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1 Introduction

Material with different constituents play an important rule in engineering applications, especially as the demand
for smaller devices are increasing and their realization by modern day fabrication technology is improving, it
has become very important to correctly capture the underlying physics of these components and design them
accordingly. These materials, with different constituents improve the engineering performance, are called hete-
rogeneous materials. Different sizes, topologies and material properties make this task of correctly representing
the physics more challenging. These fluctuations in properties of constituents render the coefficients of gover-
ning equations under consideration very oscillatory and makes it harder to capture the true response with some
analytical or numerical tool.
Among a plethora of possible other numerical tools finite elements (FE), because of its proven robustness, is
usually used to solve these governing equations. In case of such heterogeneous materials a high number of fi-
nite elements are required to solve the problem accurately. This makes the computations, even with modern day
computational power, very expensive. So, effort should be made to capture this rich physics of heterogeneous
materials with techniques which efficiently solve these systems with in high accuracy but with low computatio-
nal cost.
Homogenization comes into play at this point. It provides the mathematical tools to represent these oscilla-
tory coefficients with averaged/smooth coefficients, which allows to use few number of finite elements instead.
Homogenization makes use of Hill-Mandel averaging conditions, which are energy consistency conditions for
transfering information from micro-scale to macro-scale. Also, full separation of scales is assumed that is the
length scales associated to micro-scale are very small as compared to macroscopic length scales. For low tran-
sient phenomena i.e., with low macroscopic thermal gradients and low frequency loading this assumption is
valid and a steady-state response can be representative of the micro-scale physics.
However, when the phenomena is highly transient, these assumptions do not hold true for homogenization pur-
poses. Also, the micro-scale length scales and high contrast in material properties exhibit to transient effects at
micro-scale. These transient effects which should also be upscaled to the macro-scale which leads to extended
Hill-Mandel conditions. In this regard, to capture the transient thermal and mechanical micro-transient effects
some efforts has been made already [2, 3, 4, 5, 6]. In the context of heat conduction in [2], it is shown for
the first time how to use first order computational homogenization and extended Hill-Mandel conditions for
transient case.
For its mechanical counterpart in [3] used a relaxed scale separation in which the length scale of the inclusion
is comparable to the size of the wavelength propagating through the material while still a long wavelength
approximation is considered for the matrix. Both micro- and macro-scales are considered to be in transient
regimes. [7] has extended this approach to reduce the computational cost by applying a reduction technique to
eliminate the micro-scale problem by mode synthesis.
Along with all its benefits, computational homogenization for transient problems comes with a relatively high
computational expense as compared to its steady-state counterpart, because at each time step for each macro-
scopic point a microscopic initial boundary value problem needs to be solved. In this work an effort has been
made to reduce this computational cost by using the reduction technique implemented in [7] . The homogeni-
zation framework is developed according to [2] with a weak separation of scales for transient heat conduction
problems.
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2 Homogenization and reduction methodology : towards an enriched conti-

nuum.

2.1 Homogenization framework.

2.1.1 Separation of scales.

General homogenization techniques assume complete separation of scales in which the size of a unit-cell is very
small as compared to the macro-scale. This is a valid assumption for steady-state phenomena and material with
small sized heterogeneities. However, in highly transient cases the size of the constituents become comparable
with the macroscopic sizes and this assumption is no more valid. For weak separation of scales in heat conduc-
tion one can chose to be in the range tm < T < ti. Where, tm and ti are the matrix and inclusion characteristic
diffusivity times and T is the macroscopic loading time.

2.1.2 Macro-scale problem.

Without any heat generation a transient balance of energy is assumed at the macro-scale. The macroscopic
temperature field θ(x, t) in Ω̄ is the quantity of interest here. The macroscopic problem reads, find θ ∈ H :

∇ · q + ǫ̇ = 0 (1)

Here, q is the macroscopic flux, ǫ is the macroscopic internal energy and H̄ is the space of admissible macrosco-
pic temperature fields. The contitutive forms of these macroscopic quantities are unknown and will be obtained
as a result of upscaling relations.

2.1.3 Micro-scale problem.

Also a transient balance of energy is required at the micro-scale to account for micro-transient effects. The
microscopic problem can be written as follows, find θ ∈ H :

∇ · q + ǫ̇ = 0 (2)

Here, q, ǫ̇ and H are the microscopic flux, rate of change of internal energy and space of admissible microscopic
temperature field. The constitutive models are known at this scale.

2.1.4 Microscopic temperature field.

The microscopic temperature field is defined as a Taylor’s expansion of macroscopic temperature at x,

θ := θ +∇θ · (x− x) + θ̃ (3)

Here, θ̃ is the fluctuation in θ due to material properties and transient phenomena. It can be written as an additive
decomposition of steady-state and transient temperature fluctuation fields i.e., θ̃ = θss + θtr.

2.1.5 Scale transition relations.

Downscaling relations (micro boundary conditions) : The condition which is required while downscaling is

∇θ = 〈∇θ〉 (4)

Taking the gradient of (3) and volume averaging the result

〈∇θ〉 = ∇θ + 〈θ̃n〉∂Ω (5)

This expression relates the microscopic gradient of temperature to the macroscopic gradient of temperature
through the following constraint

〈θ̃n〉∂Ω = 0 (6)
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Which can be satisfied using specific types of boundary conditions at the micro-scale such as 1) linear tempera-
ture boundary conditions (LT-BCs) or 2) Periodic boundary conditions (PR-BCs).
Upscaling relations (extended Hill-Mandel conditions) : The extended Hill-Mandel principle can be stated such
as the total virtual power at the macroscopic point x should be equal to the average virtual power taken from a
unit-cell associated to that macroscopic point. i.e.,

−∇δθ · q + δθǫ̇ = 〈−∇δθ · q + δθǫ̇〉 (7)

Taking left-hand-side of (7) into consideration for upscaling and substituting the variation of temperature and
its gradient in it, one gets

−∇δθ · q + δθǫ̇ = 〈−∇δθ · (q − (x− x)ǫ̇) + δθǫ̇〉 (8)

From which the macroscopic quantities can now be identified as follows, the macroscopic heat flux

q = 〈q − ǫ̇(x− x)〉 (9)

and the rate of change of macroscopic internal energy

ǫ̇ = 〈ǫ̇〉 (10)

The term ǫ̇(x − x) appearing in the macroscopic flux is the first moment of rate of change of microscopic
internal energy. This term is responsible for the thermal transient effects upscaled to the macro-scale. If the
size of the RVE is very small i.e., (x − x) −→ 0, the transient effect will vanish and the result of classical
homogenization will be recovered : q = 〈q〉.

2.2 Discretization and model reduction.

2.2.1 Craig-Bampton reduction.

Craig-Bampton mode synthesis is a sub-structuring technique to solve large structural problems component
wise. In computational homogenization, under assumptions of weak separation of scales and enforced boundary
conditions, each unit-cell attached to a macroscopic point can be considered as a sub-structure. The discrete FE
form of microscopic equations can be written in terms of free and prescribed nodes as follows
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Steady-state response : To get the steady-state response, the transient part of (11) is neglected and static-
condensation should be applied to solve for the free nodes under the prescribed boundary conditions. Total
steady-state response of the system can be written as

[
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here, S = −(
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∗

K fp and I pp is the matrix of ones of size (p × p). Substituting the expression for
steady-state temperature in (11) and matrix multiplying leads to
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Here,
a
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∗

C ffS are the microscopic steady-state conductivity
and capacity matrices.
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Transient response : The transient response should be added to the steady-state solution to account for the tran-
sient effects present at the micro-scale. To calculate the transient response efficiently, spectral decomposition
can be utilized, in which the solution is represented by its eigenmodes and corresponding eigen-basis i.e.,

θ
∼

f

tr
= Φη

∼

(14)

here, Φ is the matrix containing the eigen-modes vectors Φ
∼

and η
∼

is the column of modal amplitude temperature.

For most of the systems, for specific loading conditions and material properties only few modes projected on the
eigen-basis are enough to present the exact system with some reasonably small error. This reduces the problem
from N degrees of freedom to only superposition of Nq important eigen-modes and eigen-basis (Nq ≪ N).
After performing normalization using capacity matrix one gets the transient response of the unit-cell in terms
of modal coordintes as follows,

αη
∼

+ η̇
∼

= 0
∼

k (15)

This gives the transient effects without any coupling to the macroscopic dynamics. The coupling can be obtained
by combining the solutions of the steady-state and the transient problems.
Linear Superposition : To superimpose the steady-state and transient response the total microscopic response
can be written in a matrix vector form as follows.
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here, 0pk is the matrix of zeros of size (p× k). substituting (16) in (11) leads to the following two equations,
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+
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(17)

which can be recognized as the total reaction flux at the prescribed boundary of the unit-cell. Here, ̺ is the

coupling matrix between steady-state and transient responses and it is given by ̺ = S T
∗

C ffΦ+
∗

C pfΦ, and

αη
∼

+ η̇
∼

= −̺T θ̇
∼

p
(18)

where, ̺T θ̇
∼

p
is the forcing term for this modal equation.

2.3 Enriched Continuum

Macroscopic flux : The macroscopic flux given by (9) can be written only in terms of prescribed nodes on the
boundary

q =
1

V
(∆x

∼

p)T qpn
∼

(19)

which after substituting the expression for temperature on the prescribed nodes at the micro-scale can be written
as

q =
1

V

[

(∆x
∼

p)T
(

̺ η̇
∼

+
a

K (I
∼

pθ +∇θ ·∆x
∼

p) +
a

C (I
∼

pθ̇ +∇θ̇ ·∆x
∼

p)

)]

(20)

in compact notation

q = a
∼

η̇
∼

+ bθ +B ·∇θ + cθ̇ +C ·∇θ̇ (21)

Macroscopic internal energy : Similarly, macroscopic internal energy can be written as

˙̄ǫ = −d
∼

η̇
∼

− eθ − e ·∇θ − fθ̇ − f ·∇θ̇ (22)
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Now, these constitutive expressions can be utilized in macroscopic balance of energy.
Microscopic balance of energy : Transient contribution from micro-scale can be injected in the macro-scale by
solving only the reduced basis η.

αη
∼

+ η̇
∼

= −
(

̺T I
∼

pθ̇ + V a
∼

T ·∇θ̇
)

(23)

Energy balance (1) with constitutive relations (21) and (22) supported by the solution of (23) represent the
enriched continuum at the macro-scale.

3 Numerical Verification

3.1 Varification of CBMS model

A one-dimensional micro-scale problem is constructed with an inclusion in the center. The macroscopic loading
conditions, constituents material properties and sizes were selected such that there exist significant transient
effects. According to the results below CBMS performs very well as compared to FE and when the number of
modes is increased, the approximated solution approaches the FE solution.
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FIGURE 1 – (a) A comparison between FE solution and CBMS approximation was made at time t = 4 s. The

FE solution is shown in black solid line while CBMS approximated solution is shown with blue boxes plotted

every 5th degree of freedom. (b) A comparison between FE solution and different number of k modes was made.

The figure within zooms-in where error is largest.

3.2 Comparison with quasi-static homogenization

The main advantages of the new formulation are to capture the microscopic transient and size effects, and also
to perform a model reduction. No size effect is observed when a steady-state formulation [1] is used. it is
plotted in dark black color shown in Fig.(2 - a). However, using current formulation as the size of the unit-cell
is increased the absolute value of macroscopic flux due to transient effects is also increased.

4 Conclusion.

A multi-scale computational homogenization framework using Craig-Bampton’s mode synthesis was developed
for linear transient heat conduction with weak separation of scales. Significant computational and modeling
advantages were observed as compared to [2] and [1], such as instead of solving a fully coupled system of
linear equations of FE at the micro-scale now only few uncoupled equations need to be solved for modal
temperatures and the transient effects are also incorporated and upscaled to the macro-scale.
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