#1)'0 satis"es condition (15) of

Proposition 1. Now, substituting (18) into (20), we get

y�
�
(k#1)"�y�

�
a(k)#��(k)!�by�

�
, (22)

where: �O(1#e)/(1#m) and �O�(b#1)!1. The rest
of the proof is divided in two cases depending on whether
the initial conditions are such that h

�
'y

�
, or such that

h
�
)y

�
:

(1) Initial conditions such that h
�
'y

�
: Let us for the

moment suppose that h
�
'y

�
, ∀k*1. Then, from prop-

erty 3 of Proposition 1, (13) and (12), we have
y(k)"yH(k)"y

�
and �(k)"y�

�
(k)'0, ∀k*1. Hence,

Eq. (22) can be expressed as

�(k#1)"�y�
�
a(k)#��(k)!�by�

�
, (23)

∀k*0. Let us now de"ne the error states 	
�
(k)O�(k)

!y�
�
and 	

�
(k)Oa(k)!aH, and the error state vector

	(k)O(	
�
(k),	

�
(k))�. Then, (23) and (19) can be expressed in

the error state space as

	(k#1)"A	(k), (24)

where

A"�
� �y�

�

c

y�
�

1 �. (25)

The origin of (24) is an asymptotically stable equilibrium
point if the characteristic polynomial of A, i.e. P(z)"
�zI!A�"z�#p

�
z#p

�
, is Schur stable (all its roots

have magnitude less than unity). From (25):
p
�
"!1!� and p

�
"�!c�. Let us de"ne PK (s)O

(s!1)�P((s#1)/(s!1))"p(
�
s�#p(

�
s#p(

�
. We get:

p(
�
"!c�, p(

�
"2(1!�#c�)"2(2#�(c!b!1)),
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Fig. 3. Adaptive control: h
�
'y

�
.

and p(
�
"2#2�!c�"�(2#2b!c). It is well-known

that if PK (s) preserves the same degree as P(z), i.e. p(
�
O0,

then P(z) is Schur stable if and only if PK (s) is Hurwitz
stable (all its roots have negative real part) (Bhat-
tacharyya, Chapellat, &Keel, 1995). One can easily verify
that for any m3[0,M), e3[0,1], b3(!1,!0.5), and
c3(b#0.5,0), we have: p(

�
'0, ∀i"0,1,2, which is a su$-

cient condition for PK (s) to be a second degree Hurwitz
stable polynomial. Therefore, the proposed tuning cri-
terion, i.e. b3(!1,!0.5) and c3(b#0.5,0), ensures the
Schur stability of P(z), guaranteeing the asymptotic stab-
ility of (24), hence lim

���
	(k)"0. To complete the proof

(before the second initial condition case is treated), we
still need to show that h

�
'y

�
, ∀k*1 (recall that this

was initially supposed) which is what validates (23) and
(24), and gives rise to: y(k)"yH(k)"y

�
, ∀k*1. First of

all, notice that: h
�
'y

�
NyH(k#1)"y

�
(see (13))

Ny(k#1)"y
�
(recall property 3 of Proposition 1).

Moreover: y(k#1)"y
�
and y�

�
(k#1)'0 imply

h
���

'y
�
(see (14)). Hence, all we need is to show that the

proposed control input ensures y�
�
(k#1)'0, ∀k*0

(recall that h
�
'y

�
is being assumed). Let us "rst analyze

y�
�
(1). Since h

�
'y

�
, we have: y(1)"yH(1)"y

�
N

�(0)"0N¸(0)"b#(M!b)�(0)/y�
�
. Now, notice that

M'(m!e)/(1#e) for any m3[0,M) and e3[0,1].
Then, since a(0)*¸(0)"b#(M!b)�(0)/y�

�
, we have

a(0)'b#((m!e)/(1#e)!b)�(0)/y�
�
N�y�

�
a(0)#��(0)

!�by�
�
'0, proving that y�

�
(1)'0 (see (22)). Then

h
�
'y

�
, giving rise to y(2)"yH(2)"y

�
. At this point, the

second order dynamics of 	
�
(k) de"ned by (24), i.e.

	
�
(k#2)"!p

�
	
�
(k#1)!p

�
	
�
(k) (26)

is valid (for k"0). Observe that since y(1)"yH(1)"y
�
,

then �(1)"y�
�
(1), and since �(1)"y�

�
(1)'0 and

�(0)'0, then 	
�
(1)'!y�

�
and 	

�
(0)'!y�

�
. On the

other hand, one can easily verify that for any m3[0,M),
e3[0,1], b3(!1,!0.5), and c3(b#0.5,0), we have:
0(!p

�
(!p

�
!p

�
(1. Hence, one sees that

since 	
�
(1)'!y�

�
and 	

�
(0)'!y�

�
, then: 	

�
(2)"

!p
�
	
�
(1)!p

�
	
�
(0)'(!p

�
!p

�
) (!y�

�
)'!y�

�
.

Hence y�
�
(2)'0, and since y(2)"yH(2)"y

�
, then

h
�
'y

�
giving rise to y(3)"yH(3)"y

�
which implies

�(2)"y�
�
(2). Then (26) is again valid (for k"1), and since

	
�
(2)'!y�

�
and 	

�
(1)'!y�

�
, then: 	

�
(3)"!p

�
	
�
(2)

!p
�
	
�
(1)'(!p

�
!p

�
)(!y�

�
)'!y�

�
, that is

y�
�
(3)'0. The whole process is then repeated at every

impact, proving that y�
�
(k#1)'0, ∀k*0. Therefore

h
�
'y

�
, ∀k*1, which completes the proof (for the

present case).
(2) Initial conditions such that h

�
)y

�
: From the pre-

ceding analysis, one can easily realize that in this situ-
ation, by just ensuring h

�
'y

�
and subsequently h

�
'y

�
,

the asymptotically stable second order dynamics of
	
�
(k) in (26) is retrieved ∀k*1, and consequently:

lim
���

	(k)"0, and y(k)"yH(k)"y
�
, ∀k*2. Then, all

we need is to show that this is accomplished through the

choices of a(0) and a(1). Recalling that M'(m!e)/
(1#e) for any m3[0,M) and e3[0,1], and since a(0)*
¸(0)"b#(1#M)�(0)#(M!b)�(0)/y�

�
, we have:

a(0)'b#

�1#
(m!e)

(1#e)��(0)#�
(m!e)

(1#e)
!b��(0)

y�
�

N�y�
�
a(0)#��(0)!�by�

�
'�(0).

Hence y�
�
(1)'�(0) (see (22))Ny(1)#y� �

�
(1)/2g'y

�
(re-

call the de"nition of �(k) and property 3). Therefore
h
�
'y

�
(see (14)), giving rise to y(2)"yH(2)"y

�
N

�(1)"0N¸(1)"b#(M!b)�(1)/y�
�
. Finally, since

a(1)*¸(1)"b#(M!b)�(1)/y�
�
, then a(1)'b#

((m!e)/(1#e)!b)�(1)/y�
�
N�y�

�
a(1)#��(1)!�by�

�
'

0. Hence y�
�
(1)'0 (see (22)), and since y(2)"yH(2)"y

�
,

then h
�
'y

�
. �

The following numerical examples show the results
obtained from the application of the proposed adaptive
scheme to a 1-dof juggler with the following parameter
values: e"0.8, m

�
"0.1 kg, and m

�
"1 kg, giving

m"0.1. The desired xxed-point is (y
�
,y�

�
)"(0,3.13 m/s),

resulting in a "xed apex h
�
"y

�
#y� �

�
/2g"0.5 m. The

control parameter values were taken as b"!0.9,
c"!0.3, andM"0.2. Figs. 3 and 4 show the results of
the simulations for the two initial condition cases:
h
�
'y

�
and h

�
)y

�
, respectively. In the left-hand side of

the "gures, the position trajectories and the control input
u are presented. In the system trajectory curves, the lower
and upper dashed lines indicate respectively the values of
y
�
and h

�
, while that in the input force graphs indicates

the robot weight (m
�
g). The meaning of the dotted lines

appearing in the force curves will be explained later. In
the right-hand side of the "gures, the discrete evolution of
y�
�
(k), a(k), and y� H

�
(k#1), are shown. The dashed lines

indicate the desired convergence values: y�
�
, aH, and aHy�

�
,
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Fig. 4. Adaptive control: h
�
)y

�
.

respectively. In the y�
�
(k) graph, the dotted-line curve

represents the evolution of �(k); observe that
�(k)"y

�
(k)'0,∀k*i, where i"1 if h

�
'y

�
, and i"2

if h
�
)y

�
. In the "rst example, Fig. 3, the following initial

impact conditions were taken: y(0)"!0.2 m, y�
�
(0)"

2.5 m/s, and y�
�
(0)"1 m/s, giving h

�
" 0.12 m'y

�
. The

auxiliary state initial value was a(0)"!0.36"¸(0). In
the second example, Fig. 4, everything was repeated ex-
cept that this time the object initial impact velocity was
taken as: y�

�
(0)"1.5 m/s, yielding h

�
"!0.1 m(y

�
.

The auxiliary state initial values were selected
as: a(0)"0.43"¸(0) and a(1)"0.9"¸(1). Observe that
in both examples, y�

�
(k) and a(k) converge asymptotically

towards y�
�
and aH respectively, and y(k)"y

�
, ∀k*2

(∀k*1 if h
�
'y

�
). Finally, let us point out an important

observation concerning the upper and lower dotted
lines in the force curves. These stand respectively
for ;

�
"m

�
g#m

�
<

�
and ;

�
"m

�
g#m

�
<

�
, where

<
�
O[(!3#e!2m# 2em)/(1#e)]g and <

�
O

[(3!2e#4m!em)/(1#e)]g. In (Zavala-RmHo & Brog-
liato, 1999), a control strategy ensuring the convergence
of the object impact states to the desired "xed point
avoiding saturation of the input u when this one
is bounded such that u

�
)u)u

�
was proposed,

based on the assumption that u
�
and u

�
are such that

u
�
(;

�
and u

�
';

�
. The results observed in the

present examples, Figs. 3 and 4, show that the lowest
and highest values of u at each #ight time, u(t�

�
) and

u(t�
���
), are respectively higher than ;

�
and lower than

;
�
for all k*2, i.e. ;

�
(u(t�

�
)(u(t�

���
)(;

�
, ∀k*2.

This suggests that conditions on the initial system impact
state values and on a(0) can be found in order for the
adaptive strategy in Proposition 2 to be applicable
avoiding saturation of the input u when this one is
bounded such that u

�
)u)u

�
where u

�
(;

�
and

u
�
';

�
.

5. Conclusions

This note is devoted to the control of a class of non-
smooth mechanical systems, that encompasses simple
models of juggling and hopping robots. Its aim is to
extend some previously studied control algorithms
(Zavala-RmHo & Brogliato, 1999; Brogliato & Zavala-RmHo,
2000). Roughly speaking, such controllers are construc-
ted by "rst designing a sequence of "ctitious inputs in
terms of the `robota pre-impact velocities (which consti-
tutes a step that has attracted the interest of some
researchers in the "eld (Buehler, Koditshek, &
Kindklmann, 1994)). Then in a second stage, one designs
the force control input that guarantees that this
pre-impact velocities sequence is realized. The note
focuses mainly on the "rst step. It concerns the relaxation
of the a priori knowledge of physical parameters like the
kinematic restitution coe$cient e and the object's
mass, in the design of the robot pre-impact velocities.
A semi-globally stable adaptive scheme is proposed.
Some numerical simulations illustrate the theoretical
results.
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