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Abstract16

We show how to compute finite abstractions of linear equations systems over the reals. We develop17

a general method based on elementary modes, that can be applied to the various abstractions into18

finite structures, including the sign abstraction as used in abstract interpretation based program19

analysis, and the difference abstraction as used in change prediction algorithms for flux networks in20

systems biology.21

2012 ACM Subject Classification22

Keywords and phrases Linear equation systems, abstract interpretation, systems biology.23

Digital Object Identifier 10.4230/LIPIcs...24

1 Introduction25

Systems of linear equations serve in abstract interpretation to abstract from the concrete26

semantics of programs with arithmetic operations [4, 10]. In systems biology, systems of27

linear equations are used to describe the fluxes of a reaction network in a steady state [13, 14].28

Both applications raise a very similar question on how to compute an abstraction for linear29

equations systems. For program analysis based on abstract interpretation [15], one might ask30

for instance, whether the value of a variable x in a program is strictly positive if the value31

of another variable y was. This question is about the sign abstraction of the R-solution set32

of a linear equation system (that itself abstracts from the programs semantics). In systems33

biology [11, 17, 5, 1] one might want to know for a given flux network, whether a flux x must34

increase (resp. decrease) if some other flux y does. This question concerns the difference35

abstraction of a pair of R-solutions of the equation system, that is of an R2-solution of the36

system of linear equations where addition and multiplication are defined component-wise.37

We therefore study the question of how to compute finite abstractions of the solution set
of a system of linear equation over the reals. Given an homomorphism h : Rk → ∆ between
Σ-structures where Σ = {+, ∗, 0, 1} and ∆ is finite, and a linear equation system φ with
integer coefficients, the question is how to compute the h-abstraction of the solution set of φ.
If V is the set of variables of φ, then the set to be computed is:

h ◦ solR
k

(φ) = {h ◦ α | α : V → Rk, s.t. Rk, α |= φ}
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XX:2 Abstracting Linear Equation Systems

This problem generalizes on both questions above. The instance for the first question concerns38

the sign abstraction hS : R → {−1, 0, 1} which satisfies hS(r) = 1 if r > 0, hS(r) = −1 if39

r < 0 and otherwise hS(0) = 0. The second instance concerns the difference abstraction40

h∆3 : R2 → {↑,↓,∼}, where ↑ stands for increase, ↓ for decrease, and ∼ for no change. It41

satisfies h∆3(r, r′) = ↑ if r < r′, h∆3(r, r′) = ↓ if r > r′, and otherwise h∆3(r, r′) = ∼.42

We next illustrate the difficulty of the problem by showing how to compute hS ◦ solR(φ)43

from φ with the existing methods. Note that the set solR(φ) cannot be enumerated since it44

is infinite. Instead we can enumerate the set of sign assignments α : V → {−1, 0, 1} which45

is finite. Furthermore, since hS(x) = −1 is equivalent to x < 0 and hS(x) = 1 to 0 < x,46

the system φ ∧
∧
x∈V hS(x) = α(x) is equivalent to a system of linear equations and strict47

inequations. The satisfiability of such a system can be decided in at most exponential time [6].48

However, this method is not feasible in practice given that the number of sign assignments49

grows exponentially with the number of variables. So the question is whether there exists a50

more efficient algorithm for computing hS ◦ solR(φ).51

From John’s overapproximation theorem [11, 17], we know for any homomorphism52

h : S → ∆ between Σ-structures and any negation-free first-order Σ-formula φ that h ◦53

solS(φ) ⊆ sol∆(φ). We call φ h-exact if and only if h ◦ solS(φ) = sol∆(φ). If ∆ is finite, then54

we can compute for any h-exact formula φ the abstraction h ◦ solS(φ) by computing sol∆(φ)55

with finite domain constraint programming [18].56

In a first step, we show that any integer linear matrix equation Ax=0 can be transformed57

into some R+-equivalent Σ-formula that is quasi-positive and quasi-triangular and thus58

hB-exact. This transformation is based on the computation of elementary modes [16, 8, 9, 19]59

– the extreme rays of the cone solR+(Ax=0) – that can be done in practice by various libraries60

from computational geometry [3]. The conversion may take exponential time in the worst61

case, but is often well-behaved. The correctness of the conversion relies on the fact that the62

Σ-algebras R+ and B permit unique division by nonzero natural numbers.63

In the second step, we introduce hB-mixed systems, which generalize on systems of linear64

equations, positive polynomial equations p=0 and inequations p 6=0 where polynomial p has65

no constant term. We then show that hB-mixed systems can be converted to an hB-exact66

formula too. In order to do so, extend on the results from the first step by introducing67

the notion of hB-invariant Σ-formulas, which subsume the poynomial equations p=0 and68

inequations p 6=0 for all positive polynomials p without constant terms.69

In a third step, we rewrite linear equations systems φ into hB-mixed formulas φ′, based on70

the two previous steps, so that sign abstraction of hS ◦solR(φ) can be computed from boolean71

abstraction hB ◦ solR(φ′) = solB(φ′). It is then sufficient to compute the boolean solution set72

solB(φ′) by finite domain constraint programming. The rewriting approach based the results73

for hB-mixed systems presented here was applied recently by the authors [1] to the difference74

abstraction h∆3 : R2
+ → {↑,↓,∼} and a refinement thereof into a finite Σ-structure with 675

elements. This procedure was implemented and applied successfully for change prediction in76

systems biology. It illustrates that our results presented here do provide a general framework77

enabling the computation of various finite abstractions of linear equation systems.78

We illustrate our results by applying the sign abstraction for program analysis based on79

abstract interpretation. We consider the Python implementation in Fig. 1 of the function80

integral : R2 → R with parameter f : R → R. A call integral(a, step) computes the81

approximation of the integral
∫ a

0 f(x)dx with stepwidth step. Abstract interpretation applied82

to this program with a polyhedral abstract domain may produce the following first-order83
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def i n t e g r a l ( a : f l o a t , s t e p : f l o a t ) :
i f a < 0 : r a i s e V a l u e E r r o r ( ’ Th i s shou ld neve r happen ’ )
i f s t e p > a :

re tu rn 0
e l s e :

re tu rn s t e p ∗ f ( a ) + i n t e g r a l ( a − s tep , s t e p )

Figure 1 Python function approximating the integral
∫ a

0 f(x)dx for a given function f : R→ R.

formula φintegral:84

(throw_exception = 1 ⇐⇒ a < 0) ∧ (do_recursion = 1 ⇐⇒ step ≤ a) ∧
arec = a− step ∧ steprec = step85

This formula uses the following variables: a flag throw_exception that is true on exception86

throwing; a flag do_recursion that is true when a recursive call is made; two variables arec,87

steprec representing the parameters passed recursively to integral.88

In order to know whether an exception may be thrown, we are interested in the sign89

abstraction for this formula hS ◦ solR(φintegral). According to John’s Theorem [11], this90

abstraction can be overapproximated by solS(φintegral) which in turn can be computed91

by finite domain constraint programming. However, this approximation does not rule out92

that arec may be strictly negative when do_recursion is true, although this condition is not93

possible when running the program. Conversely, this is correctly reflected by the abstraction94

of its abstract interpretation hS ◦ solR(φintegral), that can be computed by converting it to a95

hB-mixed system which is then solved with the methods presented above.96

2 Preliminaries97

Sets. We start with usual notation from set theory. Let N be the set natural numbers and98

R+ the set of positive real numbers, both including 0. For any set A and n ∈ N, the set99

of n-tuples of elements in A is denoted by An. The i-th projection function on n-tuples of100

elements in A, where 1 ≤ i ≤ n is the function πi : An → A such that πi(a1, . . . , an) = ai for101

all a1, . . . , an ∈ A. If A is finite the number of elements of A is denote by |A|.102

Projections and Pairs. The projection πa(f) of a function f : A→ B is its restriction α|A\{a}.103

The projection of a set F of functions f : A→ B is πa(F ) = {πa(f) | f ∈ F}. Furthermore,104

we define the pair function f2 : A2 → B2 such that f2(a1, a2) = (f(a1), f(a2)).105

Σ-Algebras and Σ-Structures. We next recall the usual notions of Σ-algebras and of homomor-106

phism between Σ-algebras. Let Σ = ∪n≥0F
(n) ] C be a ranked signature. The elements of107

f ∈ F (n) are called the n-ary function symbols of Σ and the elements in c ∈ C its constants.108

I Definition 1. A Σ-algebra S = (dom(S), .S) consists of a set dom(S) and an interpretation109

.S such that cS ∈ dom(S) for all c ∈ C, and fS : dom(S)n → dom(S) for all f ∈ F (n).110

In order to generalize Σ-algebras to Σ-structures, we consider n-ary function symbols as111

n+1-ary relation symbols.112

I Definition 2. A Σ-structure ∆ = (dom(∆), .∆) consists of a set dom(∆) and an interpre-113

tation .∆ such that c∆ ∈ dom(∆) for all c ∈ C and f∆ ⊆ dom(∆)n+1 for all f ∈ F (n).114

Clearly, any Σ-algebra is also a Σ-structure. Note also that symbols in F (0) are interpreted115

as monadic relations, i.e., as subsets of the domain, in contrast to constants in C that are116

interpreted as elements of the domain.117
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d d′ d +S d′ d ∗S d′
−1 1 {−1, 0, 1} −1
−1 0 −1 0
−1 −1 −1 1

d d′ d +S d′ d ∗S d′
0 1 1 0
0 0 0 0
0 −1 −1 0

d d′ d +S d′ d ∗S d′
1 1 1 1
1 0 1 0
1 −1 {−1, 0, 1} −1

Figure 2 Interpretation of Σ-structure of signs S.

I Definition 3. A homomorphism between two Σ-structures S and ∆ is a function h :118

dom(S)→ dom(∆) such that for c ∈ C, n ∈ N, f ∈ F (n), and s1, . . . , sn+1 ∈ dom(S):119

1. h(cS) = c∆, and120

2. if (s1, . . . , sn+1) ∈ fS then (h(s1), . . . , h(sn+1)) ∈ f∆.121

We can convert any n + 1-ary relation to a n-ary set valued functions. In this way any122

n-function is converted to a n-ary set valued n-functions. In other words, functions of type123

Dn → D are converted to functions of type Dn → 2D where D = dom(∆). In set-valued124

notation, the second condition on homomorphism can then be rewritten equivalently as125

h(fS(s1, . . . , sn)) ⊆ f∆(h(s1), . . . , h(sn)). A homomorphism for Σ-algebras thus satisfies126

h(cS) = c∆ and h(fS(s1, . . . , sn)) = f∆(h(s1), . . . , h(sn)).127

I Definition 4. A Σ-abstraction is a homomorphism h:S → ∆ between Σ-structures such128

that dom(∆) ⊆ dom(S).129

3 The Boolean and the Sign Abstraction130

Throughout the paper we will use the signature Σ = F (2) ] C with two binary function131

symbols in F (2) = {+, ∗}, and two constants C = {0, 1}. In the Σ-algebras that we will132

consider the functions + and ∗ will be associative and commutative, with neutral element 0133

and 1 respectively.134

I Example 5. The set of positive reals R+ can be turned into a Σ-algebra, in which the135

functions symbols are interpreted as addition of positive reals +R+ , multiplication of positive136

reals ∗R+ . The constants are interpreted by themselves 0R+ = 0 and 1R+ = 1.137

I Example 6. The set of Booleans B = {0, 1} ⊆ R+ equally defines a Σ-algebra. There,138

the function symbols are interpreted as a disjunction +B = ∨B and conjunction ∗B = ∧B on139

Booleans. The constants are interpreted by themselves 0B = 0 and 1B = 1.140

In order to abstract positive real numbers into booleans, we can define a function hB : R+ → B141

such that hB(0) = 0 and hB(r) = 1 if r > 0.142

I Lemma 7. The function hB : R+ → B is a Σ-abstraction between Σ-algebras.143

I Example 8. The set of signs {−1, 0, 1} ⊆ R can be turned into a Σ-structure S =144

({−1, 0, 1}, .S) with the interpretation +S and ∗S given in Fig. 2. The constants are interpreted145

by themselves 0S = 0 and 1S = 1. Note that all +S contains (−1, 1,−1), (−1, 1, 1) and146

(−1, 1, 0) meaning that the sum of a strictly negative and a strictly positive real has a sign in147

−1 +S 1, so it may either be strictly positive, strictly negative, or zero. For this reason, S is148

a Σ-structure but not a Σ-algebra.149

We define the sign abstraction hS : R→ S such that hS(0) = 0, hS(r) = −1 for all strictly150

negative reals r < 0 and hS(r) = 1 for all strictly positive reals r > 0.151

I Lemma 9. hS : R→ S is a Σ-abstraction into a Σ-structure (that is not a Σ-algebra).152
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e ∈ EΣ ::= x | c | e� e′ where c ∈ C = {0, 1} and � ∈ F (2) = {+, ∗}
φ ∈ FΣ ::= e

◦=e | ∃x.φ | φ ∧ φ | ¬φ where x ∈ V

Figure 3 First-order Σ-expressions and Σ-formulas, where Σ = C ∪ F (2).

4 Abstractions and First-Order Logic153

We recall the first-order logic for Σ-structures and recall John’s theorem [11] on how to154

overapproximate the Σ-abstraction first-order Σ-formulas.155

We fix a set of variables V (for instance V = N). The variables in V will be ranged over156

by x and y. The abstract syntax in Fig. 3 define the set of first-order expressions e ∈ EΣ157

which are constructed from the function symbols in the signature Σ and the variables in V.158

A Σ-equation is a pair e ◦=e′ where e, e′ ∈ EΣ. A first-order formulas φ ∈ FΣ is constructed159

from Σ-equations with the usual first-order connectives. As shortcuts, we define the formula160

true =def 1 ◦=1 and for any sequence of formulas φ1, . . . , φn we define ∧ni=1φi as φ1 ∧ . . . ∧ φn161

which is equal to true if n = 0. Furthermore, we define formulas e
.

6=0 by ¬e ◦=0.162

The semantics of first-order logic is standard. Let S be a Σ-structure and α : V → dom(S)163

be a variable assignment. For any expressions e ∈ EΣ and variable assignment V(e) ⊆ V , the164

semantics defines a subset of JeKα,S ⊆ dom(S), and for any formula φ ∈ FΣ with V(φ) ⊆ V165

a truth value JφKα,S ∈ B. Expressions e, e′ ∈ EΣ may be set valued in the case that S is not166

a Σ-algebra. Therefore, the equality symbol ◦= will be interpreted as nondisjointness, i.e.,167

e
◦=e′ is true if and only if JeKα,S ∩ Je′Kα,S 6= ∅. If S is a Σ-algebra, then both sets will be168

singletons. Therefore, the equality symbol ◦= is indeed interpreted as equality for Σ-algebra,169

but not for Σ-structures. See Fig. 4 of the appendix for the details.170

The set of solutions of a formula φ ∈ FΣ over a Σ-algebra S with respect to a set of171

variables V that contains V(φ) is defined by solSV (φ)={α : V → dom(S) | JφKα,S = 1}. If172

V = V(φ) we omit the index V , i.e., solS(φ) = solSV (φ).173

I Lemma 10 Quantification is projection. solS(∃x. φ) = πx(solS(φ)).174

Let h : S → ∆ be a Σ-abstraction and V ⊆ V. For any subset of assignments R of type175

V → dom(S) we define h ◦R = {h ◦ α : V → dom(∆) | α ∈ R}.176

I Theorem 11 John’s Overapproximation Theorem [1, 17, 11]. For any Σ-abstraction177

h : S → ∆ between Σ-structures and negation-free formula φ ∈ FΣ: h ◦ solS(φ) ⊆ sol∆(φ).178

We only give a sketch of the proof. Let α : V → dom(S). For any expression e ∈ EΣ such179

that V(e) ⊆ V we can show that h(JeKα,S) = JeKh◦α,∆ by induction on the structure of φ. It180

then follows for any positive formula φ ∈ FΣ with V(φ) ⊆ V that JφKα,S ≤ JφKh◦α,∆. This is181

equivalent to that: {h ◦ α | α ∈ solSV (φ)} ⊆ sol∆V (φ) and thus h ◦ solSV (φ) ⊆ sol∆V (φ).182

5 Linear Equation Systems and Elementary Modes183

We are interested in systems of Σ-equation where Σ = {+, ∗, 1, 0}. The base case will be184

homogeneous linear equations systems with natural coefficients, which capture linear matrix185

integer equations Ax = 0. We will show that elementary modes [16, 8, 9, 19] can be used to186

make linear integer matrix equations quasi-positive and strongly-triangular.187

We also need systems of polynomial equations, with natural coefficients and no constant188

term, that are nonlinear. For any natural n and expression e, e1, . . . , en ∈ EΣ, we define the189
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expression
∏n
i=1 ei = e1 ∗ . . . ∗ en, which is equal to 1 if n = 0 and to

∑n
i=1 ei = e1 + . . .+ en190

which is equal to 0 if n = 0. Furthermore, let en =
∏n
i=1 e and ne =def

∑n
i=1 e.191

I Definition 12. A Σ-equation is called positive if it has the form e
◦=0 and quasi-positive if192

it has the form e
◦=ny, where n ∈ N, y ∈ V, and e ∈ EΣ.193

This definition makes sense, since all constants in Σ-expressions are positive and all operators194

of Σ-expressions preserve positivity. Note also that any positive equation is quasi-positive195

since the constant 0 is equal to the polynomial 0y. A system of Σ-equations is a conjunctive196

formula of the form
∧n
i=1 ei

◦=e′i in FΣ. We call a system of Σ-equations positive respectively197

quasi-positive if all its equations are.198

A polynomial (with natural coefficients) is an expression of the form
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k199

where l and ij are naturals, x1,1, . . . , xl,il variables, all nj 6= 0 naturals called the coefficients,200

and all mj,k 6= 0 naturals called the exponents. The products
∏ij
k=1 x

mj,k
j,k are called the201

monomials of the polynomial.202

I Definition 13. A polynomial
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k with natural coefficients nj 6= 0 has no203

constant term if none of its monomials is equal to 1, i.e., ij 6= 0 for all 1 ≤ j ≤ l. It is linear204

if all its monomials are variables, i.e. ij = 1 and mj,1 = . . . = mj,ij = 1 for all 1 ≤ j ≤ l.205

Note that any linear polynomial has the form
∑l
j=1 njxj,1 where l and all nj 6= 0 are naturals206

and all xj,1 are variables. In particular, linear polynomials do not have a constant term.207

Furthermore, note that the constant 0 is equal to the linear polynomial with l = 0. A208

polynomial equation is a Σ-equation p
◦=p′ between polynomials. A (homogeneous) linear209

equation is a polynomial equation with linear polynomials, so without constant terms. A210

linear equation system is a system of linear equations.211

An (homogeneous) linear integer matrix equation has the form Ay ◦=0 where A is an212

n × m matrix of integers for some naturals m,n such that y ∈ Vm. Any linear integer213

matrix equation can be turned into a linear equation system with natural coefficients, by214

bringing the negative coefficients on the right-hand side. For instance, the linear integer215

matrix equation on the right corresponds to the linear
equation system with natural coefficients 3x ◦=0∧2x ◦=5y.

(
3 0
2 −5

)(
x

y

)
◦= 0216

This system is quasi-positive, but not positive since 5y appears on a right-hand side.217

More generally, the linear equation system for an linear integer matrix equation Ay ◦=0 is218

positive if and only if all integers in A are positive, and quasi-positive, if each line of A219

contains at most one negative integer. Furthermore, the above linear equation system is220

triangular in the following sense, but not strongly triangular:221

I Definition 14. We call a quasi-positive system of Σ-equations triangular if it has the form222 ∧n
l=1 el

◦=nlyl such that the variables yl are l-fresh for all 1 ≤ l ≤ n, i.e., yl 6∈ V(∧l−1
i=1ei

◦=e′i)223

and if nl 6= 0 then yl 6∈ V(el). We call the quasi-positive polynomial system strongly-triangular224

if it is triangular and satisfies nl 6= 0 for all 1 ≤ l ≤ n.225

Consider a linear integer matrix equation Ay ◦=0. If A is positive and triangular, then the226

corresponding linear equation system is positive and triangular too. For being quasi-positive227

and strongly-triangular, the integers below the diagonal of A must negative, those on the228

diagonal must be strictly negative, and those on the right of the diagonal must be positive.229

I Theorem 15 Elementary Modes. For any system of linear equations φ with natural230

coefficients, one can compute in at most exponential time an R+-equivalent formula ∃x.φ′231

such that φ′ is a quasi-positive strongly-triangular system of linear equations with natural232

coefficients and x the sequence of variables on the left hand sides of the equations.233
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The theorem applies in particular to the linear equation systems of integer matrix234

equations Ay ◦=0. It shows that there exists a matrix E of naturals, a vector of naturals n,235

and a vector of fresh variables x, such that Ay ◦=0 is R+-equivalent to ∃x. Ex ◦=ny.236

Proof Consider a system φ of linear equations with natural coefficients. Geometrically,237

the solution space of φ over the reals is a linear subspace of RV(φ). When restricted to238

positive reals, as we do, this linear subspace is to be intersected with the positive cone239

RV(φ)
+ . Therefore, solR+(φ) is a rational cone obtained by intersecting finitely many half-240

spaces: its H-representation is defined by the inequations Ay ≤ 0 ∧ Ay ≥ 0 ∧ y ≥ 0. The241

elementary modes of φ are the extreme rays of this cone and allow its V-representation.242

Up to normalization there are finitely many such extreme rays. Moreover, since the cone243

is rational and φ is homogeneous, the elementary modes can be normalised so that the244

V-representation contains only integer coefficients. The normalized elementary modes will be245

vectors of naturals in NV(φ). Let e1, . . . , en be the set of all normalized elementary modes246

in some arbitrary total order. Let E be the matrix with columns e1, . . . , en. Let y be the247

sequence of all variables of V(φ) in some arbitrary total order. By construction, the variable248

in y are pairwise distinct. According to the normalized V-representation of the system, every249

point of the cone is a positive linear combination of the elementary modes ∃x. Ex ◦=ny, where250

n contains the normalization factors. The linear system Ex ◦=ny is quasi-positive, since251

E and n are positive. The variables in x can be chosen freshly, and thus pairwise distinct252

with y. The linear system Ex ◦=ny is strongly-triangular, since each variable of y occurs in253

exactly one equation and never on the left. Therefore, we can define φ′ as Ex ◦=ny. The254

computation of the elementary modes and thus of E can be done in at most exponential255

time in the size of φ by Motzkin’s double description method [16, 8, 9].256

6 Abstraction Exactness257

John’s overapproximation Theorem 11 shows that the set of solutions over the abstract258

domain sol∆(φ) is an approximation by the abstraction of the concrete solution set h(solS(φ))259

for any abstraction h : S → ∆ from concrete to abstract structure and any positive first-order260

formula φ. We say φ is h-exact if even equality holds.261

I Definition 16 Exactness. Let h : S → ∆ be a Σ-abstraction, φ a Σ-formula and V ⊇ V(φ).262

We call φ h-exact with respect to V if h(solSV (φ)) = sol∆V (φ). We call φ h-exact if φ is263

h-exact with respect to V(φ).264

Our next objective is to study the preservation of h-exactness by logical operators. The265

main difficulty of this paper is the fact that h-exactness is not preserved by conjunction.266

Nevertheless, as we will show next, it is preserved by disjunction and existential quantification.267

For the case of disjunction, we need a basic property of union which fails for intersection.268

I Lemma 17. Let V be a set of variables, R1 and R2 be subsets of assignments of type269

V → dom(S) and h : S → ∆ be a Σ-abstraction. h ◦ (R1 ∪R2) = h ◦R1 ∪ h ◦R2.270

I Proposition 18. The disjunction of h-exact formulas is h-exact.271

I Lemma 19 Projection commutes with abstraction. For any Σ-abstraction h : S → ∆,272

subset R of assignments of type V → S, and variable x ∈ V: h ◦ πx(R) = πx(h ◦R).273

I Proposition 20 Quantification preserves exactness. For any surjective Σ-abstraction274

h : S → ∆ and formula ∃x.φ ∈ FΣ, if φ is h-exact then ∃x.φ is h-exact.275
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We next study the h-exactness for strongly-triangular systems of Σ-equations, under the276

condition that h is an abstraction between Σ-algebras with unique division.277

I Lemma 21 Singleton property. If S is a Σ-algebra, e ∈ EΣ, and α : V(e)→ S a variable278

assignment, then the set JeKα,S is a singleton.279

A Σ-algebra is a Σ-structure with the singleton property. Let ele be the function that280

maps any singleton to the element that it contains.281

I Definition 22. We say that a Σ-structure S has unique division, if it satisfies the first-order282

formula ∀x.∃=1y. ny
◦=x for all nonzero natural number n ∈ N.283

Clearly, the Σ-algebras R+ and B have unique division. For any element s of the domain284

of a structure S with unique division and any nonzero natural number n ∈ N, we denote by285

s
n the unique element of {α(y) | α ∈ solS(ny ◦=z), α(z) = s}.286

I Lemma 23. Let φ ∈ FΣ be a Σ-formula and S a Σ-algebra with unique division. For
nonzero natural number n, variable y 6∈ V(φ), and expression e ∈ EΣ with V(e) ⊆ V(φ):

solS(φ ∧ ny ◦=e) = {α[y/ele(JeK
α,S)

n
] | α ∈ solS(φ)}

I Proposition 24. Let φ ∈ FΣ a Σ−formula, n 6= 0 a natural number, e ∈ EΣ a Σ-expression287

with V(e) ⊆ V(φ) and y /∈ V(φ) and the Σ-abstraction h : S → ∆ with S and ∆ two Σ-algebras288

with unique division. Then if φ is h-exact implies that φ ∧ e ◦=ny is h-exact.289

Sketch of Proof. We can show that h(ele(JeKα,S)) = ele(JeKh◦α,∆) and h( sn ) = h(s)
n . Hence:

h ◦ solS(φ ∧ e ◦=ny) = h ◦ {α[y/ ele(JeKα,S)
n ] | α ∈ solS(φ)} by Lemma 23

= {(h ◦ α)[y/h( ele(JeKα,S)
n )] | α ∈ solS(φ)} elementary

= {σ[y/h( ele(JeKα,S)
n )] | σ ∈ sol∆(φ)} h-exactness of φ

= {σ[y/h(ele(JeKα,S))
n ] | σ ∈ sol∆(φ)}

= {σ[y/ ele(JeKh◦α,∆)
n ] | σ ∈ sol∆(φ)}

= sol∆(φ ∧ e ◦=ny) by Lemma 23

I Proposition 25. Let h : S → ∆ be a Σ-abstraction between Σ-algebras with unique division.290

Then any strongly-triangular system of Σ-equations with natural coefficients is h-exact.291

Sketch of Proof By induction on the number of equations and Proposition 24.292

We notice that Proposition 25 remains true for triangular systems that are not stongly-293

triangular. This will follow with further results from the next section (Theorem 37 and294

Proposition 31) requiring a different argument.295

I Theorem 26 Exactness. Quasi-positive strongly-triangular polynomial system are hB-exact.296

Proof The Σ-algebras R+ and B have unique division, so we can apply Proposition 25.297

The Elementary Modes Theorem 15 show that any integer matrix equation Ax ◦=0 is298

R+-equivalent to some quasi-positive strongly-triangular linear equation system. We can299

thus apply Theorem 26 to obtain the following corollary.300

I Corollary 27. Any matrix integer equation can be converted in at most exponential time301

to some R+-equivalent hB-exact Σ-formula.302

This corollary permits us to compute the hB-abstraction of an integer matrix equation by303

computing the B-solutions of the R+-equivalent hB-exact formula. For computing abstractions304

between structures without unique division we need to strengthen this result.305
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7 Abstraction Invariance306

The essential problem approached by the paper is that conjunctions of two h-exact formulas307

may not be h-exact. The situation changes when assuming the following notion of h-invariance308

for at least one of the two formulas.309

I Definition 28 Invariance. Let h : S → ∆ be a Σ-abstraction and V ⊆ V a subset of
variables. We call a subset R of variable assignments of type V → dom(S) h-invariant iff:

∀α, α′ : V → dom(S). (α ∈ R ∧ h ◦ α = h ◦ α′ =⇒ α′ ∈ R).

We call a Σ-formula φ h-invariant if its solution set solS(φ) is.310

The relevance of the notion of invariance for exactness of conjunctions – that we will311

formalize in Proposition 31 – is due to the the following lemma:312

I Lemma 29. If either R1 or R2 are h-invariant then: h ◦ (R1 ∩R2) = h ◦R1 ∩ h ◦R2.313

Sketch of Proof. The one inclusion is straightforward without invariance. For the other314

inclusion, we can assume with loss of generality that R1 is h-invariant. So let β ∈ h◦R1∩h◦R2.315

Then there exist α1 ∈ R1 and α2 ∈ R2 such that β = h ◦ α1 = h ◦ α2. By h-invariance of R1316

it follows that α1 ∈ R2. So α1 ∈ R1 ∩R2, and hence, β ∈ h ◦ (R1 ∩R2).317

We continue with an algebraic characterization of h-invariance. Given a Σ-abstraction
h : S → ∆, and a set R of variable assignments to dom(∆), we define the left-decomposition
of R with respect to h as the following set of variable assignments to dom(S):

h ◦−R =def {α | h ◦ α ∈ R}

Clearly, R ⊆ h ◦−(h ◦R). The inverse inclusion characterizes the h-invariance of R.318

I Lemma 30 Algebraic characterization. A subset of R variables assignment of type V →319

dom(S) is h-invariant for an Σ-abstraction h : S → ∆ iff h ◦−(h ◦R) ⊆ R.320

I Proposition 31 Exactness is preserved by conjunction when assuming invariance. Let321

h be a surjective Σ-abstraction. If φ1 and φ2 are h-exact Σ-formulas and φ1 or φ2 are322

h-invariant then the conjunction φ1 ∧ φ2 is h-exact.323

Proof Let φ1 and φ2 be h-exact Σ-formulas. We assume without loss of generality that φ1
is h-invariant. Let V = V(φ1 ∧ φ2). Since V(φ2) ⊆ V the set solSV (φ2) is h-invariant too by
Lemma 54. We can now show that φ1 ∧ φ2 is h-exact as follows:

h ◦ solS(φ1 ∧ φ2) = h ◦ (solSV (φ1) ∩ solSV (φ2))
= h ◦ solSV (φ1) ∩ h ◦ solSV (φ2) by Lemma 29
= sol∆V (φ1) ∩ sol∆V (φ2) by h-exactness of φ1 and φ2 wrt V
= sol∆(φ1 ∧ φ2)

324

Our next objective is to show that h-invariant formulas are closed under conjunction,325

disjunction, and existential quantification. The two former closure properties rely on the326

following two algebraic properties of abstraction decomposition.327

I Lemma 32. For any Σ-abstraction h : S → ∆, any subsets of assignments of type328

V → dom(S) R1 and R2 and V a subset of variables:329

h ◦−(R1 ∩R2) = h ◦−R1 ∩ h ◦−R2.330
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h ◦−(R1 ∪R2) = h ◦−R1 ∪ h ◦−R2.331

I Lemma 33 Intersection and union preserve invariance. Let h : S → ∆ be a Σ-abstraction.332

Then the intersection and union of any two h-invariant subsets R1 and R2 of variables333

assignments of type V → dom(S) is h-invariant.334

I Lemma 34 Projection commutes with left-decomposition. h ◦−πx(R) = πx(h ◦−R).335

I Proposition 35 Invariance is preserved by conjunction, disjunction, and quantification.336

If h is a surjective abstraction then the class of h-invariant FO-formulas is closed under337

conjunction, disjunction, and existential quantification.338

We do not known whether negation preserves h-invariance in general, but for finite ∆ it339

can be shown that if φ is h-exact and h-invariant, then ¬φ is h-exact and h-invariant too.340

I Proposition 36. Let h be a surjective Σ-abstractions. Then the class of h-exact and h-341

invariant Σ-formulas is closed under conjunction, disjunction and existential quantification.342

I Theorem 37 Invariance. Any positive polynomial equation p ◦=0 such that p has no constant343

term is hB-exact and hB-invariant.344

Sketch of Proof. Any positive polynomial equation p
◦=0 such that p has no constant

term and only positive coefficients has the form
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k

◦=0 where l ≥ 0, and
nj , ij ,mj,k > 0. We can now show that for both algebras S ∈ {B,R+} that:

solS(p ◦=0) = solS(
l∧

j=1

ij∨
k=1

xj,k
◦=0)

Since the formulas xj,k
◦=0 are hB-exact and hB-invariant, the theorem follows from the closure345

properties of Proposition 36.346

8 Boolean Abstractions of hB-Mixed Systems347

In this section we prove our main result stating how to compute the hB-abstraction of the348

R+-solution set of a hB-mixed systems exactly.349

I Definition 38. A hB-mixed system is a formula in FΣ of the form ∃z. φ ∧ φ′ where φ is a350

linear equation system and φ′ a hB-invariant and hB-exact first-order formula.351

Note that linear equation systems Ay ◦=0, with A an integer matrix and y a sequence of352

pairwise distinct variables, need not to be hB-exact, if A is not positive. However, any linear353

equation systems of this shape is R+-equivalent to some quasi-positive strongly-triangular354

polynomial system,as shown by the Elementary Modes Theorem 15. And quasi-positive355

strongly-triangular polynomial system were shown to be hB-exact by Exactness Theorem 26.356

I Theorem 39 Main. Any hB-mixed system can be converted in exponential time to an357

R+-equivalent Σ-formula that is hB-exact.358

Proof Consider a hB-mixed system ∃x. (φ ∧ φ′) where φ is a linear equation system and359

φ′ a first-order formula that is hB-exact and hB-invariant. Based on the Elementary Modes360

Theorem 15, the linear equation system φ can be transformed in exponential time to the361

form ∃z.φ′′ where φ′′ is a quasi-positive strongly-triangular system of linear equations. Such362

polynomial equation systems are hB-exact by Theorem 26, and so is φ′′. The Invariance363

Proposition 31 shows that the conjunction φ′′ ∧ φ′ is hB-exact too, since φ′ was assumed to364

be hB-exact and hB-invariant. Finally, hB-exactness is preserved by existential quantification365

by Proposition 20, so the formula ∃x.∃z. φ′′ ∧ φ′ is hB-exact too.366
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I Corollary 40. The hB-abstraction of the R+-solution set of an hB-mixed system φ, that is367

hB ◦ solR+(φ), can be computed in at most exponential time in the size of the system φ.368

The algorithm from the proof Corollary 40 can be improved so that it becomes sufficiently369

efficient for practical use. For this the two steps with exponential worst case complexity must370

be made polynomial for the particular instances. First note that the computation of the371

elementary modes (Theorem 15) is known to be computationally feasible. Various algorithms372

for this purpose were implemented [7, 12, 2, 3] and applied successfully to problems in373

systems biology [9]. The second exponential step concerns the enumeration of all boolean374

variable assignments. This enumeration may be avoided by using constraint programming375

techniques for computing the solution set solB(φ′′). For those hB-mixed systems for which376

both steps can be done in polynomial time, we can compute the boolean abstraction of377

the R+-solution set in polynomial time too. The practical feasibility of this approach was378

demonstrated recently at an application to knockout prediction in systems biology [1], where379

previously only over-approximations could be computed.380

9 Computing Sign Abstractions381

We next show how to compute the sign abstraction hS ◦ solR(φ) of the R-solutions set of a382

linear equation system φ. For this, we convert φ into a first-order formula φ′ based on our383

main Theorem 39 such that hS ◦ solR(φ) can be computed from solB(φ′) in polynomial time.384

In order to do so, we relate in a first step the sign abstraction to the boolean abstraction,385

then show in a second step that this relationship can be defined in first-order logic, so that386

our Main Theorem for the boolean abstraction can be applied.387

In the first step, we relate the sign abstraction to the boolean abstraction. For doing so,
we decompose any real number r into two positive numbers, its negative part 	(r) and its
positive part ⊕(r), such that if r ≥ 0 then 	(r) = 0 and ⊕(r) = r and otherwise 	(r) = −r
and ⊕(r) = 0. The decomposition function dec : R→ ({0} × R+) ∪ (R+ × {0}) is defined as
follows for r ∈ R:

dec(r) = (	(r),⊕(r))

This function is a bijection, so it has an inverse function dec-1 : ({0}×R+)∪ (R+×{0})→ R,388

which satisfies dec-1((r1, r2)) = r2 − r1 for all pairs (r1, r2) in its domain.389

I Lemma 41 Decomposition. hS = dec-1 ◦ h2
B ◦ dec390

Proof If r is negative then dec-1(h2
B(dec(r))) = dec-1(h2

B((−r, 0))) = dec-1((hB(−r), 0)) =391

−hB(−r) = hS(r). Otherwise if r is positive then dec-1(h2
B(dec(r))) = dec-1(h2

B((0, r))) =392

dec-1((0, hB(r)) = hB(r) = hS(r).393

We will show in a first step that first-order formulas over the reals can be rewritten, such
that interpretation over the positive reals is enough. We start with a definition of positivity
of reals in first-order logic. For any variable x ∈ V we define the formulas pos(x) ∈ FΣ by:

pos(x) =def ∃z.x
◦=z ∗ z

Clearly, if α ∈ solR(pos(x)) then α(x) ∈ R+. We can use this formula to relate R+-solutions394

to R-solutions of particular formulas.395

I Definition 42. A formula φ ∈ FΣ is called domain-positive if φ has the form φ′ ∧396 ∧
y∈V(φ′) pos(y) as well as all formulas φ′′ for which ∃x.φ′′ is a subformula of φ.397

I Lemma 43. All domain-positive formulas φ ∈ FΣ satisfy solR+(φ) = solR(φ).398
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Proof By induction on the structure of formulas. The induction step is straightforward399

from due to the fact that pos(y) imposes the positivity of the value y.400

We next show how to make first-order formulas domain-positive based on the decompo-401

sition of real numbers into two positive numbers presented earlier. We fix two generators402

of fresh variable ν	, ν⊕ : V → V. For any x ∈ V, the intention is that ν⊕(x) stands403

for the positive part of x and ν	(x) for its negative part. We will preserve the invariant404

that x = ν⊕(x) − ν	(x) and ν⊕(x) ∗ ν	(x) = 0. Furthermore, let ν : V → V2 such that405

ν(x) = (ν⊕(x), ν	(x)) for all x ∈ V.406

I Proposition 44 Positivity. For any formula φ ∈ FΣ we can compute in linear time a
formula decν(φ) ∈ FΣ such that:

dec ◦ solR(φ) = {α2 ◦ ν|V(φ) | α ∈ solR+(decν(φ) ∧
∧

x∈V(φ)

ν⊕(x) ∗ ν	(x) ◦=0)}

Furthermore, if φ was a linear equation system, then decν(φ) is a hB-mixed system.407

Proof We can assume without loss of generality that all equations of φ are flat, i.e., of the
form x

◦=x1 + x2, x
◦=x1 ∗ x2, x

◦=0, or x ◦=1. We define the formulas decν(φ), dec′ν(φ) ∈ FΣ
for all formulas φ in FΣ with flat equations recursively as follows:

decν(∃x.φ) = ∃ν	(x).∃ν⊕(x). decν(φ) decν(φ ∧ φ′) = decν(φ) ∧ decν(φ′)
∧ ν⊕(x) ∗ ν	(x) ◦=0 decν(¬φ) = ¬decν(φ)
∧ pos(ν⊕(x)) ∧ pos(ν	(x))

decν(x ◦=x1 + x2) = decν(x ◦=x1 ∗ x2) =
ν⊕(x) + ν	(x1) + ν	(x2) ◦= ν⊕(x) + ν⊕(x1) ∗ ν	(x2) + ν	(x1) ∗ ν⊕(x2) ◦=
ν	(x) + ν⊕(x1) + ν⊕(x2) ν	(x) + ν⊕(x1) ∗ ν⊕(x2) + ν	(x1) ∗ ν	(x2)

decν(x ◦=0) = ν⊕(x) ◦=ν	(x) decν(x ◦=1) = ν⊕(x) ◦=ν	(x) + 1
The rewriting for equations with multiplication relies on the distributivity law. We also use
inverses for addition in the structure of the reals. Let

dec′ν(φ) = decν(φ) ∧
∧

x∈V(φ)

ν⊕(x) ∗ ν	(x) ◦=0 ∧ pos(ν	(x)) ∧ pos(ν⊕(x)).

We can show by induction on the structure of formulas that all formulas dec′ν(φ) are domain-408

positive and satisfy dec◦ solR(φ) = {α2 ◦ν|V(φ) | α ∈ solR(dec′ν(φ))}. The proposition follows409

with R+ instead of R from Lemma 43 and the domain-positivity of dec′ν(φ).410

I Theorem 45 Computing Sign Abstractions. For any linear equation system φ ∈ FΣ we
can compute in at most exponential time a formula φ′ ∈ FΣ such that:

hS ◦ solR(φ) = {[y/β(ν⊕(y))− β(ν	(y)) | y ∈ V(φ′)] | β ∈ solB(φ′)}

Proof Let φ ∈ FΣ be a system of linear equations. The formula decν(φ)∧
∧
x∈V(φ) ν⊕(x) ∗

ν	(x) ◦=0 is a hB-mixed system by Positivity Proposition 44, so that we can apply the Main
Theorem 39. Therefore, we can compute in at most exponential time an R+-equivalent
formula φ′ that is hB-exact.

hS ◦ solR(φ)
= dec-1 ◦ h2

B ◦ dec ◦ solR(φ) by Decomposition Lemma 41
= dec-1 ◦ h2

B ◦ {α2 ◦ ν|V(φ) | α ∈ solR+(decν(φ)∧ by Positivity Proposition 44∧
x∈V(φ) ν⊕(x) ∗ ν	(x) ◦=0)}

= dec-1 ◦ h2
B ◦ {α2 ◦ ν|V(φ′) | α ∈ solR+(φ′)} where φ′ from Main Theorem 39

= {dec-1 ◦ β2 ◦ ν|V(φ′) | β ∈ solB(φ′)} by hB-exactness of φ′
= {[y/β(ν⊕(y))− β(ν	(y)) | y ∈ V(φ′)] | β ∈ solB(φ′)} by definition of dec-1
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Interpretation of expressions as sets of elements JeKα,S ⊆ dom(S), where S is a
Σ-structures and α : V → dom(S) where V contains all free variables.

JcKα,S = cS JxKα,S = {α(x)} Je� e′Kα,S = ∪{s�S s′ | s ∈ JeKα,S , s′ ∈ Je′Kα,S}

Interpretation of formulas as truth values JφKα,S ∈ B:

Je ◦=e′Kα,S =
{

1 if JeKα,S ∩ Je′Kα,S 6= ∅
0 else Jφ ∧ φ′Kα,S = JφKα,S ∧B Jφ′Kα,S

J¬φKα,S = ¬B(JφKα,S) J∃x.φKα,S =


1 if exists s ∈ dom(S).

JφKα[x/s],S = 1
0 else

Figure 4 Semantics of Σ-expressions and formulas over a Σ-structure S with respect to a variable
assignment α : V → dom(S).

A Proofs for Section 3 (The Boolean and the Sign Abstraction)488

I Lemma 7. The function hB : R+ → B is a Σ-abstraction between Σ-algebras.489

Proof. For all r, r′ ∈ R+ we have:

hB(r +R+ r′) = 1 ⇔ r +R+ r′ 6= 0 ⇔ r 6= 0 ∨ r′ 6= 0 ⇔ hB(r) = 1 ∨ hB(r′) = 1
hB(r ∗R+ r′) = 1 ⇔ r ∗R+ r′ 6= 0 ⇔ r 6= 0 ∧ r′ 6= 0 ⇔ hB(r) = 1 ∧ hB(r′) = 1

Hence hB(r +R+ r′) = hB(r) +B hB(r′) and hB(r ∗R+ r′) = hB(r) ∗B hB(r′). Finally, for both490

constants c ∈ C we have that hB(cR+) = hB(c) = c = cB. J491

I Lemma 9. hS : R→ S is a Σ-abstraction into a Σ-structure (that is not a Σ-algebra).492

Proof. For any r, r′ ∈ R the second condition for homomorphism follows for all � ∈ F (2):493

hS(r � r′) ∈ hS(r) �S hS(r′). And for all constants c ∈ C we have by definition that494

hS(cR) = cS. J495

B Proofs for Section 4 (Abstractions and First-Order Logic)496

The following two lemmas are classical. Let R be a subset of assignments of type V ′ → dom(S)497

and V ∩V ′ = ∅ two subsets of V . We define: extSV (R) = {α∪α′ | α′ : V ′∪V → dom(S), α ∈498

R}.499

I Lemma 46 Cylindrification. If V ∩ V(φ) = ∅ then: solSV ∪V(φ)(φ) = extSV (solS(φ)).500

Proof. We can show for all expressions e ∈ EΣ with V(e) disjoint to V and any variables501

assignment α : V(e) ∪ V → dom(S) that JeKα,S = JeKα|V(e),S . This is by induction on the502

structure of expressions. If follows for all formulas φ ∈ FΣ such that V(φ) disjoint from V503

and α : V(φ) ∪ V → dom(S) that JφKα,S = JφKα|V(φ),S . This is by induction on the structure504

of formulas. It implies the lemma. J505

I Lemma 10 Quantification is projection. solS(∃x. φ) = πx(solS(φ)).506

Proof. This is straightforward from the semantics of existential quantifiers: solS(∃x. φ) =507

{α|V(φ)\{x} | α ∈ solS(φ)} = πx(solS(φ)). J508
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C Proofs for Section 6 (Abstraction Exactness)509

In order to do so we first show that h-exactness is preserved when adding variables. For510

this we have to assume that the abstraction h is surjective, which will be the case of all511

abstraction of interest.512

I Lemma 47 Variable extension preserves exactness. Let h : S → ∆ be a Σ-abstraction513

that is surjective, φ ∈ FΣ a formula, and V ⊇ V(φ). Then the h-exactness of φ implies the514

h-exactness of φ with respect to V .515

Proof. Essentially this follows from that solutions of formulas can be extended arbitrarily to516

variables that do not appear freely in the formula, as stated by the following claim.517

I Claim 48. Any variable assignment σ : V → ∆ satisfies σ ∈ h ◦ solSV (φ) iff σ|V(φ) ∈518

h ◦ solS(φ).519

For the one direction let σ ∈ h ◦ solSV (φ). Then there exists α ∈ solSV (φ) such that520

σ = h ◦ α. Since V ⊇ V(φ) it follows that α|V(φ) ∈ solS(φ). Furthermore σ|V(φ) = h ◦ α|V(φ)521

and thus σ|V(φ) ∈ h ◦ solS(φ).522

For the other direction let σ|V(φ) ∈ h ◦ solS(φ). Then there exists α ∈ solS(φ) such that523

σ|V(φ) = h ◦ α. For any y ∈ V \ V(φ) let sy ∈ dom(S) be such that h(sy) = σ(y). Such524

values exists since h is surjective. Now define α′ = α[y/sy | y ∈ V \ V(φ)]. Since V ⊇ V(φ) it525

follows that α′ ∈ solSV (φ). Furthermore, σ = h ◦ α′, so σ ∈ h ◦ solSV (φ). J526

I Lemma 17. Let V be a set of variables, R1 and R2 be subsets of assignments of type527

V → dom(S) and h : S → ∆ be a Σ-abstraction. h ◦ (R1 ∪R2) = h ◦R1 ∪ h ◦R2.528

Proof. This lemma follows from the following equivalences:

β ∈ h ◦ (R1 ∪R2) ⇔ ∃α.α ∈ R1 ∪R2 ∧ β = h ◦ α
⇔ ∃α.(α ∈ R1 ∨ α ∈ R2) ∧ β = h ◦ α
⇔ ∃α.(α ∈ R1 ∧ β = h ◦ α) ∨ (α ∈ R2 ∧ β = h ◦ α)
⇔ β ∈ h ◦R1 ∨ β ∈ h ◦R2
⇔ β ∈ h ◦R1 ∪ h ◦R2

J529

I Proposition 18. The disjunction of h-exact formulas is h-exact.530

Proof. Let φ2 and φ2 be negation free formulas that are h-exact. Let V = V(φ1) ∪ V(φ2).
Lemma 47 shows that φ1 and φ2 are also h-exact with respect to the extended variable set
V , i.e., for both i ∈ {1, 2}:

h ◦ solSV (φi) = sol∆V (φi)

The h-exactness of the disjunction φ1 ∨ φ2 can now be shown as follows:

h ◦ solS(φ1 ∨ φ2) = h ◦ (solSV (φ1) ∪ solSV (φ2))
= h ◦ solSV (φ1) ∪ h ◦ solSV (φ2) by Lemma 17
= sol∆V (φ1) ∪ sol∆V (φ2) by h-exactness of φ1 and φ2 wrt. V
= sol∆(φ1 ∨ φ2)

J531
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I Lemma 19 Projection commutes with abstraction. For any Σ-abstraction h : S → ∆,532

subset R of assignments of type V → S, and variable x ∈ V: h ◦ πx(R) = πx(h ◦R).533

Proof. For all α : V → dom(S) we have h◦πx(α) = h◦α|V \{x} = (h◦α)|V \{x} = πx(h◦α). J534

I Proposition 20 Quantification preserves exactness. For any surjective Σ-abstraction535

h : S → ∆ and formula ∃x.φ ∈ FΣ, if φ is h-exact then ∃x.φ is h-exact.536

Proof. Let φ be h-exact. By definition φ is h-exact with respect to V . Since h is assumed
to be surjective, Lemma 47 implies that φ is h-exact with respect to V ∪ {x} (independently
of whether x occurs freely in φ or not). Hence:

h(solS(∃x.φ)) = h(πx(solS(φ))) by Lemma 10
= πx(h(solS(φ))) by Lemma 19
= πx(sol∆(φ)) since φ is h-exact
= sol∆(∃x.φ) by Lemma 10

J537

I Lemma 21 Singleton property. If S is a Σ-algebra, e ∈ EΣ, and α : V(e)→ S a variable538

assignment, then the set JeKα,S is a singleton.539

Proof. By induction on the structure of expressions e ∈ E :540

Case of constants c ∈ {0, 1}. The set JcKα,S = {cS} is a singleton.541

Case of variables x ∈ V. The set JxKα,S = {α(x)} is a singleton.542

Case e1 � e2 where e1, e2 ∈ EΣ and � ∈ {+, ∗}.

Je1 � e2Kα,S = {s�S s′ | s ∈ Je1Kα,S , s′ ∈ Je2Kα,S}

This set is a singleton since Je1Kα,S and Je2Kα,S are singletons by induction hypothesis,543

meaning that s�S s′ is also a singleton since S is a Σ-algebra. J544

I Lemma 23. Let φ ∈ FΣ be a Σ-formula and S a Σ-algebra with unique division. For
nonzero natural number n, variable y 6∈ V(φ), and expression e ∈ EΣ with V(e) ⊆ V(φ):

solS(φ ∧ ny ◦=e) = {α[y/ele(JeK
α,S)

n
] | α ∈ solS(φ)}

Proof. We fix some α : V(φ) → dom(S) arbitrarily. Since S is a Σ-algebra, JeKα,S is a545

singleton and V(e) ⊆ V (φ), ele(JeKα,S) is defined uniquely. Furthermore S has unique546

division, so that ele(JeKα,S)
n is well defined element of dom(S). Therefore and since y 6∈ V(φ),547

α[y/ ele(JeKα,S)
n ] is the unique solution of the equation ny ◦=e that extends on α.548

First we prove the inclusion “⊇”. Let α ∈ solS(φ), y 6∈ V(φ), and α[y/ ele(JeKα,S)
n ] is a549

solution of ny ◦=e, it follows that α[y/ ele(JeKα,S)
n ] is a solution of φ ∧ ny ◦=e.550

Second, we prove the inverse inclusion “⊆”. Let α ∈ solS(φ∧ny ◦=e). Since α[y/ ele(JeKα,S)
n ]551

is the unique solution of the equation ny
◦=e that extends on α′ = α|V(φ) it follows that552

α(y) = ele(JeKα,S)
n so that α = α′[y/ ele(JeKα,S)

n ] while α′ ∈ solS(φ). J553

I Proposition 24. Let φ ∈ FΣ a Σ−formula, n 6= 0 a natural number, e ∈ EΣ a Σ-expression554

with V(e) ⊆ V(φ) and y /∈ V(φ) and the Σ-abstraction h : S → ∆ with S and ∆ two Σ-algebras555

with unique division. Then if φ is h-exact implies that φ ∧ e ◦=ny is h-exact.556
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Proof. Let e ∈ EΣ a Σ-expression.557

I Claim 49. For any α : V → R+ with V ⊇ V(e): h(ele(JeKα,S)) = ele(JeKh◦α,∆).558

This can be seen as follows. For any α : V(φ) → S Theorem 11 on homomorphism yields559

h(JeKα,S) ⊆ JeKh◦α,∆. Since S and ∆ are both Σ-algebras, the sets JeKα,S and JeKh◦α,∆ are560

both singletons by Lemma 21, so that h(ele(JeKα,S)) = ele(JeKh◦α,∆).561

I Claim 50. For any s ∈ dom(S) and n 6= 0 a natural number: h( sn ) = h(s)
n .562

Since S is assumed to have unique division s′ = s
n is well-defined as the unique element563

of dom(S) such that s′ +S . . .+S s′︸ ︷︷ ︸
n

= s. Hence, h(s′ +S . . .+S s′︸ ︷︷ ︸
n

) = h(s) and since h is a564

homomorphism, it follows that h(s′) +∆ . . .+∆ h(s′)︸ ︷︷ ︸
n

= h(s). Since ∆ is assumed to have565

unique division, this implies that h(s′) = h(s)
n .566

The Proposition can now be shown based on these two claims. Let φ be h-exact, y 6∈ V(φ),
and V(e) ⊆ V(φ). We have to show that φ ∧ ny ◦=e is h-exact too:

h ◦ solS(φ ∧ e ◦=ny) = h ◦ {α[y/ ele(JeKα,S)
n ] | α ∈ solS(φ)} by Lemma 23

= {(h ◦ α)[y/h( ele(JeKα,S)
n )] | α ∈ solS(φ)} elementary

= {σ[y/h( ele(JeKα,S)
n )] | σ ∈ sol∆(φ)} h-exactness of φ

= {σ[y/h(ele(JeKα,S))
n ] | σ ∈ sol∆(φ)} by Claim 50

= {σ[y/ ele(JeKh◦α,∆)
n ] | σ ∈ sol∆(φ)} by Claim 49

= sol∆(φ ∧ e ◦=ny) by Lemma 23

J567

I Proposition 25. Let h : S → ∆ be a Σ-abstraction between Σ-algebras with unique division.568

Then any strongly-triangular system of Σ-equations with natural coefficients is h-exact.569

Proof. Any strongly-triangular system of equations has the form ∧ni=1ei
◦=niyi where n and570

ni 6= 0 are naturals and yi is i-fresh for all 1 ≤ i ≤ n. The proof is by induction on n. In571

the case n = 0, the conjunction is equal to true which is h-exact since h(solS(true)) = h([])572

= sol∆(true). In the case n > 0, we have by induction hypothesis that
∧i−1
j=1 ej

◦=njyj is573

h-exact. Since ni 6= 0 it follows from Proposition 24 that that ei
◦=niyi ∧

∧i−1
j=1 ej

◦=njyj is574

h-exact. J575

D Proofs for Section 7 (Abstraction Invariance)576

I Lemma 29. If either R1 or R2 are h-invariant then: h ◦ (R1 ∩R2) = h ◦R1 ∩ h ◦R2.577

Proof. The one inclusion is straightforward without invariance:

h ◦ (R1 ∩R2) = {h ◦ α | α ∈ R1, α ∈ R2}
⊆ {h ◦ α | α ∈ R1} ∩ {h ◦ α | α ∈ R2}
= h ◦R1 ∩ h ◦R2

For the other inclusion, we can assume with loss of generality that R1 is h-invariant. So let578

β ∈ h ◦R1 ∩h ◦R2. Then there exist α1 ∈ R1 and α2 ∈ R2 such that β = h ◦α1 = h ◦α2. By579

h-invariance of R1 it follows that α1 ∈ R2. So α1 ∈ R1∩R2, and hence, β ∈ h◦(R1∩R2). J580



E. Allart and J. Niehren and C. Versari XX:19

I Lemma 30 Algebraic characterization. A subset of R variables assignment of type V →581

dom(S) is h-invariant for an Σ-abstraction h : S → ∆ iff h ◦−(h ◦R) ⊆ R.582

Proof. “⇒”. Let R be h-invariant and α ∈ h ◦−(h ◦R). Then there exists α′ ∈ R such that583

h ◦ α = h ◦ α′. The h-invariance of R thus implies that α ∈ R.584

“⇐”. Suppose that h ◦−(h ◦ R) ⊆ R. Let α, α′ : V → dom(S) such that h ◦ α = h ◦ α′ and585

α ∈ R. We have to show that α′ ∈ R. From h ◦ α = h ◦ α′ and α ∈ R it follows that586

α′ ∈ h ◦−(h ◦R) and thus α′ ∈ R as required. J587

I Lemma 51 Variable extension preserves invariance. Let h be a surjective abstraction588

and R a subset of functions of type V ′ → dom(S) and V a subset of variables disjoint from589

V ′. If R is h-invariant then extSV (R) is h-invariant too.590

Proof. This will follow straightforwardly from the characterization of h-invariance in Lemma591

30 and the following two claims:592

I Claim 52. If h is surjective then h ◦ extSV (R) = ext∆
V (h ◦R).593

This follows from h ◦ extSV (R) = {h ◦ α | α ∈ extSV (R)} = ext∆
V ({h ◦ α′ | α′ ∈ R}) where we594

use the surjectivity of h in the last step.595

I Claim 53. h ◦−ext∆
V (R′) = extSV (h ◦−R′) for any subset R′ of functions of type V ′ → dom(∆).596

h ◦−ext∆
V (R′) = {α : V ∪ V ′ → dom(S) | h ◦ α ∈ ext∆

V (R′)}
= {α : V ∪ V ′ → dom(S) | h ◦ α|V ′ ∈ R′}
= extSV ({α′ : V ′ → dom(S) | h ◦ α′ ∈ R′}
= extSV (h ◦−R′)

J597

I Lemma 54. Let h : S → ∆ be a surjective Σ-abstraction, φ be a Σ-formula, and V ⊇ V(φ).598

Then the h-invariance of φ implies the h-invariance of solSV (φ).599

Proof. This follows from the cylindrification Lemma 46 and that extension preserves h-600

invariance as shown in Lemma 51. J601

I Lemma 32. For any Σ-abstraction h : S → ∆, any subsets of assignments of type602

V → dom(S) R1 and R2 and V a subset of variables:603

h ◦−(R1 ∩R2) = h ◦−R1 ∩ h ◦−R2.604

h ◦−(R1 ∪R2) = h ◦−R1 ∪ h ◦−R2.605

Proof. The case for unions follows straightforwardly from the definitions:

h ◦−(R1 ∪R2) = {α | h ◦ α ∈ R1 ∪R2}
= {α | h ◦ α ∈ R1 ∨ h ◦ α ∈ R2}
= {α | h ◦ α ∈ R1} ∪ {α | h ◦ α ∈ R2}
= h ◦−R1 ∪ h ◦−R2

The case of intersection is symmetric:

h ◦−(R1 ∩R2) = {α | h ◦ α ∈ R1 ∩R2}
= {α | h ◦ α ∈ R1 ∧ h ◦ α ∈ R2}
= {α | h ◦ α ∈ R1} ∩ {α | h ◦ α ∈ R2}
= h ◦−R1 ∩ h ◦−R2
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J606

I Lemma 33 Intersection and union preserve invariance. Let h : S → ∆ be a Σ-abstraction.607

Then the intersection and union of any two h-invariant subsets R1 and R2 of variables608

assignments of type V → dom(S) is h-invariant.609

Proof. This follows from the algebraic characterization Lemma 30 for invariance, in combi-610

nation with the algebraic properties of composition and decomposition given in Lemmas 17,611

29, and 32. J612

I Lemma 34 Projection commutes with left-decomposition. h ◦−πx(R) = πx(h ◦−R).613

Proof. For all α : V → dom(∆) we have h◦−πx(α) = h◦−α|V \{x} = (h◦−α)|V \{x} = πx(h◦−α). J614

I Proposition 35 Invariance is preserved by conjunction, disjunction, and quantification.615

If h is a surjective abstraction then the class of h-invariant FO-formulas is closed under616

conjunction, disjunction, and existential quantification.617

Proof. Let h : S → ∆ be a Σ-abstraction.618

Case of conjunction: Let φ1 and φ2 be h-invariant and V = V(φ1 ∧ φ2). By Lemma 54 the
sets solSV (φ1) and solSV (φ2) are both h-invariant, and so by Lemma 33 is their intersection.
Hence:

h ◦−(h ◦ solS(φ1 ∧ φ2)) = h ◦−(h ◦ (solSV (φ1) ∩ solSV (φ2)))
⊆ solSV (φ1) ∩ solSV (φ2) by h-invariance and Lemma 30
= solS(φ1 ∧ φ2)

By Lemma 30 in the other direction, this implies that φ1 ∧ φ2 is h-invariant.619

Case of disjunction: Analogous to the case of conjunction.620

Case of existential quantification:

h ◦−(h ◦ solS(∃x.φ1)) = h ◦−(h ◦ πx(solS(φ1))) by Lemma 10
= h ◦−(πx(h ◦ solS(φ1))) by Lemma 19
= πx(h ◦−(h ◦ solS(φ1))) by Lemma 34
⊆ πx(solS(φ1)) by h-invariance of φ1 and Lemma 30
= solS(∃x.φ1) by Lemma 10

By Lemma 30, this implies that ∃x.φ1 is h-invariant. J621

I Proposition 36. Let h be a surjective Σ-abstractions. Then the class of h-exact and h-622

invariant Σ-formulas is closed under conjunction, disjunction and existential quantification.623

Proof. Closure under conjunction follows from Propositions 31 and 35, closure under disjunc-624

tion from Propositions 18 and 35, and closure under existential quantification by Propositions625

20 and 35. J626

I Theorem 37 Invariance. Any positive polynomial equation p ◦=0 such that p has no constant627

term is hB-exact and hB-invariant.628

Proof. Consider a positive polynomial equation p ◦=0 such that p has no constant term and629

only positive coefficients. Thus p has the form
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k

◦=0 where l ≥ 0, and630

nj , ij ,mj,k > 0.631
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I Claim 55. For both algebras S ∈ {B,R+}: solS(p ◦=0) = solS(
∧l
j=1

∨ij
k=1 xj,k

◦=0).632

The polynomial has values zero if and only if all its monomials do, that is:
∏ij
k=1 x

mjk
j,k = 0633

for all 1 ≤ j ≤ l. Since constant terms are ruled out, we have ij 6= 0. Furthermore, we634

assumed for all polynomials that mj,k 6= 0. So for all 1 ≤ j ≤ l there must exist 1 ≤ k ≤ ij635

such that xj,k = 0.636

I Claim 56. The equation x ◦=0 is hB-exact and hB-invariant.637

This is straightforward from the definitions. With these two claims we are now in the
position to prove the lemma. Since the class of hB-exact and hB-invariant formulas is closed
under conjunction and disjunction by Proposition 36, it follows from by Claim 56 that
∧lj=1 ∨

ij
k=1 xj,k

◦=0 is both hB-exact and hB-invariant. Since this formula is equivalent over
R+ to the polynomial equation by Claim 55, the hB-invariance carries over to p ◦=0. The
hB-exactness also carries over based on the equivalence for both structures R+ and B:

hB ◦ solR+(p ◦=0) = hB ◦ solR+
V (∧lj=1 ∨

ij
k=1 xj,k

◦=0) by Claim 55 for R+

= solB(∧lj=1 ∨
ij
k=1 xj,k

◦=0) by hB exactness
= solB(p ◦=0) by Claim 55 for B.

J638

E Proofs for Section 8 (Boolean Abstractions of hB-Mixed Systems)639

I Corollary 40. The hB-abstraction of the R+-solution set of an hB-mixed system φ, that is640

hB ◦ solR+(φ), can be computed in at most exponential time in the size of the system φ.641

Proof. Given an hB-mixed system φ, we can apply Theorem 39 to compute in at most642

exponential time an R+-equivalent formula φ′′ that is hB-exact. It is then sufficient to643

compute solB(φ′′) in exponential time in the size of φ. This can be done in the naive644

manner, that is by evaluating the formula φ′′ – which may be of exponential size – over all645

possible boolean variable assignments – of which there may be exponentially many. For each646

assignment the evaluation can be done in PSpace and thus in exponential time. The overall647

time required is thus a product of two exponentials, which remains exponential. J648


	Introduction
	Preliminaries
	The Boolean and the Sign Abstraction
	Abstractions and First-Order Logic
	Linear Equation Systems and Elementary Modes
	Abstraction Exactness
	Abstraction Invariance
	Boolean Abstractions of hB-Mixed Systems
	Computing Sign Abstractions
	Proofs for Section 3 (The Boolean and the Sign Abstraction)
	Proofs for Section 4 (Abstractions and First-Order Logic)
	Proofs for Section 6 (Abstraction Exactness)
	Proofs for Section 7 (Abstraction Invariance)
	Proofs for Section 8 (Boolean Abstractions of hB-Mixed Systems)

