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Very High Strain Rate Range

Thomas Heuzé, Xiaoli Guo and Ramzi Othman

9.1 Introduction

The classical Split Hopkinson Pressure Bar (SHPB) system is considered to be able
to perform tests at strain rates ranging from 102 to 104 s−1 [1]. However, some
modifications can be carried out to extend the reachable strain rate within the
specimen. The mean strain rate defined within the specimen:

_es ¼ Vout � Vin

ls
; ð9:1Þ

where Vout and Vin stand for the velocity of output and input cross-sections of the
specimen respectively, shows that the achievable strain rate varies inversely pro-
portionally to the length of the specimen ls, while the achievable stress is confined
by the elastic limit of the bars [2], especially by the incident bar sustaining the entire
impacting energy. From this viewpoint, extending the strain rate in the test can be
either achieved by scaling down the size of the specimen and consequently that of
the entire device, or by dispensing with the limit on the stress of the incident bar by
removing it. Two modified Hopkinson devices are widely adopted to test the
material at the strain rates beyond 104 s−1, referred to as the miniaturized
Hopkinson bar and Direct-Impact (DI) devices.
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9.2 Two Solutions

9.2.1 Miniaturized Hopkinson Bar Devices

Miniaturized Hopkinson devices have the same configuration than that of the clas-
sical SHPB device, but are scaled down. Thus the wave propagation in the bars and
the deduction of the flow stress-strain relationship remain the same. Theoretically,
the extension of the strain rate is unlimited. However, largely scaling down the
equipment rises difficulties on the manufacturing of the components and on
achieving a good alignment of the bars. First, the manufacturing becomes difficult
with the traditional means such as turning; it can thus be replaced by Electrical
Discharge Machining to get a sufficient accuracy of the geometry. Second, the
specimen has to be considered as a homogeneous continuous medium, hence a
characteristic length of the microstructure should remain far smaller than the length
of the specimen. Lower lengths of specimen have already been experienced, Kamler
et al. [3] have used a length of 0.7 mm to reach strain rates of the order of 105 s−1 on
copper. Moreover, miniaturized Hopkinson device also rises difficulties on the strain
measuring by the traditional strain gauges. The length of the gauge has to be taken
into account once the dimension of the device has been decreased. However, smaller
gauges need lower bridge excitations, and this decreases the sensitivity [4]. Othman
[5] showed that the strain gauge length acts as a low-pass filter, and this filter effect is
more important when the bar diameter is lower than 8 mm. In other words, the gauge
may filter out the useful signals as the bar diameter becomes relatively small with
respect to the length of the gauge. Thus smaller gauges or alternative means may be
required to measure the strain in the bar. Othman’s study shows that for a specific
material of the bar, the cut-off frequency introduced by the length of the gauge lg
rises more rapidly as lg decreases, as shown in Fig. 9.1.

Fig. 9.1 Cut-off frequencies
of gauge lengths [5]
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More precisely, for a bar material with a sound speed of about 5000 m/s, the
cut-off frequency of a gauge of 1 mm length reaches the large value of 2216 kHz.
Jia and Ramesh [6] have used a very small strain gauge of 0.79 mm length to
measure the strain in a thin bar of 3.155 mm diameter. According to Othman’s
research, the signal travelling in this thin bar has a frequency not more than
1000 kHz, while the cut-off frequency of this small gauge is much higher than that
of the signal. Hence the major part of the signal is not filtered. With this minia-
turized device, they attained strain rates ranging from 103 to 5 � 104 s−1 on an
aluminium 6061-T651 specimen of 1 mm length and 1.818 mm diameter. Casem
et al. [7] have also used a very small bar of 1.6 mm in diameter to test specimens
made of 6061-T6 aluminium, at a very high strain rate beyond 105 s−1. In their
research, the strain gauge measurement system is here replaced by an optical
measurement techniques where the movement of the incident and transmitted bars
were measured by the Transverse Displacement Interferometer (TDI) and Normal
Displacement Interferometer (NDI), as shown in Fig. 9.2.

Besides the reduction of the specimen length, the Eq. (9.1) says that the strain
rate can also be extended by increasing the impact velocity of the projectile.
However, the increase of the impact velocity is restricted by the elastic limit of the
incident bar. A direct-impact Hopkinson device can reach higher strain rate by
removing the incident bar. But, the modification of the Hopkinson arrangement
changes the processing of wave propagation and consequently the deduction of the
stress-strain curve of the specimen as well. This point is discussed below.

9.2.2 Direct-Impact Hopkinson Bar

Since the incident bar has been removed in the direct-impact system, the projectile
impacts the specimen directly at high velocity in order to reach a higher strain rate
within the tested material. The loading pulse is generated at the impacting interface,
that is the interface between the projectile and the specimen, then two waves

(a) TDI
(b) NDI

Fig. 9.2 Optical system for displacement measurement [7]
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propagate simultaneously in opposite directions in the specimen and the projectile,
as shown in Fig. 9.3.

On the one hand, the specimen yields under the impact loading and then the
pulse is both reflected within the specimen and transmitted to the transmitted bar,
owing to the mismatch of material impedance. The pulse is reflected within the
specimen. On the other hand, the wave in the projectile is reflected at the free
section, and then propagates back towards the impacting interface as an unloading
wave. Furthermore, additional difficulties also rise in the deduction of the material
behaviour. In the SHPB device, the incident bar plays the role of a load transducer
and allows to check the force equilibrium of the specimen [6]. In the direct-impact
system, the achievement of the force equilibrium is also usually assumed, and is
used to compute the stress. However, it cannot be checked anymore. Besides,
alternative techniques are requested to complete the strain and strain rate in the
specimen.

Despite the difficulties induced by the absence of an incident bar, the
direct-impact Hopkinson device is still of great interest for attaining higher strain
rate than classical SHPB system. With such a device, Shioiri et al. [8] tested
polycrystalline aluminium, iron, copper and niobium alloys at the strain rate of
2� 104 s�1. Wulf [9] achieved a strain rate of about 2:5� 104 s�1 on the 7039
aluminium alloy. Gorham et al. [10] extended the strain rate to 4� 104 s�1 on Ti–
6Al–4V and tungsten alloys. Impacting a very thin specimen of pure aluminium,
Dharan and Hauser [11] have achieved strain rates up to 1:2� 105 s�1.
Furthermore, Kamler et al. [3] established a miniaturized direct-impact Hopkinson
device where the bar diameter is just 1.5 mm. In his test, a very high strain rate of
2:5� 105 s�1 was claimed on a copper specimen of 0.3 mm length and 0.7 mm
diameter.

This chapter focuses on the direct impact Koslky device as used in the very high
strain rate testing. A dedicated Hopkinson system allows to reach the expected
levels of strain and strain rate while enforcing the basic assumptions required to
deduce explicitly the stress-strain curve of the specimen. The design of such a
system often relies on a set of empirical confinement equations used in order to
fulfill the required assumptions. However, though it allows to restrict the range of

Fig. 9.3 Direct impact
Hopkinson bar
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possibilities, additional constraints built on a physical basis permit to clarify and
complete these empirical bounds. Moreover, the design process should be adapted
to the design of a direct impact Hopkinson system of interest here. The general
design requirements set for the design are first introduced in Sect. 9.3. Next,
additional criteria defined on a physical basis are introduced in Sect. 9.4 to design a
direct impact Hopkinson device. Then, it is shown in Sect. 9.5 that the design
process can be written as an optimization problem submitted to equality and
inequality type constraints. At last in Sect. 9.6, the processing of direct-impact
Hopkinson experiments is discussed.

9.3 General Design Requirements

A direct impact device consists of the projectile, the transmitted bar, the specimen
and the accessory devices such as the canon, the recording device, etc. Designing a
dedicated experimental device comes down to the design of the bar, the specimen,
the projectile, and to determine its impact velocity. Most of the constraints used to
design a conventional SHPB device are adoptable to design a direct-impact system.
This leads to two topics classified as the system design and the experimental design
[12]. The system design is independent of the specific experiment carried out, and
involves constraints on the dimensions of the bar and the specimen by the way of
three ratios: the ratio of the length of the bar to its diameter lb=/bð Þ, the ratio of the
length of the specimen to its diameter ls=/sð Þ, and the ratio of the specimen
diameter to that of the bar /s=/bð Þ.

These ratios will be referred in the sequel to as the first, second and third ratios of
the system design respectively. The indices (�p, �s and �b) will refer in the sequel to
the projectile, the specimen and the transmitted bar respectively, as shown in
Fig. 9.4. The experimental design determines the specimen dimensions ls;/sð Þ, the
length lp

� �
and the impact velocity vp

� �
of the projectile, to deform the specimen in

such a way that a given strain rate be reached at a given level of strain.

Fig. 9.4 Geometric schema
of the direct-impact
Hopkinson system
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9.3.1 System Design

The three ratios of the system design aim primarily to ensure the enforcement of the
unidimensional wave propagation assumption, the sustainability of the system and
the reduction of possible disturbances that may alter the quality of the results. This
condition is of primary importance for the identification of the specimen behaviour
in this test.

9.3.1.1 First Ratio lb=/bð Þ

The assumption of unidimensional wave propagation in the transmitted bar requires
a uniform distribution of the stress throughout the entire cross-sections. Provided a
given diameter /b, this suggests a lower bound on the length lb to ensure a
quasi-unidimensional wave propagation along the bar. Davies [13] proved in his
work that a bar of the length lb being greater than 20/b can satisfy this requirement.
On the other hand, the diameter of the transmitted bar /b should be large enough to
withstand the loading pulse without buckling or being plastically compressed.
However, the errors on the stress-strain curve identification induced by dispersion
and lateral effects become more important as the diameter increases. A wider range
has been suggested by Ramesh [12] and is adopted in practice:

lb
/b

� 100: ð9:2Þ

9.3.1.2 Second Ratio ls=/sð Þ

The design of the specimen comes down to determine its diameter /s and its length
ls. The constraint on the geometry of the specimen is usually given in the form on
the length-to-diameter ratio ls=/sð Þ. On the one hand, a small value of this ratio
leads to greater lateral inertia and friction effects. On the other hand, a too large
value could lead to buckling. The restrictions on this ratio are not unique or
equivalent. For instance, Ramesh [12] recommends it to be framed as follows:

1� ls
/s

� 1
0:6

: ð9:3Þ

Gray [14] has framed this ratio so that to minimize the lateral inertia effects and
the friction effects, meanwhile to avoid the buckling of the specimen.

0:5� ls
/s

� 1: ð9:4Þ
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The lower bound in Eq. (9.4) is determined in such a way that the lateral inertia
effects be minimized. According to Gray’s work, the inertia effects are minimized
for a ratio:

ls
/s

¼
ffiffiffiffiffiffiffi
3ms
4

r
ð9:5Þ

where ms, the Poisson’s ratio, is taken equal to 1/3, yields the ratio ls=/s ¼ 1=2,
which is the lower bound of in Eq. (9.4). Furthermore, a ratio ranging from 1.5 to 2
permits a minimal friction at the contact interface between the bar and the specimen
[2], as demonstrated in [15]. A ratio value within this range may generate buckling
at high strain rate. Thus Gray suggested the value of one for the upper bound of the
ratio.

Davies and Hunter [16] have used a ratio of approximately 0.5 to minimize the
interface friction in their experiments. Kamler et al. [3] have impacted a copper
specimen designed with a ratio ls=/sð Þ slightly smaller than 0.5, around 0.43 [6]. In
the limit case, a thin plate specimen is also adopted in the literature to reach higher
strain rate. Dharan and Hauser [11] performed tests on aluminium workpieces with
the ratio of 0.25 and achieved the strain rate of 1:2� 105 s�1. Edington [17] used a
thin plate of ratio 0.16 to study the dynamic behaviour of the copper. The lubri-
cation of the interfaces and the numerical correction of lateral inertia effects are
generally mandatory in the tests. For a non-cylindrical specimen, the geometry
effect is studied and discussed in [18]. All these authors do not exactly agree on the
allowable bounds of this ratio, but combining all these works, Guo et al. [19, 20,
25] used the in Eq. (9.4), i.e., 0:5� ls=/s � 1.

9.3.1.3 Third Ratio /s=/bð Þ

A small value of the third ratio /s=/bð Þ enables to ensure a good contact at the
specimen/bar interface even if /s dilates largely during the plastic compression of
the specimen, and allows to test much more ductile materials. The decrease of this
ratio is meanwhile bounded since it can lead to the punch effect. The error, between
the measured strain in the specimen and the expected one, which is induced by the
non-uniform distribution of the stress, increases with the decrease of this ratio.

Buchar et al. [21] indicate that the specimen diameter must be large enough
compared with that of the bars and give a lower bound of this ratio of
/s=/b [ 0:9ð Þ [22]. Gray [14] has suggested the ratio /s=/b [ 0:8ð Þ in order to
minimize the mismatch of material impedance and the diameters of the bar and the
specimen and consequently reduced the inertia and friction effects [2]. In order to
adapt for large strain in the specimen, an empirical range can be adopted [12] as
follows:
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1
4
� /s

/b
� 1

2
: ð9:6Þ

9.3.2 Experimental Design

The system design has suggested a general frame for the dimension of each com-
ponent of the Hopkinson device. The experimental design determines the specific
dimensions of the specimen and the projectile, and the impact velocity, fulfilling the
requirement to reach the expected strain rate and the allowable strain, and thus
complete the dimensions of the whole device.

The achievable strain rate is related to the dimensions of the specimen, these of
the projectile and its impact velocity. When the projectile impacts the specimen, a
loading pulse is generated so that two waves propagate simultaneously in opposite
directions within the specimen and the projectile. In the projectile, the first wave
propagates to the free end and is then reflected back to the impacting interface.
Likewise, the second wave propagates through the specimen and is both reflected
and transmitted to the transmitted bar. When the first wave, reflected at the end side
of the projectile, arrives at the projectile/specimen interface at time Dt ¼ 2lp=cp,
referred to as the characteristic time, the impact is considered to be terminated. In
this definition, cp denotes the sound speed in the projectile and lp the projectile
length. In order to achieve a high strain rate _es in the specimen, the projectile should
be accelerated to a sufficient velocity vp to deform the specimen, though the
capacity of the canon may limit it. The maximum engineering strain induced in the
specimen can be estimated by:

es;max ¼ Z2lp=cp

0

_es dt ð9:7Þ

where the specimen strain rate _es can be estimated by Eq. (9.1).
The experimental design has thus to simultaneously consider the expected strain

rate and the allowable strain in the specimen.

9.4 Specific Requirements of the Direct Impact
Kolsky/Hopkinson Device

As mentioned above, the combination of the system design and the experimental
design allows to reduce the range of possibilities for the design. Confinement
criteria based on less empirical statements can be introduced to narrow down this
range. These additional criteria involve quantities that either pertain to each
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component of the direct impact system (projectile, specimen and bar) or combine
quantities related to different ones [19, 20]. They will be presented in the sequel as
the criteria involving quantities relative to both the projectile and the bar, to both the
specimen and the bar, and to both the projectile and the bar. Constraints on the
diameter of the bar and on the projectile are also introduced.

9.4.1 Criteria Involving Quantities Relative to Both
the Projectile and the Specimen

First of all, the level of strain achieved within the specimen should be bounded.
A sufficient desired level of strain eds;min is required to correctly characterize the

dynamic behaviour of the material, whereas a maximum desired strain eds;max is
required to avoid to crush the specimen. Two criteria are then involved. First, these
bounds on the level of strain permit to assess bounds on the length of the projectile
lp. Indeed, assuming a given average strain rate _es;avg during the characteristic time
Dt ¼ 2lp=cp, the maximum strain achieved in the specimen reads:

es;max ¼ _es;avg
2lp
cp

ð9:8Þ

which yields the following bounds on the length of the specimen (Fig. 9.5):

cp
2

eds;min
_es;avg

�����
������ lp � cp

2

eds;max
_es;avg

�����
����� ð9:9Þ

Second, an approximate upper bound of the impact velocity of the projectile can
be assessed in order to avoid to exceed the allowable level of strain. Let’s consider a
system that consists of the projectile plus the specimen at two instants denoted t0
and t1, corresponding to their impact and depart times, as shown in Fig. 9.6.

Writing the conservation of energy of this system between these two instants
assuming a unidimensional system, a rigid projectile, a rigid perfectly plastic

Fig. 9.5 Strain assessed to
derive bounds on the length of
the specimen
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behaviour of the specimen and a vanishing velocity of the projectile at the end time,
yields:

K1 � K0 ¼ WR
;0!1 þWext;0!1; ð9:10Þ

where K1 and K0 denote the kinetic energy of the projectile and specimen together
at times t1 and t0, respectively, and WR

;0!1 andWext;0!1 are the internal and external
works, respectively. Equation (9.10) leads to:

1
2
qplpApv

2
p ¼ rs;yjes;maxjlsAs; ð9:11Þ

where rs;y is the yield stress of the specimen, ls and As are the length and the
cross-sectional area of the specimen, qp, Ap and lp the mass density, the
cross-sectional area and the length of the projectile, respectively.

This leads to the following upper bound on the velocity of the projectile [20, 25]:

vp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rs;yjes;maxjlsAs

qplpAp

s
: ð9:12Þ

Of course, a refined bound could be assessed using a more complex constitutive
model to compute the strain energy of the specimen, and considering the projectile
as deformable.

Afterwards, since the test is assumed to be terminated at the end of the char-
acteristic time, the force equilibrium within the specimen should be reached before
this time, so that its writing can be used in the post-processing to extract directly the
stress-strain curve a posteriori. It is generally considered that a great number of
round trips of the wave within the specimen should be achieved during the char-
acteristic time:

2ls
cs

� 2lp
cp

: ð9:13Þ

In the design, a factor n is multiplied to the left hand side of in Eq. (9.13) in
order to quantify the number of these round trips needed to achieve the force

Fig. 9.6 The unidimensional
system consisting of a
projectile and a specimen
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equilibrium. For the value of n, Davies and Hunter [16] have proposed that the
achievement of the stress equilibrium requires three reflections of the loading pulse
within the specimen for ductile metal material. A greater value n ¼ 10 is usually
adopted to ensure the achievement of the force equilibrium.

9.4.2 Criteria Involving Quantities Relative to Both
the Specimen and the Bar

During the test, the transmitted bar should remain elastic, while it has to be suffi-
ciently strained to record a usable signal in post-processing. On the one hand,
strength criteria of the bar pertain to its resistance to buckling and to plasticity. The
former can be assessed in a first approximation through the critical load obtained in
quasi-static:

Fb � p2EbIb
L2

ð9:14Þ

where Fb denotes the axial force supported by a cross-section of the bar, Eb is its
Young’s modulus, L is the length between two bearings (It is almost equal to lb/2 if
three bearings are used) and Ib is the cross-section moment of inertia about the bar
axis.

Since the bar should behave elastically, the stress in the bar should remain lower
than the elastic yield stress of the bar material. Assuming the force equilibrium is
achieved within the specimen, the axial stress in the bar should fulfill the following
inequality:

rbj j ¼ rsj j As

Ab
� ryb
�� ��
a

ð9:15Þ

where a denotes a safety factor (>1). Provided a maximum expected level of stress
rsmaxj j within the specimen, an upper bound to the third ratio of the system design is
given:

/s

/b

����
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ryb
�� ��
a rsmaxj j

s
: ð9:16Þ

On the other hand, a minimum signal-to-noise ratio is required in order to obtain
usable signals for post-processing. This implies the normal force in the bar should
most of the time be higher than a minimum value which can be roughly assessed by
the force in the bar higher than the force corresponding to a stress in the specimen
equal to a third of its yield stress.
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rbminj j � As

Ab

ryb
�� ��
3

: ð9:17Þ

Provided a minimum level of strain recorded by gauges on the bar ebmin ,

ebminj j � As

Ab

ryb
�� ��
3Eb

: ð9:18Þ

Thus another upper bound to the third ratio of system design can be given:

/s

/b

����
�����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Eb ebminj j

ryb
�� ��

s
: ð9:19Þ

9.4.3 Criteria Involving Quantities Relative to Both the Bar
and the Projectile

The length of the bar has to be determined so that, on the one hand, a
uni-dimensional propagation of the wave is ensured, which requires a minimum
slenderness; the length should be at least ten times the diameter. On the other hand,
no wave reflection should occur at the free end of the bar during the characteristic
time. Combining both items, one gets:

lb � 2lpcb
cp

þ 10/b: ð9:20Þ

This inequality comes in addition to that of the first ratio [Inequality (9.2)] of the
system design that couples the length and the diameter of the bar.

9.4.4 Diameter of the Transmitted Bar

The loading pulse propagates in the transmitted bar as a plane wave, which consists
of a superposition of an infinite number of monochromatic waves with different
amplitudes and frequencies:

u rb; z; tð Þ ¼ 1
2p

Zþ1

�1
u rb;xð Þei �n xð Þzþxtð Þdx ð9:21Þ
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where n xð Þ is the wave number, x the angular frequency, rb the radius of the bar
and z the coordinate along axis direction. If we want to compute directly the stress
in the bar from the strain which is recorded at a different position, we have to make
sure that the sole first mode of the bar will be excited by the loading pulse. Thus, the
profile of this loading signal has first to be assessed. Second, the spectrum of the bar
is needed, and more precisely the frequency of the second mode. The well-known
Pochhammer-Chree [23, 24] analytical solution enables to relate the radius of the
bar to the angular frequency of a given mode. Determining an upper bound for the
bar diameter thus comes down to compare the cut-off frequency of the exciting
signal with respect to the frequency of the second mode of the bar.

In order to assess the profile of the loading signal that propagates within the bar,
a constitutive model can be postulated to describe the behaviour of the specimen,
and therefore to assess its response to the initial pulse. The cut-off frequency of this
signal is then computed in the frequency space through a Fourier transform. The
Johnson-Cook model has here been used in a first approximation with parameters
calibrated for the Ti–6Al–4V alloy at the strain rate of 20 s−1 extracted from [25] as
summarized in Table 9.1. In order to convert the stress-strain curve into time space,
a constant strain rate of 105 s−1 is chosen. According to Eq. (9.9), the total strain in
the specimen can be approximately assessed by e ¼ _eavgt: Thus a time period of
5 ms is needed to attain a strain of 0.5.

The unloading stage is also plotted at an arbitrary (but negative) strain rate in
order to form a complete pulse. The time interval of the signal is set at 0.1 ms
according to the sampling frequency of the gauges. The profile of the exciting
signal is plotted in Fig. 9.7a. The exciting signal is then converted from the time
space to the (angular) frequency space by the Fourier Transformation. The stress
after transformation is denoted ~r, whose profile is shown in the Fig. 9.7b. In order
to determine the cut-off frequency, we define the total energy of the transformed
pulse as:

E1 ¼ Zþ1

0

~r xð Þj j2dx ð9:22Þ

while the truncated one is:

Table 9.1 Physical and
mechanical properties

q (kg/m3) E (GPa) ry (MPa) V

Ti–6A1–4V 4430 113 970 0.34

Marval 8000 186 1750 0.3

A (MPa) B (MPa) n C

Ti–6A1–4V 950 603 0.20 0.02

13



Ec ¼ Zxc

0

~r xð Þj j2dx: ð9:23Þ

The cut-off angular frequency xc is defined as the critical frequency that allows
the relative error between the total energy and the truncated one to remain within a
prescribed tolerance:

E1 � Ec

E1

����
����� TOL ð9:24Þ

Consequently, the cut-off frequency xc = 1.237 � 106 rad s−1 is found for a
tolerance of 0.1.

The Pochhammer-Chree solution is obtained by solving the set of elastodynamic
equations for an infinite cylindrical bar. Non-trivial solutions are given when the
Pochhammer-Chree equation [5, 23, 24] vanishes, i.e.,

2a
rb

b2 þ n2
� �

J1 arbð ÞJ1 brbð Þ � b2 � n2
� �2

J0 arbð ÞJ1 brbð Þ
� 4abn2J1 arbð ÞJ0 brbð Þ ¼ 0

ð9:25Þ

where a2 ¼ qx2= kþ 2lð Þ � n2 and b2 ¼ qx2=l� n2, Jn :ð Þ is the Bessel function
of the first kind at order n, n is the wave number, x is the angular frequency, rb is
the bar radius, and v, k, l, E, q denote the Poisson’s ratio, the Lamé’s constants, the
Young’s modulus and the mass density respectively. This equation gives an implicit
relation between the wave number n and the angular frequency x, but also involves
the radius and material properties of the bar. The first mode propagates for every
frequencies. Higher modes (starting from the second one) only propagates above a
critical frequency x mð Þ

c . If we denote by nm the mth solution of Eq. (9.25), the
displacement field reads:

(a) Exciting signal over time (b) Exciting signal in frequency space

Fig. 9.7 Exciting signal. a Exciting signal over time, b Exciting signal in frequency space
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u rb; z;xð Þ ¼
Xþ1

m¼1

u�m rb;xð Þe�inm xð Þz ð9:26Þ

where nm xð Þ is the mth solution of Eq. (9.25) and well known as the dispersion
relation of the mth mode. Below these critical frequencies, the dispersion relation
has no real part and is purely imaginary complex number:

< nm xð Þð Þ ¼ 0 if xj j �x mð Þ
c : ð9:27Þ

The limit angular frequencies x mð Þ
c of the modes are such that the wave number

vanishes [5, 13]:

n x mð Þ
c

� �
¼ 0: ð9:28Þ

Thus, we obtain an equation satisfied by the limit frequencies. The solution of
the obtained equation allows to relate the angular frequency of the second mode to
the radius of the bar. Figure 9.8 depicts an example calculated assuming a bar made
of a maraging steel. The frequency of the second mode is plotted as a function of
the bar radius. In the Fig. 9.8, the cut-off frequency xc is also calculated for the two
strain rates 104 s−1 and 105 s−1, and is then plotted as two horizontal lines; xc

increases with the targeted strain rate. With regards to the bar frequency, the
second-mode frequency x 2ð Þ

c decreases as the bar radius increases. The x 2ð Þ
c curve

intersects the dashed line of xc calculated with a strain rate of 105 s−1 at a bar
radius of about rb ¼ 9 mm, while it approaches the solid line of xc calculated with
a strain rate of 104 s−1 at a bar radius of about rb ¼ 40mm: Thus, 40 mm can be
taken as the upper bound of the bar radius if the targeted strain rate is 104 s−1 or
lower. However, 9 mm has to be taken as the upper bound of the bar radius if the
targeted strain rate can be as high as 105 s−1. This ensures that the propagating
frequencies of the second mode and higher are not excited. In that case, the second
and higher modes can be neglected.

Fig. 9.8 Cut-off frequency of
the loading pulse and angular
frequency of the second mode
of the bar
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9.5 Design Procedure

Guo [25] summarized the constraints applied on the components of the direct
impact device in the flow chart represented in Fig. 9.9. Moreover, provided some
input data, the design problem of the direct-impact configuration was formulated by
Guo et al. [20, 25–27] as an optimization problem submitted to equality and
inequality constraints.

First, Guo et al. [20] assumed to be given a family of materials to be tested at a
targeted strain rate _esobj , so that the level of strain in the specimen be framed between
its given minimum esmin and maximum esmax values, and so that a minimum level of
recorded bar strain ebmin be reached. Second, Guo et al. [20] assumed that it is
possible to choose the material of the projectile and the bar, according to the family
of material to be tested, so that their Young’s modulus and mass density (and thus
their sound speed), and the yield stress of the bar rby are known. Finally, Guo et al.
[20] assumed a coarse constitutive model of the specimen material in order to be
able to assess the yield stress rsy , the maximum level of stress reached rsmax and the
sound speed cs .

The unknown vector x associated to the optimization problem consists of the
length of the projectile lp, its impact velocity vp, the dimensions of the specimen
ls;/sð Þ, and those of the bar lb;/bð Þ:

x ¼ lp; vp; ls;/s; lb;/b

� 	
: ð9:29Þ

Objective
* Expected strain rate

Specimen
* Second ratio of system design (Eq. (9.4))
* Allowable range of strain (Eq. (9.9))

Projectile
* Bounds on lp (Eq. (9.9))

Bar & gauges
* First ratio of system design
(Eq. (9.2))
* Buckling (Eq. (9.14))

* Lower bound on lb (Eq. (9.20))

* Experimental design
* Energy conservation (Eq. (9.12))
* Wave reflexions in specimen (Eq. (9.13))

* Third ratio of system design (Eq.
(9.6))

* Minimum strain in the bar (Eq. (9.19))
* Plasticity criterion (Eq. (9.16))
* Frequency criterion (Eq. (9.34))

Fig. 9.9 Constraints applied on and relating the components of the direct-impact Hopkinson
device
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A solution of x may be sought by comparing the computed value of the strain
rate _es xð Þ during the design process to the objective one _esobj . The cost function is
thus defined as follows:

f xð Þ ¼ _es xð Þ � _esobj
�� �� ð9:30Þ

where the strain rate _es xð Þ within the specimen reads:

_es ¼
�vp þ Ap þAb

Ap
cbeb

ls
: ð9:31Þ

This equation allows for different diameters of the projectile and the bar and
assumes that they are made of the same material. We recall that Ap and Ab are the
cross-sectional areas of the projectile and the bar, respectively. The strain in the bar
eb is related to the stress in the specimen and to the second ratio of the system
design through the equilibrium of the specimen/bar interface:

eb ¼ rs
Eb

/s

/b


 �2

: ð9:32Þ

The optimization problem submitted to equality and inequality constraints is thus
formulated as follows [20, 25]:

min
x

f xð Þ ;G xð Þ� 0 ; h xð Þ ¼ 0 ð9:33Þ

where h xð Þ ¼ 0ð Þ is a set of equality constraints that consists of Eqs. (9.31), (9.32)
and the equality between the projectile and bar diameters. The set of inequality
constraints G xð Þ� 0ð Þ consists of inequalities (9.2), (9.4), (9.6), (9.9), (9.12)–
(9.14), (9.16), (9.19) and (9.20). Another inequality is added to the above set of
inequalities which is related to the upper bound prescribed on the bar diameter
given as discussed in Sect. 9.4.4. and summarized through the following implicit
relation:

g /b;xc;x
2ð Þ
b

� �
� 0 ð9:34Þ

where /b;xc;x
2ð Þ
b denote the bar diameter, the cut-off frequency of the loading

pulse and the angular frequency of the second mode of the bar respectively. Notice
also that the cost function defined by (9.30) may a priori exhibit several minima.

Guo et al. [20] used the above approach to design a direct-impact Hopkinson bar
rig for testing materials at strain rates between 5000 and 30,000 s−1. They were
interested in characterizing Ti–6Al–4V material. To withstand the impact force
required to test the titanium alloy, the high-strength maraging steel MARVAL
X2NiCoMo18-8-5 is adopted to manufacture the bar and the projectile. This steel
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has a yield stress of 1800 MPa after sustaining an aging treatment. The diameter of
the projectile is determined by that of the canon and is set at /p ¼ 15:8 mm, being
given a diametral clearance of 0.2 mm. Consequently, the unknown vector
x ¼ lp; vp; ls;/s; lb;/b

� 	
that consists of five parameters remains to be determined.

They selected four strain rates of 5000, 10,000, 20,000 and 30,000 s−1 are given as
the objective strain rates. Consequently, Guo et al. [20] proposed a bar diameter, a
bar length and a specimen diameter of 10, 1.2 and 5 mm, respectively. They also
selected ranges for the specimen length and the impact velocity, namely, [1.5 mm,
5 mm] for the former and [15 m/s, 40 m/s] for the latter. Moreover, they selected
the projectile lengths: 30, 60 and 125 mm. The shortest projectile is used for the
highest strain rate.

9.6 Processing of Direct-Impact Hopkinson Bar
Experiment

The common and main assumption usually performed in the post-processing of
Kolsky experiments is to consider the force equilibrium achieved within the
specimen. The stress is then given by:

rs tð Þ ¼ EbAb

As
eb tð Þ ð9:35Þ

where eb tð Þ, Ab and As denote the strain recorded on the bar, and the cross-sections
of the projectile and the specimen respectively. The absence of the incident bar rises
some difficulties on the deduction of the strain rate and thus the strain in the
specimen. As a consequence, the classical equations of an SHPB do not work any
more in the case of the direct-impact tests.

Alternative methods are required to bypass this difficulty. Intending to deduct the
strain in the specimen, several approaches have been followed so far. A first method
is to measure the strain directly during the test. A high speed camera permits to
record the variation of the geometry of the specimen so that the strain can be
calculated by the image processing. Gorham [10] developed an optical system for
the measurement. In the optical system, he employed a refraction element. The light
from the flash passes through the specimen and get refracted by the refraction
element, so that the profile of the transverse edges of the specimen is shot by a
high-speed camera. Thus the longitudinal strain in the specimen is deduced from
the transverse deformation assuming the incompressibility of the tested material.

The calculation of the strain rate within the specimen requires the difference
between the velocity of the specimen/bar Voutð Þ and that of the projectile/specimen
interface Vinð Þ [see Eq. (9.1)], the latter being expressed as a function of the strain
in the transmitted bar according to the unidimensional wave theory as:
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Vout tð Þ ¼ �cbeb tð Þ: ð9:36Þ

Thus the calculation of the strain and strain rate in a direct impact device comes
down to approach the velocity of the projectile/specimen interface during the
contact. Additional measurement/deduction techniques are proposed to obtain
Vinð Þ.
Malinowski [28] used two separated light systems to measure the displacement

of the projectile/specimen interface and the impact velocity of the projectile in the
tests. Two laser diodes accompanied with two photodiodes are equipped close to
the emitting end of the accelerating tube for the projectile with a certain distance
between them. When the projectile is travelling through this distance, a time
counter records the period so that the velocity of the projectile is computed by the
distance over the time period. The velocity of the interface can be deduced by
assuming a constant deceleration. Another setup consisting of laser diodes and a
photodiode is instrumented to measure the displacement of the projectile/specimen
interface at different instants, using the principle of shadow. A gap is reserved
between the projectile and the deceleration tube. By scaling the light passing
through the gap, the evolution in time of the displacement of the projectile/
specimen interface can be deduced. Besides these experimental setups used to
assess Vinð Þ, the impact velocity of the projectile Vp

� �
can be quite easily measured,

and can thus also be used to approach Vinð Þ and hence to compute the strain rate
_esð Þ:
Dharan and Hauser [11] developed a diagram method to assess the strain and the

strain rate in the specimen as indicated in Fig. 9.10. In this figure, v1, v2 and vx
denote the velocities on the both sides of the specimen and that of the projectile
before impact, while e, _e, rx and a are the strain, strain rate, stress and the length of
the specimen. The subscript E refers to the transmitted bar. The polygonal line
starting from the original point O denotes the velocity of the projectile/specimen
interface identified to Vin in Eq. (9.1). It indicates that after a short constant rising
time, the velocity of the projectile/specimen interface equals the impact velocity of
the projectile (vx in Fig. 9.10), supposing that the projectile sections are rigid.
The rising time is obtained from many tests by impacting the transmitted bar with
the projectile directly. The segment OA represents the time period needed for the
loading pulse to transmit through the specimen. Thus the curve starting from the
point A denotes the stress rx in the specimen deduced from the strain eE measured
in the transmitted bar. Then the velocity on the right side of the specimen is
expressed as v2 ¼ rx=qEcE and plotted. Consequently, the strain in the specimen
can be deduced by calculating the shaded area and then dividing by the length
a. This procedure supposes a constant impact velocity since the work done to strain
the specimen is negligible when compared to the kinetic energy of the comparative
massive projectile.

Gorham et al. [29] has used an expression proposed by Pope and Field [30], to
compute the strain in the specimen from the measurements of vp and eb. Let ls0 be the
initial length of the specimen, the current length of the specimen reads at a time t:
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ls tð Þ ¼ ls0 � v0 þ x1 tð Þþ x2 tð Þ; ð9:37Þ

where v0 is the velocity of projectile, x1 tð Þ and x2 tð Þ are the displacement of the
projectile and the transmitted bar due to elastic deformation. According to v ¼ ce,
the displacement is given by the integration of the velocity with respect to time:

x tð Þ ¼ 1
ZA

Zt

0

f sð Þds; ð9:38Þ

where f, Z ¼ qc and A are the force, the acoustic impedance and the cross-section of
the bar, respectively.

Substituting Eqs. (9.38) into (9.37), the length of the specimen reads:

ls tð Þ ¼ ls0 � v0tþ Zb þ Zp
ZpZbAb

Zt

0

f sð Þds: ð9:39Þ

The above equation assumes that the projectile and the transmitted bar have the
same cross-section but different acoustic impedance. Gorham et al. [29] emphasized
that, the expression (9.39) is only valid within the characteristic time, that is until
the reflected wave in the projectile reaches the specimen. Moreover, Pope and Field
[30] have also discussed the possible errors arisen by the propagation delay in the
recorded signal and by the force rising and oscillation due to the dispersion. They
clarify that, the equilibrium cannot be achieved until at least two round trips of the
wave in the specimen (Fig. 9.11).

Guo et al. [25] used a striker and a bar made of the same material but having
different diameters. Thus Eq. (9.39) is changed to:

Fig. 9.10 Determination of
stress, strain and strain rate
from measurements [11]
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ls tð Þ ¼ ls0 � v0tþ 1
Z
Ab þAp

Ap

Zt

0

Ebeb sð Þds; ð9:40Þ

where Z ¼ Zb ¼ Zp ¼ qbcb. Guo et al. [20, 25] used two laser diodes with pho-
todiodes to measure the impact velocity of the projectile vp. Thus, the strain rate in
the specimen reads:

_es ¼
�vp þ Ap þAb

Ap
cbeb

ls
: ð9:41Þ

Guo et al. [25] proposed a second alternative for the measurement of the strain
and strain rate in the specimen. The direct-impact bar is then equipped with a
high-speed camera to monitor the response of the specimen. Namely, the
high-speed camera allows to film the deformation of the specimen during the tests.
The camera records the motion of the projectile/specimen and specimen/bar
interfaces. The Fig. 9.12 presents the sequential images recorded by the high-speed
camera at 1.8 � 105 frames per second. A tracking technique was applied to obtain

Fig. 9.11 Force (A) and calculated strain (B) curves for Ti–6Al–4V alloy [30]

Fig. 9.12 Specimen deformation capture by the high-speed camera during the test T4 [25]
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the displacement of the projectile/specimen interface uin tð Þ and that of the
specimen/bar interface uout tð Þ. The strain rate is estimated as

_es ¼ _uout tð Þ � _uin tð Þ
ls

ð9:42Þ

The Fig. 9.13 depicts a comparison between Eq. (9.41) and the strain rate
deduced from high-speed images. Denoting the coordinates of the sections of the
projectile and the bar as x pð Þ

n and x bð Þ
n at the instant t ¼ n� 1ð ÞDt, then the strain rate

can be assessed through the following expression:

_es ¼
x bð Þ
nþ 1 � x bð Þ

n

Dt
� x pð Þ

nþ 1 � x pð Þ
n

Dt

!
1

x bð Þ
1 � x pð Þ

1

ð9:43Þ

where Dt is the time interval and is a constant given by the frequency of the camera.
The dots, extracted from the images, fits well the solid curve within the period
25 ls, corresponding to the characteristic time. This supports the hypothesis that
Eq. (9.41) is only valid within the period of the characteristic time.

Integrating the strain rate over time, one gets an approximately linearly rising
strain as shown in the Fig. 9.13b, that superposes well with the data extracted from
the images during the characteristic time.

9.7 Conclusion

The design of direct impact Kolsky/Hopkinson bar devices for very high strain rate
ranges has been presented in this chapter, as well as the processing of experimental
data. It has been shown that the design of this device is constrained by a set of
empirical statements supplemented by others embedding more physics, pertaining
and linking quantities associated to all the components of the direct impact system.

Fig. 9.13 Strain rate and strain calculated in the direct-impact tests by different manners for test
T4 [25]
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The design process can also be formulated as an optimization problem submitted to
equality and inequality constraints, the solution of which can involve many pro-
jectiles of different length to span a large range of strain rate of the tested material as
Guo [20, 25] did for the Ti–6Al–4V.

The removal of the input bar introduces an additional difficulty with respect to
the classical SHPB device that consists in assessing the velocity of the projectile/
specimen interface, in order to obtain the strain rate as well as the strain induced
within the specimen. Then, two solutions have been adopted so far. Either an
additional measurement technique is used (optical system for Gorham [10]) to
deduce the strain within the specimen, or an additional equation based on a further
assumption can be introduced (Gorham [29], Guo [20, 25]) to obtain a formulae
defining the strain rate induced within the specimen during the test.
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