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This note deals with the problem of controlling a simple one-degree-of-freedom (1-dof) juggling robot (a system that belongs to the class of nonsmooth hybrid complementary-slackness dynamical systems), when some physical parameters such as the object mass and the restitution coe$cient are not exactly known. The proposed adaptive controller is based on so-called dead-beat viable controllers previously studied, in which the sequence of desired `robota pre-impact velocities is suitably modi"ed. The dynamics of a simple 1-dof hopper is shown to be controllable by the proposed control algorithm. Numerical simulations support the theoretical results.

Introduction

The analysis and control of nonsmooth hybrid mechanical systems with unilateral constraints (that give rise to complementarity conditions) has recently been the object of various studies [START_REF] Ten Dam | The contact problem for linear continuous-time dynamical systems: a geometric approach[END_REF][START_REF] Van Der Schaft | The complementar-ity}slackness class of hybrid systems[END_REF], and still represents an open topic with many problems unsolved yet. In this note we focus our attention on a very simple case of such complementary}slackness systems, a one-degree-of-freedom (1-dof) juggler. This belongs to a much more general class of nonsmooth models named complementary}slackness juggling mechanical systems [START_REF] Brogliato | On the control of complement-ary}slackness juggling mechanical systems[END_REF], that encompasses `truea jugglers as well as hoppers, nonprehensile manipulators, robots with passive dynamical environments, simple models of controlled buildings, etc. In particular it is shown that the 1-dof juggler dynamics matches with that of a (simpli"ed) 1-dof hopper. The control problem for such systems has been studied in [START_REF] Zavala-Rmh O | On the control of a one-degreeof-freedom juggling robot[END_REF] and [START_REF] Zavala-Rmh O | Commande de robots jongleurs[END_REF] where a class of hybrid dead-beat controllers has been proposed and thoroughly analyzed (see also these references for a review of juggler control). In [START_REF] Brogliato | On the control of complement-ary}slackness juggling mechanical systems[END_REF] a more general point of view on complementary-slackness juggling systems has been taken, and some controllability criteria have been proposed. Roughly, they hinge on the analysis of an impact PoincareH map that represents the object dynamics from one impact to the next, considering the pre-impact velocity of the robot as an intermediate input. When this discrete-time map is controllable with the robot velocity as input, the object has been de"ned to be controllable via impacts. In this note, it is shown that a suitable extension of the dead-beat controllers allows one to derive an adaptive scheme which permits to relax the a priori knowledge on the object mass and on the restitution coe$cient, while guaranteeing convergence of the process state towards its desired (discrete-time) orbit.

One-degree-of-freedom juggler

Let us begin by recalling the 1-dof juggler dynamics (see Fig. 1) Oy !y *0, *0, "0, (3)

m yK "!m g# , (1) 
m yK "!m g#u! , (2) 
(t> I )"!e (t\ I ), ( 4 
)
where the object and the robot dynamics are in ( 1) and ( 2) with u as the control input force, the complementarity conditions between the distance and the Lagrange multiplier are in (3), and the restitution law is in (4) where e3[0,1] is the restitution coe$cient. The complementarity conditions in (3) mean that all gluing or magnetic e!ects are excluded from the model, so that the contact force has to be zero whenever the distance becomes positive. On the contrary a positive contact force implies contact between the two bodies. The name complementary-slackness systems is simply taken from some standard terminology in convex analysis [START_REF] Rockafellar | Convex analysis[END_REF]. Collisions take place at impact times t I if and only if (t I

)"0 and (t\ I )(0 [START_REF] Brogliato | Nonsmooth mechanics. Models, dynamics and control[END_REF], yielding [START_REF] Zavala-Rmh O | Commande de robots jongleurs[END_REF][START_REF] Brach | Mechanical impact dynamics. Rigid body collisions[END_REF] 

y (t> I )" m!e 1#m y (t\ I )# 1#e 1#m y (t\ I ), (5a) 
y (t> I )" m(1#e) 1#m y (t\ I )# 1!em 1#m y (t\ I ), (5b) 
where mOm /m . Subsequently in this study, f (k) will stand for f 's post-impact values f (t>

I ) ( f (t I ) if f denotes a position). Pre-impact values f (t\ I
) will be referred explicitly.

Remark 1. Let us apply Lemma 4 of [START_REF] Brogliato | On the control of complement-ary}slackness juggling mechanical systems[END_REF] to the 1-dof juggler dynamics, i.e. consider the new coordinate system (q , q ) where q "y and q " . Then (1)}( 4) is transformed into

qK "!g#m , ( 6a 
) qK "! u m #(1#m)m , ( 6b 
)
q *0, *0, "0, (6c)

q (t> I )"!eq (t\ I ), ( 6d 
)
where m "1/m . Now, let us consider the 1-dof hopper in Fig. 2. It is easy to show that in the coordinate system (q , q )"(y

A , y ), where y A O(m /(m #m ))y #(m / (m #m
))y , its dynamics are also modeled by ( 6) with m "1/(m #m ) and u"m g#u . Therefore, a dead-beat-algorithm-based input and impact control strategies equivalent to those to be presented in Sections 3 and 4 can be gotten for this simple 1-dof hopping robot. Let us notice that we have implicitly assumed that the bar is long enough so that y (t)'0, ∀t*0, whatever the control may be. Clearly, further studies should incorporate y !y 'R for some R'0. But then one would have to deal with possible multiple shocks, which may complicate the wellposedness of the model [START_REF] Brogliato | Nonsmooth mechanics. Models, dynamics and control[END_REF]. In [START_REF] Brogliato | On the control of complement-ary}slackness juggling mechanical systems[END_REF], the multiple constraint case is discussed.

Dead-beat force input

The following proposition brie#y recalls the control strategy proposed in Zavala-RmH o and Brogliato (1999) (see also other references therein). It mixes a "nite-time convergent input based on the robot's controllability gramian inversion, and some logic to cope with the object's ballistic constraints. Such controllers may be seen as two-stages inputs [START_REF] Brogliato | On the control of complement-ary}slackness juggling mechanical systems[END_REF]: the "rst stage is to design an intermediate control signal, that is the robot pre-impact velocity, whose desired value is denoted as y H (k). The second stage is the design of the control input force u. In the next section, we shall focus on an adaptive version of y H (k) that relaxes the a priori knowledge on certain physical parameters. Details on the meaning of the various terms appearing in the expression of the control input are given after Proposition 1. As pointed out in [START_REF] Brogliato | On the control of complement-ary}slackness juggling mechanical systems[END_REF], other "nite-time inputs can be designed. In the following, the signals with upper index * denote values that the state (y , y ,y ,y ) is forced to track at all impact times. They di!er from the signals with lower index d, which denote the desired trajectory of the object. The reason for this discrepancy is that one has to incorporate the ballistic constraints of the object in the control design (the least requirement being that the intersection between the desired discrete-time orbit and the real orbit of the object, is not empty).

Proposition 1. Consider the dynamical system in (1)}(4). Suppose that the initial conditions and u are such that there exists an impact or contact time t *0. Let (y B ,y B ) be the desired position and post-impact velocity of the object. Let us dexne the following control input:

u"m g#m v, (7) v"A I (t!t I )#B I (8) with A I " 6 d I (y H (k#1)#y (k))! 12 d I (yH(k#1)!y(k)), (9) 
B I "! 2 d I (y H (k#1)#2y (k)) # 6 d I (yH(k#1)!y(k)), ( 10 
) d I " y (k)# (k) g , (11) 
(k)"(y (k)!2g(yH(k#1)!y(k)), ( 12)

yH(k#1)" y B if h I 'y B , y(k)#r if h I )y B , ( 13 
) h I " y(k)# y (k) 2g if y (k)'0, y(k) if y (k))0, (14) 
∀k*0, where y(k)"y (k)"y (k) (since (k)"0), and r and y H (k#1) are chosen such that y(k)#r(h I , and

y H (k#1)'! (k), (15) 
∀k*0. Then,

(1) (t)"y (t)!y (t)'0, ∀t3(t

I , t I #d I ), (2) t I> "t I #d I , (3) y(k#1)"yH(k#1), (4) y (t\ I> )"y H (k#1), ∀k*0. Moreover, if y H (k#1) is dexned as follows: y H (k#1)" 1#m 1#e y H (k#1)# m!e 1#e (k), ( 16 
)
∀k*0, and

y H (k#1)" y B if h I 'y B , (y B #2g(y B !y(k)!r) if h I )y B , (17) 
∀k*0, with y B '0, then,

(5) y (k#1)"y H (k#1), ∀k*0, (6) (y(k#1), y (k#1))"(y B ,y B ), ∀k*1.

Proof. See Zavala-RmH o and [START_REF] Brogliato | Nonsmooth mechanics. Models, dynamics and control[END_REF]. ᮀ

Let us provide some insights on properties (1)}( 6) of Proposition 1:

E Property 1 means that no unexpected collision takes place at any time within (t

I , t I #d I )
. This is known as the viability condition, and is very important for the overall scheme to work. In Zavala-RmH o (1997) and [START_REF] Wang | Dynamic modeling and stability analysis of mechanical systems with time-varying topologies[END_REF], more detailed and general explanations about viability and/or viability conditions can be found. These are fundamental in the study of vibro-impact systems [START_REF] Babitsky | Theory of vibro-impact systems and applications[END_REF] and have sometimes been forgotten [START_REF] Shaw | The transition to chaos in a simple mechanical system[END_REF][START_REF] Masri | On the stability of the impact damper[END_REF]. E Property 2 means that, given a collision time t I , the next impact takes place immediately after a #ight time d I . In other words, the #ight times are prede"ned at every shock through the value of d I determined by (11). This expression is such that the object never goes upwards at impact times. The term (k) in ( 12) is a calculation (according to the ballistic trajectory of the object), in absolute value, of the object pre-impact velocity at t I> , i.e. (k)""y (t\ I> )". It is calculated through yH(k#1) which in turn is chosen such that the object never be motionless at collision times (see ( 13) and ( 14)), hence (k)'0, ∀k*0 (the object always goes downwards at controlled shock times). E Property 3 means that the next impact position is arbitrarily prede"ned within the ballistic trajectory of the object through a suitable value of yH(k#1). The highest position that the object can reach during any #ight time is given by h I (see ( 14)). It would not make any sense to try to hit the object at a position that is not on its trajectory (a position higher than h I ). Eq. ( 13) assures that yH(k#1)(h I . E Property 4 means that the surface is forced to collide the object with an arbitrary pre-impact velocity through the value of y H (k#1) satisfying (15). Such condition essentially arises from the pre-impact velocity necessary condition: (t\ I> )(0. Furthermore, it appears to be fundamental in the proofs of viability and contact loss too [START_REF] Zavala-Rmh O | On the control of a one-degreeof-freedom juggling robot[END_REF].

E Property 5 means that the object post-impact velocities are arbitrarily prede"ned through the value of y H (k#1) in ( 16) (provided that ( 15) is satis"ed, which is ensured by ( 17)). E Property 6 means that the object impact PoincareH map orbit converges to the desired trajectory (y B ,y B ) after one impact.

Direct adaptive control

In this section, the signal y H ( ) ) that appears in ( 9) and ( 10) is suitably modi"ed to relax its dependence on the restitution coe$cient e (see ( 16)).

Proposition 2. Let us dexne ¸(k)Ob#(1#M) (k)# (M!b) (k)/y B
, where (k)O(2g(y B !yH(k#1)), and M is any value larger than mOm /m . Let y H (k#1) be dexned as follows (instead of ( 16)):

y H (k#1)"y B a(k)#b( (k)!y B ), ( 18 
)
where y B '0 and b3(!1,!0.5). a(k) is an auxiliary state which dynamics are dexned as

a(k#1)"a(k)# c y B ( (k)!y B ) ( 19 
)
with c3(b#0.5,0). Its initial conditions must be dexned according to the following criterion:

(1) If h 'y B : a( 0) is taken such that a(0)*¸(0) (and ( 19) is computed at every impact ∀k*0).

(2) If h

)y B : xrst, at k"0, a( 0) is taken such that a(0)*¸( 0) and (19) is not computed; next, at k"1, a( 1) is taken such that a(1)*¸(1) (and ( 19) is computed at every impact ∀k*1).

Then, for any e3[0,1] and m3[0, M): y(k)"y B , ∀k*2, and lim I (y (k), a(k))"(y B , aH), where aH"(1!e# 2m)/(1#e).

Before the proof of Proposition 2, let us comment on the meaning of ¸(k). The expression de"ned as ¸(k) is such that a(k)*¸(k) represents a su$cient condition (given the uncertainty of e and m) to assure h I> 'y B . This will be made clear within the proof. The importance of ensuring h I 'y B during two initial subsequent impacts will also be highlighted within the proof.

Proof. From (5a), the object dynamics integrated in time from t I to t I #d I , (11), and properties 2 and 4 of Proposition 1, we get

y (k#1)"! m!e 1#m (k)# 1#e 1#m y H (k#1) (20) 
which is a valid expression for any yH(k#1)(h I and y H (k#1) satisfying condition (15). Both conditions will appear to be satis"ed later in the proof. Indeed, on the one hand, one can easily verify that the desired impact position trajectory de"ned in (13) yields, at every impact, values of yH(k#1) lower than h I (see ( 14)). On the other hand, the proposed expression for y H (k#1) in ( 18) will be proved to guarantee: y (k#1)'0, ∀k*0. Then, from (20), it follows that:

y (k#1)'0 0 y H (k#1)' m!e 1#e (k). (21) 
Notice that for any m*0 and e3[0,1]: [(m!e)/(1#e)] (k)'! (k). Hence, any value of y H (k#1) greater than [(m!e)/(1#e)] (k) is even greater than ! (k). From this fact and ( 21), we have

y (k#1)'0 0 y H (k#1)' m!e 1#e (k) Ny H (k#1)'! (k),
which proves that any value or expression of y H (k#1) guaranteeing y (k#1)'0 satis"es condition (15) of Proposition 1. Now, substituting ( 18) into (20), we get

y (k#1)" y B a(k)# (k)! by B , (22) 
where: O(1#e)/(1#m) and O (b#1)!1. The rest of the proof is divided in two cases depending on whether the initial conditions are such that h 'y B , or such that h )y B :

(1) Initial conditions such that h 'y B : Let us for the moment suppose that h I 'y B , ∀k*1. Then, from property 3 of Proposition 1, ( 13) and ( 12), we have y(k)"yH(k)"y B and (k)"y (k)'0, ∀k*1. Hence, Eq. ( 22) can be expressed as 

(k#1)" y B a(k)# (k)! by B , ( 23 
(k#1)"A (k), (24) 
where

A" y B c y B 1 . ( 25 
)
The origin of ( 24) is an asymptotically stable equilibrium point if the characteristic polynomial of A, i.e. P(z)" "zI!A""z#p z#p , is Schur stable (all its roots have magnitude less than unity). From (25): p "!1! and p " !c . Let us de"ne P K (s)O (s!1)P((s#1)/(s!1))"p( s#p( s#p( . We get: respectively. In the y (k) graph, the dotted-line curve represents the evolution of (k); observe that (k)"y (k)'0, ∀k*i, where i"1 if h 'y B , and i"2 if h

p( "!c , p( "2(1! #c )"2(2# (c!b!1)),
)y B . In the "rst example, Fig. 3, the following initial impact conditions were taken: y(0)"!0.2 m, y (0)" 2.5 m/s, and y (0)"1 m/s, giving h " 0.12 m'y B . The auxiliary state initial value was a(0)"!0.36"¸(0). In the second example, Fig. 4, everything was repeated except that this time the object initial impact velocity was taken as: y (0)"1.5 m/s, yielding h "!0.1 m(y B . The auxiliary state initial values were selected as: a(0)"0.43"¸(0) and a(1)"0.9"¸( 1 , ∀k*2. This suggests that conditions on the initial system impact state values and on a(0) can be found in order for the adaptive strategy in Proposition 2 to be applicable avoiding saturation of the input u when this one is bounded such that u )u)u where u (; and u ';

.

Conclusions

This note is devoted to the control of a class of nonsmooth mechanical systems, that encompasses simple models of juggling and hopping robots. Its aim is to extend some previously studied control algorithms [START_REF] Zavala-Rmh O | On the control of a one-degreeof-freedom juggling robot[END_REF][START_REF] Brogliato | On the control of complement-ary}slackness juggling mechanical systems[END_REF]. Roughly speaking, such controllers are constructed by "rst designing a sequence of "ctitious inputs in terms of the `robota pre-impact velocities (which constitutes a step that has attracted the interest of some researchers in the "eld [START_REF] Buehler | Planning and control of robotic juggling and catching tasks[END_REF]). Then in a second stage, one designs the force control input that guarantees that this pre-impact velocities sequence is realized. The note focuses mainly on the "rst step. It concerns the relaxation of the a priori knowledge of physical parameters like the kinematic restitution coe$cient e and the object's mass, in the design of the robot pre-impact velocities. A semi-globally stable adaptive scheme is proposed. Some numerical simulations illustrate the theoretical results.

Fig. 1 .

 1 Fig. 1. One-dof juggler.

Fig. 3 .

 3 Fig. 3. Adaptive control: h 'y B .

  ). Observe that in both examples, y (k) and a(k) converge asymptotically towards y B and aH respectively, and y(k)"y B , ∀k*2 (∀k*1 if h 'y B ). Finally, let us point out an important observation concerning the upper and lower dotted lines in the force curves. These stand respectively for ; !3#e!2m# 2em)/(1#e)]g and < O [(3!2e#4m!em)/(1#e)]g. In (Zavala-RmH o & Brogliato, 1999), a control strategy ensuring the convergence of the object impact states to the desired "xed point avoiding saturation of the input u when this one is bounded such that u )observed in the present examples, Figs. 3 and 4, show that the lowest and highest values of u at each #ight time,

 'y B.

and p( "2#2 !c " (2#2b!c). It is well-known that if P K (s) preserves the same degree as P(z), i.e. p( O0, then P(z) is Schur stable if and only if P K (s) is Hurwitz stable (all its roots have negative real part) [START_REF] Bhattacharyya | Robust control. The parametric approach[END_REF]. One can easily verify that for any m3[0, M), e3[0,1], b3(!1,!0.5), and c3(b#0.5,0), we have: p( G '0, ∀i"0,1,2, which is a su$cient condition for P K (s) to be a second degree Hurwitz stable polynomial. Therefore, the proposed tuning criterion, i.e. b3(!1,!0.5) and c3(b#0.5,0), ensures the Schur stability of P(z), guaranteeing the asymptotic stability of (24), hence lim I (k)"0. 

(3)'0. The whole process is then repeated at every impact, proving that y (k#1)'0, ∀k*0. Therefore h I 'y B , ∀k*1, which completes the proof (for the present case).

(2) Initial conditions such that h )y B : From the preceding analysis, one can easily realize that in this situation, by just ensuring h 'y B and subsequently h 'y B , the asymptotically stable second order dynamics of (k) in ( 26) is retrieved ∀k*1, and consequently: lim I (k)"0, and y(k)"yH(k)"y B , ∀k*2. Then, all we need is to show that this is accomplished through the choices of a(0) and a(1). Recalling that M'(m!e)/ (1#e) for any m3[0, M) and e3[0,1], and since a( 0

, we have:

Hence y (1)' (0) (see ( 22))Ny(1)#y (1)/2g'y B (recall the de"nition of (k) and property 3). Therefore The following numerical examples show the results obtained from the application of the proposed adaptive scheme to a 1-dof juggler with the following parameter values: e"0.8, m "0.1 kg, and m "1 kg, giving m"0.1. The desired xxed-point is (y B ,y B )"(0,3.13 m/s), resulting in a "xed apex h B "y B #y B /2g"0.5 m. The control parameter values were taken as b"!0.9, c"!0.3, and M"0.2. Figs. 3 and4 show the results of the simulations for the two initial condition cases: h 'y B and h )y B , respectively. In the left-hand side of the "gures, the position trajectories and the control input u are presented. In the system trajectory curves, the lower and upper dashed lines indicate respectively the values of y B and h B , while that in the input force graphs indicates the robot weight (m g). The meaning of the dotted lines appearing in the force curves will be explained later. In the right-hand side of the "gures, the discrete evolution of