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I. INTRODUCTION

S HAPE MEMORY POLYMERS (SMP) biomaterials can be used for the prevention and cure of diseases such as the coronary heart disease and the stroke [START_REF] Yahia | Shape memory polymers for biomedical applications[END_REF]. These smart materials can change their physical properties (morphing, Young modulus, etc.) when subjected to external stimuli such as temperature, pH and electromagnetic fields. They are mainly thermally activated and can be chosen biocompatible and biodegradable [START_REF] Yahia | Shape memory polymers for biomedical applications[END_REF]. For applications inside the human body, thermal contactless control can be achieved by the addition of electric/magnetic (nano)particles inclusions that can react to electromagnetic fields. Fig. 1. depicts the deployment of a stent in the blood vessel. Numerical models for composites biomaterials must account for the multiphysics coupling and the multiscale nature of the materials. This paper deals with the multiphysics modeling. The major challenge in developing multiphysics models in this application arises from the geometric non-linearity due to large mechanical deformations and that leads to the modification of the equations that govern the electromagnetic and thermal problems to account for motion. The other challenge is handling material non-linearities due to the presence of plastic and viscous behaviour for mechanics and nonlinear behaviour for electromagnetism. This paper introduces a multiphysics quasistatic model using the Lagrangian formalism for an electromagnetically controlled vascular stent excited by a coil.

II. LAGRANGIAN MULTIPHYSICS FORMULATIONS OF THE COUPLED PROBLEM

The general coupled problem is derived from Maxwell's equations and conservation laws. Physical phenomena that take place on the deformed configuration can be described using the Eulerian coordinates x. In this paper, we use the Lagrangian formalism and define the coupled problem using the coordinates X defined on the undeformed configuration. The open domains Ω Mec 0 , Ω The 0 and Ω Ele 0 denote the undeformed computational domains for the mechanical, thermal and electromagnetic problems, respectively. The differential operators Grad , Curl and Div denote the gradient, rotational and divergence operators defined on the undeformed configurations. The Lagrangian description can be used when the mapping

ϕ : Ω 0 → Ω t , X → x = ϕ(X) = X + u(X) is smooth enough.
The domain Ω t denotes the deformed configuration at the time t ∈ [t 0 , t end ) and the vector field u is the displacement field for large deformation.

The kinematics is described by the deformation gradient tensor and its determinant:

F = ∂x ∂X = 1 + Grad u , J = detF . (1) 
In this paper, we consider a time-dependent thermal problem and quasistatic mechanical and electromagnetic problem thus neglecting electromagnetic waves and computing eddy currents by neglecting their contribution to the total field. The last assumption is reasonable for exciting sources with low frequencies and materials with low electric conductivity. The resulting problem can be solved using the a s -φ formulation where a s is the source vector potential, e.g., produced by a coil and that can be pre-computed, and φ is the unknown scalar electric potential. The Lagrangian description uses the pull-back of physical fields from the deformed to the undeformed configurations and the resolution of the multiphysics problem on the undeformed configuration. While the approach is very common for thermo-mechanical problems [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF], [START_REF] Wriggers | Nonlinear finite element methods[END_REF], it needs to be extended to electromagnetic problems. The resolution of the electromagnetic problem is relatively easy for the electric scalar potential formulation which does not need to be defined in the air. In the context of the finite element method, it becomes involved when the resolution requires a mesh of the air. An interesting alternative consists in using integral methods [START_REF] Meunier | A Magnetic Flux-Electric Current Volume Integral Formulation Based on Facet Elements for Solving Electromagnetic Problems[END_REF], and restricting the accurate computation of eddy currents to the mechanical domain. In this paper we describe the coupled problem with the scalar electric formulation.

In the Lagrangian description, Maxwell's equations remain unchanged while Piola transformations depend on the differential-form [START_REF] De Castro | Mathematical models and numerical simulation in electromagnetism[END_REF]. The transformations of the Eulerian 0differential form φ, 1-differential form e, 2-differential form b, 3-differential form f E and of the Eulerian second order tensors σ E and κ E read:

Φ = φ, A s = F T a s , B s = JF -1 b s f L = Jf E , σ L = JF -1 σ E F -T , κ L = JF -1 κ E F -T , (2)
where Φ, A s , B s , f L , σ L and κ L are Lagrangian electric scalar potential, source vector potential, source magnetic induction, volume force, electric and thermal conductivities expressed in the undeformed configuration. The indices E and L are used to denote Eulerian and Lagrangian quantities, respectively.

The weak form of the coupled problem reads [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF], [START_REF] Bossavit | omputational Electromagnetism. Variational Formulations, Complementarity, Edge Elements[END_REF], [START_REF] Niyonzima | Modeling and simulation of nonlinear electro-thermo-mechanical continua with application to shape memory polymeric medical devices[END_REF] :

find Φ × u × ϑ L such that Ω Ele 0 σ L Grad Φ•Grad Φ dΩ 0 + Ω Ele 0 σ L ∂ t A s •Grad Φ dΩ 0 = 0, Ω Mec 0 S EP (E, ϑ L , Z L ): δE -f L • u dΩ 0 = 0, (2 a-b) Ω The 0 ρ 0 c p ∂ϑ L ∂t •ϑ L dΩ 0 + Ω The 0 κ L Grad ϑ L -q L •Grad ϑ L dΩ 0 - Ω The 0 (F (σ L E eff + J s )) • (F -T E eff ) w L •ϑ L dΩ 0 + Γ conv,The 0 h L (t)(ϑ L -ϑ L,B ) n L •q L •ϑ L dΓ 0 = 0 (3)
holds for all test functions Φ × u × ϑ L in appropriate test function space. In (2 a-b)-( 3), S EP is the second Piola-Kirchoff stress tensor which depends on the Green-Lagrange strain tensor E = 1 2 (F T F -1) and a set of internal variables of the mechanical problem Z L . The quantity δE = F T u and E eff = -∂ t A s -Grad Φ is the pull-back of the effective electric field e eff = e + v × b. The terms J s , w L and h L are the source electric current, the Joule losses and the convection coefficient. The last term of (3) accounts for the convection that results from the exchange of heat with a fluid at the temperature ϑ L,B . The dependence of the electromagnetic force f L on the displacement u is achieved through J(u) and F (u) by:

f L = J -1 F (σ L E eff + J s ) J ×F Curl (A s ) B . (4) 
III. NUMERICAL TESTS The multiphysics problem has been solved for 3D problem with a cylindrical SMP stent described in [START_REF] Niyonzima | Modeling and simulation of nonlinear electro-thermo-mechanical continua with application to shape memory polymeric medical devices[END_REF]. Fig. 2. depicts the displacement u, the Joule losses w L and the temperature ϑ L during the last process of recovery. In the extended paper, more theoretical details and results of the electro-thermo-mechanical problem will be given. We will also use the integral method to solve the electromagnetic problem.
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 1 Fig. 1. Schematic of the deployment of a stent in a blood vessel [1].
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 2 Fig. 2. Physical fields during the recovery. The left images correspond to t = 4.78125 × 10 -3 s and the right images correspond to t = 4.84375 × 10 -3 s. Top : displacement u. Middle : Joule losses w L . Bottom : Temperature ϑ L .