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Abstract12

We show how to compute finite abstractions of linear equations systems over the reals. We develop13

a general method based on elementary modes, that can be applied to the various abstractions into14

finite structures, including the sign abstraction as used in abstract interpretation based program15

analysis, and the difference abstraction as used in change prediction algorithms for flux networks in16

systems biology.17
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1 Introduction21

Systems of linear equations serve in abstract interpretation to abstract from the concrete22

semantics of programs with arithmetic operations [4, 10]. In systems biology, systems of23

linear equations are used to describe the fluxes of a reaction network in a steady state [13, 14].24

Both applications raise a very similar question on how to compute an abstraction for linear25

equations systems. For program analysis based on abstract interpretation [15], one might ask26

for instance, whether the value of a variable x in a program is strictly positive if the value27

of another variable y was. This question is about the sign abstraction of the R-solution set28

of a linear equation system (that itself abstracts from the programs semantics). In systems29

biology [11, 17, 5, 1] one might want to know for a given flux network, whether a flux x must30

increase (resp. decrease) if some other flux y does. This question concerns the difference31

abstraction of a pair of R-solutions of the equation system, that is of an R2-solution of the32

system of linear equations where addition and multiplication are defined component-wise.33

We therefore study the question of how to compute finite abstractions of the solution set
of a system of linear equation over the reals. Given an homomorphism h : Rk → ∆ between
Σ-structures where Σ = {+, ∗, 0, 1} and ∆ is finite, and a linear equation system φ with
integer coefficients, the question is how to compute the h-abstraction of the solution set of φ.
If V is the set of variables of φ, then the set to be computed is:

h ◦ solR
k

(φ) = {h ◦ α | α : V → Rk, s.t. Rk, α |= φ}

This problem generalizes on both questions above. The instance for the first question concerns34

the sign abstraction hS : R → {−1, 0, 1} which satisfies hS(r) = 1 if r > 0, hS(r) = −1 if35

r < 0 and otherwise hS(0) = 0. The second instance concerns the difference abstraction36

h∆3 : R2 → {↑,↓,∼}, where ↑ stands for increase, ↓ for decrease, and ∼ for no change. It37

satisfies h∆3(r, r′) = ↑ if r < r′, h∆3(r, r′) = ↓ if r > r′, and otherwise h∆3(r, r′) = ∼.38
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We next illustrate the difficulty of the problem by showing how to compute hS ◦ solR(φ)39

from φ with the existing methods. Note that the set solR(φ) cannot be enumerated since it40

is infinite. Instead we can enumerate the set of sign assignments α : V → {−1, 0, 1} which41

is finite. Furthermore, since hS(x) = −1 is equivalent to x < 0 and hS(x) = 1 to 0 < x,42

the system φ ∧
∧
x∈V hS(x) = α(x) is equivalent to a system of linear equations and strict43

inequations. The satisfiability of such a system can be decided in at most exponential time [6].44

However, this method is not feasible in practice given that the number of sign assignments45

grows exponentially with the number of variables. So the question is whether there exists a46

more efficient algorithm for computing hS ◦ solR(φ).47

From John’s overapproximation theorem [11, 17], we know for any homomorphism48

h : S → ∆ between Σ-structures and any negation-free first-order Σ-formula φ that h ◦49

solS(φ) ⊆ sol∆(φ). We call φ h-exact if and only if h ◦ solS(φ) = sol∆(φ). If ∆ is finite, then50

we can compute for any h-exact formula φ the abstraction h ◦ solS(φ) by computing sol∆(φ)51

with finite domain constraint programming [18].52

In a first step, we show that any integer linear matrix equation Ax=0 can be transformed53

into some R+-equivalent Σ-formula that is quasi-positive and quasi-triangular and thus54

hB-exact. This transformation is based on the computation of elementary modes [16, 8, 9, 19]55

– the extreme rays of the cone solR+(Ax=0) – that can be done in practice by various libraries56

from computational geometry [3]. The conversion may take exponential time in the worst57

case, but is often well-behaved. The correctness of the conversion relies on the fact that the58

Σ-algebras R+ and B permit unique division by nonzero natural numbers.59

In the second step, we introduce hB-mixed systems, which generalize on systems of linear60

equations, positive polynomial equations p=0 and inequations p 6=0 where polynomial p has61

no constant term. We then show that hB-mixed systems can be converted to an hB-exact62

formula too. In order to do so, extend on the results from the first step by introducing63

the notion of hB-invariant Σ-formulas, which subsume the poynomial equations p=0 and64

inequations p 6=0 for all positive polynomials p without constant terms.65

In a third step, we rewrite linear equations systems φ into hB-mixed formulas φ′, based on66

the two previous steps, so that sign abstraction of hS ◦solR(φ) can be computed from boolean67

abstraction hB ◦ solR(φ′) = solB(φ′). It is then sufficient to compute the boolean solution set68

solB(φ′) by finite domain constraint programming. The rewriting approach based the results69

for hB-mixed systems presented here was applied recently by the authors [1] to the difference70

abstraction h∆3 : R2
+ → {↑,↓,∼} and a refinement thereof into a finite Σ-structure with 671

elements. This procedure was implemented and applied successfully for change prediction in72

systems biology. It illustrates that our results presented here do provide a general framework73

enabling the computation of various finite abstractions of linear equation systems.74

We illustrate our results by applying the sign abstraction for program analysis based on75

abstract interpretation. We consider the Python implementation in Fig. 1 of the function76

integral : R2 → R with parameter f : R → R. A call integral(a, step) computes the77

approximation of the integral
∫ a

0 f(x)dx with stepwidth step. Abstract interpretation applied78

to this program with a polyhedral abstract domain may produce the following first-order79

formula φintegral:80

(throw_exception = 1 ⇐⇒ a < 0) ∧ (do_recursion = 1 ⇐⇒ step ≤ a) ∧
arec = a− step ∧ steprec = step81

This formula uses the following variables: a flag throw_exception that is true on exception82

throwing; a flag do_recursion that is true when a recursive call is made; two variables arec,83

steprec representing the parameters passed recursively to integral.84
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def i n t e g r a l ( a : f l o a t , s t e p : f l o a t ) :
i f a < 0 : r a i s e V a l u e E r r o r ( ’ Th i s shou ld neve r happen ’ )
i f s t e p > a :

re tu rn 0
e l s e :

re tu rn s t e p ∗ f ( a ) + i n t e g r a l ( a − s tep , s t e p )

Figure 1 Python function approximating the integral
∫ a

0 f(x)dx for a given function f : R→ R.

In order to know whether an exception may be thrown, we are interested in the sign85

abstraction for this formula hS ◦ solR(φintegral). According to John’s Theorem [11], this86

abstraction can be overapproximated by solS(φintegral) which in turn can be computed87

by finite domain constraint programming. However, this approximation does not rule out88

that arec may be strictly negative when do_recursion is true, although this condition is not89

possible when running the program. Conversely, this is correctly reflected by the abstraction90

of its abstract interpretation hS ◦ solR(φintegral), that can be computed by converting it to a91

hB-mixed system which is then solved with the methods presented above.92

2 Preliminaries93

Sets. We start with usual notation from set theory. Let N be the set natural numbers and94

R+ the set of positive real numbers, both including 0. For any set A and n ∈ N, the set95

of n-tuples of elements in A is denoted by An. The i-th projection function on n-tuples of96

elements in A, where 1 ≤ i ≤ n is the function πi : An → A such that πi(a1, . . . , an) = ai for97

all a1, . . . , an ∈ A. If A is finite the number of elements of A is denote by |A|.98

Projections and Pairs. The projection πa(f) of a function f : A→ B is its restriction α|A\{a}.99

The projection of a set F of functions f : A→ B is πa(F ) = {πa(f) | f ∈ F}. Furthermore,100

we define the pair function f2 : A2 → B2 such that f2(a1, a2) = (f(a1), f(a2)).101

Σ-Algebras and Σ-Structures. We next recall the usual notions of Σ-algebras and of homomor-102

phism between Σ-algebras. Let Σ = ∪n≥0F
(n) ] C be a ranked signature. The elements of103

f ∈ F (n) are called the n-ary function symbols of Σ and the elements in c ∈ C its constants.104

I Definition 1. A Σ-algebra S = (dom(S), .S) consists of a set dom(S) and an interpretation105

.S such that cS ∈ dom(S) for all c ∈ C, and fS : dom(S)n → dom(S) for all f ∈ F (n).106

In order to generalize Σ-algebras to Σ-structures, we consider n-ary function symbols as107

n+1-ary relation symbols.108

I Definition 2. A Σ-structure ∆ = (dom(∆), .∆) consists of a set dom(∆) and an interpre-109

tation .∆ such that c∆ ∈ dom(∆) for all c ∈ C and f∆ ⊆ dom(∆)n+1 for all f ∈ F (n).110

Clearly, any Σ-algebra is also a Σ-structure. Note also that symbols in F (0) are interpreted111

as monadic relations, i.e., as subsets of the domain, in contrast to constants in C that are112

interpreted as elements of the domain.113

I Definition 3. A homomorphism between two Σ-structures S and ∆ is a function h :114

dom(S)→ dom(∆) such that for c ∈ C, n ∈ N, f ∈ F (n), and s1, . . . , sn+1 ∈ dom(S):115

1. h(cS) = c∆, and116

2. if (s1, . . . , sn+1) ∈ fS then (h(s1), . . . , h(sn+1)) ∈ f∆.117
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d d′ d +S d′ d ∗S d′
−1 1 {−1, 0, 1} −1
−1 0 −1 0
−1 −1 −1 1

d d′ d +S d′ d ∗S d′
0 1 1 0
0 0 0 0
0 −1 −1 0

d d′ d +S d′ d ∗S d′
1 1 1 1
1 0 1 0
1 −1 {−1, 0, 1} −1

Figure 2 Interpretation of Σ-structure of signs S.

We can convert any n + 1-ary relation to a n-ary set valued functions. In this way any118

n-function is converted to a n-ary set valued n-functions. In other words, functions of type119

Dn → D are converted to functions of type Dn → 2D where D = dom(∆). In set-valued120

notation, the second condition on homomorphism can then be rewritten equivalently as121

h(fS(s1, . . . , sn)) ⊆ f∆(h(s1), . . . , h(sn)). A homomorphism for Σ-algebras thus satisfies122

h(cS) = c∆ and h(fS(s1, . . . , sn)) = f∆(h(s1), . . . , h(sn)).123

I Definition 4. A Σ-abstraction is a homomorphism h:S → ∆ between Σ-structures such124

that dom(∆) ⊆ dom(S).125

3 The Boolean and the Sign Abstraction126

Throughout the paper we will use the signature Σ = F (2) ] C with two binary function127

symbols in F (2) = {+, ∗}, and two constants C = {0, 1}. In the Σ-algebras that we will128

consider the functions + and ∗ will be associative and commutative, with neutral element 0129

and 1 respectively.130

I Example 5. The set of positive reals R+ can be turned into a Σ-algebra, in which the131

functions symbols are interpreted as addition of positive reals +R+ , multiplication of positive132

reals ∗R+ . The constants are interpreted by themselves 0R+ = 0 and 1R+ = 1.133

I Example 6. The set of Booleans B = {0, 1} ⊆ R+ equally defines a Σ-algebra. There,134

the function symbols are interpreted as a disjunction +B = ∨B and conjunction ∗B = ∧B on135

Booleans. The constants are interpreted by themselves 0B = 0 and 1B = 1.136

In order to abstract positive real numbers into booleans, we can define a function hB : R+ → B137

such that hB(0) = 0 and hB(r) = 1 if r > 0.138

I Lemma 7. The function hB : R+ → B is a Σ-abstraction between Σ-algebras.139

I Example 8. The set of signs {−1, 0, 1} ⊆ R can be turned into a Σ-structure S =140

({−1, 0, 1}, .S) with the interpretation +S and ∗S given in Fig. 2. The constants are interpreted141

by themselves 0S = 0 and 1S = 1. Note that all +S contains (−1, 1,−1), (−1, 1, 1) and142

(−1, 1, 0) meaning that the sum of a strictly negative and a strictly positive real has a sign in143

−1 +S 1, so it may either be strictly positive, strictly negative, or zero. For this reason, S is144

a Σ-structure but not a Σ-algebra.145

We define the sign abstraction hS : R→ S such that hS(0) = 0, hS(r) = −1 for all strictly146

negative reals r < 0 and hS(r) = 1 for all strictly positive reals r > 0.147

I Lemma 9. hS : R→ S is a Σ-abstraction into a Σ-structure (that is not a Σ-algebra).148
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e ∈ EΣ ::= x | c | e� e′ where c ∈ C = {0, 1} and � ∈ F (2) = {+, ∗}
φ ∈ FΣ ::= e

◦=e | ∃x.φ | φ ∧ φ | ¬φ where x ∈ V

Figure 3 First-order Σ-expressions and Σ-formulas, where Σ = C ∪ F (2).

4 Abstractions and First-Order Logic149

We recall the first-order logic for Σ-structures and recall John’s theorem [11] on how to150

overapproximate the Σ-abstraction first-order Σ-formulas.151

We fix a set of variables V (for instance V = N). The variables in V will be ranged over152

by x and y. The abstract syntax in Fig. 3 define the set of first-order expressions e ∈ EΣ153

which are constructed from the function symbols in the signature Σ and the variables in V.154

A Σ-equation is a pair e ◦=e′ where e, e′ ∈ EΣ. A first-order formulas φ ∈ FΣ is constructed155

from Σ-equations with the usual first-order connectives. As shortcuts, we define the formula156

true =def 1 ◦=1 and for any sequence of formulas φ1, . . . , φn we define ∧ni=1φi as φ1 ∧ . . . ∧ φn157

which is equal to true if n = 0. Furthermore, we define formulas e
.

6=0 by ¬e ◦=0.158

The semantics of first-order logic is standard. Let S be a Σ-structure and α : V → dom(S)159

be a variable assignment. For any expressions e ∈ EΣ and variable assignment V(e) ⊆ V , the160

semantics defines a subset of JeKα,S ⊆ dom(S), and for any formula φ ∈ FΣ with V(φ) ⊆ V161

a truth value JφKα,S ∈ B. Expressions e, e′ ∈ EΣ may be set valued in the case that S is not162

a Σ-algebra. Therefore, the equality symbol ◦= will be interpreted as nondisjointness, i.e.,163

e
◦=e′ is true if and only if JeKα,S ∩ Je′Kα,S 6= ∅. If S is a Σ-algebra, then both sets will be164

singletons. Therefore, the equality symbol ◦= is indeed interpreted as equality for Σ-algebra,165

but not for Σ-structures. See Fig. 4 of the appendix for the details.166

The set of solutions of a formula φ ∈ FΣ over a Σ-algebra S with respect to a set of167

variables V that contains V(φ) is defined by solSV (φ)={α : V → dom(S) | JφKα,S = 1}. If168

V = V(φ) we omit the index V , i.e., solS(φ) = solSV (φ).169

I Lemma 10 Quantification is projection. solS(∃x. φ) = πx(solS(φ)).170

Let h : S → ∆ be a Σ-abstraction and V ⊆ V. For any subset of assignments R of type171

V → dom(S) we define h ◦R = {h ◦ α : V → dom(∆) | α ∈ R}.172

I Theorem 11 John’s Overapproximation Theorem [1, 17, 11]. For any Σ-abstraction173

h : S → ∆ between Σ-structures and negation-free formula φ ∈ FΣ: h ◦ solS(φ) ⊆ sol∆(φ).174

We only give a sketch of the proof. Let α : V → dom(S). For any expression e ∈ EΣ such175

that V(e) ⊆ V we can show that h(JeKα,S) = JeKh◦α,∆ by induction on the structure of φ. It176

then follows for any positive formula φ ∈ FΣ with V(φ) ⊆ V that JφKα,S ≤ JφKh◦α,∆. This is177

equivalent to that: {h ◦ α | α ∈ solSV (φ)} ⊆ sol∆V (φ) and thus h ◦ solSV (φ) ⊆ sol∆V (φ).178

5 Linear Equation Systems and Elementary Modes179

We are interested in systems of Σ-equation where Σ = {+, ∗, 1, 0}. The base case will be180

homogeneous linear equations systems with natural coefficients, which capture linear matrix181

integer equations Ax = 0. We will show that elementary modes [16, 8, 9, 19] can be used to182

make linear integer matrix equations quasi-positive and strongly-triangular.183

We also need systems of polynomial equations, with natural coefficients and no constant184

term, that are nonlinear. For any natural n and expression e, e1, . . . , en ∈ EΣ, we define the185



XX:6 Abstracting Linear Equation Systems

expression
∏n
i=1 ei = e1 ∗ . . . ∗ en, which is equal to 1 if n = 0 and to

∑n
i=1 ei = e1 + . . .+ en186

which is equal to 0 if n = 0. Furthermore, let en =
∏n
i=1 e and ne =def

∑n
i=1 e.187

I Definition 12. A Σ-equation is called positive if it has the form e
◦=0 and quasi-positive if188

it has the form e
◦=ny, where n ∈ N, y ∈ V, and e ∈ EΣ.189

This definition makes sense, since all constants in Σ-expressions are positive and all operators190

of Σ-expressions preserve positivity. Note also that any positive equation is quasi-positive191

since the constant 0 is equal to the polynomial 0y. A system of Σ-equations is a conjunctive192

formula of the form
∧n
i=1 ei

◦=e′i in FΣ. We call a system of Σ-equations positive respectively193

quasi-positive if all its equations are.194

A polynomial (with natural coefficients) is an expression of the form
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k195

where l and ij are naturals, x1,1, . . . , xl,il variables, all nj 6= 0 naturals called the coefficients,196

and all mj,k 6= 0 naturals called the exponents. The products
∏ij
k=1 x

mj,k
j,k are called the197

monomials of the polynomial.198

I Definition 13. A polynomial
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k with natural coefficients nj 6= 0 has no199

constant term if none of its monomials is equal to 1, i.e., ij 6= 0 for all 1 ≤ j ≤ l. It is linear200

if all its monomials are variables, i.e. ij = 1 and mj,1 = . . . = mj,ij = 1 for all 1 ≤ j ≤ l.201

Note that any linear polynomial has the form
∑l
j=1 njxj,1 where l and all nj 6= 0 are naturals202

and all xj,1 are variables. In particular, linear polynomials do not have a constant term.203

Furthermore, note that the constant 0 is equal to the linear polynomial with l = 0. A204

polynomial equation is a Σ-equation p
◦=p′ between polynomials. A (homogeneous) linear205

equation is a polynomial equation with linear polynomials, so without constant terms. A206

linear equation system is a system of linear equations.207

An (homogeneous) linear integer matrix equation has the form Ay ◦=0 where A is an208

n × m matrix of integers for some naturals m,n such that y ∈ Vm. Any linear integer209

matrix equation can be turned into a linear equation system with natural coefficients, by210

bringing the negative coefficients on the right-hand side. For instance, the linear integer211

matrix equation on the right corresponds to the linear
equation system with natural coefficients 3x ◦=0∧2x ◦=5y.

(
3 0
2 −5

)(
x

y

)
◦= 0212

This system is quasi-positive, but not positive since 5y appears on a right-hand side.213

More generally, the linear equation system for an linear integer matrix equation Ay ◦=0 is214

positive if and only if all integers in A are positive, and quasi-positive, if each line of A215

contains at most one negative integer. Furthermore, the above linear equation system is216

triangular in the following sense, but not strongly triangular:217

I Definition 14. We call a quasi-positive system of Σ-equations triangular if it has the form218 ∧n
l=1 el

◦=nlyl such that the variables yl are l-fresh for all 1 ≤ l ≤ n, i.e., yl 6∈ V(∧l−1
i=1ei

◦=e′i)219

and if nl 6= 0 then yl 6∈ V(el). We call the quasi-positive polynomial system strongly-triangular220

if it is triangular and satisfies nl 6= 0 for all 1 ≤ l ≤ n.221

Consider a linear integer matrix equation Ay ◦=0. If A is positive and triangular, then the222

corresponding linear equation system is positive and triangular too. For being quasi-positive223

and strongly-triangular, the integers below the diagonal of A must negative, those on the224

diagonal must be strictly negative, and those on the right of the diagonal must be positive.225

I Theorem 15 Elementary Modes. For any system of linear equations φ with natural226

coefficients, one can compute in at most exponential time an R+-equivalent formula ∃x.φ′227

such that φ′ is a quasi-positive strongly-triangular system of linear equations with natural228

coefficients and x the sequence of variables on the left hand sides of the equations.229
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The theorem applies in particular to the linear equation systems of integer matrix230

equations Ay ◦=0. It shows that there exists a matrix E of naturals, a vector of naturals n,231

and a vector of fresh variables x, such that Ay ◦=0 is R+-equivalent to ∃x. Ex ◦=ny.232

Proof Consider a system φ of linear equations with natural coefficients. Geometrically,233

the solution space of φ over the reals is a linear subspace of RV(φ). When restricted to234

positive reals, as we do, this linear subspace is to be intersected with the positive cone235

RV(φ)
+ . Therefore, solR+(φ) is a rational cone obtained by intersecting finitely many half-236

spaces: its H-representation is defined by the inequations Ay ≤ 0 ∧ Ay ≥ 0 ∧ y ≥ 0. The237

elementary modes of φ are the extreme rays of this cone and allow its V-representation.238

Up to normalization there are finitely many such extreme rays. Moreover, since the cone239

is rational and φ is homogeneous, the elementary modes can be normalised so that the240

V-representation contains only integer coefficients. The normalized elementary modes will be241

vectors of naturals in NV(φ). Let e1, . . . , en be the set of all normalized elementary modes242

in some arbitrary total order. Let E be the matrix with columns e1, . . . , en. Let y be the243

sequence of all variables of V(φ) in some arbitrary total order. By construction, the variable244

in y are pairwise distinct. According to the normalized V-representation of the system, every245

point of the cone is a positive linear combination of the elementary modes ∃x. Ex ◦=ny, where246

n contains the normalization factors. The linear system Ex ◦=ny is quasi-positive, since247

E and n are positive. The variables in x can be chosen freshly, and thus pairwise distinct248

with y. The linear system Ex ◦=ny is strongly-triangular, since each variable of y occurs in249

exactly one equation and never on the left. Therefore, we can define φ′ as Ex ◦=ny. The250

computation of the elementary modes and thus of E can be done in at most exponential251

time in the size of φ by Motzkin’s double description method [16, 8, 9].252

6 Abstraction Exactness253

John’s overapproximation Theorem 11 shows that the set of solutions over the abstract254

domain sol∆(φ) is an approximation by the abstraction of the concrete solution set h(solS(φ))255

for any abstraction h : S → ∆ from concrete to abstract structure and any positive first-order256

formula φ. We say φ is h-exact if even equality holds.257

I Definition 16 Exactness. Let h : S → ∆ be a Σ-abstraction, φ a Σ-formula and V ⊇ V(φ).258

We call φ h-exact with respect to V if h(solSV (φ)) = sol∆V (φ). We call φ h-exact if φ is259

h-exact with respect to V(φ).260

Our next objective is to study the preservation of h-exactness by logical operators. The261

main difficulty of this paper is the fact that h-exactness is not preserved by conjunction.262

Nevertheless, as we will show next, it is preserved by disjunction and existential quantification.263

For the case of disjunction, we need a basic property of union which fails for intersection.264

I Lemma 17. Let V be a set of variables, R1 and R2 be subsets of assignments of type265

V → dom(S) and h : S → ∆ be a Σ-abstraction. h ◦ (R1 ∪R2) = h ◦R1 ∪ h ◦R2.266

I Proposition 18. The disjunction of h-exact formulas is h-exact.267

I Lemma 19 Projection commutes with abstraction. For any Σ-abstraction h : S → ∆,268

subset R of assignments of type V → S, and variable x ∈ V: h ◦ πx(R) = πx(h ◦R).269

I Proposition 20 Quantification preserves exactness. For any surjective Σ-abstraction270

h : S → ∆ and formula ∃x.φ ∈ FΣ, if φ is h-exact then ∃x.φ is h-exact.271
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We next study the h-exactness for strongly-triangular systems of Σ-equations, under the272

condition that h is an abstraction between Σ-algebras with unique division.273

I Lemma 21 Singleton property. If S is a Σ-algebra, e ∈ EΣ, and α : V(e)→ S a variable274

assignment, then the set JeKα,S is a singleton.275

A Σ-algebra is a Σ-structure with the singleton property. Let ele be the function that276

maps any singleton to the element that it contains.277

I Definition 22. We say that a Σ-structure S has unique division, if it satisfies the first-order278

formula ∀x.∃=1y. ny
◦=x for all nonzero natural number n ∈ N.279

Clearly, the Σ-algebras R+ and B have unique division. For any element s of the domain280

of a structure S with unique division and any nonzero natural number n ∈ N, we denote by281

s
n the unique element of {α(y) | α ∈ solS(ny ◦=z), α(z) = s}.282

I Lemma 23. Let φ ∈ FΣ be a Σ-formula and S a Σ-algebra with unique division. For
nonzero natural number n, variable y 6∈ V(φ), and expression e ∈ EΣ with V(e) ⊆ V(φ):

solS(φ ∧ ny ◦=e) = {α[y/ele(JeK
α,S)

n
] | α ∈ solS(φ)}

I Proposition 24. Let φ ∈ FΣ a Σ−formula, n 6= 0 a natural number, e ∈ EΣ a Σ-expression283

with V(e) ⊆ V(φ) and y /∈ V(φ) and the Σ-abstraction h : S → ∆ with S and ∆ two Σ-algebras284

with unique division. Then if φ is h-exact implies that φ ∧ e ◦=ny is h-exact.285

Sketch of Proof. We can show that h(ele(JeKα,S)) = ele(JeKh◦α,∆) and h( sn ) = h(s)
n . Hence:

h ◦ solS(φ ∧ e ◦=ny) = h ◦ {α[y/ ele(JeKα,S)
n ] | α ∈ solS(φ)} by Lemma 23

= {(h ◦ α)[y/h( ele(JeKα,S)
n )] | α ∈ solS(φ)} elementary

= {σ[y/h( ele(JeKα,S)
n )] | σ ∈ sol∆(φ)} h-exactness of φ

= {σ[y/h(ele(JeKα,S))
n ] | σ ∈ sol∆(φ)}

= {σ[y/ ele(JeKh◦α,∆)
n ] | σ ∈ sol∆(φ)}

= sol∆(φ ∧ e ◦=ny) by Lemma 23

I Proposition 25. Let h : S → ∆ be a Σ-abstraction between Σ-algebras with unique division.286

Then any strongly-triangular system of Σ-equations with natural coefficients is h-exact.287

Sketch of Proof By induction on the number of equations and Proposition 24.288

We notice that Proposition 25 remains true for triangular systems that are not stongly-289

triangular. This will follow with further results from the next section (Theorem 37 and290

Proposition 31) requiring a different argument.291

I Theorem 26 Exactness. Quasi-positive strongly-triangular polynomial system are hB-exact.292

Proof The Σ-algebras R+ and B have unique division, so we can apply Proposition 25.293

The Elementary Modes Theorem 15 show that any integer matrix equation Ax ◦=0 is294

R+-equivalent to some quasi-positive strongly-triangular linear equation system. We can295

thus apply Theorem 26 to obtain the following corollary.296

I Corollary 27. Any matrix integer equation can be converted in at most exponential time297

to some R+-equivalent hB-exact Σ-formula.298

This corollary permits us to compute the hB-abstraction of an integer matrix equation by299

computing the B-solutions of the R+-equivalent hB-exact formula. For computing abstractions300

between structures without unique division we need to strengthen this result.301
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7 Abstraction Invariance302

The essential problem approached by the paper is that conjunctions of two h-exact formulas303

may not be h-exact. The situation changes when assuming the following notion of h-invariance304

for at least one of the two formulas.305

I Definition 28 Invariance. Let h : S → ∆ be a Σ-abstraction and V ⊆ V a subset of
variables. We call a subset R of variable assignments of type V → dom(S) h-invariant iff:

∀α, α′ : V → dom(S). (α ∈ R ∧ h ◦ α = h ◦ α′ =⇒ α′ ∈ R).

We call a Σ-formula φ h-invariant if its solution set solS(φ) is.306

The relevance of the notion of invariance for exactness of conjunctions – that we will307

formalize in Proposition 31 – is due to the the following lemma:308

I Lemma 29. If either R1 or R2 are h-invariant then: h ◦ (R1 ∩R2) = h ◦R1 ∩ h ◦R2.309

Sketch of Proof. The one inclusion is straightforward without invariance. For the other310

inclusion, we can assume with loss of generality that R1 is h-invariant. So let β ∈ h◦R1∩h◦R2.311

Then there exist α1 ∈ R1 and α2 ∈ R2 such that β = h ◦ α1 = h ◦ α2. By h-invariance of R1312

it follows that α1 ∈ R2. So α1 ∈ R1 ∩R2, and hence, β ∈ h ◦ (R1 ∩R2).313

We continue with an algebraic characterization of h-invariance. Given a Σ-abstraction
h : S → ∆, and a set R of variable assignments to dom(∆), we define the left-decomposition
of R with respect to h as the following set of variable assignments to dom(S):

h ◦−R =def {α | h ◦ α ∈ R}

Clearly, R ⊆ h ◦−(h ◦R). The inverse inclusion characterizes the h-invariance of R.314

I Lemma 30 Algebraic characterization. A subset of R variables assignment of type V →315

dom(S) is h-invariant for an Σ-abstraction h : S → ∆ iff h ◦−(h ◦R) ⊆ R.316

I Proposition 31 Exactness is preserved by conjunction when assuming invariance. Let317

h be a surjective Σ-abstraction. If φ1 and φ2 are h-exact Σ-formulas and φ1 or φ2 are318

h-invariant then the conjunction φ1 ∧ φ2 is h-exact.319

Proof Let φ1 and φ2 be h-exact Σ-formulas. We assume without loss of generality that φ1
is h-invariant. Let V = V(φ1 ∧ φ2). Since V(φ2) ⊆ V the set solSV (φ2) is h-invariant too by
Lemma 54. We can now show that φ1 ∧ φ2 is h-exact as follows:

h ◦ solS(φ1 ∧ φ2) = h ◦ (solSV (φ1) ∩ solSV (φ2))
= h ◦ solSV (φ1) ∩ h ◦ solSV (φ2) by Lemma 29
= sol∆V (φ1) ∩ sol∆V (φ2) by h-exactness of φ1 and φ2 wrt V
= sol∆(φ1 ∧ φ2)

320

Our next objective is to show that h-invariant formulas are closed under conjunction,321

disjunction, and existential quantification. The two former closure properties rely on the322

following two algebraic properties of abstraction decomposition.323

I Lemma 32. For any Σ-abstraction h : S → ∆, any subsets of assignments of type324

V → dom(S) R1 and R2 and V a subset of variables:325

h ◦−(R1 ∩R2) = h ◦−R1 ∩ h ◦−R2.326
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h ◦−(R1 ∪R2) = h ◦−R1 ∪ h ◦−R2.327

I Lemma 33 Intersection and union preserve invariance. Let h : S → ∆ be a Σ-abstraction.328

Then the intersection and union of any two h-invariant subsets R1 and R2 of variables329

assignments of type V → dom(S) is h-invariant.330

I Lemma 34 Projection commutes with left-decomposition. h ◦−πx(R) = πx(h ◦−R).331

I Proposition 35 Invariance is preserved by conjunction, disjunction, and quantification.332

If h is a surjective abstraction then the class of h-invariant FO-formulas is closed under333

conjunction, disjunction, and existential quantification.334

We do not known whether negation preserves h-invariance in general, but for finite ∆ it335

can be shown that if φ is h-exact and h-invariant, then ¬φ is h-exact and h-invariant too.336

I Proposition 36. Let h be a surjective Σ-abstractions. Then the class of h-exact and h-337

invariant Σ-formulas is closed under conjunction, disjunction and existential quantification.338

I Theorem 37 Invariance. Any positive polynomial equation p ◦=0 such that p has no constant339

term is hB-exact and hB-invariant.340

Sketch of Proof. Any positive polynomial equation p
◦=0 such that p has no constant

term and only positive coefficients has the form
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k

◦=0 where l ≥ 0, and
nj , ij ,mj,k > 0. We can now show that for both algebras S ∈ {B,R+} that:

solS(p ◦=0) = solS(
l∧

j=1

ij∨
k=1

xj,k
◦=0)

Since the formulas xj,k
◦=0 are hB-exact and hB-invariant, the theorem follows from the closure341

properties of Proposition 36.342

8 Boolean Abstractions of hB-Mixed Systems343

In this section we prove our main result stating how to compute the hB-abstraction of the344

R+-solution set of a hB-mixed systems exactly.345

I Definition 38. A hB-mixed system is a formula in FΣ of the form ∃z. φ ∧ φ′ where φ is a346

linear equation system and φ′ a hB-invariant and hB-exact first-order formula.347

Note that linear equation systems Ay ◦=0, with A an integer matrix and y a sequence of348

pairwise distinct variables, need not to be hB-exact, if A is not positive. However, any linear349

equation systems of this shape is R+-equivalent to some quasi-positive strongly-triangular350

polynomial system,as shown by the Elementary Modes Theorem 15. And quasi-positive351

strongly-triangular polynomial system were shown to be hB-exact by Exactness Theorem 26.352

I Theorem 39 Main. Any hB-mixed system can be converted in exponential time to an353

R+-equivalent Σ-formula that is hB-exact.354

Proof Consider a hB-mixed system ∃x. (φ ∧ φ′) where φ is a linear equation system and355

φ′ a first-order formula that is hB-exact and hB-invariant. Based on the Elementary Modes356

Theorem 15, the linear equation system φ can be transformed in exponential time to the357

form ∃z.φ′′ where φ′′ is a quasi-positive strongly-triangular system of linear equations. Such358

polynomial equation systems are hB-exact by Theorem 26, and so is φ′′. The Invariance359

Proposition 31 shows that the conjunction φ′′ ∧ φ′ is hB-exact too, since φ′ was assumed to360

be hB-exact and hB-invariant. Finally, hB-exactness is preserved by existential quantification361

by Proposition 20, so the formula ∃x.∃z. φ′′ ∧ φ′ is hB-exact too.362
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I Corollary 40. The hB-abstraction of the R+-solution set of an hB-mixed system φ, that is363

hB ◦ solR+(φ), can be computed in at most exponential time in the size of the system φ.364

The algorithm from the proof Corollary 40 can be improved so that it becomes sufficiently365

efficient for practical use. For this the two steps with exponential worst case complexity must366

be made polynomial for the particular instances. First note that the computation of the367

elementary modes (Theorem 15) is known to be computationally feasible. Various algorithms368

for this purpose were implemented [7, 12, 2, 3] and applied successfully to problems in369

systems biology [9]. The second exponential step concerns the enumeration of all boolean370

variable assignments. This enumeration may be avoided by using constraint programming371

techniques for computing the solution set solB(φ′′). For those hB-mixed systems for which372

both steps can be done in polynomial time, we can compute the boolean abstraction of373

the R+-solution set in polynomial time too. The practical feasibility of this approach was374

demonstrated recently at an application to knockout prediction in systems biology [1], where375

previously only over-approximations could be computed.376

9 Computing Sign Abstractions377

We next show how to compute the sign abstraction hS ◦ solR(φ) of the R-solutions set of a378

linear equation system φ. For this, we convert φ into a first-order formula φ′ based on our379

main Theorem 39 such that hS ◦ solR(φ) can be computed from solB(φ′) in polynomial time.380

In order to do so, we relate in a first step the sign abstraction to the boolean abstraction,381

then show in a second step that this relationship can be defined in first-order logic, so that382

our Main Theorem for the boolean abstraction can be applied.383

In the first step, we relate the sign abstraction to the boolean abstraction. For doing so,
we decompose any real number r into two positive numbers, its negative part 	(r) and its
positive part ⊕(r), such that if r ≥ 0 then 	(r) = 0 and ⊕(r) = r and otherwise 	(r) = −r
and ⊕(r) = 0. The decomposition function dec : R→ ({0} × R+) ∪ (R+ × {0}) is defined as
follows for r ∈ R:

dec(r) = (	(r),⊕(r))

This function is a bijection, so it has an inverse function dec-1 : ({0}×R+)∪ (R+×{0})→ R,384

which satisfies dec-1((r1, r2)) = r2 − r1 for all pairs (r1, r2) in its domain.385

I Lemma 41 Decomposition. hS = dec-1 ◦ h2
B ◦ dec386

Proof If r is negative then dec-1(h2
B(dec(r))) = dec-1(h2

B((−r, 0))) = dec-1((hB(−r), 0)) =387

−hB(−r) = hS(r). Otherwise if r is positive then dec-1(h2
B(dec(r))) = dec-1(h2

B((0, r))) =388

dec-1((0, hB(r)) = hB(r) = hS(r).389

We will show in a first step that first-order formulas over the reals can be rewritten, such
that interpretation over the positive reals is enough. We start with a definition of positivity
of reals in first-order logic. For any variable x ∈ V we define the formulas pos(x) ∈ FΣ by:

pos(x) =def ∃z.x
◦=z ∗ z

Clearly, if α ∈ solR(pos(x)) then α(x) ∈ R+. We can use this formula to relate R+-solutions390

to R-solutions of particular formulas.391

I Definition 42. A formula φ ∈ FΣ is called domain-positive if φ has the form φ′ ∧392 ∧
y∈V(φ′) pos(y) as well as all formulas φ′′ for which ∃x.φ′′ is a subformula of φ.393

I Lemma 43. All domain-positive formulas φ ∈ FΣ satisfy solR+(φ) = solR(φ).394
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Proof By induction on the structure of formulas. The induction step is straightforward395

from due to the fact that pos(y) imposes the positivity of the value y.396

We next show how to make first-order formulas domain-positive based on the decompo-397

sition of real numbers into two positive numbers presented earlier. We fix two generators398

of fresh variable ν	, ν⊕ : V → V. For any x ∈ V, the intention is that ν⊕(x) stands399

for the positive part of x and ν	(x) for its negative part. We will preserve the invariant400

that x = ν⊕(x) − ν	(x) and ν⊕(x) ∗ ν	(x) = 0. Furthermore, let ν : V → V2 such that401

ν(x) = (ν⊕(x), ν	(x)) for all x ∈ V.402

I Proposition 44 Positivity. For any formula φ ∈ FΣ we can compute in linear time a
formula decν(φ) ∈ FΣ such that:

dec ◦ solR(φ) = {α2 ◦ ν|V(φ) | α ∈ solR+(decν(φ) ∧
∧

x∈V(φ)

ν⊕(x) ∗ ν	(x) ◦=0)}

Furthermore, if φ was a linear equation system, then decν(φ) is a hB-mixed system.403

Proof We can assume without loss of generality that all equations of φ are flat, i.e., of the
form x

◦=x1 + x2, x
◦=x1 ∗ x2, x

◦=0, or x ◦=1. We define the formulas decν(φ), dec′ν(φ) ∈ FΣ
for all formulas φ in FΣ with flat equations recursively as follows:

decν(∃x.φ) = ∃ν	(x).∃ν⊕(x). decν(φ) decν(φ ∧ φ′) = decν(φ) ∧ decν(φ′)
∧ ν⊕(x) ∗ ν	(x) ◦=0 decν(¬φ) = ¬decν(φ)
∧ pos(ν⊕(x)) ∧ pos(ν	(x))

decν(x ◦=x1 + x2) = decν(x ◦=x1 ∗ x2) =
ν⊕(x) + ν	(x1) + ν	(x2) ◦= ν⊕(x) + ν⊕(x1) ∗ ν	(x2) + ν	(x1) ∗ ν⊕(x2) ◦=
ν	(x) + ν⊕(x1) + ν⊕(x2) ν	(x) + ν⊕(x1) ∗ ν⊕(x2) + ν	(x1) ∗ ν	(x2)

decν(x ◦=0) = ν⊕(x) ◦=ν	(x) decν(x ◦=1) = ν⊕(x) ◦=ν	(x) + 1
The rewriting for equations with multiplication relies on the distributivity law. We also use
inverses for addition in the structure of the reals. Let

dec′ν(φ) = decν(φ) ∧
∧

x∈V(φ)

ν⊕(x) ∗ ν	(x) ◦=0 ∧ pos(ν	(x)) ∧ pos(ν⊕(x)).

We can show by induction on the structure of formulas that all formulas dec′ν(φ) are domain-404

positive and satisfy dec◦ solR(φ) = {α2 ◦ν|V(φ) | α ∈ solR(dec′ν(φ))}. The proposition follows405

with R+ instead of R from Lemma 43 and the domain-positivity of dec′ν(φ).406

I Theorem 45 Computing Sign Abstractions. For any linear equation system φ ∈ FΣ we
can compute in at most exponential time a formula φ′ ∈ FΣ such that:

hS ◦ solR(φ) = {[y/β(ν⊕(y))− β(ν	(y)) | y ∈ V(φ′)] | β ∈ solB(φ′)}

Proof Let φ ∈ FΣ be a system of linear equations. The formula decν(φ)∧
∧
x∈V(φ) ν⊕(x) ∗

ν	(x) ◦=0 is a hB-mixed system by Positivity Proposition 44, so that we can apply the Main
Theorem 39. Therefore, we can compute in at most exponential time an R+-equivalent
formula φ′ that is hB-exact.

hS ◦ solR(φ)
= dec-1 ◦ h2

B ◦ dec ◦ solR(φ) by Decomposition Lemma 41
= dec-1 ◦ h2

B ◦ {α2 ◦ ν|V(φ) | α ∈ solR+(decν(φ)∧ by Positivity Proposition 44∧
x∈V(φ) ν⊕(x) ∗ ν	(x) ◦=0)}

= dec-1 ◦ h2
B ◦ {α2 ◦ ν|V(φ′) | α ∈ solR+(φ′)} where φ′ from Main Theorem 39

= {dec-1 ◦ β2 ◦ ν|V(φ′) | β ∈ solB(φ′)} by hB-exactness of φ′
= {[y/β(ν⊕(y))− β(ν	(y)) | y ∈ V(φ′)] | β ∈ solB(φ′)} by definition of dec-1
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Interpretation of expressions as sets of elements JeKα,S ⊆ dom(S), where S is a
Σ-structures and α : V → dom(S) where V contains all free variables.

JcKα,S = cS JxKα,S = {α(x)} Je� e′Kα,S = ∪{s�S s′ | s ∈ JeKα,S , s′ ∈ Je′Kα,S}

Interpretation of formulas as truth values JφKα,S ∈ B:

Je ◦=e′Kα,S =
{

1 if JeKα,S ∩ Je′Kα,S 6= ∅
0 else Jφ ∧ φ′Kα,S = JφKα,S ∧B Jφ′Kα,S

J¬φKα,S = ¬B(JφKα,S) J∃x.φKα,S =


1 if exists s ∈ dom(S).

JφKα[x/s],S = 1
0 else

Figure 4 Semantics of Σ-expressions and formulas over a Σ-structure S with respect to a variable
assignment α : V → dom(S).

A Proofs for Section 3 (The Boolean and the Sign Abstraction)484

I Lemma 7. The function hB : R+ → B is a Σ-abstraction between Σ-algebras.485

Proof. For all r, r′ ∈ R+ we have:

hB(r +R+ r′) = 1 ⇔ r +R+ r′ 6= 0 ⇔ r 6= 0 ∨ r′ 6= 0 ⇔ hB(r) = 1 ∨ hB(r′) = 1
hB(r ∗R+ r′) = 1 ⇔ r ∗R+ r′ 6= 0 ⇔ r 6= 0 ∧ r′ 6= 0 ⇔ hB(r) = 1 ∧ hB(r′) = 1

Hence hB(r +R+ r′) = hB(r) +B hB(r′) and hB(r ∗R+ r′) = hB(r) ∗B hB(r′). Finally, for both486

constants c ∈ C we have that hB(cR+) = hB(c) = c = cB. J487

I Lemma 9. hS : R→ S is a Σ-abstraction into a Σ-structure (that is not a Σ-algebra).488

Proof. For any r, r′ ∈ R the second condition for homomorphism follows for all � ∈ F (2):489

hS(r � r′) ∈ hS(r) �S hS(r′). And for all constants c ∈ C we have by definition that490

hS(cR) = cS. J491

B Proofs for Section 4 (Abstractions and First-Order Logic)492

The following two lemmas are classical. Let R be a subset of assignments of type V ′ → dom(S)493

and V ∩V ′ = ∅ two subsets of V . We define: extSV (R) = {α∪α′ | α′ : V ′∪V → dom(S), α ∈494

R}.495

I Lemma 46 Cylindrification. If V ∩ V(φ) = ∅ then: solSV ∪V(φ)(φ) = extSV (solS(φ)).496

Proof. We can show for all expressions e ∈ EΣ with V(e) disjoint to V and any variables497

assignment α : V(e) ∪ V → dom(S) that JeKα,S = JeKα|V(e),S . This is by induction on the498

structure of expressions. If follows for all formulas φ ∈ FΣ such that V(φ) disjoint from V499

and α : V(φ) ∪ V → dom(S) that JφKα,S = JφKα|V(φ),S . This is by induction on the structure500

of formulas. It implies the lemma. J501

I Lemma 10 Quantification is projection. solS(∃x. φ) = πx(solS(φ)).502

Proof. This is straightforward from the semantics of existential quantifiers: solS(∃x. φ) =503

{α|V(φ)\{x} | α ∈ solS(φ)} = πx(solS(φ)). J504
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C Proofs for Section 6 (Abstraction Exactness)505

In order to do so we first show that h-exactness is preserved when adding variables. For506

this we have to assume that the abstraction h is surjective, which will be the case of all507

abstraction of interest.508

I Lemma 47 Variable extension preserves exactness. Let h : S → ∆ be a Σ-abstraction509

that is surjective, φ ∈ FΣ a formula, and V ⊇ V(φ). Then the h-exactness of φ implies the510

h-exactness of φ with respect to V .511

Proof. Essentially this follows from that solutions of formulas can be extended arbitrarily to512

variables that do not appear freely in the formula, as stated by the following claim.513

I Claim 48. Any variable assignment σ : V → ∆ satisfies σ ∈ h ◦ solSV (φ) iff σ|V(φ) ∈514

h ◦ solS(φ).515

For the one direction let σ ∈ h ◦ solSV (φ). Then there exists α ∈ solSV (φ) such that516

σ = h ◦ α. Since V ⊇ V(φ) it follows that α|V(φ) ∈ solS(φ). Furthermore σ|V(φ) = h ◦ α|V(φ)517

and thus σ|V(φ) ∈ h ◦ solS(φ).518

For the other direction let σ|V(φ) ∈ h ◦ solS(φ). Then there exists α ∈ solS(φ) such that519

σ|V(φ) = h ◦ α. For any y ∈ V \ V(φ) let sy ∈ dom(S) be such that h(sy) = σ(y). Such520

values exists since h is surjective. Now define α′ = α[y/sy | y ∈ V \ V(φ)]. Since V ⊇ V(φ) it521

follows that α′ ∈ solSV (φ). Furthermore, σ = h ◦ α′, so σ ∈ h ◦ solSV (φ). J522

I Lemma 17. Let V be a set of variables, R1 and R2 be subsets of assignments of type523

V → dom(S) and h : S → ∆ be a Σ-abstraction. h ◦ (R1 ∪R2) = h ◦R1 ∪ h ◦R2.524

Proof. This lemma follows from the following equivalences:

β ∈ h ◦ (R1 ∪R2) ⇔ ∃α.α ∈ R1 ∪R2 ∧ β = h ◦ α
⇔ ∃α.(α ∈ R1 ∨ α ∈ R2) ∧ β = h ◦ α
⇔ ∃α.(α ∈ R1 ∧ β = h ◦ α) ∨ (α ∈ R2 ∧ β = h ◦ α)
⇔ β ∈ h ◦R1 ∨ β ∈ h ◦R2
⇔ β ∈ h ◦R1 ∪ h ◦R2

J525

I Proposition 18. The disjunction of h-exact formulas is h-exact.526

Proof. Let φ2 and φ2 be negation free formulas that are h-exact. Let V = V(φ1) ∪ V(φ2).
Lemma 47 shows that φ1 and φ2 are also h-exact with respect to the extended variable set
V , i.e., for both i ∈ {1, 2}:

h ◦ solSV (φi) = sol∆V (φi)

The h-exactness of the disjunction φ1 ∨ φ2 can now be shown as follows:

h ◦ solS(φ1 ∨ φ2) = h ◦ (solSV (φ1) ∪ solSV (φ2))
= h ◦ solSV (φ1) ∪ h ◦ solSV (φ2) by Lemma 17
= sol∆V (φ1) ∪ sol∆V (φ2) by h-exactness of φ1 and φ2 wrt. V
= sol∆(φ1 ∨ φ2)

J527
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I Lemma 19 Projection commutes with abstraction. For any Σ-abstraction h : S → ∆,528

subset R of assignments of type V → S, and variable x ∈ V: h ◦ πx(R) = πx(h ◦R).529

Proof. For all α : V → dom(S) we have h◦πx(α) = h◦α|V \{x} = (h◦α)|V \{x} = πx(h◦α). J530

I Proposition 20 Quantification preserves exactness. For any surjective Σ-abstraction531

h : S → ∆ and formula ∃x.φ ∈ FΣ, if φ is h-exact then ∃x.φ is h-exact.532

Proof. Let φ be h-exact. By definition φ is h-exact with respect to V . Since h is assumed
to be surjective, Lemma 47 implies that φ is h-exact with respect to V ∪ {x} (independently
of whether x occurs freely in φ or not). Hence:

h(solS(∃x.φ)) = h(πx(solS(φ))) by Lemma 10
= πx(h(solS(φ))) by Lemma 19
= πx(sol∆(φ)) since φ is h-exact
= sol∆(∃x.φ) by Lemma 10

J533

I Lemma 21 Singleton property. If S is a Σ-algebra, e ∈ EΣ, and α : V(e)→ S a variable534

assignment, then the set JeKα,S is a singleton.535

Proof. By induction on the structure of expressions e ∈ E :536

Case of constants c ∈ {0, 1}. The set JcKα,S = {cS} is a singleton.537

Case of variables x ∈ V. The set JxKα,S = {α(x)} is a singleton.538

Case e1 � e2 where e1, e2 ∈ EΣ and � ∈ {+, ∗}.

Je1 � e2Kα,S = {s�S s′ | s ∈ Je1Kα,S , s′ ∈ Je2Kα,S}

This set is a singleton since Je1Kα,S and Je2Kα,S are singletons by induction hypothesis,539

meaning that s�S s′ is also a singleton since S is a Σ-algebra. J540

I Lemma 23. Let φ ∈ FΣ be a Σ-formula and S a Σ-algebra with unique division. For
nonzero natural number n, variable y 6∈ V(φ), and expression e ∈ EΣ with V(e) ⊆ V(φ):

solS(φ ∧ ny ◦=e) = {α[y/ele(JeK
α,S)

n
] | α ∈ solS(φ)}

Proof. We fix some α : V(φ) → dom(S) arbitrarily. Since S is a Σ-algebra, JeKα,S is a541

singleton and V(e) ⊆ V (φ), ele(JeKα,S) is defined uniquely. Furthermore S has unique542

division, so that ele(JeKα,S)
n is well defined element of dom(S). Therefore and since y 6∈ V(φ),543

α[y/ ele(JeKα,S)
n ] is the unique solution of the equation ny ◦=e that extends on α.544

First we prove the inclusion “⊇”. Let α ∈ solS(φ), y 6∈ V(φ), and α[y/ ele(JeKα,S)
n ] is a545

solution of ny ◦=e, it follows that α[y/ ele(JeKα,S)
n ] is a solution of φ ∧ ny ◦=e.546

Second, we prove the inverse inclusion “⊆”. Let α ∈ solS(φ∧ny ◦=e). Since α[y/ ele(JeKα,S)
n ]547

is the unique solution of the equation ny
◦=e that extends on α′ = α|V(φ) it follows that548

α(y) = ele(JeKα,S)
n so that α = α′[y/ ele(JeKα,S)

n ] while α′ ∈ solS(φ). J549

I Proposition 24. Let φ ∈ FΣ a Σ−formula, n 6= 0 a natural number, e ∈ EΣ a Σ-expression550

with V(e) ⊆ V(φ) and y /∈ V(φ) and the Σ-abstraction h : S → ∆ with S and ∆ two Σ-algebras551

with unique division. Then if φ is h-exact implies that φ ∧ e ◦=ny is h-exact.552
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Proof. Let e ∈ EΣ a Σ-expression.553

I Claim 49. For any α : V → R+ with V ⊇ V(e): h(ele(JeKα,S)) = ele(JeKh◦α,∆).554

This can be seen as follows. For any α : V(φ) → S Theorem 11 on homomorphism yields555

h(JeKα,S) ⊆ JeKh◦α,∆. Since S and ∆ are both Σ-algebras, the sets JeKα,S and JeKh◦α,∆ are556

both singletons by Lemma 21, so that h(ele(JeKα,S)) = ele(JeKh◦α,∆).557

I Claim 50. For any s ∈ dom(S) and n 6= 0 a natural number: h( sn ) = h(s)
n .558

Since S is assumed to have unique division s′ = s
n is well-defined as the unique element559

of dom(S) such that s′ +S . . .+S s′︸ ︷︷ ︸
n

= s. Hence, h(s′ +S . . .+S s′︸ ︷︷ ︸
n

) = h(s) and since h is a560

homomorphism, it follows that h(s′) +∆ . . .+∆ h(s′)︸ ︷︷ ︸
n

= h(s). Since ∆ is assumed to have561

unique division, this implies that h(s′) = h(s)
n .562

The Proposition can now be shown based on these two claims. Let φ be h-exact, y 6∈ V(φ),
and V(e) ⊆ V(φ). We have to show that φ ∧ ny ◦=e is h-exact too:

h ◦ solS(φ ∧ e ◦=ny) = h ◦ {α[y/ ele(JeKα,S)
n ] | α ∈ solS(φ)} by Lemma 23

= {(h ◦ α)[y/h( ele(JeKα,S)
n )] | α ∈ solS(φ)} elementary

= {σ[y/h( ele(JeKα,S)
n )] | σ ∈ sol∆(φ)} h-exactness of φ

= {σ[y/h(ele(JeKα,S))
n ] | σ ∈ sol∆(φ)} by Claim 50

= {σ[y/ ele(JeKh◦α,∆)
n ] | σ ∈ sol∆(φ)} by Claim 49

= sol∆(φ ∧ e ◦=ny) by Lemma 23

J563

I Proposition 25. Let h : S → ∆ be a Σ-abstraction between Σ-algebras with unique division.564

Then any strongly-triangular system of Σ-equations with natural coefficients is h-exact.565

Proof. Any strongly-triangular system of equations has the form ∧ni=1ei
◦=niyi where n and566

ni 6= 0 are naturals and yi is i-fresh for all 1 ≤ i ≤ n. The proof is by induction on n. In567

the case n = 0, the conjunction is equal to true which is h-exact since h(solS(true)) = h([])568

= sol∆(true). In the case n > 0, we have by induction hypothesis that
∧i−1
j=1 ej

◦=njyj is569

h-exact. Since ni 6= 0 it follows from Proposition 24 that that ei
◦=niyi ∧

∧i−1
j=1 ej

◦=njyj is570

h-exact. J571

D Proofs for Section 7 (Abstraction Invariance)572

I Lemma 29. If either R1 or R2 are h-invariant then: h ◦ (R1 ∩R2) = h ◦R1 ∩ h ◦R2.573

Proof. The one inclusion is straightforward without invariance:

h ◦ (R1 ∩R2) = {h ◦ α | α ∈ R1, α ∈ R2}
⊆ {h ◦ α | α ∈ R1} ∩ {h ◦ α | α ∈ R2}
= h ◦R1 ∩ h ◦R2

For the other inclusion, we can assume with loss of generality that R1 is h-invariant. So let574

β ∈ h ◦R1 ∩h ◦R2. Then there exist α1 ∈ R1 and α2 ∈ R2 such that β = h ◦α1 = h ◦α2. By575

h-invariance of R1 it follows that α1 ∈ R2. So α1 ∈ R1∩R2, and hence, β ∈ h◦(R1∩R2). J576
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I Lemma 30 Algebraic characterization. A subset of R variables assignment of type V →577

dom(S) is h-invariant for an Σ-abstraction h : S → ∆ iff h ◦−(h ◦R) ⊆ R.578

Proof. “⇒”. Let R be h-invariant and α ∈ h ◦−(h ◦R). Then there exists α′ ∈ R such that579

h ◦ α = h ◦ α′. The h-invariance of R thus implies that α ∈ R.580

“⇐”. Suppose that h ◦−(h ◦ R) ⊆ R. Let α, α′ : V → dom(S) such that h ◦ α = h ◦ α′ and581

α ∈ R. We have to show that α′ ∈ R. From h ◦ α = h ◦ α′ and α ∈ R it follows that582

α′ ∈ h ◦−(h ◦R) and thus α′ ∈ R as required. J583

I Lemma 51 Variable extension preserves invariance. Let h be a surjective abstraction584

and R a subset of functions of type V ′ → dom(S) and V a subset of variables disjoint from585

V ′. If R is h-invariant then extSV (R) is h-invariant too.586

Proof. This will follow straightforwardly from the characterization of h-invariance in Lemma587

30 and the following two claims:588

I Claim 52. If h is surjective then h ◦ extSV (R) = ext∆
V (h ◦R).589

This follows from h ◦ extSV (R) = {h ◦ α | α ∈ extSV (R)} = ext∆
V ({h ◦ α′ | α′ ∈ R}) where we590

use the surjectivity of h in the last step.591

I Claim 53. h ◦−ext∆
V (R′) = extSV (h ◦−R′) for any subset R′ of functions of type V ′ → dom(∆).592

h ◦−ext∆
V (R′) = {α : V ∪ V ′ → dom(S) | h ◦ α ∈ ext∆

V (R′)}
= {α : V ∪ V ′ → dom(S) | h ◦ α|V ′ ∈ R′}
= extSV ({α′ : V ′ → dom(S) | h ◦ α′ ∈ R′}
= extSV (h ◦−R′)

J593

I Lemma 54. Let h : S → ∆ be a surjective Σ-abstraction, φ be a Σ-formula, and V ⊇ V(φ).594

Then the h-invariance of φ implies the h-invariance of solSV (φ).595

Proof. This follows from the cylindrification Lemma 46 and that extension preserves h-596

invariance as shown in Lemma 51. J597

I Lemma 32. For any Σ-abstraction h : S → ∆, any subsets of assignments of type598

V → dom(S) R1 and R2 and V a subset of variables:599

h ◦−(R1 ∩R2) = h ◦−R1 ∩ h ◦−R2.600

h ◦−(R1 ∪R2) = h ◦−R1 ∪ h ◦−R2.601

Proof. The case for unions follows straightforwardly from the definitions:

h ◦−(R1 ∪R2) = {α | h ◦ α ∈ R1 ∪R2}
= {α | h ◦ α ∈ R1 ∨ h ◦ α ∈ R2}
= {α | h ◦ α ∈ R1} ∪ {α | h ◦ α ∈ R2}
= h ◦−R1 ∪ h ◦−R2

The case of intersection is symmetric:

h ◦−(R1 ∩R2) = {α | h ◦ α ∈ R1 ∩R2}
= {α | h ◦ α ∈ R1 ∧ h ◦ α ∈ R2}
= {α | h ◦ α ∈ R1} ∩ {α | h ◦ α ∈ R2}
= h ◦−R1 ∩ h ◦−R2
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J602

I Lemma 33 Intersection and union preserve invariance. Let h : S → ∆ be a Σ-abstraction.603

Then the intersection and union of any two h-invariant subsets R1 and R2 of variables604

assignments of type V → dom(S) is h-invariant.605

Proof. This follows from the algebraic characterization Lemma 30 for invariance, in combi-606

nation with the algebraic properties of composition and decomposition given in Lemmas 17,607

29, and 32. J608

I Lemma 34 Projection commutes with left-decomposition. h ◦−πx(R) = πx(h ◦−R).609

Proof. For all α : V → dom(∆) we have h◦−πx(α) = h◦−α|V \{x} = (h◦−α)|V \{x} = πx(h◦−α). J610

I Proposition 35 Invariance is preserved by conjunction, disjunction, and quantification.611

If h is a surjective abstraction then the class of h-invariant FO-formulas is closed under612

conjunction, disjunction, and existential quantification.613

Proof. Let h : S → ∆ be a Σ-abstraction.614

Case of conjunction: Let φ1 and φ2 be h-invariant and V = V(φ1 ∧ φ2). By Lemma 54 the
sets solSV (φ1) and solSV (φ2) are both h-invariant, and so by Lemma 33 is their intersection.
Hence:

h ◦−(h ◦ solS(φ1 ∧ φ2)) = h ◦−(h ◦ (solSV (φ1) ∩ solSV (φ2)))
⊆ solSV (φ1) ∩ solSV (φ2) by h-invariance and Lemma 30
= solS(φ1 ∧ φ2)

By Lemma 30 in the other direction, this implies that φ1 ∧ φ2 is h-invariant.615

Case of disjunction: Analogous to the case of conjunction.616

Case of existential quantification:

h ◦−(h ◦ solS(∃x.φ1)) = h ◦−(h ◦ πx(solS(φ1))) by Lemma 10
= h ◦−(πx(h ◦ solS(φ1))) by Lemma 19
= πx(h ◦−(h ◦ solS(φ1))) by Lemma 34
⊆ πx(solS(φ1)) by h-invariance of φ1 and Lemma 30
= solS(∃x.φ1) by Lemma 10

By Lemma 30, this implies that ∃x.φ1 is h-invariant. J617

I Proposition 36. Let h be a surjective Σ-abstractions. Then the class of h-exact and h-618

invariant Σ-formulas is closed under conjunction, disjunction and existential quantification.619

Proof. Closure under conjunction follows from Propositions 31 and 35, closure under disjunc-620

tion from Propositions 18 and 35, and closure under existential quantification by Propositions621

20 and 35. J622

I Theorem 37 Invariance. Any positive polynomial equation p ◦=0 such that p has no constant623

term is hB-exact and hB-invariant.624

Proof. Consider a positive polynomial equation p ◦=0 such that p has no constant term and625

only positive coefficients. Thus p has the form
∑l
j=1 nj

∏ij
k=1 x

mj,k
j,k

◦=0 where l ≥ 0, and626

nj , ij ,mj,k > 0.627
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I Claim 55. For both algebras S ∈ {B,R+}: solS(p ◦=0) = solS(
∧l
j=1

∨ij
k=1 xj,k

◦=0).628

The polynomial has values zero if and only if all its monomials do, that is:
∏ij
k=1 x

mjk
j,k = 0629

for all 1 ≤ j ≤ l. Since constant terms are ruled out, we have ij 6= 0. Furthermore, we630

assumed for all polynomials that mj,k 6= 0. So for all 1 ≤ j ≤ l there must exist 1 ≤ k ≤ ij631

such that xj,k = 0.632

I Claim 56. The equation x ◦=0 is hB-exact and hB-invariant.633

This is straightforward from the definitions. With these two claims we are now in the
position to prove the lemma. Since the class of hB-exact and hB-invariant formulas is closed
under conjunction and disjunction by Proposition 36, it follows from by Claim 56 that
∧lj=1 ∨

ij
k=1 xj,k

◦=0 is both hB-exact and hB-invariant. Since this formula is equivalent over
R+ to the polynomial equation by Claim 55, the hB-invariance carries over to p ◦=0. The
hB-exactness also carries over based on the equivalence for both structures R+ and B:

hB ◦ solR+(p ◦=0) = hB ◦ solR+
V (∧lj=1 ∨

ij
k=1 xj,k

◦=0) by Claim 55 for R+

= solB(∧lj=1 ∨
ij
k=1 xj,k

◦=0) by hB exactness
= solB(p ◦=0) by Claim 55 for B.

J634

E Proofs for Section 8 (Boolean Abstractions of hB-Mixed Systems)635

I Corollary 40. The hB-abstraction of the R+-solution set of an hB-mixed system φ, that is636

hB ◦ solR+(φ), can be computed in at most exponential time in the size of the system φ.637

Proof. Given an hB-mixed system φ, we can apply Theorem 39 to compute in at most638

exponential time an R+-equivalent formula φ′′ that is hB-exact. It is then sufficient to639

compute solB(φ′′) in exponential time in the size of φ. This can be done in the naive640

manner, that is by evaluating the formula φ′′ – which may be of exponential size – over all641

possible boolean variable assignments – of which there may be exponentially many. For each642

assignment the evaluation can be done in PSpace and thus in exponential time. The overall643

time required is thus a product of two exponentials, which remains exponential. J644
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