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Contact Stability Analysis of a One
Degree-of-Freedom Robot
B. BROGLIATO AND P. ORHANT
Laboratoire d’Automatique de Grenoble, UMR CNRS-INPG 5528, Domaine Universitaire,
B.P. 46, 38402 Saint Martin d’Hères, France

Abstract. The aim of this note is to examine the conditions of stability of a simple robotic task: we consider a
one degree-of-freedom (dof) robot that collides with a spring-like environment with stiffness k, the goal being to
stabilize the system in contact with the environment. We study conditions on the feedback gains that guarantee
quadratic Lyapunov stability of the task with a well-conditioned solution to the Lyapunov equation. It is shown
that when the environment’s stiffness k grows unbounded, those conditions yield unbounded values of the gains.
Motivated by the stability analysis of the impact Poincaré map in the perfectly rigid case (k = +∞), we propose
an analysis that is independent of k. It enables us to conclude on global asymptotic convergence of the system’s
state towards the equilibrium point. This work can also be seen as the study of stability of a contact (force control)
phase, taking into account the unilateral feature of the constraint.

Keywords: free and constrained motion, compliant and rigid environment, quadratic Lyapunov stability, contact
stability, impact Poincaré map

1. Introduction

The last fifteen years have witnessed important progresses in the theory of manipulator’s
control. It has been assumed that the robot evolves either in a free space (motion control),
or that it remains in contact with a certain environment (hybrid force/position control).
Both cases have been considered separately in the literature, and several solutions have
been proposed in each case. However a real robotic task often implies phases of transition
between free motion and constrained motion, and the so-called transition phase appears
to be in most cases crucial for the system’s stability. This is the case for hopping robots,
walking machines, and manipulation with a robotic hand. Some interesting results for
the transition phase control have been presented, see e.g. [21] [25] [18] [19]. Also many
studies have been devoted to investigate the so-called contact stability problem, due to the
unilaterality of the robot’s tip constraint [7] [24] [5] [1] [8]. It seems that Whitney [24] was
the first to point out and analyze such problems. However the first papers dealing with the
transition phase containing a complete stability analysis for a n-degree of freedom robot
controlled by a switching algorithm were recently proposed in [12] [3].
The goal of this study is not to extend these works to more complex environments models

or control algorithms, but rather to point out some problems related with stabilization of
motion-controlled manipulators that come in contact with a compliant environment, in
particular the sufficient conditions guaranteeing asymptotic convergence of the solutions
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towards the steady-state solution. Indeed we restrict ourselves to a simple continuous PD
motion controller (in contrast with the sophisticated switching controllers studied in [3] [10]
[12] [11]) and to the case of a purely elastic environment. Basically our motivation is the
following: a question a designer may ask himself when facing a real problem is: should the
environment be considered as flexible or as rigid? In general one considers that rigid body
collisions occur when the bodies show “sufficiently small” deformation so that they are
geometrically rigid at a global observation scale [14]. The answer is crucial for the choice
of the control algorithm1 and depending on it, the analysis of the whole robotic task may be
quite different. Indeed rigid body dynamics involve models which completely differ from
those used when compliant bodies are considered (i.e. respectively measure differential
equations [13] [14] instead of ordinary differential equations). In the rigid body impacting
case, it is customary and convenient to study the so-called impact Poincaré map which is
a discrete-time reduced-order system [23]. In the compliant body case (in general spring-
dashpot contact models), one usually directly uses a Lyapunov-like stability analysis, the
system being in this case a very simple example of a hybrid dynamical system [2]. Note
that the boundary between “flexible” and “rigid” is quite clear from a mathematical point
of view, but not from a practical one: Besides clearly rigid environments made of hard
materials (concrete, iron . . . ) and clearly flexible ones, some others might be considered
to belong to one class or the other one depending on the task (masses of the bodies that
collide, accuracy of the measurements, limits of the actuators . . . ). We believe the results
in this paper may help in partially answering this question.
The note is organized as follows: in section 2, the system and the notations are introduced

andwe showwith a particular Lyapunov function that the closed-loop system’s fixed point is
Lyapunov globally asymptotically stable (GAS) for a suitable choice of the feedback gains,
and for k < +∞. In section 3 we analyze the problem related with quadratic stability
of the task when the environment’s stiffness grows unbounded. We show that in order to
guarantee that the solution P to the system’s Lyapunov equation satisfies λminP ≥ δ > 0
for some δ, where λmin denotes the smallest eigenvalue, the feedback gains grow unbounded
as k → +∞. Section 4 is devoted to analytically prove global asymptotic convergence of
the position and velocity tracking errors towards zero, independently of the contact stiffness
value. The analysis is shown to reduce to the stability analysis of the impact Poincaré map
associated to the closed-loop system when k = +∞. Finally conclusions are drawn in
section 5, and some technical results are developed and recalled in the appendices.

2. A Simple Example

The system consists of a simple mass moving horizontally without friction whose position
is given by x(t), and a compliant environment at x = 0 whose model is a spring with
stiffness k > 0 (see figure 1). The control law is given by u = −λ2 ẋ − λ1(x − xd), xd ≥ 0,
λ1 > 0, λ2 > 0. We assume that contact is established at t = 0, with x = 0. Then the
equations that govern our system are:{

mẍ + λ2 ẋ + λ1x = λ1xd if x < 0
mẍ + λ2 ẋ + (λ1 + k)x = λ1xd if x ≥ 0

(1)
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Figure 1. Controlled mass colliding an elastic wall.

Notice that convergence of the state (x, ẋ) towards the fixed point of the second equation in
(1) may be investigated by considering the associated equivalent mechanical system to the
closed-loop system in (1). Notice however that the equivalent total mechanical energy for
such a nonlinear discontinuous system is not simply the concatenation of both the (closed-
loop) energy functions for the free and contact phases. Indeed it corresponds to the so-called
available storage function in dissipative systems theory. Calculations can be found in [4].
In the sequel we focus on a particular stability property of that equilibrium point. The
motivation for studying this type of stability is evident if one thinks of more complicated
tasks as considered for instance in [12]. Also the equivalencewith amechanical systemmay
no longer be possible in certain cases, e.g. when the feedback loop contains time-delays or
for tracking control.
When the contact stiffness is finite, one can treat such a stabilization problem from

different point of views, for instance: i) Study conditions that guarantee that after the
first contact has occured, there is no rebound [10], ii) Relax the bounceless conditions
by studying conditions that insure Lyapunov quadratic stability of the system, i.e. find a
Lyapunov function V (x) such that along trajectories of the system V̇ (x) = −xT Qx with
Q > 0 (which does not a priori guarantee that the robot’s tip will never take off the
environment’s surface), see e.g. [12]. Since these tools will generally provide sufficient
conditions only, it is worth investigating whether these conditions are of any practical
interest or not. In particular, if they yield lowerbounds on the feedback gains that are
proportional to the environment’s stiffness, it is clear that as soon as this stiffness becomes
too large, the conditions become useless. It is then natural to seek a convergence proof
that is independent of the stiffness as well as of the feedback gains values. For the sake
of briefness of the paper, we shall study only approach ii). In fact it can be easily (and
logically) concluded that bounceless conditions are impossible to obtain with finite force
control, for nonzero contact velosity, as the stiffness k grows unbounded. It is note worthy
that this work can also be seen as a study on conditions of stability of a force control scheme,
taking into account the fact that the constraints are unilateral, i.e. the robot’s tip may take
off the surface and possibly start a sequence of rebounds.
Before going on with the stability analysis of system (1) when k < +∞, let us recall that

as k → +∞, the solutions of (1) converge towards the solutions of the following dynamical
system:
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mẍ + λ2 ẋ + λ1x = λ1xd if x < 0
ẋ(t+

k ) = −ẋ(t−
k ) if x(tk) = 0

ẍ = min(0, −λ2 ẋ − λ1x + λ1xd) if ẋ(t+
k ) = 0

(2)

The tk’s generically denote the impact times. The proof of convergence can be found in
[15], together with a rigorous definition of the used notion of convergence. It is therefore
legitimate to seek a stability analysis that encompasses both systems in (1) and (2), i.e.
that works for all k ∈ [0, +∞]. We shall come back on the definition and on the stability
analysis of the impact Poincaré map associated to (2) in section 4.
For themoment we shall analyze the stability of the task using a single Lyapunov function.

To begin with, we show how the stability analysis of the closed-loop system in (1) can be
led with a particular Lyapunov function candidate: Let us consider

V = 1
2

mẋ2 + 1
2
λx̃2 + cx̃ ẋ (3)

with λ = λ1 + k + λ2c
m , c > 0 is such that c2 − λ2c − m(λ1 + k) < 0 (since � =

λ22 + 4m(λ1 + k) > 0, and
√

� − λ2 > 0, such a c can always be chosen arbitrarily
small), and x̃ = x − λ1xd

λ1+k . λ and c guarantee that V is positive definite. Now we get along
closed-loop trajectories:

• x < 0 (non-contact)

V̇ ≤
(

−λ2 + c + 1
2

k2 + 1
2

)
ẋ2 +

(
−cλ1

m
+ 1

)
x̃2 + 1

2

(
λ1k

λ1 + k
xd

)2

+1
2

(
cλ1k

(λ1 + k)m
xd

)2

(4)

or in compact form

V̇ = −anc ẋ2 − bnc x̃2 + R (5)

with R > 0.
• x > 0 (contact)

V̇ = (−λ2 + c)ẋ2 − λ1 + k
m

cx̃2 = −acẋ2 − bcx̃2 (6)

Claim 1. For any stiffness 0 < k < +∞ there exist P = PT > 0, Q = QT > 0,
λ�
1 < +∞, λ�

2 < +∞ such that λ1 > λ�
1, λ2 > λ�

2 implies that for all t ≥ 0, V = zT Pz,
V̇ ≤ −zT Qz. Thus the equilibrium point z = 0 is globally asymptotically stable (GAS).

The proof is given in appendix A.

3. Analysis of Quadratic Stability Conditions for Large Stiffness Values

We shall be content with these existence results on the feedback gains in the above analysis.
However, let us note that if one takes the sufficient conditions for stability deduced from
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the above analysis, then the feedback gains λ1 and λ2 → +∞ as k → +∞. This suggests
that in order to obtain quadratic Lyapunov stability of (1) one has to choose feedback gains
proportional to the stiffness k as k becomes large. Let us rewrite (1) in state space form as

z ∈ (NC)
�= {x : x < 0} ż = Acz +

(
0

k
m x

)

z ∈ (C)
�= {x : x ≥ 0} ż = Acz

(7)

where

zT =
(

x − λ1xd

λ1 + k
, ẋ

)
(8)

Ac =
(

0 1
−1
m (λ1 + k) −λ2

m

)
(9)

Clearly the choice of the first component of z stems from the fact that we want to stabilize
the robot in contact with the environment. Moreover from (1) one sees that the equilibrium
point of the first equation belongs to (C), whichmeans that the system in (7) possesses in fact
only one equilibrium point, i.e. zT = (0, 0) (Note that the uniqueness holds for any value
of xd ; when xd = 0 both equations in (1) have the same equilibrium point (x, ẋ) = (0, 0)).
Stability of Ac is independent of k since its eigenvalues are either real strictly negative or
with real part equal to −λ2

2m . Thus for any Qc = QT
c > 0 there always exists P = PT > 0

such that AT
c P + P Ac = −Qc. Since we want to stabilize the equilibrium point z = 0, we

choose a Lyapunov function candidate as V = zT Pz. Along trajectories in (NC) we get

V̇ = −zT Qcz + zT P

(
0
2k
m x

)
(10)

For simplicity of the analysis, let us choose xd = 0. Then we can write

V̇ = −zT Qcz + zT P K z �= −zT Q̄cz (11)

with

K �=
(

0 0
2k
m 0

)
(12)

Simple calculations yield:

Qc =
[

2 λ1+k
m p12 λ2

m p12 + λ1+k
m p22 − p11

λ2
m p12 + λ1+k

m p22 − p11 2
(

λ2
m p22 − p12

)
]

(13)

Qnc =
[

2λ1
m p12 λ2

m p12 + λ1
m p22 − p11

λ2
m p12 + λ1

m p22 − p11 2
(

λ2
m p22 − p12

)
]

(14)
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where Qnc is the symmetric part of the matrix Q̄c, that is independent of k. It is worth
noting that only the skew-symmetric part of Q̄c depends on k.
Thus a necessary and sufficient condition for Qc to be positive definite is that:

• λ1+k
m p12 > 0

•
det(Qc) = 4 λ1+k

m p12
(

λ2
m p22 − p12

)
− (

λ2
m p12 + λ1+k

m p22 − p11
)2

> 0

For Qnc the conditions are the following :

• 2λ1
m p12 > 0

•
det(Qnc) = 4 λ1

m p12
(

λ2
m p22 − p12

)
− (

λ2
m p12 + λ1

m p22 − p11
)2

> 0

Our aim in this section is to examine the conditions such that this simple task is Lyapunov
quadratically stable, and in particular to find out which kind of conditions this implies on
the feedback gains. It is clear that if one concludes for instance that λ1 must be larger than
k, then it means that this sort of stability analysis is completely meaningless and useless as
soon as the environment’s stiffness is too large; then one has to change the objectives (relax
the stability conditions) or the model (consider that the environment’s surface is rigid) to
get satisfactory conditions on the feedback gains. As shown in appendix B, the following
result is true:

Claim 2. Consider the one-dof closed-loop equations in (1) with xd = 0. Then quadratic
stability of the system implies conditions such that when the environment’s stiffness k grows
unbounded, then the feedback gains λ1 and/or λ2 have to be chosen of order ≥ kβ , β ≥ 1

2
to guarantee that the solution P of the Lyapunov equation remains bounded away from
singularities (i.e. λminP ≥ δ > 0 for some δ) and that the matrices Qc and Qnc remain
positive definite.

We reiterate that the only thing we have done is to study conditions on the feedback
gains such that the Lyapunov equation AT

c P + P Ac = −Qc possesses a solution that is
bounded-away from singularities and guarantees Qc > 0, Qnc > 0. The choice for such a
stability analysis is quite natural: indeed it is the application of Lyapunov’s direct method
to a simple hybrid dynamical system [2]. The result of claim 2 are consistent with those
to be found in other studies, see for instance [12] and [19] [18], although the system we
analyze is much simpler that those treated in these references.

4. A Stiffness Independent Convergence Analysis

Firstly let us consider the system in (2). Let us take the Poincaré section �+ = {(x, ẋ):
x = 0, ẋ(t+

k )}. Notice that if x(0) > 0, then the sequence of impact times {tk} is infinite
(this can be easily shown by studying the vector field between the impacts, which forces

6



the system to attain in finite time the constraint surface x = 0 whatever bounded initial
conditions one may choose). The impact Poincaré map P� : ẋ(t+

k ) → ẋ(t+
k+1) is thus well

defined. However it is not explicitely calculable, despite of the simplicity of the dynamics.
This is due to the nonzero dissipation during flight-times. Let us choose:

V�(k) = 1
2

mẋ2(t+
k ) (15)

We prove that P� is Lyapunov stable with V� as a Lyapunov function as follows. Consider
the function

V = 1
2

mẋ2 + 1
2
λ1(x − xd)

2 (16)

Along free-motion trajectories of (2) one obtains

V̇ = −λ2 ẋ2 (17)

and at the impact times

σV (tk) = 1
2

[
ẋ2(t+

k ) − ẋ2(t−
k )

] = 0 (18)

where σ f (tk) generically denotes the jump in the function f (·) at tk . Hence

V (t+
k+1) − V (t+

k ) = −λ2

∫
(tk ,tk+1)

ẋ2(τ )dτ ≤ 0 (19)

Now from the fact that V (t+
k+1) − V (t+

k ) = V�(k + 1) − V�(k) ≤ 0, we conclude the proof.
This stability result suggests 2 that one should be able to analyze the stability of the system
in (1) for any k ≥ 0, without the drawbacks encountered in the previous section.
In the following, we propose a different convergence analysis to prove that the equilib-

rium point of (1) is asymptotically reached for any initial condition and any value of the
feedback gains, independently of the value of k; the particular feature of the analysis is
that it extends naturally to the rigid environment case (i.e. k = +∞), contrarily to the
foregoing one. Roughly speaking, we consider a particular section of the phase-plane,
� = {(x, ẋ) : x = 0}. Then we analyze the mass velocity at the instants ti when the trajec-
tories cross this section; we use the fact that these times define a sequence along which the
kinetic energy is non-increasing; it follows that if {ti } is an infinite sequence, the velocity
must converge to zero when i → +∞; if xd is strictly positive, this leads to a contradiction
and there is a finite number of bounces, so that both x̃ and ẋ converge to zero. To clarify
the notations the instants ti and tk are depicted in figure 2.
We assume that the mass makes contact with the environment at t = ti , looses contact

at t = ti+1, i ∈ N, and that contact occurs at x = 0. Thus contact occurs on intervals
[t2i , t2i+1], and free motion on intervals [t2i+1, t2i+2]. Let us consider the positive definite
functions

Vc = 1
2

mẋ2 + 1
2
(λ1 + k)

(
x − λ1xd

λ1 + k

)2

(20)
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t1
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t3

t4

t5

x

dx/dt

xd

t0+
t1+
t2+

x

dx/dt

non-contact contact

0

�
�
�
�

�
�
�

1.a 1.b

Figure 2. definition of the times ti (1.a) and tk (1.b).

and Vnc as in (16). On intervals [t2i , t2i+1],

V̇c = −λ2 ẋ2 (21)

On intervals [t2i+1, t2i+2],

V̇nc = −λ2 ẋ2 (22)

Let T (t) denote the system’s kinetic energy. From the fact that

Vc(t2i+1) − Vc(t2i ) = T (t2i+1) − T (t2i ) (23)

and

Vnc(t2i+2) − Vnc(t2i+1) = T (t2i+2) − T (t2i+1) (24)

we deduce that for all i , T (ti+1) − T (ti ) < 0, hence

|ẋ(ti+1)| < |ẋ(ti )| (25)

The same inequalities hold for Vc and Vnc. Now notice that there are two situations: either
the sequence of instants ti is finite (the bounces stop after a finite time t2N , N < +∞, and
since xd > 0, x(t) > 0 for all t > t2N ), or this sequence is infinite i.e. N = +∞.

• If N < +∞, then for t > t2N the system is governed by the second equation in (1)
(indeed each time the mass is “outside” the environment it necessarily collides again after a
finite time) and we conclude that x → λ1xd

λ1+k , ẋ → 0 asymptotically, globally and uniformly.

• Assume that N = +∞. Since the kinetic energy is a positive definite function of the
velocity that is non-increasing at times ti , T (ti ) converges as i → +∞, and so does ẋ(ti ).
Suppose that |ẋ(ti )| → |ẋss | with |ẋss | ≥ δ > 0 (the ss subscript is for steady state value).
Now δ > 0 and since sgn(ẋ(ti )) = −sgn(ẋ(ti+1)) and x(ti ) = x(ti+1) = 0, one deduces
that the length of the orbit between ti and ti+1 is strictly positive. Since the flow of both
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equations in (1) is exponential and bounded for bounded feedback gains and stiffness k,
clearly μ[ti , ti+1]

�= μi+1 > 0 and

T (ti ) − T (ti+1)
�= βi+1 = λ2

∫ ti+1

ti
ẋ2dt > 0 (26)

Note that for fixed and bounded coefficients in (1) μi and βi depend only on δ (the other
“initial” condition on the position needed to integrate the system on the interval [ti , ti+1]
remaining fixed at the times ti ) so that in particular βi ≥ β(δ) > 0 for all i ≥ 0 and
δ > 0. Since T (ti ) is non-increasing, its limit value is its minimum value and for all i ≥ 0,
|ẋ(ti )| ≥ |ẋss | > δ. From the strictly positive variation of the kinetic energy we deduce that

ẋ2(ti+1) = ẋ2(ti ) − 2βi

m
(27)

so that

ẋ2i = ẋ20 −
j=i−1∑
j=0

βj (28)

Therefore from the fact that the βi ’s are strictly positive, we deduce that |ẋ(ti )| cannot
converge towards a strictly positive |ẋss |. Since however T (ti ) and thus ẋ(ti ) converge, we
deduce that the onlypossible limit value for the velocity is ẋss = 0. (Notice that if δ = 0, then
both μi and βi may asymptotically take arbitrarily small values and ẋ2i = ẋ20 − ∑ j=i−1

j=0 βj
no longer leads to a contradiction). Thus we have shown that if there is an infinite number
of bounces, then the value of the velocity when contact is established or lost (x(ti ) = 0) is
bounded and tends to zero.
Having proved that the velocity ẋ(ti ) tends to zero as i → +∞, we now show that the

intervals �i also converge to zero. Let us consider an arbitrarily large integer i such that
|ẋ(ti )| is arbitrarily small, or in other words, for any ε > 0, there exists N (ε) > 0 such
that i > N implies |ẋ(ti )| < ε. We shall denote �i+1

�= ti+1 − ti . First note that from
any of the two dynamic equations in (1) we get �i ≤ �max < +∞ for some �max since
the “initial” velocities at times ti are bounded and tend towards zero. Now we use the fact
that both vector fields in (1) are explicitely integrable; assume that we place ourselves at
t2i such that ẋ(t2i ) = ε > 0, hence the system is in a contact phase for some time since
ẍ(ti ) = λ1xd − λ2ε > 0 for some small enough ε > 0. We thus consider the second
equation in (1). If the negative roots r1 and r2 of the characteristic equation are real and
separated, i.e. r1 < r2, then the solution can be expressed as (recall that x(ti ) = 0 for all i):

x(t) = γ1er1(t−t2i ) + γ2er2(t−t2i ) + x̄d (29)

with x̄d = λ1xd
λ1+k , and γ1 = −γ2 − x̄d , γ1r1 = −γ2r2 + ε. Since we assume a priori that the

sequence {ti } is infinite, t2i+1 exists and from (29) we get

ẋ(t2i+1) = γ1r1(er1�2i+1 − (1− ε)er2�2i+1)

= γ1r1er1�2i+1

[
1−

(
1− ε

γ1r1

)
e(r2−r1)�2i+1 + 1

]
(30)
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From the monotonicity of {|ẋ(ti )|} and its convergence, we deduce that 0 < |ẋ(t2i+1)| ≤ ε.
Assume now that the sequence {�2i+1} does not converge towards zero, i.e. there exists
� > 0 such that �2i+1 ≥ � for all i . Then we get for any ε > 0, ε small enough:∣∣∣∣

(
1− ε

γ1r1

)
e(r2−r1)�2i+1 − 1

∣∣∣∣ ≥ η(r1, r2, �) > 0 (31)

This inequality is true because when ε → 0 the left-hand-side of (31) tends to |e(r2−r1)�2i+1 −
1| which cannot be zero since r1 < r2 and �2i+1 ≥ � > 0. Furthermore er1�2i+1 ≥
κ(�max, r1) > 0. Therefore from (30) we get:

|γ1r1κ(�max, r1)η(r1, r2, �)| < ε (32)

which cannot be true for ε small enough (Note that the roots as well as � and �max do not
depend on ε). Since ε is strictly positive but arbitrarily small, we deduce that �2i+1 → 0
as i → +∞. A quite similar reasoning may be done for the case when r1 = r2.
When the roots are complex conjugate r1 = r + jω, r2 = r − jω, then the solution is

given by:

x(t) = γ er(t−t2i ) cos(ω(t − t2i ) + ϕ) + x̄d (33)

with γ = − x̄d
cosϕ and tanϕ = ε+x̄d r

x̄dω
. Now we get

ẋ(t2i+1) = γ er�2i+1
√

r2 + ω2 cos(ω�2i+1 + ϕ + �) (34)

with tan� = ω
r . Using the same arguments as in the real roots case, one sees that for

ẋ(t2i+1) to be arbitrarily small, we must have cos(ω�2i+1 + ϕ + �) arbitrarily small, from
which we deduce that ω�2i+1 +ϕ +� is arbitrarily close to π

2 . Now for ε arbitrarily small,
tanϕ → r

ω
, and tan(ϕ + �) → +∞. But since �2i+1 is assumed to be bounded away

from zero (and strictly positive by definition), tan( π
2 − ω�2i+1) is clearly bounded. Thus

by contradiction we deduce that {�2i+1} converges to zero.
Now exactly the same reasoning may be done for the case of non-contact phases. It

follows that if the velocities at times ti converge towards zero, so do the intervals�i . Since
again the sequence {ti } is infinite, if its limit is infinite also then (0, 0) is an equilibrium
point of the system in (1). Clearly this is not the case, except if xd = 0 (For the sake of
briefness this case is not analyzed here; the analysis can be done using similar arguments).
In conclusion, we have proved that the sequence {ti } is either finite, or possesses a finite

accumulation point. In both cases, we deduce that the equilibrium point of the system in
(1) is asymptotically attained.

Relationship with the Case of a Rigid Environment

The only things that are modified in the rigid case are that since the intervals [t2i , t2i+1] →
{t2i }, the distinction between instants t2i and t2i+1 becomes worthless, andμ2i+1 = β2i+1 =
0 while μ2i > 0 and β2i > 0. One notes that in permanent contact (i.e. x = ẋ ≡ 0) and
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with k = +∞, then

Vc = 1
2

mẋ2 + 1
2
(λ1 + k)x2 − λ1xxd + 1

2
λ21xd

λ1 + k
(35)

i.e.

Vc = 1
2

kx2 = 0 (36)

since the potential elastic energy vanishes as k → +∞ (indeed it can be verified that
in this case, the roots r1 and r2 are necessarily complex conjugate, and that x(t) varies
proportionally to 1

k ). Moreover σVc(tk) = σVnc(tk) = 0. It follows that the contact phases
reduce to the impact times tk . One retrieves the analysis done at the beginning of this section
by studying the variation of Vnc between the impacts (see (17)) and at the impact times (see
(18)). Therefore the stability analysis for the compliant case k < +∞ naturally reduces
to the stability analysis of the impact Poincaré map in the rigid case. In addition we have
proved asymptotic stability.

We thus have proved the following:

Claim 3. Consider the closed-loop equations in (1). Then for any λ1 > 0, λ2 > 0,
k ∈ [0, +∞], and for all initial conditions x(0), ẋ(0), x → λ1xd

λ1+k and ẋ → 0 as t → +∞.

Remark 1. A distinction has to be made between two different cases of analysis: We
may consider i) Either an arbitrarily large but bounded k, ii) or a k that tends to infinity
(that is implicitely a sequence of stiffnesses kn with unbounded limit together with the
corresponding dynamics). Clearly claim3 can be concluded from the analysis in sections 2.2
and 3 in case i), but not in case ii). The utility of the analysis proposed in this section is to
enable us to draw conclusions in both the compliant and the rigid environment cases with
a unique philosophy of stability analysis.

Remark 2. Since the solutions of (1) converge to those of (2), it would be interesting to
reverse the reasoning done in section 4 as follows: if the fixed point of (2) is stable, then
the fixed point of (1) is stable also for a large enough k. One could think of first studying
the stability of the rigid body system impact Poincaré map, and then draw conclusions on
the stability of an approximating compliant problem. This of course relies on the ability of
proving the closeness of solutions of both systems for large enough k. Moreover it may be
difficult to study the Poincaré map stability.

Remark 3. It is not realistic in general to assume that the interaction force F is measurable
and can be compensated for, during the rebounds phase. Indeed if k is large, then F will be
large also and its support (as a time function) very small (F approaches aDirac distribution).
This is a motivation to search for feedback control algorithms that are able to stabilize the
transition phases without force feedback, see e.g. [19]. In fact it has been recognized [21]
that in general 3 distinct controllers have to be used for the control of a complete robotic
task (i.e. a task involving free-motion as well as constrained motion phases, and transition
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phases). The algorithm analyzed in this paper could be used in this setting as a transition
phase controller, as part of a more sophisticated controller (in the spirit of what has been
proposed e.g. in [12] [3]). This could also be the starting point to a unified stability analysis
framework encompassing both compliant and rigid body based models.

5. Conclusions

In this note, we have studied the stability of a simple robotic task that includes both contact
and non-contact phases, when a PD motion controller is applied. It may also be considered
as the stability analysis of a contact phase that takes into account the unilateral feature
of the constraint surface. An interesting problem is to study conditions that guarantee
that if the robot’s tip happens to take off the surface (either because it has been initialized
outside the environment or because of an oscillatory behaviour or due to a disturbance) then
it will eventually attain its steady state value after a possible sequence of rebounds. We
have studied what happens when the environment’s stiffness grows very large and when one
desires quadratic stability of the closed-loop systemwithwell-conditioned solutions P to the
Lyapunov equation, i.e. when theminimum eigenvalue of P is required to remain larger than
some strictly positive constant. It appears that the velocity feedback gain must be chosen
proportional to the environment’s stiffness k, so that these sufficient conditions are clearly
useless for practical purposes as soon as the contact stiffness is too large. The results indicate
that the conditions that one may derive from an analysis done with continuous dynamic
models may not be feasible for the environments which are too rigid; although we do not
claim that such conclusions hold for any control algorithm for robot manipulators with any
compliant environment, we note that this is quite consistent with the sufficient conditions
found in the literature on the subject. Finally we have shown that one can conclude on
global asymptotic convergence of the tracking errors towards zero independently of the
values of the feedback gains and of the environment’s stiffness. This is in accordance with
the results obtained for the impact Poincaré map in the case of a rigid body model. We have
proposed a convergence proof that encompasses both compliant and rigid cases, a property
that is clearly not shared by some the other classical stability analysis.

A. Proof of Claim 1

λ1 and λ2 can be chosen such that anc > 0 and bnc > 0. Thus we conclude that for all x :

V̇ ≤ −α ẋ2 − β x̃2 + R (37)

with α = min(anc, ac), β = min(bnc, bc). Following the arguments in [6], we deduce that
the state (x̃, ẋ) converges in finite time in a ball with radius r , with r → 0 as λ1 and λ2
tend to +∞. Therefore for all t ≥ t̄ , t̄ < +∞, we get |x̃ | < r . Now notice (see (4)) that
as λ1 → +∞ then:

R → 1
2

k2x2d

(
1+ c2

m2

)
(38)
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Since by taking λ1 and λ2 large enough r can bemade arbitrarily small and since λ1xd
λ1+k → xd

as λ1 → +∞, it follows that for λ1 and λ2 large enough, then |x̃(t)| > r for t ≥ t̄ implies
that x(t) > 0 for all t ≥ t̄ . Then (6) implies that both ẋ and x̃ converge asymptotically to
zero. Notice that outside some ball BR̄ we have for some Q = QT > 0:

V̇ ≤ −zT Qz (39)

with zT = (x̃, ẋ). This can be easily deduced by spliting α and β into α1 and α2, β1 and
β2. Then one obtains:

V̇ ≤ −α1 ẋ2 − β1 x̃2 − α2 ẋ2 − β2 x̃2 + R (40)

so that outside the ball BR̄ with R̄ = R
min(α2,β2) we get:

V̇ ≤ −α1 ẋ2 − β1 x̃2 (41)

Still λ1 and λ2 can be chosen large enough so that R̄ is as small as desired. Thus we deduce
that for 0 ≤ t ≤ t̄ :

||z(t)|| ≤
√

V (0)
λminP

exp
(

−λminQ
λmaxP

t
)

(42)

i.e. the ball BR̄ is reached exponentially fast.

B. Proof of Claim 2

Starting from the Lyapunov equation, one may first fix Qc as a positive definite matrix
and then try to calculate the unique corresponding positive definite P (see e.g. [20] lemma
42, chapter 5). A second way to attack the problem is to pick a P > 0 and study the
properties of the resulting Qc ([20] p.198). Instead of choosing a Qc > 0 and solving the
Lyapunov equation for P , we rather consider a matrix P and find conditions such that the
corresponding Qc is positive definite, together with Qnc. Thus we prove that the only way
for P not to tend towards a singular matrix while keeping Qc > 0 and Qnc > 0 when k
increases is to take the gain λ1 of the same order as k2.
The above determinants can be written in the following way:

det(Qnc) = 4
λ1

m
(p11 p22 − p212) −

(
λ1

m
p22 + p11 − λ2

m
p12

)2

det(Qc) = 4
λ1 + k

m
(p11 p22 − p212) −

(
λ1 + k

m
p22 + p11 − λ2

m
p12

)2

= − 1
m2 (λ1 p22 + mp11 − λ2 p12)2 − 2

kp22
m2 (λ1 p22 + mp11 − λ2 p12)

+ 4
λ1 + k

m
(p11 p22 − p212) −

(
kp22
m

)2
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Let us denote Y �= λ1 p22 + mp11 − λ2 p12 and |P| = p11 p22 − p212 then:

• det(Qnc) > 0 ⇔ 4λ1m|P| − Y 2 > 0

• det(Qc) > 0 ⇔ Y 2 + 2kp22Y − 4(λ1 + k)m|P| + (kp22)2 < 0

We deduce that Y has to satisfy the following inequalities:

−2
√

mλ1|P| < Y < 2
√

mλ1|P|
−k p22 − 2

√
m(λ1 + k)|P| < Y < −k p22 + 2

√
m(λ1 + k)|P| (43)

Since −k p22 − 2
√

m(λ1 + k)|P| < −2√mλ1|P| there exists a solution for Y if and only
if −2√mλ1|P| < −k p22 + 2

√
m(λ1 + k)|P|, which is found after some manipulations to

be equivalent to the following conditions:{
2�2

k p11 − 2
√

�2
k(�

2
k p211 − p212) < p22 < 2�2

k p11 + 2
√

�2
k(�

2
k p211 − p212)

p12 < �k p11
(44)

with �k =
√

m(λ1+k)+√
mλ1

k .
Notice that by choosing p22 = 2�2

k p11 we can find P that satisfies (44) and that is
positive-definite.
From (43), Y satisfies the following inequalities:

−2
√

mλ1|P| < Y < min(−k p22 + 2
√

m(λ1 + k)|P|, 2
√

mλ1|P|) (45)

It is easy to prove that λmin(P) ≤ p22 and λmax(P) ≥ p11 from which we deduce that

λmax(P)

λmin(P)
≥ p11

p22
(46)

From (44), we can write p22 < 4�2
k p11, thus P has bounded entries when p11 is bounded

and the above conditions fulfilled. Then if p11 is a finite real number the conditions of
existence of Y imply that the coefficients p12 and p22 tend to zero when the stiffness of the
environment becomes infinite, rendering the matrix P singular. Let us note that the stability
analysis then becomes asymptotically (i.e. when k → +∞) meaningless since Qnc in (14)
has bounded entries. The only way to avoid this problem is to increase the gain λ1 such
that the coefficient �k does not tend towards zero when the stiffness increases, i.e. λ1 has
to be chosen of order ≥ k2. Assume that this is done so that P is well conditioned, and let
us examine how λ2 has to be chosen. λ2 may be found by using (45):

mp11 + λ1 p22 − Ymax
p12

< λ2 <
mp11 + λ1 p22 + 2

√
mλ1|P|

p12
(47)

where Ymax = min(−k p22 + 2
√

m(λ1 + k)|P|, 2√mλ1|P|). This implies that when λ1 is
of order k2 and k grows unbounded, the gain λ2 becomes infinite too.
Let us examine what happens if we allow p11 to be proportional to kα , α > 1. Then p22

may be chosen of order≤ kα−1 from (44). Also p12 will be of order≤ kα− 1
2 from the second
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condition in (44). Now from (47) we have the following: If Ymax ≤ 0 then obviously λ2 is
of order k 1

2 as k → +∞. If Ymax > 0, let us analyze the case when Ymax = 2
√

mλ1|P|:
This value is maximum when p12 is minimum, i.e. bounded, and when both p11 and p22
are maximum, i.e. respectively of orders kα and kα−1; then Ymax is of order kα− 1

2 so that λ2
grows as k 1

2 . Now if Ymax
�= A = −k p22 + 2

√
m(λ1 + k)|P| that we assume > 0: then

necessarily since p22 ≥ 0, the second term in A is at least of the same order as kp22 in
k as k grows unbounded. Thus at most the order of Ymax will be that of the second term
2
√

m(λ1 + k)|P|, which is found to be at most kα . But if this is the case then this term
dominates 2

√
mλ1|P| and asymptotically (in k) Ymax will necessarily be equal to this last

term, hence we are back to the previous case. Now if the order of A is kγ with γ < α

then p11 will asymptotically dominate Ymax and the left-hand-side of (47) is asymptotically
of order k 1

2 . Thus λ1 may be chosen bounded but λ2 will grow unbounded to guarantee
λminP ≥ δ > 0 for any arbitrarily small but fixed δ and Qc > 0, Qnc > 0.

C. Impulsive Dynamics

For the sake of briefness, we shall not recall here all the details about impulsive impact
dynamics. Let us simply recall some basic facts: The interaction forces between two rigid
bodies are mathematically modelled by Dirac distributions pδt , whose magnitude p may
be calculated from the velocities before the impact and using a physical law of percussion
like Newton’s restitution coefficient 0 ≤ e ≤ 1. e = 1 corresponds to the case when there
is no loss of energy at the impact, so that in our case both velocities of the mass after and
before the impact are equal in magnitude (and of course of opposite signs). In (2) we get
p(tk) = −2mẋ(t−

k ). Equations containing Dirac measures are called measure differential
equations; the solutions of such equations are right-continuous functions of local bounded
variation [16]. Stability in the sense of Lyapunov and Lyapunov functions can still be
considered for measure differential equations [9]3: One has however to consider in place
of the traditional derivative V̇ of a positive definite function V its right Dini derivative4

in intervals between impacts (smooth dynamics), and its jumps σV (tk)
�= V (t+

k ) − V (t−
k )

at instants of discontinuities tk , i ≥ 0. The latter may also be seen as an application of a
generalized chain rule for distributional derivatives to the function V (x(t), ẋ(t))where ẋ(t)
has local bounded variation and V (·, ·) is continuously differentiable: Then at t = tk , DV =
σV (tk)δtk (D usually denotes distributional derivatives of functions of bounded variation,
see e.g. [16]). Rigorous convergence of sequences of continuous-dynamics problems (or
“approximating problems”) towards a nonsmooth dynamical problem when k → +∞ has
been treated for instance in [15].

Notes

1. For instance [25] show that an integral force feedback helps in stabilizing the impact phase when the environ-
ment is (sufficiently) rigid, whereas [21] show that it is not suitable for a (sufficiently) flexible environment.

2. Notice that we have not proved the asymptotic stability of P� .
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3. Let us note however that the results in [9] do not apply here since the author studies stability of systems of
the form ẋ = f (t, x) + Du, u of local bounded variation, and Du is to be considered as a disturbance on
ẋ = f (t, x) with globally asymptotically stable equilibrium point x = 0; In our case the impacts will drive
the system to another point than the equilibrium point of the smooth dynamics (that may even possess no
equilibrium point: The reader may think of the bouncing ball problem to illustrate clearly this). More details
can be found in [27] chapter 7.

4. V̇ (t) = limh→0+ sup 1
h [V (t + h) − V (t)].
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