
HAL Id: hal-02279942
https://hal.science/hal-02279942v5

Preprint submitted on 12 May 2021 (v5), last revised 24 Jun 2022 (v9)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reaction Networks to Boolean Networks
Emilie Allart, Joachim Niehren, Cristian Versari

To cite this version:
Emilie Allart, Joachim Niehren, Cristian Versari. Reaction Networks to Boolean Networks. 2021.
�hal-02279942v5�

https://hal.science/hal-02279942v5
https://hal.archives-ouvertes.fr

Reaction Networks to Boolean Networks:
Exact Boolean Abstraction for Linear Equation Systems

Emilie Allart1,2, Joachim Niehren1,3, and Cristian Versari1,2

1 BioComputing Team, CRIStAL Lab, Lille, 2 Université de Lille, 3 Inria Lille

Abstract. We study the problem of how to convert reaction networks into boolean net-
works. We start from the sign abstraction of the ODE semantics of reaction network, and
show that it can be captured by a quasi-boolean network, a generalization of boolean net-
works that we introduce. We then show that any quasi-boolean networks can be converted
into a boolean networks by using John’s overapproximation. Our main technical contri-
bution is a new rewrite algorithm that make linear equation systems exact with respect
to the boolean abstraction. We apply our exact rewriting for improving the precision of
the conversion of quasi-boolean to boolean networks, also in the general nonlinear case.
Thereby we improve our compiler from reaction networks to boolean networks as well.

Keywords: Linear equation systems · abstract interpretation · sign abstraction · systems
biology· reaction networks · boolean networks.

1 Introduction

Reaction networks [8,4,12,6] are the most prominent language for modeling the dynamics of
biological system. We consider the deterministic semantics of reaction networks based on ordinary
differential equations (ODEs). We propose to study the sign abstraction of dynamical states of
the ODEs. The signs tell us whether a reaction rate at some time point is positive, negative or
zero, and whether a species concentration is zero or not. The sign abstraction of a state always
has a unique successor, yielding a finite sign graph for an ODE system. This sign graph can be
used to prove properties of the dynamical behaviour of reaction networks. The question that we
study in the present paper is how to compute the sign graph of an ODE system inferred from
a reaction network. This is nontrivial even if the sign graph is always finite, since we cannot
compute the infinite object from which it abstracts.

In the first step, we show how to overapproximate the sign graph of the ODE system of
a reaction network by a boolean network. The idea is to see a system of ODEs as a system of
arithmetic equations with the operators + and ∗ that can be interpreted over positive reals. These
equations can also be interpreted more abstractly over the booleans, mapping + to disjunction
and ∗ to conjunction. The soundness of this abstract interpretation can be derived from John’s
theorem [1,17,13]. It implies that the set of boolean solutions of an arithmetic formula with +
and ∗ overapproximates the boolean abstraction of the set of its positive real solutions.

It turns out that the sign reinterpretation of the ODEs of the reaction network yields a boolean
network, whose transition relation overapproximates the sign graph of the ODEs of the reaction
network. While the real-valued states of the ODE have unique successors, this is not the case
for their sign abstractions. Further nondeterminism is introduced by the overrapproximation
of the possible signs by abstract interpretation. Therefore we will have to deal with boolean
networks with nondeterministic updates [18] rather than with their more classical deterministic
counterparts.

We then study the question of whether or when the sign graph can be computed exactly. For
this, we capture the sign graph of ODEs by the transition relation of quasi-boolean networks, a

generalization of boolean networks that we introduce. Whether the quasi-boolean network can be
converted to a boolean network depends on whether the boolean abstraction of the R+-solution
sets of system of arithmetic equations with operators + and ∗ can be described exactly by some
boolean expressions.

We present a positive answer to question in the case of systems of linear homogeneous equa-
tions with integer coefficients. Our rewriting algorithm is based on the computation of elemen-
tary modes [16,10,11,22]. It yields first-order formulas, for which John’s overapproximation of
the boolean abstraction of the R+-solution set is exact. This rewriting algorithm also permits to
compile a reaction network with linear ODEs into a boolean network by capturing exactly the
sign graph of the ODEs.

We finally apply exact rewriting to general reaction networks with nonlinear kinetic expres-
sions. For this we replace all nonlinear kinetic subexpressions by fresh variables, rewrite exactly
the linear equation system obtained thereby, and then replace the fresh variables back by their
nonlinear expressions. The boolean networks obtained in this manner may not always capture
the sign graph exactly, but may still considerably reduce the overapproximation coming with
abstract interpretation over signs.

The exact rewriting for linear equation systems with respect to boolean abstraction is also key
for computing the difference abstraction of steady states of reaction networks [1]. We originally
invented the exact rewriting in this context, but did not yet publish it. We discover the relevance
of this result only recently, triggered by discussion with Jun Pang and Löıc Paulevé following
the PhD defense of Emilie Allart.

Related Work . Classical boolean networks have deterministic updates specified by boolean func-
tions. Their application for the modeling of biological systems is not new, and their generation
from reaction networks has been discussed before. In [5] for instance, boolean networks are man-
ually produced from ODE models based on bifurcation analysis.

More recent notions of boolean networks by Paulevé and Séné [18] permit nondeterministic
updates by boolean relations. Nondeterministic updates are for instance useful to capture the
most permissive semantics of a classical boolean network [20]. Recently, Paulevé also developed
a most permissive semantics for well-structured reaction networks, that captures the sign graph
of its ODEs [19].

The Boolean semantics of reaction networks from Fages and Soliman [7] is different in that it
abstracts from the multiset rewriting semantics (see e.g. [15]). Multiset rewriting is asynchronous
and discrete, in contrast to the ODEs, whose semantics is synchronous and continuous. Therefore,
the Boolean semantics of reaction networks is not directly related to the sign abstraction its ODE
semantics.

Another compiler from reaction networks to Boolean networks but with deterministic updates
was presented recently by Sutavani et al. [21]. This translation is not intended to be correct with
respect to the boolean abstraction of the ODE semantics of the reaction network. Therefore,
they do not start from the usual ODEs inferred from the reaction network, but from simpler
ODEs inferred differently, ignoring the kinetic expressions and the stoichiometry. Similarly to
our approach, they then interpret multiplication as conjunction and addition as disjunction.
But in contrast to us, they interpret unary substraction as negation rather than eliminating
substraction beforehand.

2 Preliminaries

Let B = {0, 1} be the set of booleans, N the set natural numbers including 0, Z the set of
integers, R the set of real numbers, and R+ the set of positive real numbers including 0. Note
that B ⊆ N ⊆ R+ ⊆ R and N ⊆ Z ⊆ R.

2

Σ-Algebras. We next recall the usual notions of Σ-algebras and of homomorphism between Σ-
algebras. Let Σ = ∪n≥0F (n)]C be a ranked signature. The elements of f ∈ F (n) are called the
n-ary function symbols of Σ and the elements in c ∈ C its constants.

Definition 1. A Σ-algebra S = (dom(S), .S) consists of a set dom(S) and an interpretation .S

such that cS ∈ dom(S) for all c ∈ C, and fS : dom(S)n → dom(S) for all f ∈ F (n).

Let Σarith = {+, ∗, 0, 1,−, /} the arithmetic signature, where 0 and 1 are constants, and
all other operator binary function symbols. Let Σbool = {+, ∗, 0, 1} be the subset of boolean
operators.

Example 2. The set of positive reals R can be turned into a Σarith-algebra, in which the func-
tions symbols are interpreted as addition of positive reals +R, and multiplication of positive reals
∗R. The constants are interpreted by themselves 0R = 0 and 1R = 1.

Example 3. The set of positive reals R+ can be turned into a Σbool-algebra, in which the func-
tions symbols are interpreted as addition of positive reals +R+ , and multiplication of positive reals
∗R+ . The constants are interpreted by themselves 0R+ = 0 and 1R+ = 1.

Example 4. The set of Booleans B = {0, 1} ⊆ R+ equally defines a Σbool-algebra. There, the
function symbols are interpreted as a disjunction +B = ∨B and conjunction ∗B = ∧B on Booleans.
The constants are interpreted by themselves 0B = 0 and 1B = 1.

Example 5. The set of function of type R+ → R can be turned into a Σarith-algebra. Function
addition and multiplicatin are defined pointwise, that is (f +R+→R f ′)(r) = f(r) +R f ′(r) and
(f ∗R+→R f ′)(r) = f(r) ∗R f ′(r). The interpretation 0R+→R is the constant-0R function, and
similarly 1R+→R is the constant-1R function.

Σ-Structures. In order to generalize Σ-algebras to Σ-structures, we consider n-ary function
symbols as n+1-ary relation symbols.

Definition 6. A Σ-structure ∆ = (dom(∆), .∆) consists of a set dom(∆) and an interpretation
.∆ such that c∆ ∈ dom(∆) for all c ∈ C and f∆ ⊆ dom(∆)n+1 for all f ∈ F (n).

Clearly, any Σ-algebra is also a Σ-structure. Note also that symbols in F (0) are interpreted as
monadic relations, i.e., as subsets of the domain, in contrast to constants in C that are interpreted
as elements of the domain.

Example 7. The set of signs {−1, 0, 1} ⊆ R can be turned into a Σbool-structure S = ({−1, 0, 1}, .S)
with the interpretation +S and ∗S given in Fig. 3. The constants are interpreted by themselves
0S = 0 and 1S = 1. Note that all +S contains (−1, 1,−1), (−1, 1, 1) and (−1, 1, 0) meaning that
the sum of a strictly negative and a strictly positive real has a sign in −1+S 1, so it may either be
strictly positive, strictly negative, or zero. For this reason, S is a Σ-structure but not a Σ-algebra.

Definition 8. A homomorphism between two Σ-structures S and ∆ is a function h : dom(S)→
dom(∆) such that for c ∈ C, n ∈ N, f ∈ F (n), and s1, . . . , sn+1 ∈ dom(S):

1. h(cS) = c∆, and

2. if (s1, . . . , sn+1) ∈ fS then (h(s1), . . . , h(sn+1)) ∈ f∆.

3

We can convert any n + 1-ary relation to a n-ary set valued functions. In this way any n-
function is converted to a n-ary set valued n-functions. In other words, functions of type Dn → D
are converted to functions of type Dn → 2D where D = dom(∆). In set-valued notation, the
second condition on homomorphism can then be rewritten equivalently as h(fS(s1, . . . , sn)) ⊆
f∆(h(s1), . . . , h(sn)). A homomorphism for Σ-algebras thus satisfies h(cS) = c∆ and for all func-
tion symbols f ∈ F (n) and s1, . . . , sn ∈ dom(S) it satisfies h(fS(s1, . . . , sn)) = f∆(h(s1), . . . , h(sn)).

Expressions, Equations, ODEs. Let V be a set of variables and Σ = C ∪
⋃
n≥0 F

(n) a ranked
signature with constants and function symbols. The set of Σ-expressions e ∈ EΣ(V) is then given
by the following abstract syntax:

e1, . . . , en ∈ EΣ ::= x | c | f(e1, . . . , en) where c ∈ C, n ≥ 0, f ∈ F (n), x ∈ V

The semantics of an expression e ∈ EΣ can be defined as usual for any Σ-structure S and
variable assignment α : V → dom(S) with V(e) ⊆ V ⊆ V: it is the subset of the domain
JeKα,S ⊆ dom(S). Note that the semantics of expressions is set-valued in order to deal with
Σ-structures. For Σ-algebras, it will always be a singleton.

A Σ-equation with variables in V is a pair e
◦
= e′ where e, e′ ∈ EΣ(V). A system of Σ-equations

is a conjunction of equations ∧ni=1ei
◦
= e′i. In the case n = 0 the conjunction is true =def 1

◦
= 1.

An equation system φ equal to ∧ni=1ei
◦
= e′i is true for a Σ-structure S and a variable assignment

α : V → dom(S) with V(φ) ⊆ V if JeiKα,S ∩ Je′iKα,S 6= ∅ for all 1 ≤ i ≤ n. The equality symbol
◦
= is interpreted as nondisjointness, i.e., e

◦
= e′ is true if and only if JeKα,S ∩ Je′Kα,S 6= ∅. In the

case of Σ-algebras, the equality symbol
◦
= is indeed interpreted as equality of singleton. In the

case of more general Σ-structures, it will not be interpreted as set equality so.
Let S be a finite set of species and Ṡ = {S, Ṡ | S ∈ S}. An ODE system is a conjunction of

Σarith-equations with variables in Ṡ. We assume for all subexpressions e/e′ that, the value of e′

over R is always different from 0. A solution of an ODE system is a function γ : Ṡ → R+ → R
that makes all equations true over the structure R+ → R such that dγ(S)

dt (t) = γ(Ṡ)(t) for all
S ∈ S and t ∈ R+.

Lemma 9 Positive Rewriting. Any ODE system can be rewritten into an ODE system with
boolean operators in Σbool while preserving the solutions in the Σbool-algebra R.

Proof Substructions in Σarith-formulas e − e′
◦
= e′′ can be eliminated by rewriting to

e
◦
= e′′ + e′. Division in Σarith-formula e/e′

◦
= e′′ can be removed by rewriting to e

◦
= e′′ ∗ e′.

The latter works since we assumed that the denominator e′ can never become equal to 0. By
exhaustive rewriting, we obtain an ODE system with only boolean operators in Σbool.

Reaction Networks. A reaction network with species in S is a set of chemical reactions of the
following form: r : R

e−→ P where r is a name, R,P : S → N are multisets of species called
respectively the reactants and the products, and e ∈ EΣarith(S) is the kinetic expression. The
kinetic expression specifies the rate of the reaction at any time point, that is specified by the
ODE semantics.

The ODEs of a reaction network N are inferred as follows. If a species S ∈ S is produced or
consumed by reactions ri with stoichiometry zi ∈ Z – the number of S produced minus number
of S consumed by ri – and kinetic expression ei then the ODE Ṡ = z1e1 + . . . + znen is added
to the ODEs of N . Consider for instance the acyclic reaction network Nacyc in Fig. 1. It has the

molecular species is S = {A,B,C,D} and two reactions with mass-action kinetics r1 : A
A−→ B

and r2 : A + C
A∗C−−−→ D. The deterministic semantics of Nacyc is the system of ODEs in Fig. 2.

One numerical simulation of the ODEs, corresponding to one solution γ, is shown in Fig. 4.

4

A

B

C

D

1
A

2
A*C

Fig. 1: The acyclic reaction network Nacyc.

Ȧ
◦
= −A−A ∗ C ∧ Ḃ

◦
= A ∧

Ċ
◦
= −A ∗ C ∧ Ḋ

◦
= A ∗ C

Fig. 2: Deterministic semantics by ODEs.

d d′ d +S d′ d ∗S d′
−1 1 {−1, 0, 1} −1
−1 0 −1 0
−1 −1 −1 1

d d′ d +S d′ d ∗S d′
0 1 1 0
0 0 0 0
0 −1 −1 0

d d′ d +S d′ d ∗S d′
1 1 1 1
1 0 1 0
1 −1 {−1, 0, 1} −1

Fig. 3: Interpretation of Σ-structure of signs S.

Σ-Abstractions. The boolean abstraction is the function hB : R+ → B with hB(0) = 0 and
hB(r) = 1 if r > 0. The sign abstraction is the function hS : R → S with hS(0) = 0, hS(r) = −1
for all strictly negative reals r < 0 and hS(r) = 1 for all strictly positive reals r > 0. We can
generalizate the boolean abstraction and the sign abstraction as follows:

Definition 10. A Σ-abstraction is a homomorphism h:S → ∆ between Σ-structures such that
dom(∆) ⊆ dom(S).

Lemma 11. The boolean abstraction hB is a Σbool-abstraction into a Σbool-algebra.

Lemma 12. The sign abstraction is hS a Σbool-abstraction into a Σbool-structure.

First-Order Logic. We call the syntax and semantics of first-order logic. The set of first-order
formulas FΣ(V) is constructed from Σ-equations with variables in V and the usual first-order
connectives:

φ ∈ FΣ(V) ::= e
◦
= e′ | ∃x.φ | φ ∧ φ | ¬φ where e, e′ ∈ EΣ(V) and x ∈ V

The set of free variables V(φ) are all those variables of φ that occur outside the scope of any
quantifier. The semantics of first-order logic can be defined as usual for any Σ-structure S
and variable assignment α : V → dom(S). It yields a truth value JφKα,S ∈ B for any formula
φ ∈ FΣ(V) with V(φ) ⊆ V . See Fig. 11 of the appendix for the details. The set of solutions
of a formula φ ∈ FΣ(V) over a Σ-algebra S with respect to a subset of variables V ⊇ V(φ) is:
solSV (φ)={α : V → dom(S) | JφKα,S = 1}. If V = V(φ) we omit the index V , i.e., solS(φ) =
solSV (φ). We can define the boolean abstraction by a first-order formula with signature Σbool:

y
◦
= hB(x) =def (y = 0 ∧ x ◦= 0) ∨ (y

◦
= 1 ∧ ¬x ◦= 0)

We need also to define applications of the boolean abstraction to the solution set of a first-
order formula φ with signature Σbool. For this, let y be vector of distinct variables such that
{y} = V(φ). Let x be a vector of fresh variables with the same arity than y. We then define the
application of hB to the solution set of φ by the first-order formula hB(φ) as follows:

hB(φ) =def ∃x. φ[y/x] ∧
∧
i

yi
◦
= hB(xi)

5

Abstract Interpretation. We recall John’s theorem [13] on how to overapproximate abstractions
of solution sets of first-order formulas by abstract interpretation. Let h : S → ∆ be a Σ-
abstraction and V ⊆ V. For any subset of assignments R of type V → dom(S) we define
h ◦R = {h ◦ α : V → dom(∆) | α ∈ R}.

Theorem 13 John’s Overapproximation [1,17,13]. For any Σ-abstraction h : S → ∆
between Σ-structures and any negation-free formula φ ∈ FΣ(V): h ◦ solS(φ) ⊆ sol∆(φ).

We only give a sketch of the proof. Let α : V → dom(S). For any expression e ∈ EΣ(V) such
that V(e) ⊆ V we can show that h(JeKα,S) = JeKh◦α,∆ by induction on the structure of e. It
then follows for any positive formula φ ∈ FΣ(V) with V(φ) ⊆ V that JφKα,S ≤ JφKh◦α,∆. This is
equivalent to that: {h ◦ α | α ∈ solSV (φ)} ⊆ sol∆V (φ) and thus h ◦ solSV (φ) ⊆ sol∆V (φ).

3 Sign Graphs of ODEs

Let S be a set of species and Ṡ = {S, Ṡ | S ∈ S}. Note that the system of ODEs E of any
reaction network with species in S is a conjunction of Σarith-equations with variables in Ṡ, and
thus a formula of FΣarith(Ṡ).

A state of a system of ODE equations is a function α : Ṡ → R that solves all its equations
over the algebra R. Note that α(Ṡ) may be negative, while α(S) ≥ 0 for all S ∈ S by assumption.
Let E′ be the formula E ∧

∧
S∈S S ≥ 0, where the formula S ≥ 0 is defined by ∃y.S = y ∗ y.

A real assignment α : Ṡ → R can be abstracted to a sign assignment hS ◦ α : Ṡ → S. Given
an ODE system E we define a possibly nondeterministic successor relation on sign assignments
β, β′ ∈ hS ◦ solR(E′): we call β′ a successor of β if

∀S ∈ S. β′(S) = β(S) +S max(0, β(Ṡ))

The sign graph of E has as node the elements of hS ◦ solR(E′), and as edges the elements of
the successor relation. Due to the nondeterminism, some sign assignments may have multiple
outgoing edges in the sign graph, as for instance in the sign graph in Fig. 8.

Example 14. Reconsider the ODEs in Fig. 2 inferred from the reaction network Nacyc in Fig. 1.
Let γ be the ODE solution in Fig. 4. We consider the following R-solutions of the ODE equations:

α1 = γ(0) = [A/2, B/0, C/1, D/0, Ȧ/− 4, Ḃ/2, Ċ/− 2, Ḋ/2]

α2 = γ(0.1) = [A/0.7, B/0.1, C/0.3, D/0.9, Ȧ/− 0.2, Ḃ/0.1, Ċ/− 0.1, Ḋ/0.1]

The sign abstractions of these solutions are:

β1 = hS ◦ α1 = [A/1, B/0, C/1, D/0, Ȧ/− 1, Ḃ/1, Ċ/− 1, Ḋ/1]

β2 = hS ◦ α2 = [A/1, B/1, C/1, D/1, Ȧ/− 1, Ḃ/1, Ċ/− 1, Ḋ/1]

We can now see that β2 is a successor of β1. For species B, for instance, we have β2(B) = 1 =
0+1 = β1(B)+max(0, β1(Ḃ)). The whole sign graph for the ODEs of Nacyc is is given in Fig. 5.

4 Approximating Sign Graphs by Boolean Networks

We first give a syntax for the boolean networks with nondeterministic updates from [18] based
on boolean formulas. We then present a compiler mapping the ODEs of a reaction network to a
Boolean network based on boolean interpretation of the ODEs.

6

Fig. 4: Solution of ODEs of Nacyc with initial state A(0) = 2, C(0) = 1 and B(0) = D(0) = 0.

0 1 0 1
0 0 0 0

0 1 1 1
0 0 0 0

0 0 1 0
0 0 0 0

1 0 0 1
-1 1 0 0

1 1 0 1
-1 1 0 0

0 1 0 0
0 0 0 0

0 0 0 1
0 0 0 0

0 0 0 0
0 0 0 0

1 0 0 0
-1 1 0 0

1 1 0 0
-1 1 0 0

1 1 1 0
-1 1 -1 1

1 1 1 1
-1 1 -1 1

1 0 1 0
-1 1 -1 1

1 0 1 1
-1 1 -1 1

0 1 1 0
0 0 0 0

0 0 1 1
0 0 0 0

Fig. 5: Sign graph of ODEs for reaction network Nacyc.

The compiler will be done in such a way that the transition relation of the boolean network
will overapproximate the sign graph of the ODEs. The overapproximation may introduce further
nondeterminism to that of the sign graph, as we will see in the example in Fig. 10 of Section 5.
In order to capture the nondeterminism, we need to admit nondeterministic updates for boolean
networks too.

Let S be a finite set of species. The set S×{1, 2} provides two copies of S. For any S ∈ S, the
first copy S1 = (S, 1) will denote the old boolean value of S before a transition, and S2 = (S, 2)
the new boolean value of S after the transition. A boolean network with nondeterministic updates
and species in S is a formula φ ∈ F{+,∗,0,1}(S × {1, 2}). For illustration, the boolean network

φboolacyc is given in Fig. 6. With S = {A,B,C,D}, the network has the set of species:

Ṡ+/− = {S, Ṡ+, Ṡ− | S ∈ S}

For each boolean network φ we define a transition relation→B
φ on boolean assignments of species.

Given two boolean assignments β1, β2 : S → B, let β : S × {1, 2} be such that β(Si) = βi(S) for
all S ∈ S and i ∈ {1, 2}. We can then define the transition relation →B

φ such that:

β1 →B
φ β2 if and only if JφKβ,B = 1

In this case, we say that β2 is a successor of β1 with respect to the boolean network φ. For the
boolean network φboolacyc in Fig. 6, the transition relation →B

φboolacyc
corresponds exactly to the sign

graph Nacyc when identifying the sign of Ṡ by the equation Ṡ = Ṡ+ − Ṡ−.

7

∧
S∈{A,B,C,D} S2

◦
= S1 + Ṡ+

1 ∧ Ṡ
−
2 ∗ Ṡ

+
2
◦
= 0

∧ Ȧ+
2 +A2 +A2 ∗ C2

◦
= Ȧ−2 ∧ Ḃ+

2
◦
= Ḃ−2 +A2

∧ Ċ+
2 +A2 ∗ C2

◦
= Ċ−2 ∧ Ḋ+

2
◦
= Ḋ−2 +A2 ∗ C2

Fig. 6: Boolean network φboolacycl obtained by boolean interpretation of ODEs of Nacyc.

We next present a compiler from reaction networks to boolean networks with nondeterministic
updates. The objective is to overapproximate the sign graph of the ODEs of the reaction network
by the transition relation of the boolean network. For instance, the reaction network Nacyc will
be mapped to the boolean network bn(Nacyc) = φboolacyc.

Given a reaction network N , the compiler starts with the ODEs of N . As argued earlier, these
can be rewritten positively to ODEs with operators in Σbool only. While the variables S ∈ S must
have positive values at every time point, the variables Ṡ may still have negative values. In order to
get rid of all negative values, the idea is that every real number r ∈ R is equal to a difference of two
positive real numbers r+− r−, where r+ = max(r, 0) and r− = −min(r, 0). Hence, r+, r− ∈ R+

and the decomposition r = r+−r− is unique such that r+ ≥ 0∧r− ≥ 0∧r+ ∗r− = 0. Therefore,
we replace each variable Ṡ by a difference of two fresh variables Ṡ+ − Ṡ− that are constrained
by Ṡ+ ≥ 0∧ Ṡ− ≥ 0∧ Ṡ+ ∗ Ṡ− = 0. We then apply Lemma 9 to rewrite the ODEs positively to a
boolean formula with signature Σbool with variables in Ṡ+/−, while eliminating the subtraction
operator. For the example Nacyc we obtain the boolean formula odebf (Nacyc):

Ȧ+ +A+A ∗ C = Ȧ− ∧ Ḃ+ = Ḃ− +A ∧ Ċ+ +A ∗ C = Ċ− ∧ Ḋ+ = Ḋ− +A ∗ C

The boolean formula odebf (N) can be used to compile the reaction network N to a boolean
network bn(N). Suppose that the reaction network N has the species in S. Then odebf (N) ∈
FΣbool(Ṡ

+/−). We define the boolean network bn(N) with species in Ṡ+/− as follows:

bn(N) = odebf (N)[S/S2 | S ∈ S] ∧
∧
S∈S

S2
◦
= S1 + Ṡ+

1 ∧ Ṡ
−
2 ∗ Ṡ

+
2
◦
= 0

For any species S ∈ S the new value described by S2 is determined by S2
◦
= S1 + Ṡ+

1 when given
the old values. Furthermore, the new values must satisfy the ODEs of N , that is the expression
odebe(N) in which all S are replaced by S2. For illustration, the boolean network bn(Nacyc) is
given in Fig. 6. Nicely, it captures precisely the sign graph of Nacyc.

5 Overapproximation Example

For general reaction networks N the boolean network bn(N) may only overapproximate the sign
graph of N . The overapproximation may be large as we illustrate next by example. For this we
consider the cyclic reaction network Ncyc in Fig. 7. The sign graph of Ncyc is given in Fig. 8. The
boolean network bn(Ncyc) inferred by boolean interpretation of odebe(Ncyc) is given in Fig. 9.
The approximation of the sign graph made by the boolean network bn(Ncyc) is shown in Fig. 10.
Note that contains more sign assignments than the sign graph of Ncyc. The question is under
how to capture the sign graphs of reaction networks more precisely or even exactly by boolean
networks.

6 Capturing Sign Graphs by Quasi-Boolean Networks

We propose to generalize boolean networks to quasi-boolean networks. We then show how to
compile reaction networks to quasi-boolean networks while capturing the sign graph exactly.

8

A B

C

r1
A

r2
B

r3
B∗C

Fig. 7: The reaction
network Ncyc.

0 0 0
0 0 0

0 0 1
0 0 0

1 0 0
-1 1 0

1 1 0
-1 1 1

0 1 0
0 -1 1

1 1 1
0 -1 1

1 1 1
1 -1 1

1 1 1
-1 0 1

1 1 1
-1 -1 1

1 1 1
-1 1 1

1 1 0
-1 -1 1

1 1 0
-1 0 1

0 1 1
1 -1 1

1 0 1
-1 1 0

Fig. 8: The sign graph of Ncyc (ABC over ȦḂĊ).

Ȧ2
+

+A2
◦
= Ȧ2

−
+B2 ∗ C2 ∧ Ḃ2

+
+B2 +B2 ∗ C2

◦
= Ḃ2

−
+A2 ∧ Ċ2

+ ◦
= Ċ2

−
+B2

∧
∧
S∈{A,B,C} S2

◦
= S1 + Ṡ+

1 ∧ Ṡ−2 ∗ Ṡ
+
2
◦
= 0

Fig. 9: The boolean network bn(Ncyc).

0 0 0
0 0 0

0 0 1
0 0 0

1 0 0
-1 1 0

1 1 0
-1 1 1

0 1 0
0 -1 1

1 1 1
0 -1 1

1 1 1
1 -1 1

1 1 1
-1 0 1

1 1 1
-1 -1 1

1 1 1
1 1 1

1 1 1
0 1 1

1 1 1
1 0 1

1 1 1
0 0 1

1 1 1
-1 1 1

1 1 0
-1 -1 1

1 1 0
-1 0 1

0 1 1
1 -1 1

1 0 1
-1 1 0

Fig. 10: Overapproximation of the sign graph by bn(Ncyc).

A quasi-boolean network with species in S has the same syntax than a boolean network. But
for the semantics, the formulas φ ∈ FΣbool(S × {1, 2}) are interpreted over R+ rather than B.

The transition relation →R+

φ is defined such that:

β1 →R+

φ β2 if and only if JφKβ,R+ = 1

In this case we say that β2 is a successor of β1 with respect to the quasi-boolean network φ on
R+.

Given a reaction network N with species in S, let odebf (N) be the boolean formula that we

obtained from its ODEs. This formula is a system of Σbool-equation with variables in Ṡ+/−. We
define the quasi-boolean network qbn(N) with species in Ṡ+/− as follows:

qbn(N) = hB(qb(N))

9

Recall from Section 2 that hB(odebf (N)) is the first-order formula that defines the hB-abstraction
of the solutions of odebf (N). In hB(odebf (N)), each variable S is to be replaced by S2, since the
ODE equations are to be applied to the values after the transition step.

Proposition 15 Correctness of qbn(N). For any reaction network N , the sign graph of N
is equal to the sign graph encoded by the transition relation of the quasi-boolean network qbn(N).

Proof This follows directly from the constructions.

Proposition 16 bn(N) overapproximates qbn(N). The transition relation of the quasi
boolean network qbn(N) is contained in the transition relation of the boolean network bn(N).

Proof By John’s overapproximation (Theorem 13), we have hB ◦ solR+(φ) ⊆ solB(φ) and
thus solR+(hB(φ)) ⊆ solB(φ).

Theorem 17 bn(N) overapproximates the sign graph of N . The sign graph encoded by
the transition relation of the boolean network bn(N) subsumes the sign graph of N .

Proof This is immediate from the correctness of the transition graph of qbn(N) with respect
to the sign graph of N in Proposition 15 and the overapproximation for the transition relation
of bn(N) relatively to qbn(N) by Proposition 16.

Our next objective is to rewrite quasi-boolean networks to boolean networks while preserving
the transition relation. For this, we propose to rewrite formulas φ ∈ FΣbool(V) to R+-equivalent

formulas φ′ ∈ FΣbool(V) such that solB(φ′) = hB ◦ solR+(φ′) = hB ◦ solR+(φ). The formula φ′

can then be rewritten into a boolean expression e ∈ EΣbool(V) that holds for the same boolean
assignments, as we showed earlier. We provide a solution to the above problem only for the
special case, where the formulas φ represent a linear homogenous equation system with integer
coefficients. But the linear case can be used to obtain better Boolean networks for reaction
networks with nonlinear ODEs, simply by replacing nonlinear subexpressions by variables, and
putting nonlinear equations for these variables aside. This is the way we computed the sign graph
for Nacyc in Fig. 8, even though its ODEs are nonlinear.

7 Linear Equation Systems and Elementary Modes

We are interested in systems of Σbool-equations. The base case is homogeneous linear equations
systems with natural coefficients, which capture linear matrix integer equations Ax = 0 inter-
preted over R+. We will show that elementary modes [16,10,11,22] can be used to transform
linear integer matrix equations into equivalent systems which are quasi-positive and strongly-
triangular, two key properties that we will show guarantee the exactness of their interpretation
over the booleans. In order to extend our result to linear equation systems interpreted over R,
we also need systems of polynomial equations, with natural coefficients and no constant term,
that are nonlinear.

In the following, let en =
∏n
i=1 e and ne =def

∑n
i=1 e.

Definition 18. A Σbool-equation is called positive if it has the form e
◦
= 0 and quasi-positive if

it has the form e
◦
= ny, where n ∈ N, y ∈ V, and e ∈ EΣbool(V).

This definition makes sense, since all constants in Σbool-expressions are positive and all opera-
tors of Σbool-expressions preserve positivity. Note also that any positive equation is quasi-positive
since the constant 0 is equal to the polynomial 0y. A system of Σbool-equations is a conjunctive

10

formula of the form
∧n
i=1 ei

◦
= e′i in FΣ . We call a system of Σbool-equations positive respectively

quasi-positive if all its equations are.
A polynomial (with natural coefficients) is an expression of the form

∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k

where l and ij are naturals, x1,1, . . . , xl,il variables, all nj 6= 0 naturals called the coefficients,

and all mj,k 6= 0 naturals called the exponents. The products
∏ij
k=1 x

mj,k
j,k are called the monomials

of the polynomial.

Definition 19. A polynomial
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k with natural coefficients nj 6= 0 has no con-

stant term if none of its monomials is equal to 1, i.e., ij 6= 0 for all 1 ≤ j ≤ l. It is linear if all
its monomials are variables, i.e. ij = 1 and mj,1 = . . . = mj,ij = 1 for all 1 ≤ j ≤ l.

Note that any linear polynomial has the form
∑l
j=1 njxj,1 where l and all nj 6= 0 are nat-

urals and all xj,1 are variables. In particular, linear polynomials do not have a constant term.
Furthermore, note that the constant 0 is equal to the linear polynomial with l = 0. A polynomial
equation is a Σbool-equation p

◦
= p′ between polynomials. A (homogeneous) linear equation is

a polynomial equation with linear polynomials, so without constant terms. A linear equation
system is a system of linear equations.

A (homogeneous) linear integer matrix equation has the form Ay
◦
= 0 where A is a n ×m

matrix of integers for some naturals m,n such that y ∈ Vm. Any linear integer matrix equation
can be turned into a linear equation system with natural coefficients, by bringing the negative
coefficients on the right-hand side. For instance, the linear integer matrix equation on the right
corresponds to the linear equation system with natural coefficients 3x

◦
= 0 ∧ 2x

◦
= 5y.(

3 0
2 −5

)(
x
y

)
◦
= 0

This system is quasi-positive, but not positive since 5y appears on a right-hand side. More
generally, the linear equation system for an linear integer matrix equation Ay

◦
= 0 is positive if

and only if all integers in A are positive, and quasi-positive, if each line of A contains at most
one negative integer. Furthermore, the above linear equation system is triangular in the following
sense, but not strongly triangular:

Definition 20. We call a quasi-positive system of Σbool-equations triangular if it has the form∧n
l=1 el

◦
= nlyl such that the variables yl are l-fresh for all 1 ≤ l ≤ n, i.e., yl 6∈ V(∧l−1i=1ei

◦
= e′i)

and if nl 6= 0 then yl 6∈ V(el). We call the quasi-positive polynomial system strongly-triangular
if it is triangular and satisfies nl 6= 0 for all 1 ≤ l ≤ n.

Consider a linear integer matrix equation Ay
◦
= 0. If A is positive and triangular, then the

corresponding linear equation system is positive and triangular too. For being quasi-positive and
strongly-triangular, the integers below the diagonal of A must be negative, those on the diagonal
must be strictly negative, and those on the right of the diagonal must be positive.

Theorem 21 Elementary Modes. For any system of linear equations φ with natural coeffi-
cients, one can compute in at most exponential time a R+-equivalent formula ∃x.φ′ such that φ′

is a quasi-positive strongly-triangular system of linear equations with natural coefficients and x
the sequence of variables on the left hand sides of the equations.

The theorem applies in particular to the linear equation systems of integer matrix equations
Ay

◦
= 0. It shows that there exists a matrix E of naturals, a vector of naturals n, and a vector

of fresh variables x, such that Ay
◦
= 0 is R+-equivalent to ∃x. Ex

◦
= ny.

11

8 Abstraction Exactness

John’s overapproximation Theorem 13 shows that the set of solutions over the abstract domain
sol∆(φ) is an approximation by the abstraction of the concrete solution set h(solS(φ)) for any
abstraction h : S → ∆ from concrete to abstract structure and any positive first-order formula
φ. We say that φ is h-exact if even equality holds.

Definition 22 Exactness. Let h : S → ∆ be a Σ-abstraction, φ a Σ-formula and V ⊇ V(φ).
We call φ h-exact with respect to V if h(solSV (φ)) = sol∆V (φ). We call φ h-exact if φ is h-exact
with respect to V(φ).

Our next objective is to study the preservation of h-exactness by logical operators. The main
difficulty of this paper is the fact that h-exactness is not preserved by conjunction. Nevertheless,
as we will show next, it is preserved by disjunction and existential quantification. For the case
of disjunction, we need a basic property of union which fails for intersection.

Lemma 23. Let V be a set of variables, R1 and R2 be subsets of assignments of type V →
dom(S) and h : S → ∆ be a Σ-abstraction. h ◦ (R1 ∪R2) = h ◦R1 ∪ h ◦R2.

Proposition 24. The disjunction of h-exact formulas is h-exact.

Lemma 25 Projection commutes with abstraction. For any Σ-abstraction h : S → ∆,
subset R of assignments of type V → S, and variable x ∈ V: h ◦ πx(R) = πx(h ◦R).

Proposition 26 Quantification preserves exactness. For any surjective Σ-abstraction
h : S → ∆ and formula ∃x.φ ∈ FΣ, if φ is h-exact then ∃x.φ is h-exact.

We next study the h-exactness for strongly-triangular systems of Σbool-equations, under the
condition that h is an abstraction between Σ-algebras with unique division.

Lemma 27 Singleton property. If S is a Σ-algebra, e ∈ EΣ, and α : V(e) → S a variable
assignment, then the set JeKα,S is a singleton.

A Σ-algebra is a Σ-structure with the singleton property. Let ele be the function that maps
any singleton to the element that it contains.

Definition 28. We say that a Σ-structure S has unique division, if it satisfies the first-order
formula ∀x.∃=1y. ny

◦
= x for all nonzero natural number n ∈ N.

Clearly, the Σ-algebras R+ and B have unique division. For any element s of the domain of
a structure S with unique division and any nonzero natural number n ∈ N, we denote by s

n the

unique element of {α(y) | α ∈ solS(ny
◦
= z), α(z) = s}.

Lemma 29. Let φ ∈ FΣ be a Σ-formula and S a Σ-algebra with unique division. For nonzero
natural number n, variable y 6∈ V(φ), and expression e ∈ EΣ with V(e) ⊆ V(φ):

solS(φ ∧ ny ◦= e) = {α[y/
ele(JeKα,S)

n
] | α ∈ solS(φ)}

Proposition 30. Let φ ∈ FΣ a Σ−formula, n 6= 0 a natural number, e ∈ EΣ a Σ-expression
with V(e) ⊆ V(φ) and y /∈ V(φ) and the Σ-abstraction h : S → ∆ with S and ∆ two Σ-algebras

with unique division. Then if φ is h-exact implies that φ ∧ e ◦= ny is h-exact.

12

Proposition 31. Let h : S → ∆ be a Σ-abstraction between Σ-algebras with unique division.
Then any strongly-triangular system of Σ-equations with natural coefficients is h-exact.

We notice that Proposition 31 remains true for triangular systems that are not strongly-
triangular. This will follow with further results from the next section (Theorem 43 and Proposi-
tion 37) requiring a different argument.

Theorem 32 Exactness. Quasi-positive strongly-triangular polynomial system are hB-exact.

Proof The Σ-algebras R+ and B have unique division, so we can apply Proposition 31.

The Elementary Modes Theorem 21 show that any integer matrix equation Ax
◦
= 0 is R+-

equivalent to some quasi-positive strongly-triangular linear equation system. We can thus apply
Theorem 32 to obtain the following corollary.

Corollary 33. Any matrix integer equation can be converted in at most exponential time to
some R+-equivalent hB-exact Σ-formula.

This corollary permits us to compute the hB-abstraction of an integer matrix equation by
computing the B-solutions of the R+-equivalent hB-exact formula. For computing abstractions
between structures without unique division we need to strengthen this result.

9 Abstraction Invariance

A problem that we need to overcome is that conjunctions of two h-exact formulas may not be
h-exact. The situation changes when assuming the following notion of h-invariance for at least
one of the two formulas.

Definition 34 Invariance. Let h : S → ∆ be a Σ-abstraction and V ⊆ V a subset of variables.
We call a subset R of variable assignments of type V → dom(S) h-invariant iff:

∀α, α′ : V → dom(S). (α ∈ R ∧ h ◦ α = h ◦ α′ =⇒ α′ ∈ R).

We call a Σ-formula φ h-invariant if its solution set solS(φ) is.

The relevance of the notion of invariance for exactness of conjunctions – that we will formalize
in Proposition 37 – is due to the the following lemma:

Lemma 35. If either R1 or R2 are h-invariant then: h ◦ (R1 ∩R2) = h ◦R1 ∩ h ◦R2.

We continue with an algebraic characterization of h-invariance. Given a Σ-abstraction h :
S → ∆, and a set R of variable assignments to dom(∆), we define the left-decomposition of R
with respect to h as the following set of variable assignments to dom(S):

h ◦−R =def {α | h ◦ α ∈ R}

Clearly, R ⊆ h ◦−(h ◦R). The inverse inclusion characterizes the h-invariance of R.

Lemma 36 Algebraic characterization. A subset of R variables assignment of type V →
dom(S) is h-invariant for a Σ-abstraction h : S → ∆ iff h ◦−(h ◦R) ⊆ R.

Proposition 37 Exactness is preserved by conjunction when assuming invariance.
Let h be a surjective Σ-abstraction. If φ1 and φ2 are h-exact Σ-formulas and φ1 or φ2 are
h-invariant then the conjunction φ1 ∧ φ2 is h-exact.

13

Proof Let φ1 and φ2 be h-exact Σ-formulas. We assume without loss of generality that φ1 is
h-invariant. Let V = V(φ1 ∧ φ2). Since V(φ2) ⊆ V the set solSV (φ2) is h-invariant too by Lemma
56. We can now show that φ1 ∧ φ2 is h-exact as follows:

h ◦ solS(φ1 ∧ φ2) = h ◦ (solSV (φ1) ∩ solSV (φ2))
= h ◦ solSV (φ1) ∩ h ◦ solSV (φ2) by Lemma 35
= sol∆V (φ1) ∩ sol∆V (φ2) by h-exactness of φ1 and φ2 wrt V
= sol∆(φ1 ∧ φ2)

Our next objective is to show that h-invariant formulas are closed under conjunction, dis-
junction, and existential quantification. The two former closure properties rely on the following
two algebraic properties of abstraction decomposition.

Lemma 38. For any Σ-abstraction h : S → ∆, any subsets of assignments of type V → dom(S)
R1 and R2 and V a subset of variables:

– h ◦−(R1 ∩R2) = h ◦−R1 ∩ h ◦−R2.

– h ◦−(R1 ∪R2) = h ◦−R1 ∪ h ◦−R2.

Lemma 39 Intersection and union preserve invariance. Let h : S → ∆ be a Σ-
abstraction. Then the intersection and union of any two h-invariant subsets R1 and R2 of vari-
ables assignments of type V → dom(S) is h-invariant.

Lemma 40 Projection commutes with left-decomposition. h ◦−πx(R) = πx(h ◦−R).

Proposition 41 Invariance is preserved by conjunction, disjunction, and quantifica-
tion. If h is a surjective abstraction then the class of h-invariant FO-formulas is closed under
conjunction, disjunction, and existential quantification.

We do not known whether negation preserves h-invariance in general, but for finite ∆ it can
be shown that if φ is h-exact and h-invariant, then ¬φ is h-exact and h-invariant too.

Proposition 42. Let h be a surjective Σ-abstraction. Then the class of h-exact and h-invariant
Σ-formulas is closed under conjunction, disjunction and existential quantification.

Theorem 43 Invariance. Any positive polynomial equation p
◦
= 0 such that p has no constant

term is hB-exact and hB-invariant.

Sketch of Proof. Any positive polynomial equation p
◦
= 0 such that p has no constant term and

only positive coefficients has the form
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k

◦
= 0 where l ≥ 0, and nj , ij ,mj,k > 0.

We can now show that for both algebras S ∈ {B,R+} that:

solS(p
◦
= 0) = solS(

l∧
j=1

ij∨
k=1

xj,k
◦
= 0)

Since the formulas xj,k
◦
= 0 are hB-exact and hB-invariant, the theorem follows from the closure

properties of Proposition 42.

14

10 Boolean Abstractions of Mixed Systems

In this section we prove our main result stating how to compute the hB-abstraction of the R+-
solution set of a mixed system exactly.

Definition 44. A mixed system is a formula in FΣ of the form ∃z. φ ∧ φ′ where φ is a linear
equation system and φ′ a hB-invariant and hB-exact first-order formula.

Note that linear equation systems Ay
◦
= 0, with A an integer matrix and y a sequence of

pairwise distinct variables, need not to be hB-exact, if A is not positive. However, any linear equa-
tion systems of this shape is R+-equivalent to some quasi-positive strongly-triangular polynomial
system, as shown by the Elementary Modes Theorem 21. And quasi-positive strongly-triangular
polynomial system were shown to be hB-exact by Exactness Theorem 32.

Theorem 45 Main. Any mixed system can be converted in exponential time to an R+-equivalent
Σ-formula that is hB-exact.

Proof Consider a mixed system ∃x. (φ ∧ φ′) where φ is a linear equation system and φ′ a
first-order formula that is hB-exact and hB-invariant. Based on the Elementary Modes Theorem
21, the linear equation system φ can be transformed in exponential time to the form ∃z.φ′′ where
φ′′ is a quasi-positive strongly-triangular system of linear equations. Such polynomial equation
systems are hB-exact by Theorem 32, and so is φ′′. The Invariance Proposition 37 shows that
the conjunction φ′′ ∧ φ′ is hB-exact too, since φ′ was assumed to be hB-exact and hB-invariant.
Finally, hB-exactness is preserved by existential quantification by Proposition 26, so the formula
∃x.∃z. φ′′ ∧ φ′ is hB-exact too.

Corollary 46. The hB-abstraction of the R+-solution set of a mixed system φ, that is hB ◦
solR+(φ), can be computed in at most exponential time in the size of the system φ.

The algorithm from the proof Corollary 46 can be improved so that it becomes sufficiently
efficient for practical use. For this the two steps with exponential worst case complexity must be
made polynomial for the particular instances. First note that the computation of the elementary
modes (Theorem 21) is known to be computationally feasible. Various algorithms for this purpose
were implemented [9,14,2,3] and applied successfully to problems in systems biology [11]. The
second exponential step concerns the enumeration of all boolean variable assignments. This
enumeration may be avoided by using constraint programming techniques for computing the
solution set solB(φ′′). For those mixed systems for which both steps can be done in polynomial
time, we can compute the boolean abstraction of the R+-solution set in polynomial time too. The
practical feasibility of this approach was demonstrated recently at an application to knockout
prediction in systems biology [1], where previously only over-approximations could be computed.

11 Improving Boolean Networks for Sign Graphs

Let us now show how to obtain better boolean network for the sign graphs of reaction networks
than by direct interpretation of ODEs over the booleans. We illustrate the approach for the
example reaction network Ncyc. The formula bn(Ncyc) can be turned into a mixed-system by
replacing the nonlinear kinetic expression B2 ∗C2 by some fresh variable v. The resulting mixed-
system can then be rewritten by Theorem 45 to a hB-exact formula that is R+-equivalent. In the
exact formula, we replace v back by B2 ∗ C2 yielding the boolean network below. The network

15

indeed captures the sign graph of Ncyc in Fig. 8 exactly. The existentially bound variables
x1, . . . , xn for boolean values are introduced by the elementary modes.

A2
◦
= A1 + Ȧ+

1 ∧B2
◦
= B1 + Ḃ+

1 ∧ C2
◦
= C1 + Ċ+

1

∧ Ȧ+
2 ∗ Ȧ

−
2
◦
= 0 ∧ Ḃ+

2 ∗ Ḃ
−
2
◦
= 0 ∧ Ċ+

2 ∗ Ċ
−
2
◦
= 0

∧ ∃x0 . . . x7. A2
◦
= x5 + x6 + x7 ∧ Ȧ−2

◦
= x4 + x6 + x7 ∧ Ȧ+

2
◦
= x3 + x4 ∧B2

◦
= x2 + x7

∧ Ḃ−2
◦
= x1 + x2 + x3 ∧ Ḃ+

2
◦
= x1 + x6 ∧ Ċ− ◦= x0 ∧ Ċ+

2
◦
= x0 + x2 + x7 ∧B2 ∗ C2 = x3 + x5

Acknowledgements. We thank Jun Pang and Löic Paulevé for the helpful discussions and refer-
ences on the relation of reaction and boolean networks, as well as our colleagues from BioCom-
puting Maxime Folschette and Cédric Lhoussaine.

References

1. E. Allart, J. Niehren, and C. Versari. Computing difference abstractions of metabolic networks
under kinetic constraints. In L. Bortolussi and G. Sanguinetti, editors, Computational Methods in
Systems Biology - 17th International Conference, CMSB 2019, Trieste, Italy, September 18-20, 2019,
Proceedings, volume 11773 of Lecture Notes in Computer Science, pages 266–285. Springer, 2019.

2. D. Avis and C. Jordan. mplrs: A scalable parallel vertex/facet enumeration code. Mathematical
Programming Computation, 10(2):267–302, 2018.

3. R. Bagnara, P. M. Hill, and E. Zaffanella. The parma polyhedra library: Toward a complete set
of numerical abstractions for the analysis and verification of hardware and software systems. Sci.
Comput. Program., 72(1-2):3–21, 2008.

4. L. Calzone, F. Fages, and S. Soliman. BIOCHAM: an environment for modeling biological systems
and formalizing experimental knowledge. Bioinformatics, 22(14):1805–1807, July 2006.

5. M. Davidich and S. Bornholdt. The transition from differential equations to boolean networks: A case
study in simplifying a regulatory network model. Journal of Theoretical Biology, 255(3):269–277,
2008.

6. F. Fages, S. Gay, and S. Soliman. Inferring reaction systems from ordinary differential equations.
Theor. Comput. Sci., 599:64–78, 2015.

7. F. Fages and S. Soliman. Abstract interpretation and types for systems biology. Theor. Comput.
Sci., 403(1):52–70, 2008.

8. M. Feinberg. Chemical reaction network structure and the stability of complex isothermal reactors–I.
the deficiency zero and deficiency one theorems. Chemical Engineering Science, 42(10):2229 – 2268,
1987.

9. K. Fukuda. cdd. c: C-implementation of the double description method for computing all vertices
and extremal rays of a convex polyhedron given by a system of linear inequalities. Department of
Mathematics, Swiss Federal Institute of Technology, Lausanne, Switzerland, 1993.

10. K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and
I. Manoussakis, editors, Combinatorics and Computer Science, pages 91–111, Berlin, Heidelberg,
1996. Springer Berlin Heidelberg.

11. J. Gagneur and S. Klamt. Computation of elementary modes: a unifying framework and the new
binary approach. BMC bioinformatics, 5(1):1, 2004.

12. S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and
U. Kummer. Copasi—a complex pathway simulator. Bioinformatics, 22(24):3067–3074, 2006.

13. M. John, M. Nebut, and J. Niehren. Knockout Prediction for Reaction Networks with Partial
Kinetic Information. In 14th International Conference on Verification, Model Checking, and Abstract
Interpretation, pages 355–374, Rom, Italy, Jan. 2013.

14. S. Klamt, J. Stelling, M. Ginkel, and E. D. Gilles. FluxAnalyzer: exploring structure, pathways, and
flux distributions in metabolic networks on interactive flux maps. Bioinformatics, 19(2):261–269, 01
2003.

16

15. G. Madelaine, C. Lhoussaine, and J. Niehren. Attractor Equivalence: An Observational Semantics for
Reaction Networks. In First International Conference on Formal Methods in Macro-Biology, Lecture
Notes in Bioinformatics, pages 82–101, Nouméa, New Caledonia, Sept. 2014. Springer-Verlag.

16. T. Motzkin, H. Raiffa, G. Thompson, and R. Thrall. The double description method. In H. Kuhn
and A.W.Tucker, editors, Contributions to theory of games, volume 2. Princeton University Press,
1953.

17. J. Niehren, C. Versari, M. John, F. Coutte, and P. Jacques. Predicting Changes of Reaction Networks
with Partial Kinetic Information. BioSystems, 149:113–124, July 2016.

18. L. Paulevé and S. Sené. Non-deterministic updates of Boolean networks. In AUTOMATA 2021 (27th
International Workshop on Cellular Automata and Discrete Complex Systems), Marseille, France,
2021.

19. L. Paulevé. Most permissive reaction networks, 2021.
20. L. Paulevé, J. Kolçà, T. Chatain, and S. Haar. Reconciling Qualitative, Abstract, and Scalable

Modeling of Biological Networks. Nature Communications, 11, 2020.
21. S. Sutavani, K. Sarda, A. Yerudkar, and N. Singh. Interpretation of complex reaction networks in

boolean network framework. In 2018 Indian Control Conference (ICC), pages 7–11, 2018.
22. D. Zanghellini, D. E. Ruckerbauer, M. Hanscho, and C. Jungreuthmayer. Elementary flux modes in

a nutshell: Properties, calculation and applications. Biotechnology Journal, pages 1009–1016, 2013.

17

Interpretation of expressions as sets of elements JeKα,S ⊆ dom(S), where S is a Σ-
structures and α : V → dom(S) where V contains all free variables.

JcKα,S = cS JxKα,S = {α(x)} Je� e′Kα,S = ∪{s�S s′ | s ∈ JeKα,S , s′ ∈ Je′Kα,S}

Interpretation of formulas as truth values JφKα,S ∈ B:

Je ◦= e′Kα,S =

{
1 if JeKα,S ∩ Je′Kα,S 6= ∅
0 else

Jφ ∧ φ′Kα,S = JφKα,S ∧B Jφ′Kα,S

J¬φKα,S = ¬B(JφKα,S) J∃x.φKα,S =


1 if exists s ∈ dom(S).

JφKα[x/s],S = 1
0 else

Fig. 11: Semantics of Σ-expressions and formulas over a Σ-structure S with respect to a variable
assignment α : V → dom(S).

A Proofs for Section 2 (Preliminaries)

For any set A and n ∈ N, the set of n-tuples of elements in A is denoted by An. The i-th
projection function on n-tuples of elements in A, where 1 ≤ i ≤ n is the function πi : An → A
such that πi(a1, . . . , an) = ai for all a1, . . . , an ∈ A. If A is finite the number of elements of A
is denote by |A|.¡ Projections and Pairs. The projection πa(f) of a function f : A → B is its

restriction α|A\{a}. The projection of a set F of functions f : A→ B is πa(F) = {πa(f) | f ∈ F}.
Furthermore, we define the pair function f2 : A2 → B2 such that f2(a1, a2) = (f(a1), f(a2)).

Lemma 11. The boolean abstraction hB is a Σbool-abstraction into a Σbool-algebra.

Proof. For all r, r′ ∈ R+ we have:

hB(r +R+ r′) = 1⇔ r +R+ r′ 6= 0⇔ r 6= 0 ∨ r′ 6= 0⇔ hB(r) = 1 ∨ hB(r′) = 1
hB(r ∗R+ r′) = 1⇔ r ∗R+ r′ 6= 0 ⇔ r 6= 0 ∧ r′ 6= 0⇔ hB(r) = 1 ∧ hB(r′) = 1

Hence hB(r +R+ r′) = hB(r) +B hB(r′) and hB(r ∗R+ r′) = hB(r) ∗B hB(r′). Finally, for both
constants c ∈ C we have that hB(cR+) = hB(c) = c = cB.

Lemma 12. The sign abstraction is hS a Σbool-abstraction into a Σbool-structure.

Proof. For any r, r′ ∈ R the second condition for homomorphism follows for all � ∈ F (2):
hS(r � r′) ∈ hS(r)�S hS(r′). And for all constants c ∈ C we have by definition that hS(cR) = cS.

The following two lemmas are classical. Let R be a subset of assignments of type V ′ → dom(S)
and V ∩V ′ = ∅ two subsets of V. We define: extSV (R) = {α∪α′ | α′ : V ′∪V → dom(S), α ∈ R}.

Lemma 47 Cylindrification. If V ∩ V(φ) = ∅ then: solSV ∪V(φ)(φ) = extSV (solS(φ)).

Proof. We can show for all expressions e ∈ EΣ with V(e) disjoint to V and any variables as-
signment α : V(e) ∪ V → dom(S) that JeKα,S = JeKα|V(e),S . This is by induction on the struc-
ture of expressions. If follows for all formulas φ ∈ FΣ(V) such that V(φ) disjoint from V and
α : V(φ) ∪ V → dom(S) that JφKα,S = JφKα|V(φ),S . This is by induction on the structure of
formulas. It implies the lemma.

Lemma 48 Quantification is projection. solS(∃x. φ) = πx(solS(φ)).

Proof. This is straightforward from the semantics of existential quantifiers: solS(∃x. φ) = {α|V(φ)\{x} |
α ∈ solS(φ)} = πx(solS(φ)).

18

B Proofs for Section 7 (Linear Equation Systems and Elementary
Modes)

Theorem 21 Elementary Modes. For any system of linear equations φ with natural coeffi-
cients, one can compute in at most exponential time a R+-equivalent formula ∃x.φ′ such that φ′

is a quasi-positive strongly-triangular system of linear equations with natural coefficients and x
the sequence of variables on the left hand sides of the equations.

Proof. Consider a system φ of linear equations with natural coefficients. Geometrically, the solu-
tion space of φ over the reals is a linear subspace of RV(φ). When restricted to positive reals, as we

do, this linear subspace is to be intersected with the positive cone RV(φ)+ . Therefore, solR+(φ) is
a rational cone obtained by intersecting finitely many half-spaces: its H-representation is defined
by the inequations Ay ≤ 0 ∧ Ay ≥ 0 ∧ y ≥ 0. The elementary modes of φ are the extreme rays
of this cone and allow its V-representation. Up to normalization there are finitely many such
extreme rays. Moreover, since the cone is rational and φ is homogeneous, the elementary modes
can be normalised so that the V-representation contains only integer coefficients. The normalized
elementary modes will be vectors of naturals in NV(φ). Let e1, . . . , en be the set of all normalized
elementary modes in some arbitrary total order. Let E be the matrix with columns e1, . . . , en.
Let y be the sequence of all variables of V(φ) in some arbitrary total order. By construction, the
variable in y are pairwise distinct. According to the normalized V-representation of the system,
every point of the cone is a positive linear combination of the elementary modes ∃x. Ex

◦
= ny,

where n contains the normalization factors. The linear system Ex
◦
= ny is quasi-positive, since

E and n are positive. The variables in x can be chosen freshly, and thus pairwise distinct with
y. The linear system Ex

◦
= ny is strongly-triangular, since each variable of y occurs in exactly

one equation and never on the left. Therefore, we can define φ′ as Ex
◦
= ny. The computation

of the elementary modes and thus of E can be done in at most exponential time in the size of φ
by Motzkin’s double description method [16,10,11].

C Proofs for Section 8 (Abstraction Exactness)

In order to do so we first show that h-exactness is preserved when adding variables. For this we
have to assume that the abstraction h is surjective, which will be the case of all abstraction of
interest.

Lemma 49 Variable extension preserves exactness. Let h : S → ∆ be a Σ-abstraction
that is surjective, φ ∈ FΣ a formula, and V ⊇ V(φ). Then the h-exactness of φ implies the
h-exactness of φ with respect to V .

Proof. Essentially this follows from that solutions of formulas can be extended arbitrarily to
variables that do not appear freely in the formula, as stated by the following claim.

Claim 50. Any variable assignment σ : V → ∆ satisfies σ ∈ h ◦ solSV (φ) iff σ|V(φ) ∈ h ◦ solS(φ).

For the one direction let σ ∈ h ◦ solSV (φ). Then there exists α ∈ solSV (φ) such that σ = h ◦ α.
Since V ⊇ V(φ) it follows that α|V(φ) ∈ solS(φ). Furthermore σ|V(φ) = h ◦ α|V(φ) and thus
σ|V(φ) ∈ h ◦ solS(φ).

For the other direction let σ|V(φ)) ∈ h ◦ solS(φ). Then there exists α ∈ solS(φ) such that
σ|V(φ) = h ◦ α. For any y ∈ V \ V(φ) let sy ∈ dom(S) be such that h(sy) = σ(y). Such values
exists since h is surjective. Now define α′ = α[y/sy | y ∈ V \ V(φ)]. Since V ⊇ V(φ) it follows
that α′ ∈ solSV (φ). Furthermore, σ = h ◦ α′, so σ ∈ h ◦ solSV (φ).

19

Lemma 23. Let V be a set of variables, R1 and R2 be subsets of assignments of type V →
dom(S) and h : S → ∆ be a Σ-abstraction. h ◦ (R1 ∪R2) = h ◦R1 ∪ h ◦R2.

Proof. This lemma follows from the following equivalences:

β ∈ h ◦ (R1 ∪R2)⇔ ∃α.α ∈ R1 ∪R2 ∧ β = h ◦ α
⇔ ∃α.(α ∈ R1 ∨ α ∈ R2) ∧ β = h ◦ α
⇔ ∃α.(α ∈ R1 ∧ β = h ◦ α) ∨ (α ∈ R2 ∧ β = h ◦ α)
⇔ β ∈ h ◦R1 ∨ β ∈ h ◦R2

⇔ β ∈ h ◦R1 ∪ h ◦R2

Proposition 24. The disjunction of h-exact formulas is h-exact.

Proof. Let φ2 and φ2 be negation free formulas that are h-exact. Let V = V(φ1)∪V(φ2). Lemma
49 shows that φ1 and φ2 are also h-exact with respect to the extended variable set V , i.e., for
both i ∈ {1, 2}:

h ◦ solSV (φi) = sol∆V (φi)

The h-exactness of the disjunction φ1 ∨ φ2 can now be shown as follows:

h ◦ solS(φ1 ∨ φ2) = h ◦ (solSV (φ1) ∪ solSV (φ2))
= h ◦ solSV (φ1) ∪ h ◦ solSV (φ2) by Lemma 23
= sol∆V (φ1) ∪ sol∆V (φ2) by h-exactness of φ1 and φ2 wrt. V
= sol∆(φ1 ∨ φ2)

Lemma 25 Projection commutes with abstraction. For any Σ-abstraction h : S → ∆,
subset R of assignments of type V → S, and variable x ∈ V: h ◦ πx(R) = πx(h ◦R).

Proof. For all α : V → dom(S) we have h ◦ πx(α) = h ◦ α|V \{x} = (h ◦ α)|V \{x} = πx(h ◦ α).

Proposition 26 Quantification preserves exactness. For any surjective Σ-abstraction
h : S → ∆ and formula ∃x.φ ∈ FΣ, if φ is h-exact then ∃x.φ is h-exact.

Proof. Let φ be h-exact. By definition φ is h-exact with respect to V . Since h is assumed to be
surjective, Lemma 49 implies that φ is h-exact with respect to V ∪{x} (independently of whether
x occurs freely in φ or not). Hence:

h(solS(∃x.φ)) = h(πx(solS(φ))) by Lemma 48
= πx(h(solS(φ))) by Lemma 25
= πx(sol∆(φ)) since φ is h-exact
= sol∆(∃x.φ) by Lemma 48

Lemma 27 Singleton property. If S is a Σ-algebra, e ∈ EΣ, and α : V(e) → S a variable
assignment, then the set JeKα,S is a singleton.

Proof. By induction on the structure of expressions e ∈ E :
Case of constants c ∈ {0, 1}. The set JcKα,S = {cS} is a singleton.
Case of variables x ∈ V. The set JxKα,S = {α(x)} is a singleton.
Case e1 � e2 where e1, e2 ∈ EΣ and � ∈ {+, ∗}.

Je1 � e2Kα,S = {s�S s′ | s ∈ Je1Kα,S , s′ ∈ Je2Kα,S}

This set is a singleton since Je1Kα,S and Je2Kα,S are singletons by induction hypothesis, meaning
that s�S s′ is also a singleton since S is a Σ-algebra.

20

Lemma 29. Let φ ∈ FΣ be a Σ-formula and S a Σ-algebra with unique division. For nonzero
natural number n, variable y 6∈ V(φ), and expression e ∈ EΣ with V(e) ⊆ V(φ):

solS(φ ∧ ny ◦= e) = {α[y/
ele(JeKα,S)

n
] | α ∈ solS(φ)}

Proof. We fix some α : V(φ)→ dom(S) arbitrarily. Since S is a Σ-algebra, JeKα,S is a singleton
and V(e) ⊆ V (φ), ele(JeKα,S) is defined uniquely. Furthermore S has unique division, so that
ele(JeKα,S)

n is well defined element of dom(S). Therefore and since y 6∈ V(φ), α[y/ ele(JeKα,S)
n] is the

unique solution of the equation ny
◦
= e that extends on α.

First we prove the inclusion “⊇”. Let α ∈ solS(φ), y 6∈ V(φ), and α[y/ ele(JeKα,S)
n] is a solution

of ny
◦
= e, it follows that α[y/ ele(JeKα,S)

n] is a solution of φ ∧ ny ◦= e.

Second, we prove the inverse inclusion “⊆”. Let α ∈ solS(φ ∧ ny ◦= e). Since α[y/ ele(JeKα,S)
n]

is the unique solution of the equation ny
◦
= e that extends on α′ = α|V(φ) it follows that

α(y) = ele(JeKα,S)
n so that α = α′[y/ ele(JeKα,S)

n] while α′ ∈ solS(φ).

Proposition 30. Let φ ∈ FΣ a Σ−formula, n 6= 0 a natural number, e ∈ EΣ a Σ-expression
with V(e) ⊆ V(φ) and y /∈ V(φ) and the Σ-abstraction h : S → ∆ with S and ∆ two Σ-algebras

with unique division. Then if φ is h-exact implies that φ ∧ e ◦= ny is h-exact.

Proof. Let e ∈ EΣ a Σ-expression.

Claim 51. For any α : V → R+ with V ⊇ V(e): h(ele(JeKα,S)) = ele(JeKh◦α,∆).

This can be seen as follows. For any α : V(φ) → S Theorem ?? on homomorphism yields
h(JeKα,S) ⊆ JeKh◦α,∆. Since S and ∆ are both Σ-algebras, the sets JeKα,S and JeKh◦α,∆ are both
singletons by Lemma 27, so that h(ele(JeKα,S)) = ele(JeKh◦α,∆).

Claim 52. For any s ∈ dom(S) and n 6= 0 a natural number: h(sn) = h(s)
n .

Since S is assumed to have unique division s′ = s
n is well-defined as the unique element

of dom(S) such that s′ +S . . .+S s′︸ ︷︷ ︸
n

= s. Hence, h(s′ +S . . .+S s′︸ ︷︷ ︸
n

) = h(s) and since h is a

homomorphism, it follows that h(s′) +∆ . . .+∆ h(s′)︸ ︷︷ ︸
n

= h(s). Since ∆ is assumed to have unique

division, this implies that h(s′) = h(s)
n .

The Proposition can now be shown based on these two claims. Let φ be h-exact, y 6∈ V(φ),

and V(e) ⊆ V(φ). We have to show that φ ∧ ny ◦= e is h-exact too:

h ◦ solS(φ ∧ e ◦= ny) = h ◦ {α[y/ ele(JeKα,S)
n] | α ∈ solS(φ)} by Lemma 29

= {(h ◦ α)[y/h(ele(JeKα,S)
n)] | α ∈ solS(φ)} elementary

= {σ[y/h(ele(JeKα,S)
n)] | σ ∈ sol∆(φ)} h-exactness of φ

= {σ[y/h(ele(JeK
α,S))

n] | σ ∈ sol∆(φ)} by Claim 52

= {σ[y/ ele(JeKh◦α,∆)
n] | σ ∈ sol∆(φ)} by Claim 51

= sol∆(φ ∧ e ◦= ny) by Lemma 29

Proposition 31. Let h : S → ∆ be a Σ-abstraction between Σ-algebras with unique division.
Then any strongly-triangular system of Σ-equations with natural coefficients is h-exact.

21

Proof. Any strongly-triangular system of equations has the form ∧ni=1ei
◦
= niyi where n and

ni 6= 0 are naturals and yi is i-fresh for all 1 ≤ i ≤ n. The proof is by induction on n. In the case
n = 0, the conjunction is equal to true which is h-exact since h(solS(true)) = h([]) = sol∆(true).

In the case n > 0, we have by induction hypothesis that
∧i−1
j=1 ej

◦
= njyj is h-exact. Since ni 6= 0

it follows from Proposition 30 that that ei
◦
= niyi ∧

∧i−1
j=1 ej

◦
= njyj is h-exact.

D Proofs for Section 9 (Abstraction Invariance)

Lemma 35. If either R1 or R2 are h-invariant then: h ◦ (R1 ∩R2) = h ◦R1 ∩ h ◦R2.

Proof. The one inclusion is straightforward without invariance:

h ◦ (R1 ∩R2) = {h ◦ α | α ∈ R1, α ∈ R2}
⊆ {h ◦ α | α ∈ R1} ∩ {h ◦ α | α ∈ R2}
= h ◦R1 ∩ h ◦R2

For the other inclusion, we can assume with loss of generality that R1 is h-invariant. So let
β ∈ h ◦ R1 ∩ h ◦ R2. Then there exist α1 ∈ R1 and α2 ∈ R2 such that β = h ◦ α1 = h ◦ α2. By
h-invariance of R1 it follows that α1 ∈ R2. So α1 ∈ R1 ∩R2, and hence, β ∈ h ◦ (R1 ∩R2).

Lemma 36 Algebraic characterization. A subset of R variables assignment of type V →
dom(S) is h-invariant for a Σ-abstraction h : S → ∆ iff h ◦−(h ◦R) ⊆ R.

Proof. “⇒”. Let R be h-invariant and α ∈ h ◦−(h ◦ R). Then there exists α′ ∈ R such that
h ◦ α = h ◦ α′. The h-invariance of R thus implies that α ∈ R.
“⇐”. Suppose that h ◦−(h ◦R) ⊆ R. Let α, α′ : V → dom(S) such that h ◦α = h ◦α′ and α ∈ R.
We have to show that α′ ∈ R. From h ◦α = h ◦α′ and α ∈ R it follows that α′ ∈ h ◦−(h ◦R) and
thus α′ ∈ R as required.

Lemma 53 Variable extension preserves invariance. Let h be a surjective abstraction
and R a subset of functions of type V ′ → dom(S) and V a subset of variables disjoint from V ′.
If R is h-invariant then extSV (R) is h-invariant too.

Proof. This will follow straightforwardly from the characterization of h-invariance in Lemma 36
and the following two claims:

Claim 54. If h is surjective then h ◦ extSV (R) = ext∆V (h ◦R).

This follows from h ◦ extSV (R) = {h ◦ α | α ∈ extSV (R)} = ext∆V ({h ◦ α′ | α′ ∈ R}) where we
use the surjectivity of h in the last step.

Claim 55. h ◦−ext∆V (R′) = extSV (h ◦−R′) for any subset R′ of functions of type V ′ → dom(∆).

h ◦−ext∆V (R′) = {α : V ∪ V ′ → dom(S) | h ◦ α ∈ ext∆V (R′)}
= {α : V ∪ V ′ → dom(S) | h ◦ α|V ′ ∈ R′}
= extSV ({α′ : V ′ → dom(S) | h ◦ α′ ∈ R′}
= extSV (h ◦−R′)

Lemma 56. Let h : S → ∆ be a surjective Σ-abstraction, φ be a Σ-formula, and V ⊇ V(φ).
Then the h-invariance of φ implies the h-invariance of solSV (φ).

22

Proof. This follows from the cylindrification Lemma 47 and that extension preserves h-invariance
as shown in Lemma 53.

Lemma 38. For any Σ-abstraction h : S → ∆, any subsets of assignments of type V → dom(S)
R1 and R2 and V a subset of variables:

– h ◦−(R1 ∩R2) = h ◦−R1 ∩ h ◦−R2.
– h ◦−(R1 ∪R2) = h ◦−R1 ∪ h ◦−R2.

Proof. The case for unions follows straightforwardly from the definitions:

h ◦−(R1 ∪R2) = {α | h ◦ α ∈ R1 ∪R2}
= {α | h ◦ α ∈ R1 ∨ h ◦ α ∈ R2}
= {α | h ◦ α ∈ R1} ∪ {α | h ◦ α ∈ R2}
= h ◦−R1 ∪ h ◦−R2

The case of intersection is symmetric:

h ◦−(R1 ∩R2) = {α | h ◦ α ∈ R1 ∩R2}
= {α | h ◦ α ∈ R1 ∧ h ◦ α ∈ R2}
= {α | h ◦ α ∈ R1} ∩ {α | h ◦ α ∈ R2}
= h ◦−R1 ∩ h ◦−R2

Lemma 39 Intersection and union preserve invariance. Let h : S → ∆ be a Σ-
abstraction. Then the intersection and union of any two h-invariant subsets R1 and R2 of vari-
ables assignments of type V → dom(S) is h-invariant.

Proof. This follows from the algebraic characterization Lemma 36 for invariance, in combination
with the algebraic properties of composition and decomposition given in Lemmas 23, 35, and 38.

Lemma 40 Projection commutes with left-decomposition. h ◦−πx(R) = πx(h ◦−R).

Proof. For all α : V → dom(∆) we have h ◦−πx(α) = h ◦−α|V \{x} = (h ◦−α)|V \{x} = πx(h ◦−α).

Proposition 41 Invariance is preserved by conjunction, disjunction, and quantifica-
tion. If h is a surjective abstraction then the class of h-invariant FO-formulas is closed under
conjunction, disjunction, and existential quantification.

Proof. Let h : S → ∆ be a Σ-abstraction.
Case of conjunction: Let φ1 and φ2 be h-invariant and V = V(φ1 ∧ φ2). By Lemma 56 the sets
solSV (φ1) and solSV (φ2) are both h-invariant, and so by Lemma 39 is their intersection. Hence:

h ◦−(h ◦ solS(φ1 ∧ φ2)) = h ◦−(h ◦ (solSV (φ1) ∩ solSV (φ2)))
⊆ solSV (φ1) ∩ solSV (φ2) by h-invariance and Lemma 36
= solS(φ1 ∧ φ2)

By Lemma 36 in the other direction, this implies that φ1 ∧ φ2 is h-invariant.
Case of disjunction: Analogous to the case of conjunction.
Case of existential quantification:

h ◦−(h ◦ solS(∃x.φ1)) = h ◦−(h ◦ πx(solS(φ1))) by Lemma 48
= h ◦−(πx(h ◦ solS(φ1))) by Lemma 25
= πx(h ◦−(h ◦ solS(φ1))) by Lemma 40
⊆ πx(solS(φ1)) by h-invariance of φ1 and Lemma 36
= solS(∃x.φ1) by Lemma 48

By Lemma 36, this implies that ∃x.φ1 is h-invariant.

23

Proposition 42. Let h be a surjective Σ-abstraction. Then the class of h-exact and h-invariant
Σ-formulas is closed under conjunction, disjunction and existential quantification.

Proof. Closure under conjunction follows from Propositions 37 and 41, closure under disjunction
from Propositions 24 and 41, and closure under existential quantification by Propositions 26 and
41.

Theorem 43 Invariance. Any positive polynomial equation p
◦
= 0 such that p has no constant

term is hB-exact and hB-invariant.

Proof. Consider a positive polynomial equation p
◦
= 0 such that p has no constant term and only

positive coefficients. Thus p has the form
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k

◦
= 0 where l ≥ 0, and nj , ij ,mj,k >

0.

Claim 57. For both algebras S ∈ {B,R+}: solS(p
◦
= 0) = solS(

∧l
j=1

∨ij
k=1 xj,k

◦
= 0).

The polynomial has values zero if and only if all its monomials do, that is:
∏ij
k=1 x

mjk
j,k = 0

for all 1 ≤ j ≤ l. Since constant terms are ruled out, we have ij 6= 0. Furthermore, we assumed
for all polynomials that mj,k 6= 0. So for all 1 ≤ j ≤ l there must exist 1 ≤ k ≤ ij such that
xj,k = 0.

Claim 58. The equation x
◦
= 0 is hB-exact and hB-invariant.

This is straightforward from the definitions. With these two claims we are now in the position
to prove the lemma. Since the class of hB-exact and hB-invariant formulas is closed under con-
junction and disjunction by Proposition 42, it follows from by Claim 58 that ∧lj=1 ∨

ij
k=1 xj,k

◦
= 0

is both hB-exact and hB-invariant. Since this formula is equivalent over R+ to the polynomial

equation by Claim 57, the hB-invariance carries over to p
◦
= 0. The hB-exactness also carries over

based on the equivalence for both structures R+ and B:

hB ◦ solR+(p
◦
= 0) = hB ◦ solR+

V (∧lj=1 ∨
ij
k=1 xj,k

◦
= 0) by Claim 57 for R+

= solB(∧lj=1 ∨
ij
k=1 xj,k

◦
= 0) by hB exactness

= solB(p
◦
= 0) by Claim 57 for B.

E Proofs for Section 10 (Boolean Abstractions of Mixed Systems)

Corollary 46. The hB-abstraction of the R+-solution set of a mixed system φ, that is hB ◦
solR+(φ), can be computed in at most exponential time in the size of the system φ.

Proof. Given an mixed system φ, we can apply Theorem 45 to compute in at most exponential
time an R+-equivalent formula φ′′ that is hB-exact. It is then sufficient to compute solB(φ′′) in
exponential time in the size of φ. This can be done in the naive manner, that is by evaluating the
formula φ′′ – which may be of exponential size – over all possible boolean variable assignments
– of which there may be exponentially many. For each assignment the evaluation can be done
in PSpace and thus in exponential time. The overall time required is thus a product of two
exponentials, which remains exponential.

F Proofs for Section 11 (References)

24

