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Abstract Watershed is a well established clustering
and segmentation method. In this article, we aim to
achieve a better theoretical understanding of the hier-
archical version of the watershed operator. More pre-
cisely, we propose a characterization of hierarchical wa-
tersheds in the framework of edge-weighted graphs. The
proposed characterization leads to an efficient algo-
rithm to recognize hierarchical watersheds.

1 Introduction

Hierarchical clustering has a long history in data pro-
cessing [I1]. In image processing, it is called hierarchi-
cal image segmentation [32]. Given an initial partition,
a hierarchy is created by successively merging neigh-
bouring regions together. In practice, a common way
to create the initial partition is often to use the water-
shed operator [4L[6,21120], whether we are dealing with
data [5] or images. When merging the regions (called
catchment basins in this context) of an initial water-
shed segmentation in a sequence provided by a given
total ordering (such as for instance [34]), we obtain a
hierarchical watershed [7327,19]. The watershed op-
erator is still widely used in today’s deep learning era as
a pre-processing [13] or post-processing step [I], achiev-
ing state-of-the-art results.

In the framework of edge-weighted graphs, hierar-
chical watersheds benefit from many interesting theo-
retical and practical properties [8/[]. In particular, they
globally optimize a well-defined cost function, both for
the original graph and for every partition of the hi-
erarchy, and they can be computed by efficient algo-
rithms such as the ones proposed in [9,[26], whose time
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complexity is the same as minimum spanning tree al-
gorithms. In order to leverage from those properties in
a practical context, we study in this paper the problem
of recognizing hierarchical watersheds. More precisely,
we aim to solve the following problem:

(P) given a weighted graph and a hierarchy of parti-
tions H, determine if A is a hierarchical watershed
of this graph.

Solving this problem has a strong potential impact on
the practice. It can help us for example in designing an
algorithm to transform any hierarchy of partitions into
a hierarchical watershed [17].

The problem of recognizing hierarchical watersheds
is related to the one studied in [T22]. In [T2[2], the au-
thors search for a minimum set of markers which lead
to a given watershed segmentation. In our case, given
a hierarchy, we investigate if, for every partition P of
this hierarchy, there is a subset M of the set of the
minima of the graph such that P is the watershed seg-
mentation for M (see Section [2.3). In the affirmative
case, the given hierarchy is a hierarchical watershed or
at least a hierarchy composed of partitions of a hierar-
chical watershed, which we call a flattened hierarchical
watershed (see Section [f)).

This article is an extension of the conference pa-
per [16]. Our main contributions are the following:
(1) a characterization of hierarchical watersheds in the
framework of weighted graphs (Theorem [5)); (2) an ef-
ficient algorithm to recognize hierarchical watersheds
(Algorithm [1)); (3) the study of the notion of flattened
hierarchical watersheds and an algorithm to recognize
such hierarchies (Algorithm 2); and (4) experimental re-
sults with the proposed algorithms applied to the com-
binations of hierarchical watersheds assessed in [14]. To
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ease the reading of the paper, proofs of the various prop-
erties and theorems are postponed to the appendix.

In section [2] we present the basic notions for han-
dling hierarchies with graphs. In section [3| we formally
state the problem of recognizing hierarchical watersheds
and we present a characterization of hierarchical water-
sheds on arbitrary graphs. In section [d] we present an
efficient algorithm to recognize hierarchical watersheds.
In section [5] we introduce the notion of flattened hier-
archical watersheds, which are hierarchies composed of
a subset of the partitions of a hierarchical watershed.
Then, we propose an algorithm that recognizes this type
of hierarchy. In section[6] we present some experimental
results using the proposed algorithms. Finally, we con-
clude the paper, in particular by providing a glimpse
on a possible extension of this work in the design of a
watersheding operator [17].

2 Background notions

In this section, we first introduce hierarchies of parti-
tions. Then, we review the definition of graphs, con-
nected hierarchies and saliency maps. Subsequently, we
define hierarchical watersheds.

2.1 Hierarchies of partitions

Let V be aset. A partition (of V) is a set P of non empty
disjoint subsets of V' whose union is V. Any element of
a partition P is called a region of P. Let P; and Py be
two partitions. We say that Py is a refinement of Py if
every element of Py is included in an element of Po. A
hierarchy (of partitions) is a sequence H = (Py, ..., Py)
of partitions such that P;_; is a refinement of P;, for
any ¢ in {1,...,¢} and such that P,, = {V}. Let H =
(P, ..., Py) be a hierarchy of partitions. Any region of
a partition P of H is called a region of H.

A hierarchy of partitions can be represented as a
tree whose nodes correspond to regions, as shown in
Figure (a). Given a hierarchy H and two regions X
and Y of H, we say that X is a parent of Y (or that Y
is a child of X)if Y € X and X is minimal for this
property, i.e., if there is a region Z such that Y C
Z C X, then we have Y = Z. It can be seen that any
region X # V of H has exactly one parent. For any
region X such that X # V, we write parent(X) =Y
where Y is the unique parent of X. For any region R
of H, if R is not the parent of any region of H, we say
that R is a leaf region (of H ). Otherwise, we say that R
is a non-leaf region (of H).

@/Q@\ P,

(fw) e

T
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Fig. 1: (a): A representation of a hierarchy of partitions
H = (Po,P1,P2,P3) on the set {a,b,c,d,e, f,g,h}.
(b): A weighted graph (G, w).

In Figure [[(a), the regions of a hierarchy H are
linked to their parents (and to their children) by
straight lines.

2.2 Graphs, connected hierarchies and saliency maps

A graph is a pair G = (V, E), where V is a finite set
and F is a set of pairs of distinct elements of V', i.e., E C
{{z,y} €V | = # y}. Each element of V is called
a vertex (of G), and each element of F is called an
edge (of G ). To simplify the notation, the set of vertices
and edges of a graph G will be also denoted by V(G)
and E(G), respectively.

Let G = (V, E) be a graph and let X be a subset
of V. A sequence m = (xg,...,2,) of elements of X is a
path (in X ) from xg to xp, if {x;_1,z;} is an edge of G
for any ¢ in {1,...,n}. Given a path @ = (zo,...,z,),
for any ¢ in {1,...,n}, we say that u = {z;_1,2;} is an
edge in 7 and that u is in w. The subset X of V' is said to
be connected if, for any x and y in X, there exists a path
from x to y. The subset X is a connected component
of G if X is connected and maximal. In the following, we
denote by CC(G) the set of all connected components
of G. This set CC(G) of all connected components of G
is a partition of the set V.

Let G = (V,E) be a graph. A partition of V s
connected for G if each of its regions is connected, and
a hierarchy on 'V is connected (for G) if every one of its
partitions is connected. For example, the hierarchy of
Figure a) is connected for the graph of Figure b).
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Let G be a graph. If w is a map from the edge set
of G to the set R of real numbers, then the pair (G, w) is
called an (edge) weighted graph. If (G, w) is a weighted
graph, for any edge u of G, the value w(u) is called the
weight of u (for w).

Important notation: in the remaining part of this
article, the symbol (G,w) denotes a weighted graph
whose vertex set is connected. To shorten the nota-
tion, the vertex set of G is denoted by V and its edge
set is denoted by E. Without loss of generality, we
also assume that the range of w is included in the
set E of all integers from 0 to |E| — 1 (otherwise, one
could always consider an increasing one-to-one corre-
spondence from the set {w(w) | v € E} into the sub-
set {0, ..., [{w(u) | u € E}| — 1} of E).

Let A be any element in R. The A-level set of (G, w)
is the graph (V,E\(G)) such that E\(G) = {u €
E(G) | w(u) < A}. The sequence

QF Z(w) = (CC(Grw) | A € E) (1)

where G, is the A-level set of (G,w), is a hierarchy
called the Quasi-Flat Zones (QFZ) hierarchy (of w) [24,
9933,9].

As established in [8], a connected hierarchy can
be equivalently treated by means of a weighted graph
through the notion of a (contour) saliency map. Given
a hierarchy H = (Py,...,P,;) which is connected
for G, the saliency map of H is the map from F
into {0,...,¢}, denoted by ®(H), such that, for any
edge u = {z,y} in E, the value ®(H)(u) is the lowest
value ¢ in {0, ..., ¢} such that = and y belong to a same
region of P;. It follows that any connected hierarchy has
a unique saliency map. Moreover, any hierarchy H con-
nected for G is precisely the quasi-flat zones hierarchy
of its own saliency map: H = QF Z(B(H)).

For instance, the map depicted in Figure (b) is the
saliency map of the hierarchy of Figure (a).

Saliency maps are closely related to the notion of
ultrametric distances [251[1]. Let A be a hierarchy on V.
Let d be a map from V x V into R such that, for any
pair (z,y) of vertices in V x V, the value d(z,y) is
the greatest edge weight A in a path 7 from z to y
(resp. y to z) in (G,®(H)) such that, for any other
path 7’ from x to y (resp. y to z), the greatest edge
weight in 7’ is greater than or equal to \. We can affirm
that (V,d) is an ultrametric space. Moreover, for any
two vertices  and y in V, by the definition of saliency
maps, we may say that d(z,y) is the lowest value A such
that x and y belong to a same region of the partition P
of H. Furthermore, if G is a complete graph, we can
conclude that (V,®(H)) is an ultrametric space.

2.3 Hierarchical minimum spanning forests and
watersheds

The watershed segmentation, see e.g. [4276], derives
from the topographic notion of watershed lines and
catchment basins. In [6], the authors formalize water-
sheds in the framework of (edge) weighted graphs and
show the optimality of watersheds in the sense of min-
imum spanning forests. In this section, we present hi-
erarchical watersheds following the definition of hierar-
chies of minimum spanning forests presented in [7,9].

We say that the graph G = (V| E) is a forest if, for
any edge v in F, the number of connected components
of the graph (V, E'\ {u}) is greater than the number of
connected components of G. Given another graph Gy,
we say that Gy is a subgraph of G, denoted by G4 C G,
if V(G5) is a subset of V and if E(Gj) is a subset of E.
Let G be a subgraph of G and let G2 be a subgraph
of G1. The graph G, is a Minimum Spanning Forest
(MSF) of G rooted in Gy if:

1. the graphs G and G have the same set of vertices,
i.e., V(G1) =V;and

2. each connected component of G; includes exactly
one connected component of Go; and

3. the sum of the weight of the edges of G; is mini-
mal among all subgraphs of G for which the above
conditions 1 and 2 hold true.

Given a path (xq,...,2,) in G, we say that 7 is a
cycle if ¢ and x, are equal and if the edges in 7 are
pairwise distinct. A MSF of (G, w) rooted in a single
vertex of G and which does not contain any cycles is
a tree (connected forest) called a Minimum Spanning
Tree (MST) of (G, w).

Let k be a value in R. A connected subgraph G
of G is a (regional) minimum (of w) at level k if:

1. the set of edges E(Gy) of G, is not empty; and

2. for any edge u in E(Gs), the weight of u is equal
to k; and

3. for any edge {z,y} in E'\ E(G;) such that [{x,y} N
V(Gs)| > 1, the weight of {x,y} is strictly greater
than k.

Important notation: in the remaining part of this
article, we denote by n the number of minima of w. Ev-
ery sequence of minima of w considered in this article
is a sequence of n pairwise distinct minima of w and,
therefore, for the sake of simplicity, we use the term se-
quence of minima of w instead of sequence of n pairwise
distinct minima of w.

Let {G1,...,G¢} be a set of graphs. We de-
note by L{G1,...,G¢} the graph (U{V(G;) | j €
{1,...,0},W{E(G)) | j € {1,...,£}}). In the follow-
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ing, we define hierarchical watersheds based on mini-
mum spanning forests, as done in [7}9].

Definition 1 (hierarchical watershed [1l9]). Let S =

(My,...,M,) be a sequence of minima of w.
Let (Go, . ..,Gpn_1) be a sequence of subgraphs of G such
that:

1. for any i in {0,...,n — 1}, the graph G; is a MSF
of G rooted in U{M; | j € {i+1,...,n}}; and
2. foranyiin{l,...,n—1}, G;_1 is a subgraph of G;.

The sequence T = (CC(Gy),...,CC(Gp_1)) is
called a hierarchical watershed of (G, w) for S. Given a
hierarchy H, we say that H is a hierarchical watershed
of (G,w) if there exists a sequence S of minima of w
such that H is a hierarchical watershed of (G, w) for S.

For instance, let (G,w) and H be respectively the
weighted graph and the hierarchy shown in Figure
a) and Figure b), respectively. We can see that H
is the hierarchical watershed of (G,w) for the se-
quence (C, A, B, D) of minima of w.

3 Characterization of hierarchical watersheds

In this section, we solve the following recognition prob-
lem:

(P) given a weighted graph (G,w) and a hierarchy of
partitions H, determine if H is a hierarchical water-
shed of (G, w).

A naive approach to solve Problem (P) is to test if
there is a sequence S of minima of w such that H is the
hierarchical watershed of (G, w) for S. However, there
exist n! sequences of minima of w, which leads to an
algorithm of factorial time complexity.

To solve Problem (P) more efficiently, we propose
in Section [3.2] a characterization of hierarchical water-
sheds (Lemma based on the binary partition hier-
archy by altitude ordering (see Section which, as
stated in [9], is known to be closely related to hier-
archical watersheds. Then, we present a sketch of the
proof of Lemma [] by linking one-side increasing maps
to the notion of extinction values as defined in [9]. Based
on our proposed characterization of hierarchical water-
sheds, we design an efficient algorithm (Algorithm
to solve Problem (P).

3.1 Binary partition hierarchies by altitude ordering
Binary partition trees [29] are widely used for hierar-

chical image representation. In this section, we describe
the case where regions linked by the lowest edge weights

are the first regions to be merged in the hierarchy [9].
As stated in [8], this particular case is deeply connected
to single-linkage clustering.

Let < be a total ordering (on E), i.e., < is a binary
relation that is transitive and trichotomous: for any wu
and v in E only one of the relations v < v, v < u
and v = wu holds true. We say that < is an altitude
ordering (on E) for w if, for any v and v in E such
that w(u) < w(v), we have u < v. Hence, given an
altitude ordering < for w and given any two edges u
and v such that w(u) = w(v), we can have either v < v
or v < u. Let < be an altitude ordering for w. Let k be
any element in {1,...,|E|}. We denote by u; the k-th
element of E with respect to <. We set By = {{z} |
x € V'}. The k-partition of V (by the ordering <) is de-
fined by By = {Bj_,; UB{_;}U(Br—1 \{B}_;,B}_,})
where u;l = {z,y} and Bf_, and BY_, are the re-
gions of By_; that contain x and y, respectively. The
sequence (B; | i =0 or B; # B,;_1), denoted by B, is
a hierarchy on V called the binary partition hierarchy
(by altitude ordering) of (G,w) by <. We can observe
that successive k-partitions can be equal. In such case,
only one of the repeated partitions is in 5.

Let B be a hierarchy on V. We say that B is a binary
partition hierarchy (by altitude ordering) of (G,w) if
there is an altitude ordering < for w such that B is the
binary partition hierarchy of (G, w) by <.

Let < be an altitude ordering for w. We can as-
sociate any non-leaf region X of the binary partition
hierarchy B of (G,w) by < to the lowest rank r such
that B, contains X. This rank is called the rank of X.
Let X be a non-leaf region of B~ and let r be the rank
of X. The building edge of X is the r-th edge for <.
Given an edge w in F, if u is the building edge of a
region of B., we say that u is a building edge for <.
Given a building edge u for <, we denote the region
of B< whose building edge is u by R,. The set of all
building edges for < is denoted by E.

Let (G, w) be the weighted graph illustrated in Fig-
ure a) and let B be the binary partition hierarchy
of (G, w) illustrated in Figure [2[c). We can see that B
is the binary partition hierarchy of (G, w) by the alti-
tude ordering < such that {a,b} < {c,d} < {e, f} <
{g,h} < {a,c} < {e,g9} < {c,e}. The building edge of
each non-leaf region R of B is shown above the node
that represents R.

Let B be a binary partition hierarchy of (G, w) and
let X and Y be two distinct regions of B. If the parent
of X is equal to the parent of Y, we say that X is a
sibling of Y, that Y is a sibling of X and that X and Y
are siblings. It can be seen that any region R # V
of B has exactly one sibling and we denote this unique
sibling of R by sibling(R).
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Fig. 2: (a): A weighted graph (G, w) with four minima delimited by the dashed lines. (b): The hierarchical watershed

of (G,

Important remark: by abuse of terminology,
when no confusion is possible, if M is a minimum of w,
we call the set V(M) of vertices of M as a minimum
of w.

As established in [26], given an altitude ordering <
for w, the minima of w can be extracted from the bi-
nary partition hierarchy B as well as the watershed-
cut edges for <, whose definition is given bellow.

Definition 2 (watershed-cut edge). Let < be an alti-
tude ordering for w and let u be a building edge for <.
We say that u is a watershed-cut edge (of (G, w)) for <
if each child of the region R, of B< includes at least one
minimum of w.

3.2 Characterization of hierarchical watersheds

In [16], the authors propose a characterization of hierar-
chical watersheds in the following case: the given graph
is a tree with pairwise distinct edge weights. In this
section, we generalize the characterization of hierarchi-
cal watersheds introduced in [I6] to arbitrary graphs.
To ease the reading of this section, the proofs of the
properties and theorems stated here are delayed to the
appendix.

Let < be an altitude ordering for w and let f
be a map from F into R. The supremum descen-
dant value of R for f and < is the supremum edge
weight among the building edges of the regions included
in R: V{f(v) | v € Ex, R, C R}, where V maps any set
of values into the supremum value in this set, and the
supremum of an empty set is zero.

The next definition introduces the notion of one-
side increasing map. As established later in Lemma []
the notion of one-side increasing map is linked to the
saliency maps of hierarchical watersheds.

w) for the sequence (C, A, B, D) of minima of w. (c¢): The unique binary partition hierarchy B of (G, w).

Definition 3 (one-side increasing map). Let < be an
altitude ordering for w and let f be a map from E
into R. We say that f is one-side increasing for < if:

1. {f(u) |lue E<x} =A{0,...,n—1};

2. for any edge u in E-, the weight f(u) is greater then
zero if and only if u is a watershed-cut edge for <;
and

3. for any edge u in E~, there exists a child R of R,
such that f(u) is greater than or equal to the supre-
mum descendant value of R for f and <.

The next lemma, whose proof is given in Ap-
pendix [F] states that hierarchical watersheds can be
characterized as the hierarchies whose saliency maps
are one-side increasing maps.

Lemma 4. Let H be a hierarchy on'V'. The hierarchy H
is a hierarchical watershed of (G,w) if and only if there
is an altitude ordering < for w such that the saliency
map P(H) is one-side increasing for <.

Let H be the hierarchy of Figure [3(a), let &(H) be
the saliency map of # shown in Figure [3(b), and let B
be the binary partition hierarchy of (G,w) (Figure [2))
shown in Figure (b) As the edges of G have pairwise
distinct weights for w, we can conclude that B is the
binary partition hierarchy of (G,w) by the unique al-
titude ordering < for w. We can verify that ®(H) is
one-side increasing for <. By Lemma [4] we may affirm
that @(H) is the saliency map of a hierarchical water-
shed of (G, w) and that, consequently, the hierarchy H
is a hierarchical watershed of (G, w).

Let us now consider the hierarchy H' and the
saliency map ®(H') of Figure [3[(d) and (e), respec-
tively. We can see that ¢(H’) is not one-side increasing
for <. Indeed, the weight ®(H')({c,e}) of the building
edge of the region Y7 of B is 1, which is lower than
both V{@(H')(v) | R, C Y5} = 2 and V{P(H')(v) |
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R, C Ys} = 3. Hence, the condition 3 of Definition
is not satisfied by @(#'). Thus, by Lemma [4 as <
is the unique altitude ordering for w, we may deduce
that #(H') is not the saliency map of a hierarchical
watershed of (G,w) and that H’ is not a hierarchical
watershed of (G, w).

In the case where (G, w) has pairwise distinct edge
weights, there exists a unique altitude ordering for w.
Hence, we can use Lemmald]to verify that a given map f
is the saliency map of a hierarchical watershed of (G, w)
by simply checking if f is one-side increasing for the
unique altitude ordering for w. Otherwise, let us con-
sider that (G, w) has arbitrary edge weights. Thus, in
order to test if a map f is the saliency map of a hier-
archical watershed of (G, w), we need to test if there is
an altitude ordering < for w such that f is one-side in-
creasing for <. In the worst case, there exist |E|! possi-
ble altitude orderings for w. Hence, the naive approach
to verify that f is one-side increasing for an altitude
ordering for w has a factorial time complexity, which
is the same time complexity as the algorithm to verify
that f is the saliency map of a hierarchical watershed
for a sequence of minima of w. Actually, as we estab-
lish later in Theorem [5] it is sufficient to test if f is
one-side increasing for a single altitude ordering for w,
which is the key idea behind our efficient algorithm (Al-
gorithm 1) to recognize hierarchical watersheds.

Let f and g be two maps from E into R. A lexico-
graphic ordering for (f,g) is a total ordering < on E
such that, for any two edges v and v in F, we have u < v
if f(u) < f(v) or if f(u) = f(v) and g(u) < g(v). We
can note that any lexicographic ordering for (f,g) is an
altitude ordering for f.

Theorem 5. Let H be a hierarchy on V and let < be a
lexicographic ordering for (w,®(H)). The hierarchy H
is a hierarchical watershed of (G, w) if and only if P(H)
is one-side increasing for <.

The following is a sketch of the proof of Theorem [f]
whose formal proof is given in Appendix Given
any hierarchy H and any altitude ordering < for w,
we can obtain a lexicographic ordering for (w,®(H))
by iteratively reordering the pairs of edges (u,v) such
that v < v and such that ®(H)(u) > ¢(H)(v), similar to
the sorting steps of the bubble sort algorithm. Let <’ be
an altitude ordering resulting from the reordering of two
edges v and v such that u < v and such that &(H)(u) >
&(H)(v). To prove Theorem 5], we prove that, if &(H) is
one-side increasing for <, then @(#) is also one-side in-
creasing for <’. For each reordering, we prove that the
three statements of Definition 3 for @(H) to be one-side
increasing still hold true in the following five cases: (a)
neither u nor v is a building edge for < (Lemma30)); (b)
both 4 and v are building edges for < and R, N R, =

(Lemma[31)); (c) both u and v are building edges for <
and R, C R, (Lemma [32); (d) only u is a building
edge for < (Lemma [33); and (e) only v is a building
edge for < (Lemma [34)).

In the remaining of this section, we present the
building blocks of the proof of Lemma [d] More pre-
cisely, we state the link between the notions of one-side
increasing map, hierarchical watershed and the method
to compute hierarchical watersheds introduced in [9]
26].

Let < be an altitude ordering for w and let § =
(My, ..., M,) be a sequence of minima of w. Let R be a
region of the binary partition hierarchy B~ by <. Using
the terminology of [9], the extinction value of R (for <
and S) is zero if there is no minimum of w included in R
and, otherwise, it is the maximum value ¢ in {1,...,n}
such that the minimum M; is included in R. Let € be
the map from the set of regions of B~ into R such that,
for any region R of B, the value ¢(R) is the extinction
value of R. We say that € is the extinction map for <
and S, that € is an extinction map for < and that € is
an extinction map for S. The following property, whose
proof is detailed in Appendix [C] characterizes extinc-
tion maps.

Property 6. Let < be an altitude ordering for w and
let € be a map from the regions of B< into R. The map €
s an extinction map for < if and only if the following
statements hold true:

1. {e(R) | R is a region of B2} ={0,...,n};

2. for any two distinct minima My and My of w, we
have e(My) # e(Ms); and

3. for any region R of B<, we have that €(R) is equal
to V{e(M) such that M is a minimum of w included
in R}.

We provide an example of an extinction map in Fig-
ure[d] We can see that the map € is the extinction map
for the unique altitude ordering for w (Figure[2[(a)) and
for the sequence S = (B, A, D, C) of minima of w.

The next property clarifies the relation between hi-
erarchical watersheds and extinction maps. As estab-
lished in [9], given a sequence S of minima of w, we can
compute the saliency map of a hierarchical watershed
for S by considering any extinction map for S. As the
edge weights of w are not necessarily pairwise distinct,
given any sequence S of minima of w, there might be
several distinct hierarchical watersheds of (G, w) for S.
Let S be a sequence of minima of w. As established
in the following property, we can associated any hier-
archical watershed H of (G,w) for S with an altitude
ordering < for w such that, for any building edge u
for <, the weight ®(H)(u) is obtained from the extinc-
tion map for < and S.



Characterization of graph-based hierarchical watersheds: theory and algorithms 7

prey

PN

(a) (b)

H—=O

OD—=©

4R

@E®)

00

(©)

@)

(—> (¢

@ D2 @
@;@\U

®

(d)

Fig. 3: (a) and (d): The hierarchies H and H/,

o  ©
©

0 0

.O@ @@ E@)

(f)

respectively. (b) and (e): the weighted graphs (G,®(#H)) and

(G,®(H')), respectively. (c) and (f): The maps ®(H) and &(H’') represented on the hierarchy B of Figure [2]c),
where, for each edge u, the values @(H)(u) and ®(H')(u) are shown above the region R,, of B.

/@\/g

LR

@@@@.@@@

Fig. 4: An extinction map e for the unique altitude or-
dering of (G, w) of Figure a).

Property 7. Let H be a hierarchy on V. The hierar-
chy H is a hierarchical watershed of (G,w) if and only
if there exists an altitude ordering < for w and an ez-
tinction map € for < such that:

1. (V,EL) is a MST of (G,P(H)); and
2. for any edge u in E<, the value $(H)(u) is equal
to min{e(R) such that R is a child of R,}.

The proof of Property [7]is detailed in Appendix [A]l
The intuition of the forward implication of Lemma [4]
can be obtained from the definition of hierarchical wa-
tersheds (Definition (1) and from Property |7l Let H be

a hierarchical watershed of (G, w). By the definition of
hierarchical watersheds, we can infer that H is a se-
quence (Po,...,P,_1) of n partitions, and that only
the vertices connected by watershed-cut edges are in
distinct regions of the partition Py of . Hence, we can
infer that the range of ®(H) is the set {0,...,n — 1}
and that only the watershed-cut edges have non-zero
weights for ¢(H), which correspond to the conditions 1
and 2 of Definition [3| for () to be one-side increasing
for an altitude ordering for w. By the statement 3 of the
property on extinction maps (Property@, we can infer
that any extinction map is increasing on the regions of
a binary partition hierarchy of (G,w). By Property [7]
there exist an altitude ordering < for w and an extinc-
tion map € for < such that, for any edge u in E~, the
value @(H)(u) is equal to min{e(R) such that R is a
child of R, }. As € is increasing on the regions of B, we
may say that, for any edge u in F, there is a child R
of R, such that ¢(H)(u) is greater than the weight of
any building edge of the regions included in R. The
latter statement corresponds to the condition 3 of Defi-
nition [3| for #(H) to be one-side increasing. The reader
can refer to Appendix[F|for a formal and complete proof
of the forward implication of Lemma [

In order to present the intuition behind the back-
ward implication of Lemma [ we introduce the notion
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of approximated extinction maps. To introduce approx-
imated extinction maps, we first present the auxiliary
notions of non-leaf ordering and dominant region.

Definition 8 (non-leaf ordering). Let < be an altitude
ordering for w and let f be a map from E into R. The
non-leaf ordering for f and < is the total ordering < on
the building edges for <, such that, for any two build-
ing edges u and v for <, we have u < v if either the
descendant value of R, (for f and <) is strictly lower
than the descendant value of R, or if the descendant
values of R, and R, are equal and u < v.

Definition 9 (dominant region). Let < be an altitude
ordering for w and let f be a map from E into R. Let <
be the non-leaf ordering for f and <. Let R be a non-
leaf region of B~ different from V. Let u and v be the
building edges of R and of the sibling of R, respectively.
We say that R is a dominant region for f and < if:

1. there is a minimum of w included in R; and
2. either:
- v u; or
— there is no minimum of w included in the sibling
of R.

For instance, let (G, w) be the weighted graph shown
in Figure (a), let < be the unique altitude ordering
for w, let B be the binary partition hierarchy by =<
shown in Figure 2{c), and let &(#) be the map illus-
trated in Figure b). Let < be the non-leaf ordering
for #(H) and < such that {a,b} < {c,d} < {e, [} <
{9,h} < {a,c} < {c,e} < {e,g}. The dominant re-
gions of B for #(H) and < are the regions B, D and Y.

Definition 10 (approximated extinction map). Let <
be an altitude ordering for w and let f be a map from E
into R. The approximated extinction map for f and <
is the map & from the set of regions of B< into R such
that:

1. £(R) = k+ 1 if R is the vertex set V of G, where k
is the supremum descendant value of R for f and
=<; and

2. £(R) = &(parent(R)) if R is a dominant region for f
and <; and

3. &(R) = f(u), where u is the building edge of the
parent of R, otherwise.

The next lemma establishes that the approximated
extinction map of any one-side increasing map is indeed
an extinction map.

Lemma 11. Let < be an altitude ordering for w and
let f be a map from E into R such that f is one-side in-
creasing for <. The approzimated extinction map for f
and < is an extinction map for <.

For instance, let us consider the weighted
graph (G, w) of Figure [2[(a) and its unique altitude or-
dering <. We can verify that the extinction map e of
Figure [4] is precisely the approximated extinction map
for #(H) (Figure [3(b)) and <.

The next lemma is the key result for establishing
the backward implication of Lemma [4]

Lemma 12. Let < be an altitude ordering for w and
let f be a map from E into R such that f is one-side
increasing for <. Let £ be the approximated extinction
map for f and <. Then, for any edge u in E~, we have:

f(u) = min{&(R) such that R is a child of R,}.

The proof of lemmas and [T2] are presented in
appendices [D] and [E] respectively. The backward im-
plication of Lemma [4] is a consequence of lemmas
and [I2] and the backward implication of Property [7]
Let H be a hierarchy and let < be an altitude order-
ing for w such that ¢(H) is one-side increasing for <.
Let & be the approximated extinction map for &(H)
and <. By Lemma for any edge u in E~, we
have @®(H)(u) = min{€(R) such that R is a child
of Ry,}. By Lemma the map £ is an extinction map
for <. Then, by the backward implication of Property [7]
we conclude that $(H) is the saliency map of a hierar-
chical watershed of (G,w) and that H is a hierarchical
watershed of (G, w).

Let (G, w) be the graph of Figure[2a) and let &(#)
be the saliency map of Figure b). Let < be the unique
altitude ordering of w. As stated previously, &(H) is
one-side increasing for <. To illustrate Lemma we
can verify that the value @(H)(u) is equal to min{e(R)
such that R is a child of R,} for any edge u in E
where ¢ (shown in Figure is the approximated ex-
tinction map for ®(H) and <.

4 Recognition algorithm for hierarchical
watersheds

In this section, we present an efficient algorithm to
recognize hierarchical watersheds based on Theorem [5
Given any hierarchy H on V, to test if H is a hierar-
chical watershed of (G, w), it is sufficient to verify that
the saliency map @(H)(u) of H is one-side increasing
for a lexicographic ordering for (w, f).

Algorithm [1| provides a description of our algorithm
to recognize hierarchical watersheds. The inputs are a
weighted graph ((V, E),w) and a saliency map f of a
hierarchy H on V. The first step of Algorithm [I]is to
compute a lexicographic ordering < for (w, f). Then,
the binary partition hierarchy B by < and the set of
building egdes F~ for < are computed at lines 2-3 us-
ing the algorithm proposed in [26]. Subsequently, the
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minima of w and the watershed-cut edges for < are ob-
tained at lines 4-5 using the method proposed in [26]:
the number of minima included in each region of B is
iteratively counted by browsing the regions of B from
the leaves to the root. At lines 6-7, we compute the
supremum descendant value for f and < of each region
of B. Finally, the last for loop (lines 8-13) verifies that
the three conditions of Definition [3] for f to be one-side
increasing for < hold true. The condition 1 of Defini-
tion [3] is verified by the two tests between lines 9 and
10. The conditions 2 and 3 of Definition [3] are verified
by the tests at lines 11 and 13, respectively. If any of
those three conditions is not satisfied, then the algo-
rithm halts and returns false and, otherwise, it returns
true.

Let us now analyse the time complexity of Algo-
rithm Given that the lexicographic ordering for (w, f)
can be obtained through the merging sort algorithm,
the time complexity of this step is O(|E|log|E|). As es-
tablished in [26], any binary partition hierarchy can be
computed in quasi-linear time with respect to |F| pro-
vided that the edges in F are already sorted or can be
sorted in linear time. More specifically, the time com-
plexity to compute the binary partition hierarchy B
is O(JE| x a(|V])), where a is a slowly growing in-
verse of the single-valued Ackermann function. Having
computed the binary partition hierarchy B, the com-
putation of the minima of w and of the watershed-cut
edges for < can be performed in linear time with respect
to |V] as stated in [26]. At lines 6 — 7, the supremum
descendant values of the building edges for < are iter-
atively computed from the leaves to the root in linear
time O(V). Finally, each instruction between lines 9
and 13 can be performed in constant time, which im-
plies that the last for loop has a linear time complexity
with respect to |V/|. Therefore, the overall time com-
plexity of Algorithm [1|is O(|E|log|E]).

We illustrate Algorithm [I] in Figures [p] and [6} Let
us first explain the example of Figure [f] The inputs
are the weighted graph (G, w) and the saliency map f
of Figure [}] We first obtain a lexicographic ordering <
for (w, f) such that {a,b} < {c,d} < {e, f} < {g,h} <
{i,5} <Aa,c} < {g,7} < {c,e} <{d, f} < {e,g} <
{b,d} < {f,h} < {h,j}. Then, we obtain the binary
partition hierarchy B by <, the minima of w (in red)
and the four watershed-cut edges for < (underlined)
illustrated in Figure c). Subsequently, we compute
the supremum descendant values (for f and <) illus-
trated in Figure e). For each edge u of G, the supre-
mum descendant value of u is the greatest value in the
set {f(v) | Ry € Ry,}. We can verify that the range
of f1is{0,1,2,3,4} and that, among the building edges
for <, all (and only) the watershed-cut edges for < have

non-zero weights in f. Therefore, the conditions 1 and
2 of Definition [3] for f to be one-side increasing for <
hold true. Finally, we test the condition 3 of Defini-
tion [3] For each watershed-cut edge u of G, we test
if f(u) is greater than the supremum descendant value
of at least one child of R,,. For the building edges of the
regions Yy, Y7 and Yg the condition 3 holds true, but
this is not the case for the region Yy. Consequently, the
map f is not one-side increasing for < and Algorithm I
returns false.

We will now explain the example of Figure [6} The
inputs are the weighted graph (G, w) and the saliency
map g of Figure[6] We first obtain a lexicographic order-
ing <’ for (w, G) such that {a,b} <’ {c,d} <’ {e, f} <’
{g.h} < {i,} < {a.c} </ {g,i} <' {e.q} < {e,e} <
{d, f} <" {b,d} <" {f,h} <’ {h,j}. Then, we obtain
the binary partition hierarchy B by <’, the minima of w
(in red) and the four watershed-cut edges for <’ (under-
lined) illustrated in Figure [6]c). Subsequently, we com-
pute the supremum descendant values (for g and <).
We can verify that the range of g is {0,1,2,3,4} and
that, among the building edges for <’, all (and only)
the watershed-cut edges for <’ have non-zero weights.
Therefore, the conditions 1 and 2 of Definition [3] for ¢
to be one-side increasing for <’ hold true. Moreover, for
each building edge u for <’, the supremum descendant
value of R, is greater than the supremum descendant
value of at least one of the children of R,. Hence, the
condition 3 for g to be one-side increasing for <’ also
holds true. Therefore, the map g is one-side increasing
for <’ and Algorithm [I| returns true.

5 Flattened hierarchical watersheds

In order to compute a hierarchical watershed of (G, w),
a sequence of minima of w is often defined by extinc-
tion values [34]. When distinct minima of w have the
same extinction value, the order between those min-
ima is defined arbitrarily. Given a watershed segmen-
tation of (G, w), we may say that a hierarchical water-
shed of (G, w) can be obtained by filtering, one by one,
the regions of this segmentation. Now, let us consider a
framework in which the minima with equal extinction
values are treated in parallel. In this new framework,
the regions of the watershed segmentation containing
minima of w with equal extinction values are filtered
out simultaneously. We can affirm that the resulting
partitions of this framework are a subset of the parti-
tions of a hierarchical watershed of (G, w), and hence a
simplified or “flattened” hierarchical watershed.

Definition 13 (flattening of hierarchies [30]). Let H
and H' be two hierarchies on V such that any partition
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Algorithm 1 Recognition of hierarchical watersheds

Data: ((V, E),w): a weighted graph
f: the saliency map of a hierarchy H on V'

Result: true if H is a hierarchical watershed of (G, w) and false otherwise

Compute a lexicographic ordering < for (w, f)
Compute the binary partition hierarchy B by <
Compute the set E~ of building edges for <
Compute the minima of w

Compute the watershed-cut edges for <

for each building edge u in increasing order for < do
p(u) < the supremum descendant value of R, for f and <

> O(|E|log|E|)

> O(|E| x a(|V])) with [26]
> O(|V])

> O(|V]) with [26]

> O(|V]) with [26]

> O(|V])

> O(]1])

// Testing of the conditions 1, 2 and 3 of Definition for f to be one-side

increasing for <

8: for each building edge u in increasing order for < do

©

if f(u) & {0,1,..

return false

.,k} then

10: if f(u)# 0 and Jv € E such that v < w and f(u) = f(v) then

return false

11: if u is a watershed-cut edge and f(u) = 0 or u is not a watershed-cut edge and f(u) # 0 then

return false

12: X and Y <« children of R,
13: if p(Ry,) < o(X) and ¢(R,) < ¢(Y) then

return false
return true

> O(|V|
> O(|1]
> O(|1]
> O([1]
> O(|1]
> O(|1]
> O(|1]
> O([1]
> O(|1]
> O(

)
)
)
)
)
)
)
)
)
1)

of H is a partition of H'. We say that H is a flattening
of H'.

Let H and H’ be two hierarchies on V such that H
is a flattening of H'. If H’ is a hierarchical watershed
of (G, w), then we say that H is a flattened hierarchical
watershed of (G, w).

In a hierarchical watershed H = (Pg,...,P,,_1) of
(G,w), every partition P;, for ¢ in {1,...,n — 1}, in-
cludes exactly one region R such that R is the union
of two regions of the partition P;_;. However, given
a flattened hierarchical watershed H’ of H, there can
be partitions of H’ which includes regions that are the
union of several regions of the previous partition in the
sequence. Therefore, some subsets of partitions of H are
“flattened” into a single partition of H’. The ultimate
flattening of any hierarchical watershed of (G, w) is the
hierarchy ({V'}) composed of a single partition in which
all vertices belong to the same region.

We can see that the notion of flattened hierarchi-
cal watersheds, even though not formally defined pre-
viously, arise naturally in the context of marker-based
watershed segmentation. It is noteworthy that, like a
hierarchical watershed, all partitions of a flattened hi-
erarchical watershed are optimal in the sense of minima
spanning forests. Hence, based on our proposed charac-

terization of hierarchical watersheds, we derive a char-
acterization of flattened hierarchical watersheds.

The following property characterizes flattened hier-
archical watersheds.

Property 14. Let H be a hierarchy on V. The hierar-
chy H is a flattened hierarchical watershed of (G,w) if
and only if there is an altitude ordering < for w such
that:

1. (V,EL) is a MST of (G,P(H)); and

2. for any edge u in E-, if u is not a watershed-cut
edge for <, then ®(H)(u) is zero; and

3. for any edge u in E~, there exists a child R of R,
such that f(u) is greater than or equal to the supre-
mum descendant value of R for &(H) and <.

We can remark the similarity between Property
and Lemma [4 which links hierarchical watersheds to
the notion of one-side increasing maps. Let H be a hi-
erarchy and let f be the saliency map of H. To test if H
is a flattened hierarchical watershed of (G, w), the first
condition of Property which is an implication of the
first statement of Definition [3] makes sure that we take
into account the range of f and not only a subset of
the range of f. The second condition of Property
which is the forward implication of the second state-
ment of Definition |3} guarantees that the lowest level
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Fig. 5: llustration of Algorithm applied to a saliency map which is not the saliency map of a hierarchical watershed
of the input graph (G, w). Given the weighted graph (G,w) and the saliency map f, we test if f is the saliency
map of a hierarchical watershed of (G, w). We first compute the lexicographic ordering < for (w, f) such that
{a,b} < {e.d} < {e. f} < {g,h} < {irj} < {a,c} < {91} < {e,e} < {d, } < {e.g} < {b.d} < {£,R} < {h,]}.
Then, we obtain the binary partition hierarchy B by <, along with the minima of w (in red) and the watershed-cut
edges for < (underlined). Subsequently, we obtain the supremum descendant values for g and <. We may conclude
that conditions 1 and 2 of Definition [3| hold true for f, but not the condition 3. Hence, f is not the saliency map

of a hierarchical watershed of (G, w).

of H is equal or coarser than the lowest level of a hierar-
chical watershed of (G, w). Finally, the third condition
of Property is equivalent to the third statement of
Definition [3|and, allied to the second condition of Prop-
erty[I4] it ensures that each partition of H is induced by
a MSF rooted in a subset of the set of minima of (G, w).

Algorithm [2] describes our algorithm to recognize
flattened hierarchical watersheds, which is very sim-
ilar to the algorithm to recognize hierarchical water-
sheds (Algorithm . The only difference between algo-
rithms 2] and [I] is that, in Algorithm [2] we do not test
if the first condition of Definition [3] holds true, and we
test if (V, EZ) is a MST of the input map ((V, E), f),
where E_ is the set of building edges for <. The verifi-
cation that (V, E%) is a MST of (G, f) can be done in
time O(|E|log|E|) by checking if the sum of the edge
weights of a MST of ((V,E), f) is equal to the sum
of the edge weights of ((V, EZ), f). Hence, the overall

time complexity of Algorithm [2] is the same of Algo-
rithm [T} O(|E|log|E|).

6 Experimental results

In this section, we present an immediate application
of the recognition of (flattened) hierarchical watersheds
on the combinations of hierarchical watersheds assessed
in [T4]. In [14], the authors showed that combining hier-
archies is a good alternative method to outperform in-
dividual hierarchical watersheds, which raises the ques-
tion of whether the resulting combinations are hierar-
chical watersheds or flattened hierarchical watersheds.
This problem has already been tackled in our compan-
ion paper [15], where we study if, and which, combina-
tions of hierarchical watersheds result in flattened hier-
archical watersheds. In [I5], we concluded that combi-
nations of hierarchical watersheds are not hierarchical
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Fig. 6: Illustration of Algorithm [l| applied to a saliency map which is the saliency map of a hierarchical watershed
of the input graph (G,w). Given the map (G, w) and the saliency map g, we test if g is the saliency map of a
hierarchical watershed of (G,w). We first compute the lexicographic ordering <’ for (w, g) such that {a,b} <’
fe.d} < {e.f} </ {g.h} </ {inj} </ {a.c} </ {91} < {e.g} < {ece} </ {d.f} </ {b,d} </ {£.h} </ {h,]}.
Then, we obtain the binary partition hierarchy B by <’, along with the minima of w (in red) and the watershed-cut
edges for <’ (underlined). Subsequently, we obtain the supremum descendant values for f and <. We may conclude
that three statements of Definition [3| hold true for f. Hence, g is one-side increasing for <’. By Theorem [5| the
map ¢ is the saliency map of a hierarchical watershed of (G, w).

Algorithm 2 Recognition of flattened hierarchical watersheds
Data: ((V, E),w): a weighted graph
f: the saliency map of a hierarchy H on V'
Result: true if A is a flattened hierarchical watershed of (G, w) and false otherwise
/* Lines 1 — 8 of Algorithm [1] */ > O(|E|log|E|)
// Testing of the conditions 1, 2 and 3 of Property for f to be a flattened
hierarchical watershed of ((V,E),w)
17: if (V, EL) is not a MST of ((V, E), f) then > O(|E|log|E))
return false

18: for each building edge v in increasing order for < do > O(|V])
19: if u is not a watershed-cut edge and f(u) # 0 then > O(|1])
return false O(|1))
20: X and Y < children of R, O(|1))
21: if p(Ry,) < o(X) and ¢(R,) < ¢(Y) then O(|1))
return false O(|1))

return true
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watersheds in general. However, when the input hierar-
chical watersheds are one-side increasing for the same
altitude ordering, then their combination by infimum
is a flattened hierarchical watershed. The experiments
presented in this section reinforce those theoretical re-
sults.

We first present the set-up of our experiments. We
consider hierarchical watersheds for sequences of min-
ima ordered by their extinction values [34]. Such ex-
tinction values are based on the following attributes:
area [23,34], diagonal of bounding box [3I], dynam-
ics [19], (topological) height [3I], number of descen-
dants, number of minima, volume [34] and number
of parent nodes [28]. In the combination of hierarchi-
cal watersheds, we consider the following functions: in-
fimum, supremum and linear combination (average).
The experiments were performed on the 200 images of
the test set of the Berkeley Segmentation Dataset and
Benchmark 500 [I8].

As established in [I5], combinations of hierarchical
watersheds with the aforementioned combining func-
tions are not hierarchical watersheds in general. Indeed,
by applying Algorithm [I] to the combinations of hier-
archical watersheds by infimum, supremum and aver-
age, we verified that the first condition of the definition
of one-side increasing maps (Definition |3) is not satis-
fied by any combination. Hence, by Theorem [5] none
of those combinations is a hierarchical watershed. In
fact, combining hierarchies often act by simplifying the
input hierarchies in the sense that, from a level ¢ to a
level 7 + 1 of the resulting combination, zero or more
than one pair of regions are merged, which suggests that
some combinations may result in flattened hierarchical
watersheds.

To test how many combinations result in flattened
hierarchical watersheds, we consider two hierarchical
watershed algorithms:

1. Non-deterministic algorithm: when there are ties be-
tween edges of equal weights, an arbitrary choice is
made. Using this algorithm, two hierarchical water-
sheds computed from the same graph are not nec-
essarily one-side increasing for the same altitude or-
dering.

2. Deterministic algorithm: when there are ties be-
tween edges of equal weights, a deterministic choice
is made. In this case, any two hierarchical water-
sheds computed from the same graph are one-side
increasing for the same altitude ordering.

We applied Algorithm 2] to combinations of pairs
of hierarchical watersheds which were computed using
each of those algorithms. The results using the non-
deterministic algorithm are shown in Table [1} In each

cell of Table [I} we present the number of combinations
by average, by supremum and by infimum (among 200)
that are flattened hierarchical watersheds. We can ob-
serve that the majority of the combinations, nearly two
thirds, are flattened hierarchical watersheds.

We now consider the second algorithm, in which ties
between edge weights are treated deterministically. In
this case, all hierarchical watersheds of a given weighted
graph are one-side increasing for the same altitude or-
dering. Consequently, any combination with infimum
is a flattened hierarchical watershed, as established by
Property 7 of [I5]. By applying Algorithmto combina-
tions of hierarchies obtained through the deterministic
algorithm, we observed that all combinations with infi-
mum are flattened hierarchical watersheds, as expected.
Interestingly, this was also the case for the combinations
with average. Regarding the combinations with supre-
mum, among all 5600 combinations, only one combi-
nation with volume and diagonal of bounding box, and
three combinations with volume and height are not flat-
tened hierarchical watersheds.

Our experimental results suggest that most of the
combinations of hierarchical watersheds assessed in [14]
are “approximations" of flattened hierarchical water-
sheds in the sense that, by swapping the weight of a few
edges in the combinations of saliency maps, we could
obtain a flattened hierarchical watershed. This specula-
tive conclusion may be investigated in future research
linking the results established here with our method
to convert any hierarchy into a hierarchical watershed
introduced in [I7].

7 Conclusion and perspectives

In this article, we aimed at solving the problem of recog-
nition of hierarchical watersheds. We generalized the
characterization of hierarchical watersheds proposed in
[16] to arbitrary graphs and, based on this characteri-
zation, we designed an efficient algorithm to determine
if a hierarchy is a hierarchical watershed of any given
weighted graph. To consider the hierarchies that are ob-
tained by a partial ordering on the minima of a weighted
graph, we introduced the notion of flattened hierarchi-
cal watersheds, which is a relaxed definition of hier-
archical watersheds. Then, we presented experimental
results with the combinations of hierarchical watershed
assessed in [I4]. We concluded that none of those com-
binations are hierarchical watersheds but most of them
are flattened hierarchical watersheds.

We believe that having a better understanding of
hierarchical watersheds may help to develop new image
processing tools. For example, this is the case of the wa-
tersheding operator introduced in [I7], which converts
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Area Diagonal of Dynamics | Height Number of | Number of Volume Number of
bounding box descendants minima parent nodes
- 138 125 135 152 59 113 79
Area - 200 194 194 200 183 198 182
- 119 113 124 127 47 60 62
Diagonal of - - 127 134 136 62 119 82
bounding box| - - 195 197 200 184 198 183
- - 115 122 113 48 102 65
- - - 117 124 104 126 105
Dynamics - - - 195 195 189 196 192
- - - 91 111 96 112 100
- - - - 134 108 128 110
Height - - - - 195 185 194 186
- - - - 123 99 106 97
Number of - - - - - 63 114 83
descendants - - - - - 185 199 180
- - - - - 52 98 65
Number of - - - - - - 66 171
minima - - - - - - 179 199
- - - - - - 53 158
- - - - - - - 80
Volume - - - - - - - 177
- - - - - - - 66
Number of - - - - - - - -
parent nodes| - - - - - - - -

Table 1: In each cell, we show the number of combinations of pairs of hierarchical watersheds by average (red), by
supremum (blue) and by infimum (black) among 200 that are flattened hierarchical watersheds. In those results,
we consider hierarchies obtained through the non-deterministic hierarchical watershed algorithm.

any hierarchy into a hierarchical watershed and which
is deeply connected to the characterization of hierar-
chical watersheds introduced in this article. In Figure
[7l we illustrate a result of this operator. We present
an image, a gradient Grad of this image, and two hier-
archies H.. and H,, both computed from Grad. Each
hierarchy is represented by its saliency map, in which
the darkest boundaries represent the contours that per-
sist at the highest levels of the hierarchy. The hierarchy
‘H.. highlights the circular regions of Grad and, using
Algorithm [T we verified that H.. is not a hierarchical
watershed of Grad. The hierarchy H,, is a hierarchical
watershed of Grad and was obtained using the water-
sheding operator [I7] applied to H... We can observe
that both hierarchies include the most circular regions
of the original image, but the hierarchical watershed
H., also brings to the fore the region covering the arm,
which is a perceptually significant region highlighted by
the gradient Grad.
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A Proof of Property [7]

(Property @ Let H be a hierarchy on V. The hierarchy
H is a hierarchical watershed of (G,w) if and only if there
ezists an altitude ordering < for w and an extinction map €
for < such that

1. (V,EZ) is a MST of (G,P(H)); and
2. for any edge u in E-, we have: ®(H)(u) = min{e(R)
such that R is a child of Ry}.

To prove Property m we first present a result established
in [9] and other auxiliary lemmas.

Let < be an altitude ordering for w, let B be the binary
partition hierarchy by < and let S = (Mi,...,M,) be a
sequence of minima of w. Let u be a building edge for <
and let X be the region of B~ whose building edge is u. The
persistence value of u (for < and S) is the minimum of the
extinction values of the children of X. Let p be the map from
the building edges for < into R such that, for any building
edge u for <, p(u) is the persistence value of u. We say that
p is the persistence map (for < and S). We denote by B; the
set of building edges for < whose persistence value is lower
than or equal to .

Definition 15. (hierarchy induced by an altitude or-
dering and a sequence of minima [9]) Let < be an alti-
tude ordering for w, let S = (M1,...,My) be a sequence of
mintma of w and let p be the persistence map for < and S.
The sequence of partitions (CC(V, By),...,CC(V,Bp_1)) is
a hierarchy called the hierarchy induced by < and S.

Lemma 16 (Property 12 of [9]). Let S = (M1,...,My) be
a sequence of minima of w and let H be a hierarchy on V.
The hierarchy H is a hierarchical watershed of (G,w) for S
if and only if there exists an altitude ordering < such that H
is the hierarchy induced by < and S.

Lemma 17. Let < be an altitude ordering for w and let €
be an extinction map for <. Let X and Y be two regions of
B<. If X CY, then e(X) < €(Y).

Proof Since B< is a hierarchy, we can affirm that, for any
two regions Y and Z of B<, if Y C Z, then all minima
of w included in Y are also included in Z and, therefore,

e(Y) <e(2). O

From the results established in [26], we can state the fol-
lowing lemma.

Lemma 18. Let B be a binary partition hierarchy of (G, w).
Then, any minimum of w is a region of B.

Lemma 19. Let < be an altitude ordering on the edges of G
for w, let S = (Mu,...,M,) be a sequence of minima of w
and let p be the persistence map for < and S. The range of
pis{0,...,n—1}.

Proof Let € be the extinction map for < and S. We will prove
that (1) for any building edge u for <, p(u) is in {0,...,n —
1}, and that, (2) for any i in {0,...,n—1}, there is a building
edge u for < such that p(u) = i.

1. {0,...,n — 1} C range(p). First, we prove that 0 is in
range(p). By Property@ there is a region X of B« whose
extinction value is zero. Therefore, the persistence value
of the building edge u of the parent of X is equal to zero:
p(u) = 0. Now, we will prove that any i in {1,...,n—1}
is in range(p). Let i be a value in {1,...,n — 1}. By
Lemma the minimum M; is a region of B<. Then,
there is a region of B~ whose extinction value is i. Let

X be the largest region of B whose extinction value is
i. We can say that X # V because M, is included in V
and, therefore, ¢(V) = n. Let Z be the parent of X. We
can infer that the extinction value €(Z) of Z is strictly
greater than i. Therefore, there is a minimum M; with
j >t included in the sibling of X. Hence, the extinction
value of sibling(X) is also strictly greater than i. Then,
the persistence value of the building edge of Z, being the
mintmum of the extinction value of its children, is i.

2. range(p) C {0,...,n — 1}. Let w be an edge in E.
By Property @ (statement 1), and as the persistence
value of u is equal to the extinction value of a child of
Ry, we have that p(u) is in {0,...,n}. Moreover, the
persistence value p(u) of u is lower than n because, if
the extinction value of one child X of R, is n, then
the minimum M, is included in X and M, 1is not in-
cluded in sibling(X), which implies that the extinction
value of sibling(X) is strictly lower than n. Therefore,
since p(u) = min{e(X), e(sibling(X))}, the persistence
value of u is strictly lower than n. Thus, we have that
range(p) C {0,...,n —1}. O

Lemma 20. Let < be an altitude ordering for w, let S =
(M, ..., M,) be a sequence of minima of w and let p be the
persistence map for < and S. Let H be the hierarchy induced
by < and S. For any edge u in E~, we have P(H)(u) = p(u).

Proof By Definition [I5, the hierarchy H is the sequence
(cc(V,Bo),...,CC(V,Bn—_1)) such that, for any i in
{0,...,n—1}, B; 1is the set of building edges for < whose per-
sistence values are lower than or equal to i. Let u = {x,y} be
a building edge for < and let i be the persistence value of u.
We can say that x and y are in the same region of CC(V, B;)
but in distinct regions of CC(V,B;_1) if i # 0. Therefore,
since CC(V, B;) is the i-th partition of H, by the definition
of saliency maps, we have P(H)(u) = i. O

The following lemma, established in [8], links MSTs and
QFZ hierarchies.

Lemma 21 (Theorem 4 of [8]). A subgraph G’ of G is a

MST of (G,w) if and only if:

1. the QFZ hierarchy of G’ and G are the same; and

2. the graph G’ is minimal for statement 1, i.e., for any
subgraph G'" of G, if the quasi-flat zone hierarchy of G’
for w is the one of G for w, then we have G'' = G’.

Lemma 22. Let < be an altitude ordering for w and let
S = (Mi,...,M,) be a sequence of minima of w. Let H be
the hierarchy induced by < and S. Then (V,EZ) is a MST
of (G, 2(H)).

Proof Let a denote the sum of the weight of the edges in E~
in the map ®(H): a = ZEEE4 ®D(H)(e). Let p be the persis-
tence map for < and S. By Lemma[20, we can affirm that,
for any edge u in E<, we have P(H)(u) = p(u). Hence, we
have o = Zee}L p(e). We will first prove that o is precisely
0+1+---+n—1. We know that, for any edge u in E<:

1. if w is a watershed-cut edge for <, then each child of
R, contains at least one minimum of w. Therefore, the
extinction values of both children of R, is non-zero, and,
consequently, the persistence value p(u) of u is non-zero.

2. otherwise, if u is not a watershed-cut edge for <, then
there exists a child X of R, such that there is no mini-
mum of w included in X. Therefore, the extinction value
of X is zero. Since the extinction value of sibling(X) is
at least zero by Lemma ( statement 1), the persistence
value p(u) of u, being the minimum between the extinc-
tion values of X and sibling(X), is also zero.
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Hence, since there are n — 1 watershed-cut edges for
=<, and since only the watershed-cut edges for < have non-
zero persistence values, we can conclude that, for any i in
{1,...,n — 1}, there is exactly one edge u in E~ such that
p(u) = i. Hence, a:Z€€E<p(e) =0+1+--+n—1.

Now, in order to prove that (V,E<) is a MST of
(G, D(H)), we will prove that, for any MST G’ of (G, P(H)),
the sum of the weight of the edges in G’ 1is greater than
or equal to a. Let G’ be a MST of (G,P(H)). As G’ is a
MST of (G,P(H)), by the condition 1 of Lemma we have
that G and G’ have the same quasi-flat zones hierarchies:
QFZ(G,d(H)) = QFZ(G',P(H)). As B(H) 1is the saliency
map of H, we have that H = QFZ(G,P(H)). Therefore,
H = QFZ(G',&(H)). Let i be a value in {1,...,n — 1}.
Since 3 cp P(H)(e) = 0+ 1+ -+ n—1, we can say
that {1,...,n — 1} is a subset of the range of ®(H). There-
fore, H is composed of at least n distinct partitions. Let H
be the sequence (Po,...,Pp_1,...). Since the partitions P;
and P;_1 are distinct, then there exists a region in P; which
is not in P;_1. Therefore, there is a region X of P; which
is composed of several regions {R1,Ra,...} of Pi_1. Then,
there are two adjacent vertices x and y such that x and y
are in distinct regions in {R1, Ra,...}. Let  and y be two
adjacent vertices such that © and y are in distinct regions
in {R1, Ra,...}. Hence, the lowest j such that z and y be-
long to the same region of P; is¢. Thus, there exists an edge
u = {x,y} in Ex such that ®(H)(u) = i. Hence, the sum
of the weight of the edges of G’ is at least 1 +--- +mn — 1,
which is equal to a. Therefore, the graph (V,E<) is a MST
of (G, ®(H)). O

Proof (of Property@ We first prove the forward implication
of this property. Let ‘H be a hierarchical watershed of (G, w).
Then there is a sequence S of minima of w such that H is the
hierarchical watershed of (G, w) for S. Let S be the sequence
of minima of w such that # is the hierarchical watershed of
(G,w) for S. By Lemma there is an altitude ordering <
such that H is the hierarchy induced by < and S. Let < be an
altitude ordering such that H is the hierarchy induced by <
and S. Then, by Lemma[22} (V, E<) is a MST of (G, ®(H)).
We will now prove the second statement of Property [7] By
Lemma, for any edge w in E~, ¢(H)(u) is equal to the
persistence value p(u) of u for < and S. By the definition of
persistence values, for edge v in E <, the persistence value of u
for < and S is the minimum extinction value of the children
of R, . Therefore, we can conclude that, for edge u in F,
®(H)(u) = min{e(R) such that R is a child of R,}, where
€ is the extinction map for < and S. Hence, there exists an
extinction map e such that, for edge u in E~, &(H)(u) =
min{e(R) such that R is a child of R, }.

We will now prove the backward implication of Prop-
erty [7] Let H be a hierarchy on V such that there exists
an altitude ordering < for w and an extinction map € for <
such that:

1. (V,Ex) is a MST of (G, ®(H)); and
2. for any edge u in E-, we have: #(H)(u) = min{e(R) such
that R is a child of R, }.

Let G’ denote the graph (V, E<). By Lemma (state-
ment 1), as G’ is a MST of (G,®(H)), we have that G’
and G have the same quasi-flat zones hierarchies (for @(H)):
QFZ(G',®(H)) = QFZ(G,H(H)). Let p be the persis-
tence map for < and S. By the definition of persistence
values, we can affirm that, for any edge u in E~, we have
®(H)(u) = p(u). Hence, we can say that QF Z(G’,&(H)) =
QFZ(G',p)). Let H’ be the hierarchy induced by < and S.

By Lemma[22} G’ is a MST of (G, ®(#’)). Hence, by Lemma
G’ and G have the same quasi-flat zones hierarchies (for
P(H')): QFZ(G',P(H')) = QFZ(G,P(H’)). By Lemma |20}
for edge u in E~, we have ®(H’)(u) = p(u), which is equal
to &(H)(u) as stated previously. Thus, QF Z(G’,d(H')) =
QFZ(G’,®(H)) and, consequently, H and H' are equal. By
Lemma H’ is a hierarchical watershed of (G, w). There-
fore, H is a hierarchical watershed of (G, w). O

B Proof of Theorem [5

(Theorem . Let H be a hierarchy on V and let < be a
lexicographic ordering for (w, f). The hierarchy H is a hier-
archical watershed of (G,w) if and only if (H) is one-side
increasing for <.

Let H be a hierarchy on V. By Lemma [d] H is a hier-
archical watershed of (G,w) if and only if there is an alti-
tude ordering for w such that the saliency map @(H) of H is
one-side increasing for <. In order to prove Theorem [5] we
will prove in the following lemma that, if the saliency map
P(H) is one-side increasing for an altitude ordering for w,
then @(#H) is one-side increasing for any lexicographic order-
ing for (w, ®(H)).

Given a map f from F into R, we say that f is a saliency
map if there is an hierarchy H on V such that f is the saliency
map of H.

Lemma 23. Let f be a saliency map and let <y be a lexico-
graphic ordering for (w, f). If there exists an altitude order-
ing < for w such that f is one-side increasing for <, then f
is one-side increasing for <.

Let < be an ordering on E and let (u1,...,u ) be the
sequence of edges in E such that, for any ¢ in {1, ..., |E|—1},
we have u; < u;41. This sequence (u1,..., u|E‘) is called the
sequence (of edges) induced by <. In order to prove Lemma
@ we first introduce the notion of critical rank and the notion
of switch in the context of lexicographic orderings, and other
auxiliary lemmas.

Definition 24 (critical rank). Let f be a saliency map and
let < be an altitude ordering for w. Let (u1,...,u g|) be the
sequence induced by <. Let k be a value such that uy < up41
and such that w(ug) = w(uk+1) and f(ur) > f(urs+1). We
say that k is a critical rank for f and <.

Definition 25 (switch). Let f be a saliency map and let < be
an altitude ordering for w. Let (u1,...,u|g|) be the sequence
induced by <. Let k be a critical rank for f and <, and let
<k be the ordering such that (uy,...,Uk41, Uk, .., UE|) I8
the sequence induced by <. We say that <y is a switch of
=< for f (and k).

Lemma 26. Let f be a saliency map, let < be an altitude
ordering for w and let <’ be a switch of < for f. Then <’ is
an altitude ordering for w.

Proof Let <’ be the switch of < for a critical rank k for
f and <. Let (u1,...,u ) be the sequence induced by <.
Then (u1,...,Uk41,Uk, ..., u|z|) 15 the sequence induced by
<'. We may affirm that, for any edge v different from up41,
if v < up (resp. up < v) then v <" up (resp. ur <" V).
Similarly, for any edge v different from uy, if v < upy1 (resp.
Up4+1 = V) then v < Up41 (Up4+1 <" v). Finally, for any two
edges u and v such that {u,v} N {ug,ukpr1} =0, if u < v
(resp. v < u), then uw <" v (resp. v <" w). Hence, for any
two edges u and v such that w(u) < w(v), by the definition
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of critical rank, we may say that {u,v} # {ug,ury1} and,
consequently, as u < v, then u <’ v. Hence, <’ is an altitude
ordering for w. O

Lemma 27. Let < be an altitude ordering for w and let
f be a saliency map. Let <’ be a lexicographic ordering for
(w, f). There exists a sequence (<o, <1,...,=<¢) of altitude
orderings for w such that <o is equal to <, <, is equal to <’
and, for any i in {1,...,£}, <; is a switch of <;_1.

Proof Let (u1,..
let (uf,...
smallest value such that up # u),. In this case, there is an
i > k such that uj, = u;. As <’ is a lexicographic ordering
for (w, f), for any edge u; such that k < j < i, we have
fluj) > f(uj—1). Hence, there is a sequence S of switches of
< for critical ranks ranging from i — 1 to k such that, in the
last ordering <* of the sequence S, the edge with rank k for
the ordering <* is precisely the edge uj. Let (uf,... 7“\*E|)
be the sequence induced by <*. We conclude that, for any
q < k, we have uj = u;. Hence, the smallest value m such
that ul, # ul, is strictly greater than k. By performing this
procedure iteratively (like the bubble sort algorithm), the re-
sulting ordering converge to <'. O

.,U|E‘) be the sequence induced by < and
’UTEI) be the sequence induced by <’. Let k be the

Lemma 28. Let < be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for <.
Let v1 and va be two edges of E. If f(v1) is equal to f(v2),
then neither v1 nor vs is a watershed-cut edge for <.

Proof Since f is one-side increasing for <, by Definition [3,
we have {f(u) |u € E<x} ={0,...,n — 1} and we have that,
for any edge w in E~, f(u) is greater than 0 if and only if u
is a watershed-cut edge for <. Since w has n minima, there
are n—1 watershed-cut edges for <. Hence, the watershed-cut
edges for < have pairwise distinct edge weights ranging from
1 to n — 1. Therefore, neither vi nor vs is a watershed-cut
edge for <.

Let < be an altitude ordering for w and let f be a saliency
map such that f is one-side increasing for <. By Lemma [26]
every switch of < is an altitude ordering for w. By Lemma
any lexicographic ordering for (w, f) can be obtained by a
sequence of switches starting from <. Hence, to prove Lemma
we can simply prove that f is one-side increasing for any
switch of <. Let (u1,...,ug|) be the sequence induced by
<. Then (u1,...,Uk+1, Uk, --,u|g|) is the sequence induced
by <’. In order to prove that f is one-side increasing for the
switch <’ for k, we should consider the following cases:

1. Neither ui nor ug41 is a building edge for <;

2. Both uj and ug41 are building edges for < and R,, N
Ru;\*l - 05

3. Both uj and up41 are building edges for < and R,, C
Ruk+1 5

4. Only ug41 is a building edge for <; and

5. Only ug is a building edge for <.

The following lemmas [30] [31] [32] [33] and [34] prove that,

for each of those five cases, the saliency map f is one-side
increasing for the switch <’ for k. Before considering those
five cases, we first present the following auxiliary lemma.

Lemma 29. Let < be an altitude ordering for w and let f be
a saliency map such that f is one-side increasing for <. Let
<’ be an altitude ordering for w such that the set of building
edges for <’ is equal to the set of building edges for < and
such that the set of regions of B~ is equal to the set of regions
of B4/. Then f is one-side increasing for <'.

Proof In the definition of one-side increasing maps (Defini-
tion @), the three conditions for f to be one-side increasing
for < take into consideration only the weight of the build-
ing edges for < and the parenthood relationship between the
regions of <. Hence, as the set of building edges for <’ is
the same set of building edges for < and as they have the
same set of regions, we can conclude that the three condi-
tions of Deﬁm’tion@for f to the one-side increasing for <’
are satisfied. O

Lemma 30. Let < be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for <.
Let (u1,...,u ) be the sequence induced by <. Let k be a
critical rank for f and < such that neither uy nor ugy1 s
a building edge for <. Then f is one-side increasing for the
switch <" for k.

Proof Let (Bo,Bu1,...,B|g|) be the sequence of partitions
(of V') such that, for any i in {1,...,|E|}, the partition B;
is the i-partition by the ordering < (as defined in Section
. Let (B(’),B’l,...,BiE‘) be the sequence of partitions
such that, for any i in {1,...,|E|}, the partition B is the
i-partition by the ordering <’'. We will prove that neither uy,
nor ug+1 18 a building edge for <’.

We first prove that uk+1 s not a building edge for <’. By
the definition of binary partition hierarchy and, as neither uy,
nor ug4+1 s a building edge for <, we may say that:

I the partition By, is equal to the partition Bx_1, and
II the partition Bry1 is equal to the partition By,
IIT which implies that By_1 = By, = Br41.

Let up, = {s,r} and ur41 = {z,y}. By the definition
of switch, the sequence (u1,...,Uk4+1,Uk,-- -, u|E) is the se-
quence induced by <’. We may infer that, for any i < k, the
i-partition by the ordering <’ is equal to the i-partition by the
ordering <. Hence, as ugt1 is the edge of rank k for <’ and
since Bj,_; = Br_1, the k-partition for the ordering <’ is
the partition B}, = {B}_ UBZ_;}JU(Br_1\{Bf_;,BY_;}).
By the statement I, Br_1 = By, which implies that B} =
{B7UB%}U By \ {Bg,B}}). Therefore, we have that:

IV Bj, is equal to the partition By 1
As Br41 = By = By _1 by statement III, we have that
VB, =Bri1=Br_1=B)_,

By statement V, as B} = B _,, we conclude that up41
is mot a building edge for <'.

We now prove that uy is not a building edge for <’'. As
ug 1s the edge of rank k + 1 for <’, the k + 1-partition for
the ordering <’ is the partition By ,, = {B;° UB| "} U
(B}, \ {B%,°,B}"}). By statement V, we have Bj = B/ _;.
Since B),_; = By_1, then, by statement III, we have that
B;C = By _1. Therefore, we conclude that:

VI B;€+1 = {Bifl U B£71} U (Bk—l \ {3271»3271})
By the definition of B;H_l in the statement VI, we have:
VIl By ., = Bg

By statement IV, B} = Bypi1 and, by statement III,
By = Bi41. Hence, By = Bj,. Thus, by the statement VII,
we conclude that B} , | = Bj,. Therefore, uy, is not a building
edge for <’.

Since the sequences induced by the orderings < and <’
are equal for any i > k + 1, and since B, = B} = By =
Bry1, we may affirm that, B; = B) for any ¢ > k + 1.
Therefore, the set of building edges for < is equal to the set
of building edges for <, and the set of partitions and regions
of B~ is equal to the set of partitions and regions of B</. By
Lemma f 1is one-side increasing for <’. O
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Lemma 31. Let < be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for <.
Let (u1,...,u ) be the sequence induced by <. Let k be a
critical rank for f and < such that both ur and up41 are
building edges for < and such that Ry, N Ry, ,, = 0. Then f
is one-side increasing for the switch <’ for k.

Proof In this proof, we first show that up+1 and up are build-
ing edges for <’'. Then, we conclude that the partitions of
the binary partition hierarchies for < and for <’ are equal,
which, by Lemma[29, prove that f is one-side increasing for
<.

Let (Bo,B1,...,B|g|) be the sequence of partitions (of
V') such that, for any i in {1,...,|E|}, the partition B; is
the i-partition by the ordering <. Let (B(, B, .. .,BiE‘) be
the sequence of partitions such that, for any i in {1,...,|E|},
the partition B is the i-partition by the ordering <’. By the
definition of switch, the sequence (u1, ..., Uk41, Uk, - -, U|E|)
is the sequence induced by <’'. As the sequences induced by
< and by <’ are equal for any edge with rank i < k, we may
affirm that:

I B; =B foranyi<k

Let up, = {s,r} and upy1 = {z,y}. As up and up1 are
building edges for <, we have that:

17 Bk ;é Bk:fl; and
117 I3k4,1 ;ﬁ Iik

As up41 is the edge of rank k for <’, we have that the
k-partition for the ordering <" is B}, = {B},_;*UB} _;Y}U
(By,_1 \ {B},_,%, B} _,Y}). By the statement I, B},_, and
Bi_1 are equal. Then B, = {B%¥_, UBY_,} U (Bgr_1\
{By_,,BY_,}).

By definition, we have:

IV B ={Bj_, UBy_,}U(Br-1\{B;_,,B;_,}), and
V Bry1 = {Bf UBJ} U (B \ {Bf, B}})

By our hypothesis, we have Ry, NRu, ., = 0, which means
that the regions Ry, and R, ., of B< (whose building edges
are respectively up and up4+1) have no intersection. As uy
is a building edge for <, we have R,, = {B;_, UB}_,}.
Similarly, as up4+1 s a building edge for <, we have R
{Bf UBY}. Since Ry, N Ruy,,, =0, we have that:

Uk41

VI neither x nor y is in the region Bf _, (nor in the region
B)_,), and
VII neither s nor r is in the region BY (nor in the region

B})

By VI and VII, we can conclude that Bf _,, B}, _,, B},

and BY are all distinct regions of the partition By_1. Hence,
we have:

VIII B =B?_,, and
IX BY =BY_,

By definition, as uk+1 is the edge of rank k for <', we
have:

X B, ={B,_,"UB,_,Y}UB,_; \{B,_,",B,_1"}
By I and X, we conclude that:
XI B, ={Bf_,UBY_}UBr_1\{B7_,,BY_,})
By VIII, IX and XI, we conclude:
XII B, = {Bf UBY} U (B \ {Bf,B{})

As BY and BZ are distinct regions, we may say that B},
is different from B}, _,. Hence, ugpt1 is a building edge for
=<’

We now prove that uy is also a building edge for <’. As
uy, 1s the edge of rank k+ 1 for <’, we have that the (k+1)-
partition for the ordering <’ is B}, = {B;*UB}"}U(B}\
{B,®,B}."}). By statement VII, we have that neither s norr
are in the regions BY and BY. Hence, by the statement XII,
s and r belong to distinct regions of Bj,. Therefore, B} ® #
B ". Consequently, Bj , , is different from Bj . Hence, uy
is a building edge for <'.

Moreover, we conclude that B;chl = Bry1 because both
partitions result from the union of the four distinct regions of
By _1 containing s, r, © and y. Hence, for anyi > k+1, as
the sequences induced by < and <’ are equal, we can conclude
that any partition B; is equal to the partition B] for any i >
k+1. Therefore, the building edges for < and for < are equal,
and the set of regions of the binary partitions hierarchies for
=< and for < are equal. By Lemmal[29, f is one-side increasing
for <. O

Lemma 32. Let < be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for <.
Let (u1,...,u ) be the sequence induced by <. Let k be a
critical rank for f and < such that both up and w41 are
building edges for < and such that R, C R Then f is
one-side increasing for the switch <’ for k.

U1

Proof In this proof, we first show that both ur and ug4+1
are building edges for <’'. Then, we conclude that the set of
building edges for < and for <’ are equal. Finally, we prove
that the three conditions of Definition[3 for f to be one-side
increasing for <’ hold true.

By our hypothesis, the region R., of B< is a subset of
the region Ry, ., of B<. Let A be the region of B< such that
Ruy,,, = Ru, UA. Let B and C be the children of Ry, . This
situation is illustrated in the following figure.

B+

Let up, = {s,7} and up41 = {x,y}. As ugt1 is a building
edge for <, we conclude that x are y belong to two distinct
regions in {A, B} or in {A,C}. Without loss of generality,
let us assume that x belongs to A and that y belongs to B.
Let Byr_1 be the (k — 1)-partition for <. We can say that
the regions A, B and C belong to B _1. Moreover, we know
that By _1 1s equal to the (k — 1)-partition for <’ because,
for any i < k, the edge of rank i for < is also the edge of
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rank i for <'. Since ug41 is the edge of rank k for <', we
can conclude that the k-partition B} for <’ is the partition
{AUB} U (Br_1\ {A,B}). As the region {A U B} is not
in the partition B}, _,, we can conclude that B}, is different
from B, _,. Hence, up41 is the building edge of the region

R;Hl = {AU B} of B</. Consequently, uky1 is a building
edge for <.

We now prove that ug is also a building edge for <’.
Without loss of generality, let us assume that s belongs to B
and that r belongs to C'. By our hypothesis, uy is the edge of
rank k+1 for <’. In the partition B/ , we know that s and r
belong to distinct regions because s is in {AU B} and r is in
C. Hence, the region {AUBUCY} is a region of By, ; and we
have B}, # Bj,. Therefore, uy is a building edge for <.
This situation is illustrated in the following figure.

We can infer that the (k + 1)-partition for <’ is equal
to the (k 4 1)-partition for <. For i > k + 1, the edge of
rank i for < is also the edge of rank i for <’. Hence, we can
conclude that the set of building edges for < is equal to the
set of building edges for <'.

Now, we will prove that f is one-side increasing for <'.
To that end, we will demonstrated that the three conditions
of the definition of one-side increasing maps (Deﬁm'tion@
hold true for f.

1. We first prove that the condition 1 of Definition [3 holds
true for f. Since the set E< of building edges for < 1is
equal to the set E~: of building edges for <’, we can
conclude that {f(u) | w € Ex/} is equal to {f(u) | u €
E<} ={0,...,n—1}. Thus, the first condition for f to
be one-side increasing for <’ holds true.

2. We now prove that the condition 2 of Definition[3 holds

true for f.
In order to prove this condition, we consider four cases:
(2.1) both up and ug41 are watershed-cut edges for <;
(2.2) neither uy, nor uky1 is a watershed-cut edge for <;
(2.8) only uy, is a watershed-cut for <; and (2.4) only
U411 @S a watershed-cut for <.

(2.1) If both ur and ur41 are watershed-cut edges for <,
then there is at least one minimum of w included in
each of the regions A, B and C. Since A and B are

the children of R;“H_l, we may say that up41 s a

watershed-cut edge for <'. Since {AU B} and C are

the children of R, and since there is at least one

minimum included in each of the children of R, ,

we may say that ux is a watershed-cut edge for <.
Hence, both up, and upy1 are watershed-cut edges for
<.

(2.2) If neither up, nor up41 is a watershed-cut edge for <,
then there are at least two regions among A, B and
C that do mot include any minimum of w. Hence,
there is at least one child of each of the regions R},
and R;Hl that do mot include any minimum of w.
Therefore, neither ui nor ug41 s a watershed-cut
edge for <'.

(2.8) If uy, is a watershed-cut edge for < and if upy1 18
not watershed-cut edge for <, then there is at least
one minimum included in each of the regions B and
C and there is no minimum included in A. Hence,
as A is a child of the region R;Hl of B<» and as
there is no minimum of w included in A, ug41 s
not a watershed-cut edge for <’'. Since there is at
least one minimum included in each of the regions B
and C, and since B and C are included in distinct
children of the region Ry, , we can conclude that uy
is a watershed-cut edge for <’.

(2.4) If uky1 is a watershed-cut edge for < and if u is not
watershed-cut edge for <. As k is a critical rank for
f and <, we have that f(ur) > f(ury1). However,
by the definition of one-side increasing maps (Defini-
tion @), we have f(ugy1) > 0 and f(ur) = 0, which
contradicts our hypothesis. Therefore, the case where
Ukp+1 15 a watershed-cut edge for < and if up is not
watershed-cut edge for < does not happen.

Therefore, we can conclude that the set of watershed-cut
edges for < is equal to the set of watershed-cut edges
for <'. Then, the second condition for f to be one-side
increasing for <’ holds true.

3. We finally prove that the condition 8 of Definition[3 holds

true for f. As k is a critical rank for f and <, we have
that f(ur) > f(uk+1). We will consider two cases: (3.1)
flur) = fluks1); and (3.2) fur) > f(ukt1)-

(3.1) If f(ur) = f(ur+1), by Lemma neither wp nor
Uk+1 18 a watershed-cut edge for <. Since neither uy,
nor ur4+1 s a watershed-cut edge for <, as proven in
the case (2.2), neither ui nor uk41 is a watershed-
cut edge for <’. Hence, there is at least one child of
the region R, (resp. Ry, ) that does not include
any minimum of w. Let Z be the child of Ry, (resp.
R;Hl) that does not include any minimum of w. We
can infer that there is no watershed-cut edge v for <’
such that R, C Z. Then, for any edge v such that
R, C Z, we have f(v) = 0. Since f(ur) = 0 (resp.
fuk+1) =0), we can affirm that there is a child Z of
Ry, (resp. R, ) such that f(uk) > V{f(v) | Rv C
Z} (resp. f(upt1) > V{f(v) | Rv C Z}).

(3.2) Let us assume that f(ur) > f(uky1). Since f is
one-side increasing for <, by Deﬁm’tion@ (statement
8), we conclude that, for any edge v such that v is
the building edge of a region included in A, we have
flug4+1) > f(v). In the hierarchy B</, the region
R;kﬂ is the parent of A, so the statement 3 of Defi-
nition |3 holds true for R;, .

We will now prove that the statement 8 of Definition
holds true for R;, . By Definition |3, we know that
there is a child Z of Ry, such that for any edge v
such that v is the building edge of a region included
in Z, we have f(ug) > f(v). Let us first assume that
Z = C. Since C 1s also a child of the region R,
of B/, the statement 3 of Definition [3 holds true
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for R;k‘ Now, let us assume that Z = B. We will
prove that, for the building edge v of any region in-
cluded in {AUBU R, }, we have f(ur) > f(v).
By our assumption f(ur) > f(ur+1), which implies
that f(uy) is greater then the weight of the building
edge of R;Hl. By our assumption that Z = B, for
any edge v such that v is the building edge of a re-
gion included in B, we have f(ug) > f(v). Moreover,
for any edge v such that v is the building edge of
a region included in A, we have f(ug) > f(v) be-
cause f(ur) > f(ugr4+1) and because A is the child
of R, such that f(ur41) > V{f(v) | Ro C A}.
Therefore, for the building edge v of any region in-
cluded in {AU BUR;,  }, we have f(ur) > f(v).
Consequently, the statement 8 of Definition [3 holds
true for Ry, . O

Lemma 33. Let < be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for <.
Let (u1,...,u ) be the sequence induced by <. Let k be a
critical rank for f and < such that ury1 is a building edge
for < and such that uy is not a building edge for <. Then f
is one-side increasing for the switch <’ for k.

Proof Let (Bo,Bu1,...,B|g|) be the sequence of partitions
(of V') such that, for any i in {1,...,|E|}, the partition B;
is the i-partition by the ordering < (as defined in Section
3.1). Let (By,BY,..., BTEI) be the sequence of partitions
such that, for any i in {1,...,|E|}, the partition B/ is the
i-partition by the ordering <’. As the sequences induced by
< and by <’ are equal for any edge with rank i < k, we may
affirm that:

1. B; =B forany i<k

By the definition of binary partition hierarchy and since
ur 1s not a building edge for <, we may say that:

1I. the partition By, is equal to the partition By _1.

Let up, = {s,r} and up41 = {z,y}. Since By = Br_1
and since By = {B{_, UB}_,}U(Br_1\{B;_1,BL_1}),
we conclude that the regions By _, and B},_, of the partition
Bi_1 are equal: B _; = B},_,. By the statement I, we may
say that the regions B} _,® and B} _," of the partition B} _,
are equal as well. Hence:

III. the partition Bj, is equal to the partition and Bj _,

Therefore, uy is not a building edge for <’.
Since upy1 is a building edge for <, we have that:

1V. the partition By 1 is different from the partition By.

By the statement IV, we conclude that the regions B,
and BY of the partition By, are distinct. By the statement
III, we have that B), = B _,. Then, by statement I, we
have B}, = By _1. Hence, by statement II, we have B}, = By.
Therefore, the regions BY and B}, also belong to the partition
B),. Consequently, since x and y are in distinct regions in the
partition B),, we conclude that ugi1 is a building edge for
<’. Therefore, the set E~ of building edges for < is equal to
the set E~: of building edges for <.

Moreover, we conclude that B;c+1 = Bry1 because both
partitions result from the union of the two distinct regions of
Bi_1 containing x and y. Hence, for any i > k+ 1, as the
edge of rank i for < is also the edge of rank i for <’, we can
conclude that any partition B; is equal to the partition B.
Hence, B4 and B~ have the same set of regions.

Since E = E/ and since Bx and B« have the same set
of regions, by Lemma f is one-side increasing for <. [

Lemma 34. Let < be an altitude ordering for w and let f
be a saliency map such that f is one-side increasing for <.
Let (u1,...,u ) be the sequence induced by <. Let k be a
critical rank for f and < such that uy is a building edge for
< and such that ug4+1 is not a building edge for <. Then f
is one-side increasing for the switch <’ for k.

Proof Let (Bo,Bu1,...,B|g|) be the sequence of partitions

(of V') such that, for any i in {1,...,|E|}, the partition B;
is the i-partition by the ordering <. Let (B, By, ..., B{g) be
the sequence of partitions such that, for any i in {1,...,|E|},

the partition B/, is the i-partition by the ordering <’. As the
sequences induced by < and by <’ are equal for any edge with
rank i < k, we may affirm that:

I. B; =B foranyt <k

Since ug is a building edge for <, we have that:

1I. By is different from By _1

Let ur, = {s,r} and upy1 = {z,y}. Since By, # Br_1,
we conclude that s and r are in distinct regions of B _1. As
Up41 48 not a building edge for <, we consider two cases: (1)
z and y belong to a unique region of Bx_1; and (2) x and y
belong to two distinct regions of Bi_1.

(1) Let us consider that x and y belong to a unique region
of By_1. By the statement I, we have B%,l = Br_1.
Hence, © and y belong to a unique region of B}, _, and,
therefore, uky1 is not a building edge for <'. We will
now prove that uy s a building edge for <’. Since uy s
a building edge for <, we have that s and r belong to two
distinct regions of the partition By _1. Since ugp41 ts not
a building edge for <’, we have B}, = B} _,. Then, by the
statement I, we have B;C =B _, = Br_1. Therefore, s
and r belong to two distinct regions of the partition B, .
Hence, ug is a building edge for <’.

Therefore, the set E< of building edges for < 1is equal to
the set E~: of building edges for <.

Moreover, we conclude that B;C 1 = Biy1 because both
partitions result from the union of the two distinct regions
of Br—_1 containing s and r. Hence, for any i > k + 1,
as the edge of rank i for < is also the edge of rank i
for <, we can conclude that any partition B; is equal to
the partition B),. Thus, B< and B< have the same set of
T€gLons.

Since B4 = E~ and since B5 and B~ have the same
set of regions, by Lemmal[29, f is one-side increasing for
<.

(2) We now consider that © and y belong to two distinct re-
gions of Bx_1. Let A and B be the regions of B _1 such
that s € A and r € B. Since x and y belong to two dis-
tinct regions of Brx—1 and since By, = {AUB}U(Bj_1\
{A, B}), we conclude that either x ory is in A, and that
etther s or r is in B. Without loss of generality, let us as-
sume that x € A and y € B. This situation is illustrated
in the following figure.
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Since up41 is the edge of rank k for the ordering <,
we can say that the k-partition B by the ordering <’
is {AUB} U (B},_; \ {A, B}) because A and B are the
regions of B}, _, that contain respectively x and y. As the
region {A U B} do not belong to the partition B}, _,, we
have that ui11 is the building edge of the region {AUB}.
Hence, ugy1 s a building edge for <'.

Since uy, 1s the edge of rank k + 1 for the ordering <’,
we may conclude that B}, ; = B} because the s and r
belong to the same region {A U B} of B},. Therefore, uy
is not a building edge for <’'. This situation is illustrated
in the following image.

We conclude that B< and B~ have the same set of re-
gions but not the same set of building edges: E =
E\{ur} U {ur+1}. Hence, the only difference between
the hierarchies B« and B~/ is the building edge of the re-
gion {AUB}. Therefore, we may say that, if the weight of
the building edge of {AU B} for < is equal to the weight
of the building edge of {A U B} for <’, then f is also
one-side increasing for <’'. To that end, we will prove
that f(uk) = f(uk+1).

By Lemmal24, as f is one-side increasing for <, we have
that:

III. (V,EZ) is a MST of (G, f)

By the statement 111 and by Lemma|21], we conclude that:

IV. the hierarchy QFZ(G, f) is equal to the hierarchy
QFZ((V,E<), f)

Statement IV implies that f is the saliency map of the hi-

erarchy QF Z((V, E<), f). Hence, for any edge u = {a, b}

in E, f(u) is the mazimum weight in the unigque path be-

tween a and b in (V,Ex), f). We can affirm that:

V. the unique path between z and y in (V,E<), f) is a
path that includes the edge uy

By the statement V and by the definition of saliency
maps, we have f(ur4+1) > f(ug). Since k is a critical
rank for f and <, we have f(ury1) < f(ur). Therefore,
we have f(ur) = f(uk+1), which completes the proof that
f is one-side increasing for <’.

C Proof of Property [6]

(Property@. Let < be an altitude ordering for w and let €
be a map from the regions of B~ into R. The map € is an
extinction map for < if and only if the following statements
hold true:

— {e(R) | R is a region of B4} ={0,...,n};

— for any two distinct minima My and M2 of w, we have
E(Ml) # E(MQ),' and

— for any region R of B<, we have that ¢(R) is equal to
V{e(M) such that M is a minimum of w included in R},
where V{} = 0.

We prove the forward and backward implications of Prop-
erty [6]in Lemma [35] and Lemma [36] respectively.

Lemma 35. Let < be an altitude ordering for w and let €
be a map from the regions of B into R. If the map € is
an extinction map for <, then the following statements hold
true:

1. {e(R) | R is a region of B<} ={0,...,n};

2. for any two distinct minima M1 and Mz of w, we have
e(M1) # e(Mz2); and

3. for any region R of B, we have that €(R) is equal to
V{e(M) such that M is a minimum of w included in R},
where V{} = 0.

Proof Let € be an extinction map for <. Then, by the
definition of extinction maps, there is a sequence S =
(My,...,M,) of minima of w such that € is the extinction
map for < and S. We will prove that the statements 1, 2 and
8 hold true for e.

To prove that the statement 1 holds true, we will first
prove that {¢(R) | R is a region of B4} C {0,...,n}. Since
w has n minima, the extinction value of any region of B«
which includes a minimum of w is in the set {1,...,n}. On
the other hand, for any region R of B< which do not include
any minimum of w, we have that ¢(R) = 0. Hence, {¢(R) | R
is a region of B4} C {0,...,n}. We will now prove that
{0,...,n} C {e(R) | R is a region of B<}. As B< has at
least one leaf-region composed of a single vertex of G, we can
affirm that there is at least one region of B which do not
include any minimum of w and whose extinction value for <
and S is zero. Then, 0 is in {e(R) | R is a region of B<}.
Now, let i be a value in {1,...,n}. For the minimum M;, we
may affirm that M; is the unique minimum of w included in
M; and, therefore, e(M;) = i. Hence, i is in {¢(R) | R is a
region of B }. We may conclude that, for any i in {0,...,n},
i 45 in {e(R) | R is a region of BL}. Therefore, the range of €
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is {0,...,n}, which corresponds to the statement 1 of Lemma In order to prove Lemma we prove in Lemmas
(3] and [43] that the three conditions of Property [6] for £ to be an

By the definition of extinction maps, for any minimum
M;, for i in {1,...,n}, we have ¢(M;) = i because M; is
the only minimum of w included in M;. Therefore, for any
two distinct minima M; and Mj, for i,j in {1,...,n}, we
have €(M;) = i and e(M;) = j and, consequently, e(M;) is
different from e(Mj). Hence, the statement 2 of Lemma
holds true for e.

The statement 8 of Lemma[35 is precisely the definition
of extinction values: for any region R of B, the extinction
value of R is zero if there is no minimum of w included in R
and, otherwise, it is the mazimal i (which is equal to e(M;))
such that M; is included in R.

Lemma 36. Let < be an altitude ordering for w and let €
be a map from the regions of B< into R such that:

1. {e(R) | R is a region of B4} ={0,...,n};

2. for any two distinct minima M1 and Mz of w, we have
€(My) # e(Mz); and

3. for any region R of B, we have that €(R) is equal to
V{e(M) such that M is a minimum of w included in R},
where V{} = 0.

Then the map € is an extinction map for <.

Proof To prove that € is an extinction map for <, we will
show that there exists a sequence S = (M, ..., M,) of min-
tma of w such that, for any region R of B<, the value €(R)
is the extinction value of R for < and S.

Let § = (Mq,...,M,) be a sequence of minima of w or-
dered in non-decreasing order for €, i.e., for any two distinct
minima M; and M;, withi,j in {1,...,n}, if e(M;) < e(M;)
then i < j.

By the hypothesis 2, this sequence S is unique. By the
hypothesis 3, for any region R of B such that there is no
mintmum of w included in R, e(R) = V{} =0, so ¢(R) is the
extinction value of R for < and S.

Since w has n minima, for any minimum M of w, the
value e(M) is in {1,...,n}. Otherwise, by contradiction,
let us assume that there exists a minimum M’ of w such
that e(M’) = 0. Then, there is a value i in {1,...,n} such
that, for any minimum M’ of w, the value e(M'") is differ-
ent from i. Consequently, by the hypothesis 3, the range of €
would be {0,...,n}\ {i}, which contradicts the hypothesis 1.
Therefore, for any minimum M; of w, for i in {1,...,n},
as our assumption that e(M;) < e(Mj) implies that i < j,
we have that e(M;) = i. Thus, €(M;) is the extinction value
of M; for < and S.

It follows that, by the hypothesis 3, for any region R of
B~ such that there is a minimum of w included in R, the
value €(R) is the mazimum value i (which is equal to e(M;))
in {1,...,n} such that M; is included in R.

Thus, for any region R of B<, the value e(R) is the ex-
tinction value of R for < and S. Therefore, the map € is an
extinction map for <. O

D Proof of Lemma [I1]

(Lemma . Let < be an altitude ordering for w, let f
be a map from E into R such that f is one-side increasing
for <, and let & be the approximated extinction map for f
and <. The map & is an extinction map for <.

extinction map are satisfied. We first establish the following
auxiliary lemma.

Lemma 37. Let < be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for <. Then, the two following statements hold true:

1. the set {f(e) | e is a watershed — cut edge for =<} is
equal to {1,...,n — 1}; and
2. for any two distinct watershed-cut edges u and v for B,

we have f(u) # f(v).

Proof By the Deﬁm’tion@ (statement 1), we have {f(u) | u €
E<} ={0,...,n—1} and, by Definition[3 (statement 2), only
the weight of the watershed-cut edges for < are strictly greater
than zero. Then, {f(e) | e is a watershed — cut edge for =<
}={1,...,n—1}. Hence, for any i in {1,...,n—1}, there is
a watershed-cut edge e for < such that f(e) = i. Moreover, as
there are n—1 watershed-cut edges for <, for any two distinct
watershed-cut edges u and v for <, we have f(u) # f(v). O

Lemma 38. Let < be an altitude ordering for w, let f be a
map from E into R such that f is one-side increasing for <,
and let £ be the approximated extinction map for f and <.
The range of £ is {0,...,n}.

Proof We will prove that: (1) for any ¢ in {0, ..., n}, there is
a region R of B such that £(R) = 4; and (2) for any region
R of B«, we have £(R) in {0,...,n}.

(1) We first prove statement (1). We start by proving that
there is a region R of B« such that £&(R) = n. Let R
be the set V of vertices of G. Then, by Definition [I0]
(statement 1), we have £(R) = vV (R) + 1, where ¥/ is the
supremum descendant map for f and <. By Definition [3]
(statement 1), we have {f(u) |u € E<} ={0,...,n—1}.
Asy(V)=V{f(w) | Re CV}=V{0,...,n—1} =n—1,
we have that {(R)=n—1+1=mn.

We will now show that there is a region R of B~ such that
&(R) = 0. Let R be a region of B« such that there is no
minimum of w included in R. Then R is not a minimum
of w and, consequently, the building edge of the parent
of R is not a watershed-cut edge for <. Let u be building
edge of the parent of R. Since there is no minimum of
w included in R, by Definition [} R is not a dominant
region for f and <. By the statement 3 of the definition
of approximated extinction maps (Definition , we have
&(R) = f(u). Since f is a one-side increasing map and
since u is not a watershed-cut edge for <, we have f(u) =
0. Therefore, we have £(R) = f(u) = 0.

Finally, we will prove that, for any ¢ in {1,...,n — 1},
there is a region R of B such that £(R) = i. By Lemma
we can say that, for any 7 in {1,...,n — 1}, there is a
watershed-cut u edge for < such that f(u) = 4. Let u be a
watershed-cut edge for < and let X and Y be the children
of R,,. Since u is a watershed-cut edge for <, both X and
Y contain at least a minimum of w and, then, neither
X nor Y are leaf regions of B<. Let < be the non-leaf
ordering for f and <. Since < is a total ordering, we have
either X <Y or Y < X. Then, exactly one child of R,,
is a dominant region for f and <. Let Y (resp. X) be
the child of R, which is not a dominant region for f and
<. By Definition [10] (statement 3), we have £(Y) = f(u)
(resp. £(X) = f(u)). Therefore, for any ¢ in {1,...,n—1},
there is a watershed-cut edge u for < such that f(u) =1
and such that there is a child Z of R,, such that £(Z) = i.
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(2) We will now prove the statement (2). Let R be a region of
B~.If R=V, then £(R) = n, as established in the proof
of statement (1). Otherwise, let v be the building edge of
the parent of R. By Deﬁnition the value £ (R) is either
f(w) or {(parent(R)). Hence, either &¢(R) is equal to f(v)
for a building edge v for <, or £¢(R) is equal to £(V) = n.
It is enough to prove that n and f(v) are in {0,...,n}. As
f is one-side increasing for <, by Deﬁnition (statement
1), we have {f(u) | v € E<x} = {0,...,n — 1}. Since
v is a building edge for <, we may say that f(v) is in
{0,...,n—1}. O

Lemma 39. Let < be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for <. Let £ be the approximated extinction map for f and
<. For any two minima M1 and Mz of w, if E(M1) = £(Ma2),
then M1 = M2.

To prove Lemma [39] we first present the Lemmas [40] [41]
and[A2] In the following, for any non-leaf region X of a binary
partition hierarchy B of (G, w), we denote by ux the building
edge of X.

Lemma 40. Let < be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for <. Let & be the approzimated extinction map for f and
<. For any region X of B~ such that there is a minimum M
of w such that M C X, there is a child Y of X such that:

1. &(Y) =&(X);
2. &(sibling(Y)) = f(ux); and
3. there is a minimum of w included in Y.

Proof Let X be a region such that there is a minimum M of
w such that M C X. Then, there is a child Z of X such that
there is a minimum M such that M C Z. Let Z be a child
X such that there is a minimum M such that M C Z. We
consider two cases: (1) sibling(Z) is a leaf-region of B<; and
(2) sibling(Z) is a non-leaf region of B.

(1) If sibling(Z) is a leaf-region of B<, then, by Definition

Z is a dominant region for f and < and sibling(Z) is

not a dominant region for f and <. Hence, by Definition
§(Z) = &£(X) and (sibling(Z)) = f(ux).

(2) Let us now assume that sibling(Z) is a non-leaf region of
B~. Since X is not a minimum of w and since there is a
minimum of w included in Z, we can conclude that there
is a mintmum of w included in sibling(Z) as well. Let
< be the non-leaf ordering for f and <. As the non-leaf
ordering < is a total ordering on the non-leaf regions of
B<, we have either Z < sibling(Z) or sibling(Z) < Z.
Then, by the definition of dominant regions (Definition
[9), we have that either Z or sibling(Z) is a dominant
region for f and <. Let us assume that Z is a domi-
nant region for f and <. Then, by Definition[10, we have
&(Z) = £(X) and &(sibling(Z)) = f(ux). Otherwise, if
sibling(Z) is a dominant region for f and <, we have
&(sibling(2)) = &(X) and £(Z) = f(ux). Since both Z
and sibling(Z) include at least one minimum of w, we
may say that there is a child Y of X for which the hy-
pothesis 1, 2 and 3 hold true. O

Lemma 41. Let < be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for <. Let & be the approrimated extinction map for f and
<. Let u be a watershed-cut edge for <. Then, there is a
mintmum M of w such that E(M) = f(u).

Proof As u is a watershed-cut edge for <, each child of R,
includes at least one minimum of w. Then, there is a min-
imum M of w such that M C R,. By Lemma @, there
is a child Yi of Ry, such that £(Y1) = f(u). If Y1 is a
minimum of w, then the property holds true. Otherwise, if
Y1 is not a minimum of w, it means that there is a min-
imum M of w such that M C Y1. By Lemma @, there is
a child Yo of Y1 such that £(Y2) = &(Y1) = f(u) and such
that there is a minimum of w included in Ya. Again, if Ya
is a minimum of w, then the property holds true. Otherwise,
we can apply this same reasoning indefinitely. We can de-
fine a sequence (Y1,...,Yp) of regions of B4 where Yy is a
minimum of w and such that §(Yp) = -+ = £(Y1) = f(u)
and Y; C Yi—1 for any i in {2,...,p}. Therefore, there is a
minimum Yy included in R, such that £(Yp) = f(u). O

Lemma 42. Let < be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for <. Let £ be the approximated extinction map for f and
<. Let X be a region of B~ such that X contains at least
one minimum of w. There exists a minimum M C X such
that £(M) = £(X).

Proof If X is a minimum of w, then it is trivial. Otherwise,
by Lemma, there is a child Y1 of X such that (Y1) = &(X)
and such that there is a minimum of w included in Y.
If Y1 is a minimum of w, then the property holds true.
Otherwise, by Lemma there is a child Yo of Y1 such
that £(Y2) = &€(Y1) = £(X) and such that there is a minimum
of w included in Ya. Again, if Yo is a minimum of w, then
the property holds true. Otherwise, we can apply this same
reasoning indefinitely. We can define a sequence (Y1,...,Yp)
of regions of B~ where Yy is a minimum of w and such
that £(Yp) = - = &(Y1) = &(X) and Y; C Yi—1 for any @
in {2,...,p}. Therefore, there is a minimum Yy, included
in X such that £(Yp) = £(Y). O

Proof (of Lemma @)

In order to prove that
(1) for any two minima M; and My of w, if {§(M1) = £(Ma2),

then M1 = Mg,

we will prove that
(2) for any two minima M; and Mz of w, we have {(M1) #

§(M2).

As w has n minima, it suffices to prove that, for any 4 in
{1,...,n}, there is a minimum M of w such that £&(M) = i.

By Lemmal[4]] for any watershed-cut edge u for B, there
is a minimum M such that £&(M) = f(u). By Lemma |37 for
any i in {1,...,n — 1}, there is a watershed-cut edge such
that f(u) = 4. Then, for any ¢ in {1,...,n — 1}, there is a
minimum M of w such that £&(M) = i.

Since, f is one-side increasing for <, we have V{f(v) |
R, € V} ={0,...,n—1}. Then, we can conclude that £(V) =
V{f(v) | R € V}+1=(n—1)+1=n. By Lemma[42] there
is a minimum M of w such that &(M) = &(V) = n.

Therefore, for any ¢ in {1,...,n}, there is a minimum
M of w such that £(M) = . Since w has n minima, it im-
plies that the values £(M;) and £(M2) are distinct for any
pair (M1, M2) of distinct minima of w. Hence, for any two
minima M; and M of w, if {§(M1) = &(Ma2), then M; =
M. O

Lemma 43. Let < be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for <. Let & be the approximated extinction map for f and
<. For any region R of B<, we have £§(R) = V{7 (M) such
that M is a minimum of w included in R}.
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To prove Lemma [43] we introduce Lemma [44]

Lemma 44. Let < be an altitude ordering for w and let f
be a map from E into R such that f is one-side increasing
for <. Let & be the approrimated extinction map for f and
<. Let <7 be the supremum descendant map for f and <. Let
X be a region of B<. Then £(X) is greater than or equal to
the supremum descendant value \7(X) of X.

Proof We consider the following cases: (1) X =V, (2) X #

V and X is not a dominant region for f and <; and (3)

X is a dominant region for f and <. Let < be the non-leaf

ordering for f and <.

1. If X =V, then £&(X) = &(V) = w(V) + 1 (first case of
Definition [10). Then, £(X) is clearly than 7(X).

2. If X #V and if X is not a dominant region for f and <,
then £(X) = f(u) (third case of Definition @), where u
is the building edge of the parent of X. By the definition
of dominant regions, we consider two cases: (a) there is
no minimum M of w such that M C X; or (b)) X <
sibling(X).

(a) If there is no minimum M of w such that M C X,
then there is no descendant of X whose building edge
is a watershed-cut edge for <. Hence, for any edge
v such that R, C X, u ts not a watershed-cut edge
for < and, since f is one-side increasing for <, we
have f(v) =0 Deﬁnition@ (statement 2). Therefore,
V(X) = 0. By Definition [§ (statement 1), we have
{f(v) |ve Ex} =10,...,n—1}. Hence, £(X), being
equal to f(u), is greater than or equal to 7(X) = 0.

(b) If X < sibling(X), then, by the definition of non-leaf
ordering, we have:

i. either 7 (X) < y(sibling(X)); or

it. V(X) = v(sibling(X)) and ux < Usipring(X)-
Thus, we have 7(X) < w(sibling(X)). Since f is
one-side increasing for <, by the statement 3 of Def-
inition@ there is a child Y of parent(X) such that
flw) > V{f(v) | Ry C Y}. Hence, there is a child
Y of parent(X) such that f(u) > 7(Y). Then, we
have f(u) > 7(X) or f(u) > w(sibling(X)). In the
case where f(u) > <7 (sibling(X)), this also implies
that f(u) > v(X) because 7(X) < w(sibling(X)).
Therefore, £(X), being equal to f(u), is greater than
or equal to 7(X).

3. If X is a dominant region for f and <, then £(X) =
&(parent(X)) (second case of Definition [10). We will
prove by induction that this lemma holds true for any
dominant region for f and <. In the base step, we con-
sider that parent(X) is V. In the inductive step, we show
that, if the property holds true for parent(X), then it also
holds true for X. Please note that, if parent(X) is not
a dominant region for f and <, the property holds for
parent(X) as proven in the previous case.

(a) Base step: if parent(X) is V, then £(X) = &(V) =
v(V) + 1 (first case of Definition . We can see
that \7(V') > 7(X) because, for any edge u such that
R, C X, we also have R, C V. Then, £(X), being
equal to 7 (V') + 1, is greater than 7(X).

(b) Inductive step: let us assume that &(parent(X)) >
Vv (parent(X)). Since £(X) = &(parent(X)), we have
&(X) > v(parent(X)). We can affirm that, for any
edge v in E< such that R, C X, we also have R, C
parent(X). Hence, v/ (parent(X)) > 7(X). There-
fore, £(X), being equal to &(parent(X)), is greater
than or equal to \7(X). O

Proof (of Lemma We will prove that, for any region X
of B, we have £(X) = V{{7(M) such that M is a minimum

of w included in X}. Let X be a region of B<. We consider

two cases: (1) there is a minimum of w included in X; and

(2) there is no minimum of w included in X.

(1) If there is no minimum of w included in X, then X is
not a dominant region for f and <. Then £(X) = f(u)
(third condition of Deﬁnition, where u is the building
edge of parent(X). The edge u is not a watershed-cut
edge for < because the child X of R, does not include
any minimum of w. Hence, since f is one-side increasing
for <, by the statement 2 of Deﬁnition we have f(u) =
0. Therefore, £(X), being equal to f(u), is also equal to
V{&(M) such that M is a minimum of w included in R} =
v{} =0.

(2) Le{zt} us assume that there is at least one minimum of w
included in X. If X is a minimum of w, then £(X) =
V{&f(M) such that M is a minimum of w included
in X} = V{&;(X)}.

In order to prove the case where X is not a minimum of w,
we will first demonstrate that £(X) > V{{(Y) | Y C X}.
To prove that £(X) > V{&(Y) | Y C X}, it is enough
to demonstrate that, for any region Z of B, we have
&(Z) > v{&(Y) | Y is a child of Z}. Let Z be a region
of B4. If Z is a leaf region of B, then £(Z) > V{£{(Y) |
Y is a child of Z} = V{} = 0 because, by Lemma [38]
&(Z) is in {0,...,n}. Let us now assume that Z is not
a leaf region of B and let Y be a child of Z. If YV is
a dominant region for f and <, then £(Y) = £(Z) and,
consequently, £(Z) > £(Y). Otherwise, if Y is not a dom-
inant region for f and <, then £(Y) = f(v), where v is
the building edge of Z. By Lemma &(Z2) > 7(Z) and,
consequently, £(Z) > f(u). Hence, £(Z) > £(Y).

We can now prove that £(X) = V{{;(M) such that M is a
minimum of w included in X} in the case where X isnot a
minimum of w. By Lemmal42] there is a minimum M of w
such that M C X and such that £(M) = £(X). Let M be
the minimum of w such that {(M) = £(X). Since £(X) >
V(YY) | Y C X}, we can say that £(X) = V{{f(M’)
such that M’ is a minimum of w included in X}. O

E Proof of Lemma [12]

emma . Let < be an altitude ordering for w and let
L 12)). L b ltitude ordering d
f be a map from E into R such that f is one-side increasing

for B<. Then, for any u in E<, we have:
fu) = min{&(R) such that R is a child of Ry }.

Proof Let u be an edge in E<. By the definition of dom-
inant regions, we have that at most one child of R, is a
dominant region for f and <. Therefore, there is a child of
R, which is not a dominant region for f and <. Let X be
the child of R, which is not a dominant region for f and
<. Then, £(X) = f(u) (by the third condition of Defini-
tion. If sibling(X) is not a dominant region for f and <,
then £(sibling(X)) = f(u) as well and, consequently, f(u) =
min{&(R) such that R is a child of Ry} = min{f(u), f(u)}.
Otherwise, let us assume that sibling(X) is a dominant region
for f and <. Then, {(sibling(X)) = £(R.). By Lemma [44]
we can infer that £(R,) > f(u). Therefore, min{&(Y) such
that Y is a child of Ry} = min{&s(X),§&(sibling(X))} =
min{ f(u), §(Ru)} = f(u). 0

F Proof of Lemma [4]

(Lemma E[) Let ‘H be a hierarchy on V. The hierarchy H
is a hierarchical watershed of (G,w) if and only if there is
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an altitude ordering < for w such that &(H) is one-side in-
creasing for <.

Proof We prove the forward and backward implications of
Lemma [4] in Lemma [45] and Lemma [46] respectively.

Lemma 45. Let H be a hierarchy on V. If the hierarchy H
is a hierarchical watershed of (G, w), then there exists an al-
titude ordering < for w such that ®(H) is one-side increasing
for <.

Proof By Lemmal[I6], there is a sequence of minima S of w
such that H is the hierarchy induced by < and S. In order to
prove that ®(H) is one-side increasing for <, by Definition
[ we will prove that the following three statements hold true:

1 {8(H)(e) |e € B<} ={0,...,n—1};

2. for any edge u in E<, ®(H)(u) > 0 if and only if u is a
watershed-cut edge for <; and

3. for any edge u in E~, there exists a child R of R, such
that ®(H)(u) > V{P(H)(v) such that R, is included
in R}, where V{} = 0.

In the remaider of this proof, let p and € be respectively
the persistence map and the extinction map for < and S.

1. By Lemmal20, we have {$(H)(e) |e € E<} = {p(e) | e €
EZ}. Then, as Lemma |19 . states that the range of p is
{0, ... 1}, we can conclude that {®(H)(e) |e € E<}
is the set {0,...,n—1}.

2. Let u be a building edge for <. Given the following propo-
sitions:

(a) u is a watershed-cut edge

(b) D(H)(u) >0

we will prove that (a) implies (b), and that not (b) implies
not (a).

If w is a watershed-cut edge for <, then both children
of Ry, contain at least one minimum of w. Therefore, the
extinction value of both children of R, is non-zero and,
consequently, the persistence value p(u) of u is non-zero.
Moreover, by Lemmal[20, in this case we have $(H)(e) =
p(e) for any building edge e for <. Thus, P(H)(u) is non-
zero.

On the other hand, if u is not a watershed-cut edge
for <, then there is a child X of R, which does not
contain any minimum of w. Therefore, the extinction
value of X is equal to 0: €(X) = 0. Since, by definition
p(u) = min{e(X), e(sibling(X))} and the minimal ex-
tinction value is zero, we can say that p(u) = 0. Again,
by Lemma in this case we have ®(H)(e) = p(e) for
any building edge e for < and thus, ®(H)(u) is equal to
0.

3. Let u be a building edge for <. The persistence value of u
is the extinction value of a child X of R,. Let X be a
child of R, such that p(u), the persistence value of wu,
is equal to €(X), the extinction value of X. By Lemma
[[7 for any region Y of B< such that Y C X , we have
e(Y) < e(X) and, as X C Ry, €(Y) < €(R.). Let v be the
building edge of a region Z C X. Then, we can say that
the extinction value of both children of Z is less than or
equal to the extinction value €(X). Hence, p(v) < e(X)
and, then, p(v) < p(u). By Lemma we can conclude
that ®(H)(v) < &(H)(u). Hence, D(H)(u) > V{@(H)('v)
such that R, is included in X}.

Lemma 46. Let ‘H be a hierarchy on V and let < be an
altitude ordering such that &(H) is one-side increasing for <.
Then the hierarchy H is a hierarchical watershed of (G, w).

Proof Let& be the approxzimated extinction map for $(H) and
<. By Lemmal[13, for any edge in E<, we have P(H)(u) =

min{&(R) such that R is a child of R, }. By Lemma., the
map & is an extinction map for <. Then, by the backward
implication of Property m the hierarchy H is a hierarchical
watershed of (G, w). O

G Proof of Property

(Property . Let H be a hierarchy on V. The hierarchy
H is a flattened hierarchical watershed of (G, w) if and only
if there is an altitude ordering < for w such that:

1. (V,EZ) is a MST of (G,P(H)); and
2. for any edge u in E~, if u is not a watershed-cut edge

for <, then ®(H)(u) = 0; and

8. for any edge u in E<, there exists a child R of R, such

that @(H)(u) > V{P(H)(v) such that R, is included
in R}, where V{} = 0.

To prove Property [[4] we establish the following lemma.

Lemma 47. Let < be an altitude ordering for w and let H
be a hierarchy on V' such that ®(H) is one-side increasing
for <. Then (V,EZ) is a MST of (G, P(H)).

Proof Let a denote the sum of the weight of the edges in
E~ in the map ®(H): a = ZeeE< D(H)(e). As P(H) is
one-side increasing for <, by the condition 1 of Definition
[ we can affirm that « = 0+ 1+ ---+n —1. In or-
der to prove that (V,E<) is a MST of (G,P(H)), we will
prove that, for any MST G’ of (G,P(H)), the sum of the
weight of the edges in G’ is greater than or equal to a. Let
G’ be a MST of (G,®(H)). As G’ is a MST of (G,H(H)),
by the condition 1 of Lemma we have that G and G’
have the same quasi-flat zones hierarchy: QF Z(G,®(H)) =
QFZ(G',P(H)). As D(H) is the saliency map of H, we have
that H = QFZ(G,Dd(H)). Therefore, H = QFZ(G',d(H)).
Let i be a value in {1,...,n—1}. By the condition 1 of Defini-
tion@ we can say that {1,...,n— 1} is a subset of the range
of ®(H). Therefore, H is composed of at least n distinct par-
titions. Let H be the sequence (Po,...,Pp_1,...). Since the
partitions P; and P;_1 are distinct, then there exists a re-
gion in P; which is not in P;_1. Therefore, there is a region
X of P; which is composed of a several regions {R1, Ra, ...}
of P;_1. Then, there are two adjacent vertices  and y such
that x and y are in distinct regions in {R1, Ra,...}. Let ©
and y be two adjacent vertices such that x and y are in dis-
tinct regions in {R1, Ra, ... }. Hence, the lowest j such that ©
and y belong to the same region of P; is i. Thus, there exists
an edge uw = {x,y} in E< such that P(H)(u) = i. Hence, the
sum of the weight of the edges of G’ is at least 1+---+n—1,
which is equal to a. Therefore, the graph (V,E<) is a MST
of (G, ®(H)). O

The reader can observe that the statement 3 of the above
property is precisely the statement 3 of the definition of one-
side increasing maps (Definition , and that the statement
2 is an implication of the statement 2 of Definition [3] The
statement 1 of the above property corresponds to a property
of one-side increasing maps established in Lemma [47]

In order to prove Property@7 we establish some auxiliary
lemmas on MSTs and saliency maps.

In the following, we state a well-known property of span-
ning trees in Lemma @

Let « and y be two vertices in V and let 7 = (zo,...,2p)
be a path from z to y. For any edge u = {z;—1,2;} for i in
{1,...,p}, we say that u is in 7 or that 7w includes u.
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Lemma 48. Let G’ be a spanning tree of a weighted graph
(G, f). Let u = {x,y} be an edge in E\ E(G’) and let w be
the path from x to y (resp. y to z) in G'. The graph G’ is a
MST of (G, f) if and only if f(u) > f(v) for any edge v in
.

The following lemma characterizes MSTs of saliency
maps.

Lemma 49. Let f be the saliency map of a hierarchy on V
and let G’ be a spanning tree of (G, f). Let u = {z,y} be an
edge in E\ E(G’) and let m be the path from x to y (resp.
y toxz) in G'. Let v be an edge of greatest weight in m. The
graph G’ is a MST of (G, f) if and only if f(u) = f(v).

Proof We will first prove the forward implication of this
lemma. Let G’ be a MST of (G,®(H)). Then, by Lemma
for any edge e in the path w, we have (H)(e) < P(H(u).
Hence, ?(H)(v) < ®(H(u). Let us assume that P(H)(v) <
D(H)(u). Then, given A = P(H)(v), in the A-level set of
(G, D(H)), the vertices x and y are connected, which implies
that, by the definition of saliency maps, (H(u) is less or
equal to D(H)(v), which contradicts our assumption. Hence,
P(H)(v) = P(H(u).

Now, let us assume that P(H)(u) is equal to the greatest
weight among the edges in w. Then, for any edge e in the
path m, we have ®(H)(e) < &(H(u). Then, by Lemmal{8 G’
is a MST of (G, P(H)). O

Lemma 50. Let ‘H' be a hierarchy on V and let H be a
flattening of H'. Let u and v be two distinct edges in E such
that ®(H)(u) < ®(H)(v). Then P(H')(u) < P(H')(v).

Proof Let w = {z1,y1} and v = {z2,y2}. As &(H)(u) <
P(H)(v), there is a partition P of H such that 1 and y1
belong to the same region of P and we such that x2 and y2
do not belong to the same region of P. As P is a partition of
H', there is a partition in H' such that x1 and y1 belong to
the same region of this partition but x2 and y2 do not. Then,

B(H')(u) < B(H)(v). O

Lemma 51. Let H' be a hierarchy on V and let H be a
flattening of H'. Let u and v be two distinct edges in E such
that (H')(u) < (H')(v). Then $(H)(u) < P(H)(v).

Proof Let u = {z1,y1} and v = {x2,y2}. As P(H')(u) <
®(H')(v), then for any partition P of H', if 2 and y2 are in
the same region of P, then x1 and y1 are in the same region
of P as well. As any partition of H is also a partition of H',
we may say that for any partition P of H, if 2 and y2 are in
the same region of P, then x1 and y1 are in the same region

of P. Hence, ?(H)(u) < ¢(H)(v). O

The forward and backward implications of Property [14]
are proven in Lemmas [52] and [53] respectively.

Lemma 52. Let H be a flattened hierarchical watershed
of (G,w). Then, there is an altitude ordering < for w such
that:

1. (V,EX) is a MST of (G, P(H)); and

2. for any building edge u for <, if u is not a watershed-cut
edge for <, then &(H)(u) = 0; and

3. for any building edge u for <, there exists a child R of Ry,
such that @(H)(u) > V{P(H)(v) such that R, is included
in R}, where V{} = 0.

Proof As*H is a flattened hierarchical watershed of (G, w), by
Definition[13 there is a hierarchical watershed H., of (G, w)
such that H is a flattening of H.. By Lemma [§] there is
an altitude ordering < for w such that ®(H.,) is one-side in-
creasing for <. Let < be the altitude ordering for w such that
D(Hw) is one-side increasing for <. By Lemmal[23, (V, E<)
is a MST of (G, P(Hw)). Let G’ denote the graph (V,E<).
By Lemmal[21}, Hay is the hierarchy QF Z(G',&(Hw)). Then,
any partition of H is a partition of QF Z(G’,P(Hw)). By the
definition of saliency maps, we can affirm that any partition
of QF Z(G,P(H)) is a partition of QF Z(G’, P(Hw))-

In the following, we will prove that the three statements
hold true for <.

1. We will first prove that G’ is a MST of (G,P(H)).
By contradiction, let us assume that G’ is not a MST
of (G,®(H)). Then, by Lemma there is an edge
u = {z,y} such that v is in E\ E(G") and such that
®D(H)(u) is different from the greatest weight among the
edges in the path 7 from x to y in (G',P(H)). Let v
be an edge of greatest weight in w. As H is equal to
OFZ(G,P(H)), we may affirm that ®(H)(u) is lower
than ®(H)(v) because, otherwise, the vertices x and y
would be connected in the A\-level set of (G, P(H)) for a A
lower than $(H)(u), which contradicts the fact that $(H)
is a saliency map. Hence, we have ®(H)(u) < (H)(v).
Then, by Lemmal[5]] as H is a flattening of H.,, we may
conclude that P(Hw)(u) < P(Hw)(v). Hence, the weight
D(Hw)(u) is different from the greatest weight among the
edges in the path m. Therefore, by Lemma@ G’ is not a
MST of (G, P(Hw)), which contradicts our assumption.
Hence, we may conclude that G’ is a MST of (G, D(H)).

2. We will now prove the second condition for H to be a flat-
tened hierarchical watershed of (G, w). As H., is one-side
increasing for <, by the second condition of Definition[3,
for any watershed-cut edge u = {z,y} for <, we have
D(Hw)(u) = 0. Then, for any partition P of H,, x and
y belong to the same region of P. Therefore, as any par-
tition of H is a partition of H.,, we can say that, for any
partition P of H, x and y belong to the same region of
P. Hence, the lowest \ such that * and y are the same
partition P of H is zero. Hence, $(H)(u) = 0.

8. We will now prove the third condition for H to be a flat-
tened hierarchical watershed of (G, w). By the third state-
ment of Definition [J, we have that, for any edge u in
E_, there exists a child R of Ry such that ®(H.w)(u) >
V{P(Hw) (W) | Ry C R}. Let u be an edge in E~ and let R
be the child of R, such that ®(Hw)(u) > V{P(Hw)(v) |
R, C R}. Let v be an edge in E< such that R, C R.
Then, ®(Hw)(u) > P(Hw)(v). Hence, by Lemma
®(H)(u) > P(H)(v). Therefore, we may conclude that
B(H)(u) > VABH)(v) | Ro C R} O

The following lemma corresponds to the backward impli-
cation of Property [[4]

Lemma 53. Let H be a hierarchy on V and let < be an

altitude ordering for w such that:

1. (V,EX) is a MST of (G,®(H)); and

2. for any edge u in E~, if u is not a watershed-cut edge
for <, then ®(H)(u) = 0; and

3. for any edge u in E~, there exists a child R of R, such
that ®(H)(u) > V{P(H)(v) such that R, is included
in R}, where V{} = 0.
Then H is a flattened hierarchical watershed of (G, w).
In order to prove Lemma [53] we first state two auxiliary

lemmas. From Property 10 of [9], we can deduce the following
lemma linking binary partition hierarchies and MSTs.
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Lemma 54. Let B be a binary partition hierarchy of (G, w).
The graph (V,EZ) is a MST of (G,w).

By Property 12 of [9] linking hierarchical watersheds and
hierarchies induced by an altitude ordering and a sequence of
minima, and by Lemma [2I] we infer the following lemma.

Lemma 55. Let G’ be a MST of (G,w) and let H be a hier-
archical watershed of (G',w). Then H is also a hierarchical
watershed of (G,w).

Proof (of Lemma Let H be a hierarchy on V such that
there is an altitude ordering < for w such that:

1. (V,EZ)is a MST of (G,®(H)); and

2. for edge u in E<, if u is not a watershed-cut edge for <,
then ®(H)(u) = 0; and

3. for edge u in F_, there exists a child R of R, such
that ®(H)(u) > V{@(H)(v) such that R, is included
in R}, where V{} = 0.

We will prove that H is a flattened hierarchical watershed
of (G, w). To this end, we will prove that there is a hierarchical
watershed H,, of (G, w) such that any partition of H is also a
partition of H,,. Let G’ denote the graph (V, F<). By Lemma
G’ is a MST of (G, w). Moreover, by Lemma given a
hierarchical watershed H., of a MST of (G,w), we can say
that H., is also a hierarchical watershed of (G, w). Hence, we
can simply prove that there is a hierarchical watershed H.,
of (G’,w) such that any partition of # is also a partition of
Hop-

To define the hierarchy H.,,, we first define a map f from
E~ into R such that f is one-side increasing for <. Since
G’ is a tree, by the definition of saliency maps, we can say
that f is the saliency map of the hierarchy QF Z(G’, f). By
Lemma@ as f is one-side increasing for <, we may say that
QFZ(G', f) is a hierarchical watershed of (G’, w).

In the map f, the edges which are not watershed-cut edges
for < are assigned to zero, and the watershed-cut edges for <
are ranked according to their weights in w and in ®(H). Let
<2 be a total ordering on the set {u is a watershed-cut edge
for <} such that, for any two watershed-cut edges v and v
for <, we have u <2 v if and only if &(H)(u) < &(H)(v) or
if (H)(u) = ¢(H)(v) and w < v. The map f is defined as
follows:

0 if u is not a watershed — cut
edge for <
otherwise

flu) =

rank of u for <2
(2)
We first demonstrate that f is one-side increasing for <.

1. By the definition of f, as there are n — 1 watershed-cut
edges for <, we can say that, for any ¢ in {1,...,n — 1},
there is a watershed-cut edge w for < such that the rank
of u for <2 is 7 and, consequently, f(u) = ¢. On the other
hand, as w has at least one minimum, there is at least
one edge e in E such that e is not a watershed-cut edge
for < and such that f(e) = 0. Hence, we have {f(e) |
u € B4} ={0,...,n — 1}. Therefore, the statement 1 of
Definition [3] holds true for f.

2. For any edge u, by the definition of f, f(u) is non-zero
if and only if w is not a watershed-cut edge for <, so the
statement 2 of Definition |3| holds true for f.

3. Let u be a building edge for <. If u is not a watershed-cut
edge for <, then there is a child X of R,, such that there
is no minimum of w included in X. Hence, none of the
building edges of the descendants of X is a watershed-cut
edge for <. By the definition of f, we have f(u) = 0 and,
for any edge v such that R, C X, we have f(v) = 0.
Hence, f(u) > V{f(v) such that R, is included in X}.
Otherwise, let us assume that u is a watershed-cut edge
for <. Then there is at least one minimum of w included
in each child of R,,. By the hypothesis 3, there is a child
X of Ry such that &(H)(u) > V{P(H)(v) such that R,
is included in X}. Let X be the child of R, such that
P(H)(u) > V{P(H)(v) such that R, is included in X}.
Let e be a building edge for < such that Re C X. If e
is not a watershed-cut edge for <, then f(e) = 0 and,
consequently, f(u) > f(e). Otherwise, if e is a watershed-
cut edge for <, then we have &(H)(u) > P(H)(e) and
e < u, which implies that e <2 u. Consequently, by the
definition of f, we have f(u) > f(e). Therefore, f(u) >
V{f(v) such that R, is included in X}. Then, the third
condition of Definition [3| holds true for f.

Hence, f is one-side increasing for < and, as stated pre-
viously, QF Z(G’, f) is a hierarchical watershed of (G’,w)
(resp. (G,w)). Now, we only need to prove that any parti-
tion of H is a partition of QFZ(G’, f). By the hypothesis
1, G’ is a MST of (G,®(H)). Then, by Lemma [21] we can
say that H is the QFZ hierarchy of (G’, #(H)). We will prove
that any partition of QFZ(G’,®(H)) is also a partition of
QFZ(G', f).

Let the range of #(H) be the set {0,...,¢}: {2(H)(u) |
u € Ex} = {0,...,£}. Let A be a value in {0,...,¢}.

Let G &(H) be the A-level set of (G',®(H)). Let o be
the greatest value in {f(u) | u € E(G) 4(3,)} We will

prove that the a-level set of (G’, f) is equal to the A-level
set of (G’,P(H)). Since « is the greatest value in the set
{flu) | u € E(G’A@(H))}, we can see that any edge v in
the A-level set of (G’, P(H)) also belongs to the a-level set of
(G, f). Now, we also need to prove that there is no edge u in
the a-level set of (G’, f) such that u is not in the A-level set
of (G',P(H)).

Let u be an edge which is not in the A-level set of
(G',®(H)). Then, &(H)(u) > X and, for any edge v in the
A-level set of (G', P(H)), we have D(H)(u) > P(H)(v). Since
the minimum value of X is zero, we can say that &(H)(u) > 0
and, by the hypothesis 2, u is a watershed-cut edge for <.
Let v be an edge in the A-level set of (G’,®(H)). Since
D(H)(u) > P(H)(v), if v is a watershed-cut edge for <, then
v <2 u and f(u) > f(v). Otherwise, if v is not a watershed-
cut edge for <, by the definition of f, we have f(v) = 0
and f(u) > f(v). Thus, for any edge v in the A-level set of
(G',P(H)), we have f(u) > f(v) and, therefore, f(u) > a.
Then, u is not in the a-level set of (G, f).

Therefore, we can conclude that the a-level set of (G’, f)
is equal to the A-level set of (G', P(H)). As the partitions of H
are given by the set of connected components of the level sets
of (G',P(H)), we can affirm that any partition of H is also
a partition of QF Z(G’, f). Therefore, there is a hierarchical
watershed H., = QFZ(G’, f) of (G',w) (resp. (G,w)) such
that any partition of H is also a partition of H,,. Then, H is a
flattened hierarchical watershed of (G', w) (resp. (G,w)). O
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