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1 INTRODUCTION

The study of the material performance at high strain rate is an important topic in material sciences,
since the materials usually exhibit strong viscous effects as the rate rises. In some material processes,
the metallic materials may experience very high strain rates up to 106s−1, such as the laser shock
peening (Yu et al., 2009). Studying the dynamic behaviour of the materials requires to perform dynamic
tests on a wide range of strain rate. The classical Split Hopkionson Pressure Bar (SHPB), also referred
to as the Kolsky bar (Davies, 1948; Kolsky, 1949), is a simple device that is widely adopted to perform
such dynamic tests. The classical SHPB device is capable to attain strain rates ranging from 102 to
104s−1 (Gorham et al., 1992; Ramesh, 2008). Attempting to reach higher strain rate may yield the
incident bar. Thus a direct-impact Hopkinson device has been developed (Dharan and Hauser, 1970)
by removing the incident bar. On this direct-impact device, a very high strain rate of the order of 105s−1

is achieved by Dharan and Hauser (1970) and Kamler et al. (1995). In this work, the Ti-6Al-4V alloy
is tested on a direct-impact Hopkinson device at strain rates ranging from 3000 to 25000s−1. Then an
inverse identification is carried out to identify the Johnson-Cook model (Johnson and Cook, 1983) for
the Ti-6Al-4V on this wide range of strain rates.

2 DIRECT-IMPACT TESTS ON THE TI-6AL-4V AT VERY HIGH STRAIN RATE

2.1 Design of the direct-impact configuration and experimental plan
The dynamic tests are performed on a dedicated direct-impact device which design is solution of an
optimization problem as detailed in (Guo et al., 2014). This device consists mainly of a transmitted bar,
the projectile and the compulsory systems for the measurement. The transmitted bar is 1.2m length
and 10mm diameter. To compress the specimen on a wide range of strain rate, four projectiles are
manufactured, of diameter 15.8mm and lengths of 500mm, 125mm, 60mm and 30mm respectively.
The bar and the projectiles are all made of a high strength steel, MARVAL X2NiCoMo18-8-5, with a
yield stress of 1800MPa. Three Wheastone bridges of double gauges are mounted along the bar length
to measure the elastic strain and monitor the dispersion. Two laser diodes are equipped to measure the
impact velocity of the projectile. A high speed camera is also equipped to observe the compression of
the specimen and the movement of the projectile during the impact.
The experimental plan comes down to determine the value of the specimen length ls, the projectile
length lp and its impact velocity vp. However, the combination of these three parameters is not unique
to get a given strain rate. Provided the expected strain rate ε̇s and the allowable strain εs in the specimen,
their maximum values can be approximated through the following equations, cp being the sound speed
in the projectile :

ε̇smax ≈
vp
ls

, εsmax ≈ ε̇s
2lp
cp

(1)

The combination of the parameters for each objective strain rate is presented in table 1.
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TABLE 1 – Experimental plan and results

Test Obj. ε̇ vp lp ls ε̇max εmax Test Obj. ε̇ vp lp ls ε̇max εmax
no (s−1) (m/s) (mm) (mm) (s−1) no (s−1) (m/s) (mm) (mm) (s−1)

T1 3000 15 500 5 3064 11% T7 18000 36 60 2 17970 33%
T2 5000 25 125 5 4642 16% T8 18000 30 60 1.5 18350 16%
T3 7000 28 125 4 6925 17% T9 20000 30 60 1.5 21222 23%
T4 10000 30 60 3 10740 17% T10 20000 40 30 2 19659 24%
T5 12000 36 60 3 12040 25% T11 25000 37.5 30 1.5 25050 25%
T6 15000 30 60 2 15010 11%

2.2 Measurements from the direct-impact tests
The measured data consist of the elastic strain εb(t) in the transmitted bar and the impact velocity vp
of the projectile. The force Fs(t) applied by the bar on the specimen is computed from the recorded
strain εb(t) :

Fs(t) = EbSbεb(t) (2)

where Eb and Sb are the Young’s modulus and the cross-section of the bar. The force Fs(t) computed
for the tests listed in table 1 is plotted in the figure 1 for each projectile length. In these curves, some
trays are observed during the unloading part. These arise from (i) the shorter length of the projectile
than that of the bar and (ii) the mismatch of the generalized wave impedances (Wang, 2007) of the
projectile (ρcS)p, the specimen (ρcS)s and the transmitted bar (ρcS)b. Moreover, when the projectile is
long enough, the loading time is equivalent to the characteristic time, as shown in the figure 1(a) where
the projectile is 500mm length. As the projectile length shortens, the actual period of the compression
of the specimen lasts approximately twice the characteristic time or even longer as observed in the
figures 1(b)-1(d). This results from the different cross-sections of the projectile and the bar in these
experiments.
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FIGURE 1 – Force on the specimen in the direct-impact tests

Without any input bar to measure the input force, the strain rate in the specimen is assessed by the
following equation (Gorham et al., 1992; Guo et al., 2014) :

ε̇s(t) = −
vp +

Sp+Sb

Sp
cbεb(t)

ls
(3)
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where Sp and cb are the cross-section of the projectile and the sound speed of the bar. The maximum
compressive strain rate ε̇max assessed by this equation and the measured compressive strain εmax are
presented in table 1 for each test. According to this formula, the compressive strain rate gets its ex-
tremum equal to vp/ls at the beginning of the impact. However, this equation is only valid within the
characteristic time (Gorham et al., 1992).
Since the force equilibrium of the specimen can not be checked, and the actual loading period is much
longer than the characteristic time, an inverse analysis is carried out to identify the dynamic behaviour
of the Ti-6Al-4V alloy.

3 INVERSE IDENTIFICATION OF THE JOHNSON-COOK CONSTITUTIVE MODEL

A constitutive model is first postulated to describe the behaviour of the tested material. The parameters
of this constitutive model are then identified so that some given quantities extracted from the numerical
simulation fit experimental data. The Johnson-Cook model is widely adopted to describe the dynamic
behaviour of metallic materials, and is here used for the Ti-6Al-4V alloy. The temperature effects are
not addressed in this work, the Johnson-Cook equation thus reads :

σ(εpeq,
˙εpeq) =

(
A+B(εpeq)

n
)(

1 + C ln
ε̇peq
ε̇0

)
(4)

The parameters A, B and n are identified on quasi-static stress-strain curves obtained at the strain rate
of 10−4s−1 :A=955MPa,B=770MPa and n=0.557. A reasonable range of search of 0.005 ≤ C ≤ 0.05
is set for the parameter C. Then a 2D axisymmetric finite element model is established in ABAQUS to
run the inverse analysis in order to identify the parameter C. The cost function f(x) is defined as the
euclidean norm of the difference between the simulated strain εsim(x, t) extracted at the location of the
gauge and the recorded one εexp(t).

f(x) = ‖ εsim(x, t)− εexp(t) ‖2 (5)

The figure 2 presents the superposed plots of the recorded and calibrated strain curves of some tests,
and also shows the values of C identified on each test with respect to the experimental strain rates
assessed by equation 3. In the figures 2(a)-2(c), the calibrated strain curves fit well the recorded ones
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FIGURE 2 – Recorded and calibrated strain curves

in the loading stage. However some discrepancies can also be observed during the unloading period. In
the figure 2(d), slight discrepancies appear in the loading stage, when the strain rates exceed 104s−1.
This kind of discrepancies increases as the strain rate goes beyond 20000s−1 as shown in the figure
2(e). In the figure 2(f), the parameter C is almost constant in the range of 3000 to 15000s−1. As the
strain rate increases, the results of the identification are subject to more scattering. A much greater
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value of C of about 0.03 is obtained when the strain rate is over 20000s−1, whereas a smaller one
is identified on the tests T7 and T9. For many ductile materials, it has been observed that the stress
increases more rapidly as the strain rates excess the level of 103s−1(Rule and Jones, 1998). However
here, more tests and identifications are required to come to a reliable conclusion for the highest strain
rates.

4 CONCLUSION

In this work, the Ti-6Al-4V has been tested on the direct-impact Hopkinson device on a wide range of
strain rate ranging from 3000 to 25000s−1. Due to the mismatch of the material impedances and cross-
sections, a longer loading period has been observed in the force curves. Thus an inverse identification
procedure has been adopted to identify the Johnson-Cook model for the Ti-6Al-4V on the experimental
data. It has been shown that this model works well at least up to 20000s−1, even though more tests are
required for strain rates greater than this value.
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