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a) Path tracing b) Ours - equal time c) Reference

Figure 1: We compare a frame of the 100 frame barber shop animation sequence, rendered with independent path tracing in 40 seconds
per frame (a), with our multi-view path tracing solution in the same time (b) and computed in 2 hours for a single reference frame (c). Our
algorithm exploits consistency between neighboring views, and yields faster convergence than traditional path tracing.

Abstract

Rendering photo-realistic image sequences using path tracing and Monte Carlo integration often requires sampling a large
number of paths to get converged results. In the context of rendering multiple views or animated sequences, such sampling can
be highly redundant. Several methods have been developed to share sampled paths between spatially or temporarily similar
views. However, such sharing is challenging since it can lead to bias in the final images. Our contribution is a Monte Carlo
sampling technique which generates paths, taking into account several cameras. First, we sample the scene from all the cameras
to generate hit points. Then, an importance sampling technique generates bouncing directions which are shared by a subset of
cameras. This set of hit points and bouncing directions is then used within a regular path tracing solution. For animated scenes,
paths remain valid for a fixed time only, but sharing can still occur between cameras as long as their exposure time intervals
overlap. We show that our technique generates less noise than regular path tracing and does not introduce noticeable bias.

CCS Concepts
• Computing methodologies → Computer graphics; Ray tracing; Visibility;

1. Introduction

Rendering noise-free images with path tracing often requires heavy
computations and sampling thousands of paths through each pixel.
Rendering a sequence of images is even more intensive despite
the high similarity of consecutive frames. Reducing temporal noise

also requires more samples to remove flickering. Several authors
have proposed different ways of reusing a single path to compute
several pixels. These methods have achieved interesting speedups,
but they all share the same limitation. Paths are sampled starting
from one camera and they are transformed to contribute to another
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camera. As we shall see, this transformation can increase the vari-
ance of the Monte Carlo estimation of light transport.

Our paper proposes a different approach to this problem. We
make the key observation that light transport can be estimated at
any point in space and time and that many of these points are ob-
served by more than one camera. Contrary to previous works that
construct an entire path for a given camera, we progressively build
a path that significantly contributes to several cameras. To do so,
we first cast a ray from a camera, and then importance sample a
reflected direction at the intersected point which gives significant
energy to several cameras. Our importance sampling technique re-
stricts the magnitude of the transformation and thus controls the
variance of the observations by only selecting a subset of the cam-
eras observing the point. The rest of the light transport is then esti-
mated with standard path tracing.

Decoupling observations and transport estimation also makes
our definition of a camera fairly general: a camera observes a re-
gion of space and time. A moving camera in an image sequence
creates an observation per frame. A stereo/VR camera makes 2 ob-
servations, etc. Our approach can be used in very different settings:
stereo-pair/VR video, camera array/light field rendering, etc.

2. Previous work

Exploiting the similarity between coherent viewpoints has been
investigated in the past. We briefly describe existing approaches
reusing paths and integrating in the gradient domain.

2.1. Space-time coherence

Taking advantage of space-time coherence by using the same sam-
ples in multiple renderings is a widely used technique for interac-
tive and real time applications. In the context of offline Monte Carlo
integration, several techniques have been developed.

Adelson and Hodges [AH93, AH95] directly exploit spatio-
temporal coherence in the context of ray tracing. Their idea is to
reuse samples by projecting them from one camera to another in-
stead of sampling each camera separately. Samples on diffuse mate-
rials are reprojected, glossy and specular reflections are then simu-
lated for each camera. These early approaches dramatically reduce
the rendering time of nearby frames, like stereoscopic images or
consecutive frames in animation sequences, but their efficiency de-
crease with the amount of glossy materials.

Bekaert et al. [BSH02] introduce the concept of path re-use to
compute a single frame. The image is divided in small square win-
dows and pixels of each window share sampled paths. This first
solution however shows highly correlated and structured noise be-
fore reaching convergence. A correction of these artifacts is given
in [XS07] by using less structured pixel neighborhoods and by
shuffling reused contributions. This technique has recently been ex-
tended to gradient domain rendering [BPE17]. Massively increas-
ing the number of samples by reusing calculations leads to a better
domain exploration, at the cost of correlation and structured arte-
facts. Our technique works on a different setting: instead of sharing
pieces of paths generated for neighboring pixels on a single image,

we sample and share full paths between different viewpoints. In
this setting path re-use doesn’t show structured noise.

Havran et al. [HDMS03] discuss reprojection data structures and
algorithms to efficiently render multiple animation frames over a
time segment. They use clamping to remove negligible reprojected
sample contributions which would otherwise increase the variance.
Although this technique is appropriate for diffuse materials, re-
evaluating and clamping the brdf to reproject samples can lead to a
poor importance function for glossy materials.

Feliu et al. [FSSK06] improve on [HDMS03] and introduce the
normalization integral involved in the projection from one camera
to another. The authors also introduce multiple importance sam-
pling to further reduce variance while reprojecting samples to sev-
eral cameras. Even though the normalization constant and its in-
tegration are fully derived in the paper, the authors use a simple
approximation. They achieve better results when rendering glossy
materials.

Henrich et al. [HBGM11] propose a hybrid architecture mixing
CPU rendering with a simple and efficient GPU reprojection of path
vertices on the screen. Artifacts created by this simplified repro-
jection are then reduced by filtering and downsampling. We use a
more sophisticated technique to selectively reproject samples, and
to account for the Jacobian of the reprojection, thereby limiting the
amount of variance and removing the need to post process our re-
sults.

Our method is similar to these approaches in that we re-use sam-
ples for similar viewpoints. However, our key idea is the selection
of the set of cameras which will share a sample path before gen-
erating the full path. This allows us to take all these cameras into
account in the generation of the full path. Our paths are then com-
bined using multiple importance sampling to reduce the variance in
the result.

Zimmer et al. [ZRJ∗15] propose a complex post-processing
pipeline to jointly denoise and upscale animation sequences, both
spatially and temporally. Images are decomposed into diffuse and
specular components. Diffuse paths are re-used (through motion in-
terpolation) while specular paths are re-evaluated with a temporal
manifold exploration technique and then interpolated. We present
a simple variance reduction technique which can be used to ac-
celerate the computation of an animation sequence (same variance
but faster), or to reduce noise (same time but lower variance). Our
technique can also be used in different settings such as light field
rendering or stereo/VR rendering.

2.2. Gradient domain rendering

Gradient domain rendering is a recent approach computing both
a coarse image and its gradient, and using Poisson reconstruc-
tion to obtain the final image. This approach has been success-
fully applied to Metropolis light transport [LKL∗13], path trac-
ing [KMA∗15] and bidirectional path tracing [MKA∗15]. Paths
are reused between neighboring pixels to compute the gradients.
The correlation between the paths improves the variance in the
gradient computations. This approach has been further extended
to animated sequences [MKD∗16], computing temporal gradients
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as well to reduce flickering artifacts between consecutive frames.
Paths are reused in a different manner: an original path is generated
to provide a new sample for the image integral. The path is then
deterministically shifted to a neighboring pixel or frame. Finite dif-
ferences are finally used to estimate gradient values. Our method
is not incompatible with gradient domain methods and merely al-
lows to get more paths using reprojections, and gradient domain
solutions could benefit from our approach. We also demonstrate
the efficiency of our method in the context of motion blur with
fast moving objects. In such a context, to our knowledge, no effi-
cient methods exist to compute the gradients. Since motion blur is
mostly due to the discontinuities in the visibility of the scene, such
gradients could be difficult to estimate.

3. Background

We focus on improving the classical path-tracing algorithm. This
algorithm computes realistic images by simulating light transport
throughout a scene via Monte Carlo integration. Each rendered
pixel j of a camera k is computed as the integral over the light
reaching the pixel [Vea98] and the exposure interval [t0 t1] of the
camera:

Ik
j =

∫ tk
1

tk
0

∫
Ω(t)

f j(X̄)dµ(X̄)dt (1)

where Ω(t) is the union of all light paths X̄ of finite lengths at time
t, f j is the light contribution carried through the path and µ is the
product of the measures of the differential area elements at each
path vertex [VG97]. Note that f j contains in particular the spatio-
temporal pixel reconstruction filter, and will be 0 for a path not
reaching the pixel. A path X̄ is a finite sequence of points on the
scene. For our purposes, we will decompose such a path in two
parts X̄ = {xy, z̄} where xy is a prefix which connects a camera
vertex x and a visible scene point y, and z̄ is a suffix path, which
starts at a point z and carries the radiance flux to y from z (Figure 2).

z

x

y

j

z̄

Figure 2: An example path in the traditional configuration

Path tracing approximates the integral Equation 1 by accumulat-
ing contributions from a set of sampled paths from the camera. A
point x is generated on the exit lens and a ray is cast from x in the
scene to find the first hit on the scene y. A suffix z̄ starting from y is
then generated using a stochastic process to generate a succession
of bounce directions and points on the scene. The contributions f j
of the paths X̄i = {xy, z̄} for pixel j are then merged using their
probability distribution functions (pdf) p :

Îk
j =

1
n

n

∑
i

f j(X̄i)

p(X̄i)
with p(X̄i) = p(xy)p(z|xy)︸ ︷︷ ︸

observation

p(z̄) (2)

This formulation highlights the fact that the light transport can
be decoupled from the observation. Given a suffix z̄, its pdf p(z̄)
and the radiance L(z→ y) reaching y, computing a contribution
for pixel j only requires the evaluation of the visibility, brdf and
camera importance function.

4. Multi-view rendering

Our goal is to reduce the variance of multiple path-tracing gener-
ated images of the same scene. We share sampled paths between
multiple integrals at a fixed time. Thus virtually increasing the
number of samples per image without increasing much the cost per
generated path. Each camera is described by a set of parameters
(e.g. position, orientation, exposure interval, lens, focal distance)
and corresponds to one integral. In the case of a camera rendering
an animated sequence, each frame of the sequence is considered as
a unique camera. Our method is applicable in the context of surface
rendering, but does not consider the case of volume rendering and
participating media.

We propose a two-step importance sampling technique for multi-
view path sampling. Each path is generated as follows :

1. Prefix step :

• a time t is sampled ;
• the camera ` and desired pixel i for the sample is importance

sampled and a hit point y` is found on the scene ;
• if the point is not purely specular, a subset of similar cameras

that could have sampled this point is determined (subsubsec-
tion 4.2.4);

2. Suffix step :

• a bounce direction is importance sampled using the subset of
similar cameras ;

• regular path tracing is used to generate the rest of the path ;
• the path contribution is merged with the integral of each se-

lected camera using multiple importance sampling and the
balance heuristic.

4.1. Sampling

4.1.1. Camera sampling

We use the thin lens camera model. Generating a path for a camera
` therefore requires two points : a point on the film and a point on
the lens. Once the pixel i requiring additional paths is determined,
a film point xi is generated in the pixel, and a lens point x` is gen-
erated on the lens disk.

4.1.2. Time sampling

For static scenes, time is irrelevant. Each frame of each camera is
therefore rendered as an independent observer, and any path can be
reused. For animated scenes, paths are only reused at fixed time.
Indeed reusing paths between different time points in such a case
introduces bias, even for paths only hitting static objects, since
moving objects could change the visibility between the points, or
change the illumination received by static objects. For this reason,
paths are sampled at a precise time, and only reused if the exposure
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interval of the observer contains that time. We therefore introduce
no bias due to changes in visibility and illumination since the path
is only used for a fixed time.

4.2. Multi-view integration

Once an initial sample is generated and a corresponding hit on the
scene is found, a set of compatible cameras for sharing the path
suffix is determined. The initial path prefix is transformed using a
deterministic shift mapping, for each camera opened at the time of
the path. The associated change in density is then evaluated through
the Jacobian of the transformation. A selection probability is finally
derived for the observer depending on both this Jacobian and the
brdf at the hit point y.

4.2.1. Transforming the prefix of a path

For the generation of a prefix from a thin lens camera `, both a point
xi on a pixel i and a point x` on the lens are sampled, thus obtaining
a unique ray direction and a hit y`. Given another camera k, a point
xk on its lens is required to determine a point x j on its film to reuse
the path suffix. We define this point deterministically as

xk =
rk
r`

x` (3)

where rk and r` are the respective lens radii of cameras k and `. This
transformation does not introduce bias in the integral for k since xk
uniformly samples the lens of k. Given y` and xk the point x j on the
film of k is uniquely defined. We denote T`→k the transformation
of a path X̄` for observer ` to a path X̄k for observer k (Figure 3):

T`→k : {x`y`, z̄} 7→ {xky`, z̄} . (4)

By construction, T`→` is the identity, and Tk→` = T−1
`→k.

Every transformed path cannot or should not be reused. We
therefore perform the following tests:

• check whether x j is in the rectangle of the image k;
• run a Russian roulette on our selection probability (Eq. 13, 17);
• check the visibility on the segment [xk,y`].

z
xk

y`

j

x`
i

T`→k

Figure 3: Transformation from camera ` to camera k

4.2.2. Transforming densities

Every observer of a primary hit point y is an importance strategy to
sample both y and suffix paths z̄. Let us consider an observer k and
a pixel j for this observer. The integral for this pixel at a time t is

Ik
j (t) =

∫
Ω(t)

f j(X̄)dµ(X̄). (5)

Remember that the path contribution function f j contains the pixel
filter and will be 0 for paths not reaching j. We will omit t in the
following since every path reuse is done at fixed t. Given a sec-
ond observer `, this integral can be split in two parts depending on
whether the path could have been provided by observer ` or not. If
Ω` is the set of paths reaching observer ` and Ω`→k = T`→k(Ω`),
we can write

Ik
j =

∫
Ω`→k

f j(X̄)dµ(X̄)+
∫

Ω\Ω`→k

f j(X̄)dµ(X̄). (6)

For the part of the integral over Ω`→k a second strategy exists to
compute the integral using paths from observer `. This corresponds
to the following change of variables :∫

Ω`→k

f j(X̄)dµ(X̄) =
∫

Ω`

f j(T`→k(X̄`))|T ′`→k|dµ(X̄`) (7)

where |T ′`→k| is the determinant of the Jacobian of T`→k. As de-
tailed in Appendix A the pdf associated with this integral for Monte
Carlo estimation is

p`→k(X̄`) =
p`(X̄`)|T ′`→k|Vk(T`→k(X̄`))

K`→k
(8)

K`→k =
∫

Ω`

p`(X̄`)|T ′`→k|Vk(T`→k(X̄`))dµ(X̄`) (9)

where Vk checks the visibility of the transformed path.

The Jacobian determinant of the transformation can be effi-
ciently computed as a special case of [JM12] [LKL∗13], since the
primary hit point y is assumed non specular and the suffix path is
identical for each viewers:

|T ′`→k|=
∣∣∣∣∂xk
∂x`

∣∣∣∣ ∣∣∣∣ ∂y
∂xi

∣∣∣∣ ∣∣∣∣ ∂y
∂x j

∣∣∣∣−1

=
r2

k
r2
`

g(x`,y)
g(x`,xi)

g(xk,x j)

g(xk,y)

(10)

where xi and x j are respectively the film points at pixel i and j, and

g(a,b) = | ~ωab·~nb|
‖b−a‖2 . For thin lens cameras, the Jacobian determinant

is then:

|T ′`→k|=
r2

k
r2
`

cosθ
`
y

‖y− x`‖2
d2
`

cos3 θxi

‖y− xk‖2

cosθk
y

cos3
θx j

d2
k

(11)

where d is the distance between the camera origin and the film
plane (cf. Figure 4) and r is the lens radius of the camera.

x`

xk

y

∂xi

∂x j

∂ωxi

∂ω j

θ`y
θk

y

θx j

θxi

zk

z`

Figure 4: Geometric configuration for the Jacobian determinant
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Given a hit generated from any observer, we first determine the
set of observers who could have generated the same hit. Then for
every observer in this set, we compute the pdf from the other ob-
servers and add the contribution of the path using multiple im-
portance sampling. This strategy however may cause problems be-
cause importance functions associated with other observers can be
very poor and slow down or prevent the convergence. We therefore
add two selection probabilities on other observers in the multiple
importance sampling framework to dampen the poor importance
strategies.

4.2.3. Similar importance selection: Jacobian

The transformation of a path depends on the visibility and implies
a change in density. Both the visibility and the Jacobian determi-
nant appear in the pdf and in the normalization term. Two problems
arise.

First, the evaluation of the normalization term of a pdf is an inte-
gral over the whole film of the observer potentially providing a path
for the pixel. Computing multiple importance sampling weights re-
quires comparing the pdfs of all the different strategies :

w`→k(X̄`) =
p`→k(X̄`)

∑ j p j→k(T`→ j(X̄`))
. (12)

We would therefore have to evaluate K`→k (Equation 9) for each
observer involved, which is a considerable overhead.

Second, the Monte Carlo estimation of integrals suffers from bias
if a subdomain is insufficiently sampled due to a finite number of
samples. We observe such situations in areas where large changes
in density occur. This is due to the inefficiency of some cameras
to generate samples in such areas. Although no visibility problems
occur, no sample is generated on one observer because the proba-
bility of generating one is small with respect to the sample budget.
This bias results in strong artifacts in motion blur (cf. Figure 5).

To overcome these limitations, we ensure that the reused samples
have an importance similar to that of native samples. We perform
a stochastic selection (Russian roulette) of the prefixes using the
Jacobian determinant as a similarity probability.

pjacobian(X̄`, X̄k) =

{ ∣∣T ′`→k
∣∣−1 if

∣∣T ′`→k
∣∣> 1∣∣T ′`→k

∣∣ otherwise
(13)

The Russian roulette accepts native samples with a probability of
1 (
∣∣T ′`→`

∣∣ = 1) and rejects samples with high or nearly zero Jaco-
bian determinants. We show in Figure 5 that this selection strongly
reduces the relative standard deviation of the normalization terms.
We therefore consider the normalization terms as constants inde-
pendent of the observer, and cancel them in multiple importance
sampling weights without introducing noticeable bias.

4.2.4. Similar importance selection: material

For the integral to be correct, the contributions of the paths must be
computed using the exact brdf with the right observer. Importance
sampling is used to accelerate the convergence rate of the integral,
by sampling paths proportionally to their contribution to the final
integral. Using paths from other observers changes the importance
function used. On glossy materials, this can slow down or prevent

w/o selection w/ selection

no variations

high variations

w/o selection w/ selection reference

Figure 5: Top row shows the relative standard deviation of the nor-
malization constants (Equation 9). Performing the Jacobian selec-
tion strongly reduces their variations (right). Bottom row highlights
a detail of the animated Cornell Box. From left to right, the biased
result without selection due to the large variations of the constants,
our result with the selection, and the reference.

the convergence. We therefore use a second term in our selection
probability for observers to ensure that their importance functions
are compatible.

We thus propose a heuristic to select a subset of similar ob-
servers regarding the material parameters. Since the glossy impor-
tance functions fr(· → y→ x), denoted ρ, are distributions over the
hemisphere we can use distance metrics to evaluate their similarity.
Several distances between distributions exists, but most of them
requires a numerical integration (e.g. Kullback-Leibler, Hellinger,
Wasserstein) and are not always normalized. Precomputing dis-
tance tables for all material variations of a scene is costly and hardly
feasible. We therefore use the total variation (TV) distance which
can be evaluated on-the-fly for microfacet distributions. The TV
distance δ is the maximum difference between the pdf for the same
random variable.

δ(ρ`,ρk) = sup
ω∈S
|ρ`(ω)−ρk(ω)| (14)

The microfacet theory describes glossy lobes concentrated around
the mirror direction for a given incident direction [CT82]. The mir-
ror direction corresponds to the maximum intensity of a lobe and
hence the maximum pdf value. The TV distance between two lobes
is then computed by comparing the absolute difference of the pdf
values regarding the peak of the initial distribution.

δ(ρ`,ρk) = |ρ`(ω`)−ρk(ω`)| with ω` = argmax(ρ`) (15)

We can normalize the TV distance by the maximum of each dis-
tribution leading to a simpler formula. Thus, a TV distance close
to zero means that the distributions are similar ; on the contrary, a
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value close to one indicates a high dissimilarity.

δ̃(ρ`,ρk) =

∣∣∣∣ρ`(ω`)

ρ`(ω`)
− ρk(ω`)

ρk(ωk)

∣∣∣∣= ∣∣∣∣1− ρk(ω`)

ρk(ωk)

∣∣∣∣ (16)

As a consequence, we select similar cameras by comparing each
visible camera k to the initial camera ` that sampled y on the scene
(cf. Figure 6).

pmaterial pdf

α = 0.5

α = 0.125

Figure 6: Given an initial observation direction (thick arrow), the
probability for selecting other prefix directions decrease with their
distance to the initial distribution. We show the distribution of the
probability (cf. Equation 17) over the hemisphere (left), and the
pdf of the initial direction for GGX (right).

In this way, we ensure to add a substantial contribution to the ini-
tial camera and minimize the inadequate importance sampling for
the others. Since the dissimilarity of glossy distributions increases
with the roughness (or shininess), we found that elevating the dis-
tance to a power leads to a better fit to the reference. Figure 7 shows
convergence plots of the estimators for several roughnesses using
12 cameras. The probability for selecting a camera k similar to cam-
era ` finally reads:

pmaterial(X̄`, X̄k) =
(

1− δ̃(ρ`,ρk)
) 1

α

(17)

where α is the roughness of the surface at y. We perform the selec-
tion before testing the visibility of the prefix by coupling the Jaco-
bian selection and the brdf selection in the same Russian Roulette
step. Figure 8 shows that using this additional selection probabil-
ity indeed improves the result by reducing the variance. Hence the
pdf of a prefix is multiplied with the selection probabilities. After
selecting the subset of similar viewpoints we uniformly sample the
mixture of their lobes to continue the path. The pdf of the sampled
brdf direction is then:

p(ω) = ∑
j

p(ω|x jy). (18)

The path suffix is finally constructed using the classical recursive
path tracing.

4.3. Adaptive sampling of the image space

Sharing paths between cameras leads to inhomogeneous sample
density over the film due to occlusions and our selective path reuse.
This is a classical drawback when reusing paths as pixels lacking
samples cannot be predicted. For this reason we use a simple multi-
pass adaptive strategy to fill in under-sampled areas (Figure 9).

We first proceed with a pilot iteration which distributes samples
uniformly over all pixels. We then compute an error estimation

0.00001

0.00010

0.00100

0.01000

0.10000

 1  10  100

standard r=1
our r=1

mixture r=1

(a) diffuse brdf

0.00001

0.00010

0.00100

0.01000

0.10000

 1  10  100

standard r=16
our r=16

mixture r=16

(b) mostly diffuse brdf

0.00001

0.00010

0.00100

0.01000

0.10000

 1  10  100

standard r=64
our r=64

mixture r=64

(c) mostly glossy brdf

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

 1  10  100

standard r=256
our r=256

mixture r=256

(d) glossy brdf

Figure 7: RMSE of the integration of the GGX distribution for
one direction among 12 observation directions with varying rough-
nesses. We compare the standard integration (purple), the multi-
view integration by sampling a mixture of all distributions (light
blue), and the multi-view integration by first selecting a subset
of similar directions and then sampling the mixture (green). The
RMSE with the reference shows that our selection performs equiv-
alently to the best strategy. It is interesting to note that the mixture
without selection increases the variance of the estimators when al-
pha decreases.

w/ selection w/o selection

Figure 8: At equal sample count, using our material selection (left)
results in less noise on glossy materials than no selection (right).

based on the χ
2 divergence [RFS03] for each pixel. We evaluate

a total variation noise estimate of the error gradient, similar to the
metric proposed by Heitz et al. [HHM18] (cf. Section 4.2). Finally,
we use this noise estimate to redistribute samples during the next
iteration. This scheme is iterated until a time limit or a target error
is reached.

The described noise estimation highlights noisy areas and
high gradients, which have been proved correlated with the vari-
ance [MKD∗16]. The adaptive scheme both redistributes samples
in under sampled areas, making them imperceptible, and slightly
reduces the noise in areas where error is important. However, any
adaptive strategy which focuses on under-sampled areas can be
used. The error estimate simply drives the maximum number of
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w/ adaptive w/o adaptive

Figure 9: We rendered 10 images, camera 1 (top left) and 9 camera
2 (bottom left), using our algorithm with and without adaptive sam-
pling. Areas where visibility is not shared exhibit some high level
noise in the case of uniform sampling. Adaptive sampling redis-
tributes samples in such areas, making them imperceptible. Right
insets show a comparison at equal sample count.

samples allocated to the pixel. Slow converging, high error pixels
will get more samples than fast converging, low error pixels. Fig-
ure 10 presents the results of using the aforementioned noise esti-
mation and Figure 11 shows the evolution of the RMSE for a given
samples budget.

4.4. Final reconstruction

Each camera selected to use the path contribution adds the contri-
bution with the following MIS weight:

w`→k(X̄`) =
n`p`→k(X̄`)pjacobian(X̄`, X̄k)pmaterial(X̄`, X̄k)

∑ j n j p j→k(X̄ j)pjacobian(X̄ j, X̄k)pmaterial(X̄ j, X̄k)
(19)

where n` and n j are the number of samples generated on the re-
spective pixels by our adaptive sampling strategy. With our approx-
imation that the normalization term K`→k in Equation 9 does not
depend on `, p`→k can be computed as:

p`→k(X̄`) = p`(X̄`)|T ′`→k|Vk(T`→k(X̄`)). (20)

5. Results & discussion

We implemented our method into a prototype CPU path tracer sup-
porting multi-threading in C++. All scenes were rendered on a
dual Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz, with 64Gb
of memory running Linux. We built on top of Intel(R) Embree ker-
nels and use the Spatio-Temporal BVH [WAB17] to load multiple

sample map w/ adaptive w/o adaptive

Figure 10: A Cornell box rendered with or without adaptive refine-
ment and the associated sample map. Our noise estimate focuses
well on penumbrae, speckles, indirect lightning, motion blur and
gradients. For a given sample budget (256 in this case), the adap-
tive refinement exhibits less noise on complex areas.

 0.001

 0.01

 0.1

 100

rm
se

samples

w/o adaptive
w/ adaptive

Figure 11: Evolution of the RMSE with the reference on the ani-
mated Cornell sequence with or without adaptive sampling.

animation segments at once. All test materials are modeled with a
glossy lobe with GGX roughness varying from 0.5 to 0.001.

We showed the influence of the similarity selection on a test
scene, a specially crafted Cornell Box, with fast moving cubes and
glossy materials. This sequence is complex to render since cameras
may see tangent geometry while cubes are moving, which implies
large variations of the Jacobian and temporal visibility changes.

We rendered a 100 frames barbershop animation sequence with
100 cameras. The cameras shutter intervals overlap to highlight the
noise reduction in motion blur, which is reconstructed using a sim-
ple triangle filter. Our method compares favorably with equal time
path tracing, and achieves a good reduction in noise level with no
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Figure 12: Overhead induced by path reuse

other artefact. Please compare interactively both results in our sup-
plemental material.

Various statistics on the barbershop sequence are depicted on
Figure 12. Figure 12a illustrates the ratio between the number of
image contributions and the number of paths. This is the average
number of reused paths which increases linearly with the number
of observers. Please note that our prototype path tracer doesn’t use
coherent visibility requests and the performance illustrated in Fig-
ure 12b may not be representative of a more optimized renderer.
Visibility requests and observer selection eventually cost more than
building a single path. This cost is scene and renderer dependent
(ray request, suffix path length, material evaluation and sampling,
etc). Figure 12c illustrate the effects of the selection. Simple ge-
ometric tests filter candidate paths down to selected paths and the
last visibility test filters out half the total candidates. Figure 12d
compares the RMSE of the teaser image computed with different
exposure intervals. These intervals provide candidate paths to select
and reuse. The best results are achieved with a large exposure inter-
val, as expected. Without temporal overlap our technique performs
exactly like a path tracer in this degenerate case.

5.1. Limitations

Considering multiple observers has an overhead. Asymptotically,
the overhead depends quadratically on the number of observers.
Evaluating the selection probabilities is required for every observer
on every path prefix. We then trace a visibility ray for each selected
observer. For a large number of observers, this exhaustive observer
loop will need to be replaced by a fixed sampling of the observers
coupled with a proximity cache to benefit from coherency.

The efficiency of our algorithm also depends on the whole scene
setup:

• the proximity of points of view: our similarity selection will not
share paths between distant cameras (both spatially and direc-
tionally) ;
• the scene materials: on glossy scenes many paths will not be

shared ;

• the scene complexity, which directly affects the cost of visibility
queries ;
• the path length which changes the cost of tracing a path, and

therefore decreases the relative overhead of our method.

We use a selection probability such that the importance of reused
paths is similar to that of the initial one. This directly affects the
number of samples we can reuse at a given time. In cases when
very few or no projections occur, our method may produce poorer
results than the classical one since we have an overhead, to finally
obtain the same result. This is the case on the Cornell video in the
supplemental, on the highly specular back wall.

Our similarity selection of brdf lobes is derived in an empirical
manner and a more formal work is needed to assess its quality. A
material selection proportional to a statistical measure, such as the
moments of the integral could further improve the convergence of
our estimators [SHSK18].

6. Conclusions and perspectives

We have discussed an adaptive and multi-view path tracing tech-
nique. The main contribution is an importance sampling heuristic
to robustly reuse paths. Compared to previous methods, our heuris-
tic robustly identifies and reuses similar paths with a better control
over the variance of the result. Our approach builds on standard
path tracing and leaves the overall pipeline unchanged. This heuris-
tic is however derived in an ad-hoc manner and a more formal study
of the brdf similarity ad its impact on the variance of the result is
necessary.

Combining our simple heuristic with the different path reuse
techniques is also an interesting research area.
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Appendix A: General Monte Carlo multiple integration

Let fA and fB be two functions integrated over a measure space
Ω with given measure µ. Each integrand is non zero over a subset
of Ω that we respectively denote ΩA and ΩB. Using Monte Carlo
integration, these integrals can be estimated by sampling random
variables in the sub-domains associated with each integral. For fA,

IA =
∫

ΩA

fA(x)dµ(x)−→ ÎA =
1
n

n

∑
i

fA(xi)

pA(xi)
(21)

The variance of this estimation can be improved using impor-
tance sampling, with a probability density functions (pdf) pA ∝ fA

Ω

T (ΩB)ΩA

Figure 13: Overlapping region of the integration domains (in red),
which we exploit to increase the sampling of both fA and fB.

(respectively pB ∝ fB). Suppose now that we have an injective map
T such that ΩA and T (ΩB) overlap (Figure 13). The integration can
then be divided in two parts:

IA =
∫

ΩA\T (ΩB)
fA(x)dµ(x)︸ ︷︷ ︸

1 strategy

+
∫

ΩA∩T (ΩB)
fA(x)dµ(x)︸ ︷︷ ︸

2 strategies

(22)

A change of variable in the second term gives∫
ΩA∩ΩB

fA(x)dµ(x) =
∫

ΩA∩ΩB

fA(T (xB))|T ′|dµ(xB) (23)

where |T ′| is the jacobian determinant of T . The pdf of such trans-
formed samples is:

pB→A(xB) =
pB(xB)|T ′|VA(T (xB))

KB→A
(24)

KB→A =
∫

ΩB

pB(xB)|T ′|VA(T (xB))dµ(xB) (25)

where pB(xB) is the pdf of the sample, VA(T (xB)) is a visibility
function which is zero when applied to a point out of ΩA and K is
a normalization constant. This constant is not trivial and requires a
numerical integration as well.

Two Monte Carlo estimators can now be used to integrate over
ΩA ∩ T (ΩB) : sampling can be done either from ΩA or from ΩB
using T and a visibility test. A robust strategy to weight both esti-
mators and reduce the variance is the balance heuristic [VG95]:

wB→A(xi) =
pB→A(xi)

pB→A(xi)+ pA(xi)

wA→A(xi) =
pA(xi)

pB→A(xi)+ pA(xi)
. (26)

Finally, the Monte Carlo estimators of ÎA is:

ÎA =
1

nA

nA

∑
j

wA→A(x j)
fA(x j)

pA(x j)
+

1
nB

nB

∑
j

wB→A(x j)
fA(x j)

pB→A(x j)
(27)

and similarly for ÎB. The weight wB→A equals zero when samples
can not be generated from domain ΩB and wA→A is 1 in this case.

Both functions can now be jointly integrated with Monte Carlo
estimators and samples can be shared where domains overlap. This
approach generalizes well to N integrands and N associated impor-
tance functions.
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