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Résumé :
Ce travail a pour but de caractériser le comportement de l’alliage Ti-6Al-4V à très haute vitesse déformation. Pour

cela, nous avons conçu et dimensionné un système de Hopkinson à impact direct et pu balayer des vitesses de déforma-
tion comprises entre 3000s−1 et 25000s−1. Les lois élastique-viscoplastiques de Johnson-Cook, Zerilli-Armstrong et
Nouailhas ont été identifiées sur la base des données expérimentales par analyse inverse. Ces trois lois permettent de
bien décrire les données expérimentales dans une gamme allant de 3000s−1 à 18000s−1.

Abstract :
The dynamic behaviour of the Ti-6Al-4V alloy is studied experimentally and numerically in this work. Using a

direct-impact device, dynamic tests done on a wide range of strain rate of 3000 to 25000s−1 are succeeded on this alloy.
An inverse analysis involving a numerically dynamic analysis is then adopted for identifying three elastic-viscoplastic
constitutive models on the dynamic tests : the Johnson-Cook, Zerilli-Armstrong and Nouailhas models. The results show
that all these models fit well the experimental data at a strain rate up to 18000s−1.

Mots clefs : Direct impactKolsky bar ; Inverse analysis ;High strain rate ; elastic-viscoplastic
constitutive models

1 Introduction

The study of thematerial performance at high strain rate is an important topic inmaterial sciences, since thematerials
usually exhibit strong viscous effects as the rate rises. In some material processes, the metallic materials may experience
very high strain rates up to 106s−1, such as the laser shock peening [1]. Studying the dynamic behaviour of the materials
requires to perform dynamic tests on a wide range of strain rate. The classical Split Hopkionson Pressure Bar (SHPB),
also referred to as the Kolsky bar [2, 3], is the most widely used apparatus to perform such dynamic tests. The classical
SHPB device is capable to attain strain rates ranging from 102 to 104s−1 [4, 5]. Attempting to reach higher strain rate
may yield the incident bar. Thus a direct-impact Hopkinson device has been developed [6] by removing the incident bar.
On this direct-impact device, a very high strain rate of the order of 105s−1 is achieved by [6] and [7]. In this work, the
Ti-6Al-4V alloy is tested on a direct-impact Hopkinson device at strain rates ranging from 3000 to 25000s−1. Then an
inverse identification is carried out to identify three elastic-viscoplastic constitutive models for the Ti-6Al-4V on this
wide range of strain rates.

2 Direct-impact tests on the Ti-6Al-4V at very high strain rate

The dynamic tests are performed on a dedicated direct-impact device which design is solution of an optimization
problem as detailed in [8]. This device consists mainly of a transmitted bar, the projectile and the compulsory systems
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for the measurement. The transmitted bar is 1.2m length and 10mm diameter. To compress the specimen on a wide
range of strain rate, four projectiles are manufactured, of diameter 15.8mm and lengths of 500mm, 125mm, 60mm and
30mm respectively. The bar and the projectiles are all made of a high strength steel, MARVAL X2NiCoMo18-8-5, with
a yield stress of 1800MPa. Three Wheastone bridges of double gauges are mounted along the bar length to measure the
elastic strain and monitor the dispersion. Two laser diodes are equipped to measure the impact velocity of the projectile.
A high speed camera is also equipped to observe the compression of the specimen and the movement of the projectile
during the impact.

The experimental plan comes down to determine the value of the specimen length ls, the projectile length lp and
its impact velocity vp. However, the combination of these three parameters is not unique to attain the expected strain
rate. Provided the expected strain rate ε̇s and the allowable strain εs in the specimen, their maximum values can be
approximated through the following equations, cp being the sound speed in the projectile :

ε̇smax ≈
vp
ls

, εsmax ≈ ε̇s
2lp
cp

(1)

The combination of the parameters for each objective strain rate is presented in table 1.

Table 1: Experimental plan and results

Test Obj. ε̇ vp lp ls ε̇max εmax Test Obj. ε̇ vp lp ls ε̇max εmax
no (s−1) (m/s) (mm) (mm) (s−1) no (s−1) (m/s) (mm) (mm) (s−1)

T1 3000 15 500 5 3064 11% T7 18000 36 60 2 17970 33%
T2 5000 25 125 5 4642 16% T8 18000 30 60 1.5 18350 16%
T3 7000 28 125 4 6925 17% T9 20000 30 60 1.5 21222 23%
T4 10000 30 60 3 10740 17% T10 20000 40 30 2 19659 24%
T5 12000 36 60 3 12040 25% T11 25000 37.5 30 1.5 25050 25%
T6 15000 30 60 2 15010 11%

Themeasured data consist of the elastic strain εb(t) in the transmitted bar and the impact velocity vp of the projectile.
The force Fs(t) applied by the bar on the specimen is computed from the recorded strain εb(t) by Fs(t) = EbSbεb(t),
where Eb and Sb are the Young’s modulus and the cross-section of the bar. The force Fs(t) computed for the tests
listed in table 1 is plotted in the figure 1 for each projectile length. In these curves, some trays are observed during
the unloading part. These arise from (i) the shorter length of the projectile than that of the bar and (ii) the mismatch
of the generalized wave impedances [9] of the projectile (ρcS)p, the specimen (ρcS)s and the transmitted bar (ρcS)b.
Moreover, when the projectile is long enough, the loading time is equivalent to the characteristic time, as shown in the
figure 1(a) where the projectile is 500mm length. As the projectile length shortens, the actual period of the compression
of the specimen lasts approximately twice the characteristic time or even longer as observed in the figures 1(b)-1(d),
resulting from the different cross-sections of the projectile and the bar in these experiments. As a consequence, the
specimen in these tests experiences a second-time compression before the unloading wave arrives, and thus obtained
a greater residual strain than that of the test T1 as shown in the table 1, even though the greatest kinematic energy is
achieved in this test.

Without any input bar to measure the input force, the strain rate in the specimen is assessed by the following equation
[4, 8] :

ε̇s(t) = −
vp +

Sp+Sb

Sp
cbεb(t)

ls
(2)

where Sp and cb are the cross-section of the projectile and the sound speed of the bar. The maximum compressive
strain rate ε̇max assessed by this equation and the measured compressive strain εmax are presented in table 1 for each test.
According to this formula, the compressive strain rate gets its extremum equal to vp/ls at the beginning of the impact.
However, this equation is only valid within the characteristic time [4].

The stress-strain curves are thus assessed using the classical analysis of the Hopkinson tests [10] as shown in the
figure 2. The curves exhibit a rising strain hardening as the strain rate increases. They are subject to scattering, as we
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Figure 1: Force on the specimen in the direct-impact tests

can observe through small oscillations and a smaller flow stress appear in the curves of the tests T8 and T9. Oscillations
are also observed at higher strain rate in the figure 2(d). Consequently, the rate dependency is difficult to be assessed on
these curves directly. An inverse analysis is carried out for the identification of the constitutive models.
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Figure 2: Stress-strain curves of the Ti-6Al-4V

3 Inverse identification of elastic-viscoplastic constitutive models

Three elastic-viscoplastic constitutive models have been chosen for their potential abilities to fit correctly the expe-
rimental measurements and are identified by means of an inverse procedure involving a dynamic numerical analysis.
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No thermal effect is addressed in these identifications. The Johnson-Cook model [11] in isothermal conditions reads :

σ(p, ṗ) = (A+Bpn)

(
1 + C ln

ṗ

ṗ0

)
(3)

where p and ṗ are the cumulated plastic strain and strain rate respectively. The parameters A, B and n are identified on
quasi-static stress-strain curves obtained at the strain rate of 10−4s−1 [10] :A=955MPa,B=770MPa and n=0.557. Thus
only the parameter C is to be identified in the inverse process. An axisymmetric 2D Finite Element model in ABAQUS
is created to proceed the dynamic simulation, consisting of the projectile, the specimen and the bar all meshed. The
Zerilli-Armstrong model [12] is calibrated on the same experimental database, using a unidimensional FE model in
MATLAB developed by [13]. Two variants for bcc and hcp materials are considered, that read :

σy = C0 + C1 exp(−C3T + C4T ln ṗ) + C5p
n (bcc) (4)

σy = C0 + C1 exp(−C3T + C4T ln ṗ) + C2
√
p exp(−C ′3T + C ′4T ln ṗ) (hcp) (5)

Assuming a constant T , the first formula (4) reduces to :

σy = K0 +K1p
n +K2ṗ

K3 (bcc) (6)

where K0 = C0, K1 = C5, K2 = C1 exp(−C3T ) and K3 = C4T . The parameters K0,K1, n have the same value
as the parameters A,B, n of the Johnson-Cook relation because of the equivalent form of strain hardening. Only two
parametersK2 andK3 have been calibrated inversely. The second formula (5) reduces to :

σy = K0 +K1ṗ
K2 +K3

√
pṗK4 (hcp) (7)

where K0 = C0, K1 = C1 exp(−C3T ), K2 = C4T , K3 = C2 exp(−C ′3T ) and K4 = C ′4T . K0 is equivalent to the
yield stress, hence the unknown vector consists of four parametersK1,K2,K3 andK4 during the inverse identification.
The Nouailhas model [14] has been used with success for adhesively bonded assemblies to account for viscous effects
[15]. The creep law of this model is expressed as :

ṗ =

〈
|σ| −R− σy

K

〉n

exp

(
α

〈
|σ| −R− σy

K

〉n+1
)

(8)

where 〈x〉 denotes the positive part of x, that is 〈x〉 = x+|x|
2 . The parameter α enables to saturate the viscous effects.

An isotropic hardening power law [16] Ṙ = Qṗm is adopted. The first three parameters σy , Q, m are also calibrated
on the quasi-static tests from [10] : σy = 955MPa, Q = 770MPa, m = 0.557. The material parameters associated to
the rate dependency are thusK, n and α.

The cost function f(x) is defined as the euclidean norm of the difference between the simulated strain εsim(x, t)
extracted at the location of the gauge and the recorded one εexp(t). The identification is proceeded on each tests of the
table 1 ; the calibrated strain εsim of the tests T1, T4, T6, T8 and T11 are plotted and superposed on the experimental
one εexp in the figures 3(a)-3(e). An error bar is drawn associated to each mean value of the parameter C for the 2D
identification, as shown in the figure 3(f), since at least two repetitions are carried out for each test. The simulated strains
of different constitutive models are quite well superposed with the experimental one at strain rate up to 15000s−1. A
good concordance is observed at the second raising stage when the specimen is plastically deformed as shown in the
figures 3(a)-3(c). Small discrepancy appears at this stage between the calibrated strain of the Johnson-Cook model and
the measured one in the figure 3(d), whereas the Zerilli-Armstrong fits well the experimental data. As the strain rate
goes higher, a greater strain is obtained from the test, while an equivalent amplitude of strain is simulated by the two
constitutive models as presented in the figure 3(e). The figure 3(f) indicates that an approximately constant value of
the parameter C of the Johnson-Cook model is identified at the strain rate ranging from 3000 to 18000s−1. However a
much greater value is obtained at very high strain rate in the tests T10 and T11. The discrepancies in these two tests may
be due to (i) the very short projectile used in the test and/or (ii) the thermal effects not addressed in the identification.
More repetitions of these two tests are to be carried out to enforce or not the results.
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Figure 3: Results of the identifications

The stress-strain curves of the identified constitutive models are plotted at the strain rate of 3000s−1 and 18000s−1

and superposed to those obtained from the quasi-static tests in the figure 4. The figures 4(a)-4(c) show a great raise of
the flow stress from the quasi-static to the dynamic conditions. But a much slighter increase is observed when the strain
rate goes from 3000 to 18000s−1, especially for the Johnson-Cook model, where the two curves at these two strain rates
are almost superposed in the figure 4(a). Indeed the rate dependency of this alloy has not been found greater than that
predicted by the Johnson-Cook model at least in the studied range of strain rate, and so does for the other models.
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Figure 4: Stress-strain curves plotted within the range of 10−4 to 18000s−1

4 Conclusion
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In this work, the Ti-6Al-4V has been tested on a wide range of strain rate ranging from 3000 to 25000s−1 using
the direct-impact Hopkinson device. An inverse analysis is carried out to identify three elastic-viscoplastic constitutive
models on the dynamic experimental data. All three identified constitutive models fit well the experimental data at the
strain rate ranging from 3000 up to 18000s−1. However more experimental and numerical research at higher strain rate
is required to refine these results.
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