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Multiphysics modeling of electromagnetically controlled shape
memory polymer medical stents

Innocent Niyonzima1, 2, Olivier Chadebec1, Gérard Meunier1, Nicolas Galopin1 and Jacob Fish2

1Univ. Grenoble Alpes, CNRS, Grenoble INP, G2ELab, F-38000 Grenoble, France
2Columbia University, Department of Civil Engineering and Engineering Mechanics, New York, 10027 NY, USA.

This paper deals with the multiphysics modelling of thermal-responsive shape memory polymer biomaterials. These materials
can change their mechanical properties with the changing temperature. Thermal contactless control can be achieved by the adding
electric or magnetic particles that can react to electromagnetic fields by generating heat. These materials can be used to design
medical stents. During its deployment, the stent undergoes large mechanical deformations which make its modelling more involved.
In this paper we present large deformations formulations of the multiphysics problem and use them to model the deployment of a
shape memory polymer medical stent.

Index Terms—Biomedical implants, large deformation models, electromagnetic coupling, temperature control, thermomechanical
processes.

I. INTRODUCTION

SHAPE MEMORY POLYMERS (SMP) biomaterials can
be used for the prevention and cure of diseases such as

the coronary heart disease and the stroke [1]. These smart
materials can change their physical properties (morphing,
Young modulus, etc.) when subjected to external stimuli such
as temperature, pH and electromagnetic fields. They are mainly
thermally activated and can be chosen biocompatible and
biodegradable [1]. For applications inside the human body,
thermal contactless control can be achieved by the addition
of electric/magnetic (nano)particles inclusions that can react to
electromagnetic fields. Fig. 1. depicts the deployment of a stent
in the blood vessel.

Fig. 1. Schematic of the deployment of a stent in a blood vessel [1].

Numerical models for composites biomaterials must account
for the multiphysics coupling and the multiscale nature of the
materials. This paper deals with the multiphysics modeling.
The major challenge in developing multiphysics models in
this application arises from the geometric non-linearity due
to large mechanical deformations and that leads to the modi-
fication of the equations that govern the electromagnetic and
thermal problems to account for motion. The other challenge is

handling material non-linearities due to the presence of plastic
and viscous behaviour for mechanics and nonlinear behaviour
for electromagnetism. This paper introduces a multiphysics
quasistatic model using the Lagrangian formalism for an elec-
tromagnetically controlled vascular stent excited by a coil.

II. LAGRANGIAN MULTIPHYSICS FORMULATIONS OF THE
COUPLED PROBLEM

The general coupled problem is derived from Maxwell’s
equations and conservation laws. Physical phenomena that
take place on the deformed configuration can be described
using the Eulerian coordinates x. In this paper, we use the
Lagrangian formalism and define the coupled problem using
the coordinates X defined on the undeformed configuration.
The open domains ΩMec

0 , ΩThe
0 and ΩEle

0 denote the unde-
formed computational domains for the mechanical, thermal and
electromagnetic problems, respectively. The differential opera-
tors Grad , Curl and Div denote the gradient, rotational and
divergence operators defined on the undeformed configurations.
The Lagrangian description can be used when the mapping
ϕ : Ω0 → Ωt,X 7→ x = ϕ(X) = X + u(X) is smooth
enough. The domain Ωt denotes the deformed configuration at
the time t ∈ [t0, tend) and the vector field u is the displacement
field for large deformation.

The kinematics is described by the deformation gradient
tensor and its determinant:

F =
∂x

∂X
= 1 + Gradu , J = detF . (1)

In this paper, we consider a time-dependent thermal problem
and quasistatic mechanical and electromagnetic problem thus
neglecting electromagnetic waves and computing eddy cur-
rents by neglecting their contribution to the total field. The
last assumption is reasonable for exciting sources with low
frequencies and materials with low electric conductivity. The
resulting problem can be solved using the as − φ formulation
where as is the source vector potential, e.g., produced by a



coil and that can be pre-computed, and φ is the unknown scalar
electric potential.

The Lagrangian description uses the pull-back of physical
fields from the deformed to the undeformed configurations
and the resolution of the multiphysics problem on the unde-
formed configuration. While the approach is very common for
thermo-mechanical problems [2], [3], it needs to be extended
to electromagnetic problems. The resolution of the electro-
magnetic problem is relatively easy for the electric scalar
potential formulation which does not need to be defined in
the air. In the context of the finite element method, it becomes
involved when the resolution requires a mesh of the air. An
interesting alternative consists in using integral methods [4],
and restricting the accurate computation of eddy currents to
the mechanical domain. In this paper we describe the coupled
problem with the scalar electric formulation.

In the Lagrangian description, Maxwell’s equations re-
main unchanged while Piola transformations depend on the
differential-form [5]. The transformations of the Eulerian 0-
differential form φ, 1-differential form e, 2-differential form
b, 3-differential form fE and of the Eulerian second order
tensors σE and κE read:

Φ = φ, As = F Tas, Bs = JF−1bs fL = JfE ,

σL = JF−1σEF
−T , κL = JF−1κEF

−T , (2)

where Φ,As,Bs, fL, σL and κL are Lagrangian electric
scalar potential, source vector potential, source magnetic in-
duction, volume force, electric and thermal conductivities
expressed in the undeformed configuration. The indices E
and L are used to denote Eulerian and Lagrangian quantities,
respectively.

The weak form of the coupled problem reads [2], [6], [7] :
find Φ× u× ϑL such that∫

ΩEle
0

σLGrad Φ·Grad Φ
′
dΩ0+

∫
ΩEle

0

σL∂tAs·Grad Φ
′
dΩ0 = 0,∫

ΩMec
0

(
SEP (E, ϑL,ZL): δE

′
− fL · u

′
)

dΩ0 = 0, (2 a-b)∫
ΩThe

0

ρ0cp
∂ϑL
∂t
·ϑ

′

L dΩ0+

∫
ΩThe

0

κL GradϑL︸ ︷︷ ︸
−qL

·Gradϑ
′

L dΩ0

−
∫

ΩThe
0

(F (σLEeff + Js)) · (F−TEeff)︸ ︷︷ ︸
wL

·ϑ
′

L dΩ0

+

∫
Γconv,The
0

hL(t)(ϑL − ϑL,B)︸ ︷︷ ︸
nL·qL

·ϑ
′

L dΓ0 = 0 (3)

holds for all test functions Φ
′ × u′ × ϑ′

L in appropriate test
function space.

In (2 a-b)–(3), SEP is the second Piola–Kirchoff stress
tensor which depends on the Green-Lagrange strain tensor
E = 1

2 (F T F − 1) and a set of internal variables of the
mechanical problem ZL. The quantity δE

′
= F T u

′
and

Eeff = −∂tAs − Grad Φ is the pull-back of the effective
electric field eeff = e+ v × b. The terms Js, wL and hL are
the source electric current, the Joule losses and the convection
coefficient. The last term of (3) accounts for the convection that
results from the exchange of heat with a fluid at the temperature

ϑL,B . The dependence of the electromagnetic force fL on the
displacement u is achieved through J(u) and F (u) by:

fL = J−1 F (σLEeff + Js)︸ ︷︷ ︸
J

×F Curl (As)︸ ︷︷ ︸
B

. (4)

III. NUMERICAL TESTS

The multiphysics problem has been solved for 3D problem
with a cylindrical SMP stent described in [7]. Fig. 2. depicts
the displacement u, the Joule losses wL and the temperature
ϑL during the last process of recovery.
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Fig. 2. Physical fields during the recovery. The left images correspond to t =
4.78125× 10−3s and the right images correspond to t = 4.84375× 10−3s.
Top : displacement u. Middle : Joule losses wL. Bottom : Temperature ϑL.

In the extended paper, more theoretical details and results
of the electro-thermo-mechanical problem will be given. We
will also use the integral method to solve the electromagnetic
problem.
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