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Homogenization of perforated elastic structures

Georges Griso? Larysa Khilkova | Julia Orlik} Olena Sivak *

Abstract

The paper is dedicated to the asymptotic behavior of periodically perforated elastic domains (3D, plate-like
or beam-like). We homogenize these structures, passing to the limit w.r.t. the period. In case of plate-like
or beam-like structures we simultaneously proceed to a dimension reduction. These periodic structures can be
made e.g. of balls or cylinders glued, so that the surface in contact has a non-zero measure. Since the boundaries
of these structures might be non-Lipschitz, the classical extension approach does not serve. We will proceed
using interpolations. The Korn inequalities in the case of thin structures are based on the decomposition of
beam or plate displacements. For the asymptotic behavior the unfolding and rescaling operators are used.

Keyword: Homogenization, periodic unfolding method, dimension reduction, linear elasticity, variational inequal-
ity, perforated non-Lipschitz domains, plates, beams, extension operators and Korn inequalities.

Mathematics Subject Classification (2010): 35B27, 35J50, 47HO05, 74B05, 74K10, 74K20.

1 Introduction

This paper concerns the linearized elasticity problem posed in periodic domains. These domains are obtained
by reproducing periodically a cell of size € in order to get a beam-like, plate-like or 3D structures fixed on a part I'.
of their exterior boundary. The e-cells are made by elastic materials. The reference cell is denoted C. We assume
that C has a Lipschitz boundary and that two neighboring cells CU(C +e;), i = 1, N are connected. Under these
assumptions, the whole periodic structure might not have a Lipschitz boundary.

Our aim is to give the asymptotic behavior of these elastic periodic structures as € tends to 0. Since these
structures might not be Lipschitz, one of the main difficulties is to obtain a priori estimates. The classical extension
approach (see [16]) and the Korn inequalities for Lipschitz domains (see [4 [5]) cannot be used. Thus, in order
to derive a priori estimates we used interpolations suggested in [9, Section 5.5]. This makes it possible to prove
Korn inequalities with constants independent of €. Note that in the case of a beam-like and a plate-like domains
the derivation of Korn inequalities are also based on the decomposition of beam or plate displacements. These
decompositions have been introduced in [3] [T].

To derive the limit problems we use the periodic unfolding method introduced in [7]. Since then this method has
been applied to a vast number of different problems such as problems in perforated domains [6], contact problems
[13] [15], problems including a thin layer [14], problems for structures made of curved rods [I0], problems in domain
with ”rough boundary” [ 2], to name but a few. In this context we would like to mention the first book [9]
devoted to the periodic unfolding method. It contains not only the detailed theory underlying this method but a
lot of examples of its application to different partial differential problems. Application procedure of the periodic
unfolding method that we used here is standard and includes of the following steps: depending on the problem
introduce and apply an appropriate unfolding operator, using a priori estimates for the displacement obtain uniform
estimate for the unfolded displacement, which, in turn, are used to pass to a weak limit in fixed space, establish an
unfolded limit problem, which can be used for extracting a homogenized problem.

As a general reference for the homogenization of elasticity problems in 3D periodically perforated domains with
Lipschitz boundary we refer to [I6]. In the case of heterogeneous plate-like domain we mention [9, Chapter V] where
the interaction of homogenization and domain reduction, involving two small parameters such as plate thickness ¢
and periodicity € in its large dimensions was investigated. For similar results in the case of a beam-like domain we
refer to [12]. The novelty of this paper is the extension of the results to non-Lipschitz perforated domains.
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The paper is organized as follows. Sections 2, 3 and 4 deal with a N-dimensional (3D-like domain particular),
plate-like and beam-like domains respectively. For each of them we begin by introducing the notations and by
describing the geometry. Then, taking into account of the particularity of the geometry we introduce the unfolding
operator for every case, derive weak limits of the fields, specify the limit problem and finally characterize the limit
fields. Towards the end of the paper in Appendix we derive Korn’s type inequalities for N—dimensional, plate-like
and beam-like domains which are used to obtain the a priori estimates for the displacements.

Throughout this paper we use Finstein’s summation convention. Moreover, in all the estimates the constants do
not depend on €.

2 N-dimensional periodic domain

2.1 Notations and geometric setting

Let @ ¢ RNV, N € N\ {0,1}, be a bounded domain with a Lipschitz boundary and I' be a subset of 9§ with
non null measure. We assume that there exists an open set ' with a Lipschitz boundary such that Q C Q' and
ANo=T.

Denote

o YV = (=1/2,1/2)

e C CY adomain with Lipschitz boundary such that mterlor(C U(C+e; ) i =1, N, is connected,

Ze={6eZV | el¢+Y)NQ#£ D} B ={eZ | €+ V)N £0} By = {€ €L | (e €5,
- N
i =1, N, observe that 2. = (J 2.,
~

Q= interior( U e(¢ —1—6)), Qert = interior( U e(¢ +?)), QL = interior U e(&+ C)),

£EE. £€E. €€=L
1= {z e RY | dist(z,Q) < 1},

/

e for a.e. x € RN, one has
= [z] + {z}, where [z] € ZV, {z} €Y.

Note that the domains QF, Q2 are connected.
We are interested in the elastic behavior of a structure occupying the domain Q7 which is fixed on the part of
its boundary. The space of all admissible displacements is denoted V.

V. ={ue H' Q)N | I € H' ()" such that ulg. =uandu' = 0in Q7 \ O}
It means that the displacements belonging to V. ”vanish” on a part I'. of 9Q}.

Remark 2.1. Note that the domain Q might not be Lipschitz (see e.g. Figure . In this case one can mot
extend the displacement in the holes of this domain.

C

—Y C C+e

(a) Sets C and Y. (b) Sets C and C + e;.
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Figure 1: Sets Q, QF, ', Q and E., =L.

For u € HY(Q})™ we denote by e the stress tensor

e(u) = %(Vu + (Vu)T), eij(u) = %(Zz; + ZZ)

Let aij € L(C),14,J,k,1 =1, N be functions that satisfy the following conditions:

o a;r(X) = ajiri(X) = arj(X) forae X e€C

(2.1)

o for any 7 € MN*N where MN*N is the space of N x N symmetric matrices, there exists ¢y > 0 such that
S S

aijkl(X)Tikal > COTijTij for a.e. X € C.

(2.2)

The constitutive law for the material occupying the domain 2} is given by the relation between the strain tensor

and the stress tensor

07 (u) = ajjpen(u), Yu € V.,

where the coefficients a3y, are given by

x
az(T) = aijkl({g}) for a.e. z € Q.
Let f be in L?(Q;)", one defines the applied forces f. by
f e = f |Q; .
The unknown displacement u. : QF — R is the solution to the linearized elasticity system:

V-o(ue) = —f in QF,
ue =0 on I,
0%(ue) - ve =0 on OQ\T,,

where v, is the outward normal vector to 9€Q%. The variational formulation of (2.5)) is:

Find u. € V. such that,

/ o (ue) : e(v)dx = fe-vda, Yv e V..
< Qr

(2.3)

(2.4)

(2.5)

(2.6)



2.2 Preliminary results
The following lemma is a simple consequence of Proposition in Appendix.
Lemma 2.1. For every u € V. one has
[ull @2y < Clle(w)llz2az)- (2.7)
Lemma 2.2. The solution u. of problem satisfies
luellzr@s) < Clifll2u)- (2.8)
Proof. Taking into account (2.7)), we have

ue | z2r) < Cll Iz le(ue) L2 o)

| [ g ueds| < 1l
Q:
and thus (2.8)) follows from (2.2]) and (2.7). O

2.3 The unfolding operator
The unfolding operator is defined in a similar way as for domains with holes (see [9]).

Definition 2.1. For every measurable function ¢ : QF — R the unfolding operator T : Q* x C — R is defined
as follows:

T2 (@) (z,X) = ¢<8{§} —i—EX) for a.e. (z,X) € Q" x C.

Below are some properties of 7%, they are similar to those of the unfolding operators introduced [9]. That is
due to the fact that -
AS™E = Q" \ Q) satisfies lir% |AS* = 0.
E—r

Proposition 2.1. For every ¢ € L*(Q?)

/ T2 (d)(x, X)dxdX = o(z) dx,
Q% C o (2.9)
175 (P) 1 (eixcy = @]l (ax)-

For every ¢ € H'(QF)
1
TX(Vo)(z, X) = EVXTE*((ﬁ)(x,X) for a.e. (z,X) € Q& x C. (2.10)
As a consequence of the estimate (2.8) and Proposition one obtains that the solution to (2.5 satisfies

||7;*(u6)||L2(ngt><C) + ||7;*(VU5)HL2(szgxtxc) <Ol fllzz)-

For more properties see [9].

2.4 Weak limits of the fields and the limit problem

Set
(RM)? iinterior( U 5(5+é)).

gezN

Denote by Hy ,.,.(C) the subspace of the periodic functions belonging to HJ ((R™)z)

HY 4er (€)= {0 € Hipo(RV)E) | w(-+€) = w() ae. in (RV)Z, vg e 2V},

by Hy pero(C) the subspace of the functions in Hy ,.,.(C) with zero mean

Y pero(©) = {0 € My (©) | [ wi03) X =0}



and by HE () the space of the functions in H'(£2) that vanish on 1'E|
HLNQ)={¢p€e H' () |¢=0 onl}.
Lemma 2.3. Let u. be the solution of problem ([2.5). There exists u € HE(Q)N and 1 € L*(; Hll\f7per,0(c))N such

that
T (ue) = u  strongly in  L*(Q; HY(C))N,

TX(Vu.) = Vu+ Vxu  weakly in  L*(Q x C)N*N (2.11)
T (e(ue)) — e(u) + ex (@)  strongly in L3(Q x C)V*N

and the pair (u,w) is the unique solution to the following unfolded problem:

/ Qijkl (ekl(u) + ex,kl(ﬂ)) (6”(\1/) +ex 2](&\))) dxdX = |C|/ f . \Ild.’E,
QxC Q

VU € HA(QN, V& € L*(Q HY ey o(C)Y

(2.12)

where for all ® € HY(C)N

- 1(3<f>k 561) k,l=1,N.

exk(®) = 2\ax, + X, )"

Proof. Taking into account (2.8)) by [9 Theorem 4.43] there exists a subsequence of {e}, still denoted {e}, u €
HE(Q)N and © € L2(€ HNWT’O(C)) such that

T (ue) —u strongly in  L?(9; H'(C))V,

2.13
T (Vue) = Vu+ Vxa weakly in  L?(Q x C)NV*¥, (2.13)

In order to obtain the limit problem (2.12)) we use the same approach as in [6, Theorem 4.3]. Let us introduce the
following fields:

UeH Q)Y st.¥=01in QN (Q\Q), ¢eD), 1€ Hy poro(C)
and take ve(z) = U(x) + eh.(x)p(x) as a test function in (2.6)), where ¢ (z) = 1/1(%) Note that

eij(ve)(z) = eij (V) (z) + ceij (V) (2)
dp Jp

=¢e;;(V)(z) + 6X,ij(7/’)(§)90( ) + (1/’1( >8$z( z) + ¥ ( )aa:J (@ )>

= ey (@) + ex s WX)ele) + 5 (105 @) + (%) 52

(x)), zeQ, i j=1,N.

Then, transform by 7, that gives
T (ve) = U strongly in  L*(Q x C)V
T (e(ve)) — e(¥) + ex(¥)p strongly in - L2(Q x C)V*V,

Unfolding the left hand side of (2.6) and using |[e(ve)|[z2(acet) = [[€(¥)[|L2(acxty — 0, then passing to the limit we
obtain

/* o(ue) : e(ve) dx = /mec T2 (0% (ue)) : T (e(ve)) dx dX
= T2 (0% (ue)) : T (e(ve)) dax dX —l—/ o (ue) : e(ve) dx

QxC Aext

— o aijri(eri(w) + ex k(W) (e (V) + ex,ij (¥)p) de dX.

!Every function in HE(f) is extended in a function in HE(Q') which vanishes in Q' \ Q.



Taking into account (2.4) and using [|ve||L2(acet) = [|¥][L2(acer) — O We have
f~vsdz:/ T2(f) - TZ (ve) dedX = TX(f) - T (ve) dedX + fruedx
Qz e QxC Aewt

— f(x) - ¥(2)drdX = \C\/ f(z) - ¥(x)dz.
QxC Q

Hence, the above convergences lead to

/ aijri(eri(u) + ex k(1)) (e (V) + ex,ij(¥)p) dvdX = \C\/ f-Vdz.
QxC Q

Finally, since the functions ¥ € H'(Q)" such that ¥ =0 in Q; N (Q"\ Q) are dense in H}(Q) and the tensor
product D(Q) ® Hzl\,7per70(C) is dense in L?(€; H}v,per,o(C)) we obtain ([2.12)).

The solution to the variational problem (2.12) is unique. Indeed, if there are two solutions (u1,u;) and (ug,us) to
this problem, denote v = u; — ug and ¥ = Uy — Uy. Taking into account the respective equalities from (2.12)) and
choosing the test functions v, v, we obtain

/ ikl (ekl(v) + exykl(i}\)) (62']'(’0) + €X,ij (ﬁ) drxdX = 0.
QOxC
Using property (2.2) of tensor {a;;x;} yields
colle(v) + e(ﬁ)H%g(Qxc) < / aijri (ent(v) + ex,k(0)) (€5 (v) + ex,i; (V) dz dX = 0.
QOxC

So e(v) = —e(v) and thus the field ¥ is an affine function with respect to X. Since it is periodic with respect to X
and belongs to L2(€); H}V’pehO(C))N it is equal to 0. Hence, e(v) = 0 and due to the boundary conditions v = 0.
Finally, the whole sequences in ([2.13)) converge to their limits.

Now, we prove the strong convergence (2.11])3. By Proposition (12.6), (2.12) we have
/ Qijkl (ekl(u) + €X7kl(a)) (ekl(u) + €X7kl(a)) drdX
axc

< lim inf T (i) T (en(ue)) T2 (e (ue)) dw dX

e—0 QOxC

< lim inf / @ijir T2 (et (ue)) T (€45 (ue)) de dX + lim inf/ o (ue) : e(ve) dz
xc =0 Ja

e—0 ext

< liminf/ o(ue) : e(ues) de < limsup/ o(ue) : e(ue) de = limsup frucdx
Q Q

e—0 * e—0 * e—0 Q*
€ € €

= |C| f -udr = / aijkl(ekl(u) —l—eX,kl(ﬂ))(ekl(u) —&—ex’kl(ﬁ)) dzrdX.
axc QxC
The strong convergence (2.11))3 holds. O

2.5 Homogenization

In this section we give the expressions of the microscopic field @ in terms of the macroscopic displacement u.
First, taking ¥ = 0 as a test function in (2.12]), we obtain

/ @ijkl (ekl(u) + exykl(ﬁ))exyij(:ﬁ) dxdX =0, Vo e H;er,O(C)Nv a.e. in Q.
c

This shows that the displacement @ can be written in terms of the elements of the tensor e(u).
Denote by M™ the N x N symmetric matrix with following coefficients

np _ 1 —
Mkin = 5(5knalp + 6kpaln)7 n,p, k7l S 17 N?

where d;; is the Kronecker’s symbol.



Since the tensor e(u) has N2 components, we introduce the N2 correctors

Xnp € Her o (N n,p=TN,

which are the solutions to the following cell problems:
/ aiji (exm(Rnp) + MiP)ex ;(®)dX =0, V& € HL, o(C)V.
c

Observe that Xnp = Xpn- As a consequence, the function @ is written in the form

N
u(z, X) = Z enp (W) (2) Xnp(X) for a.e. (z,X) €N x C.

n,p=1

Theorem 2.1. The limit displacement u € HE(Q)Y is the solution to the following homogenized problem:

/Qa?jogl"ekl(u)eij(\ll)dx:/ﬂf~\I/dx Yo e HE(Q)V,

where .
ol = /C s (M) + ex.0p(R00) ) X,

Proof. Taking ® = 0 as a test function in 1} and using (2.15)) give
/ aijri(er(w) + enp(w)ex w(Xnp))eij (¥) dozdX = |C|/ f-Udx YU HENQ)N.
QxcC Q
After straightforward calculations we have
/ aijir (M} enp(u) + ex11(Xnp)enp(u)) €i; (V) do dX = |C|/ f-Vdz,
Qxc Q
/ (/ st (M} + €3 30(Rp) dX ) ey () €15 (0) dr = \C|/ fowdr, Ve BNQY
o \Jc Q
and the assertion of the theorem follows.
Lemma 2.4. The left-hand side operator in problem (2.16)) is uniformly elliptic.
Proof. Using formulas (2.17) of the homogenized coefficients and (2.14)), we obtain

1
CLZ]O)ZL/plTinn/p/ = @/ Akl (eX,kl (\I/) + Mkl) (ex,ij (\I/) + Mij) dX, T E MSNXN
C

where
— n — <
M = 1,,M"P, V = ThpXnp-

Then, in view of (2.2)) and following the proof of [9, Lemma 11.19], we have
c
azgmp/Tinn/p/ Z ﬁ L (exyij (\I/) + M”) (eX,ij (\IJ) + Mz]) dX 2 CoTnpTnp

which ends the proof.

3 Periodic plate

3.1 Notations and geometric setting

In this section, we consider a bounded domain w in R? with Lipschitz boundary.
Denote:

(2.14)

(2.15)

(2.16)

(2.17)



e ~v a subset of dw with a non null measure. We assume that there exists a bounded domain w’ with Lipschitz
boundary such that

/

wCw' and W NOow=r.

o I'. =+ x(—¢/2,¢/2),

o Y/ = (=1/2,1/2)2 Y =Y’ x (=1/2,1/2) = (—1/2,1/2)3,

e C CY adomain with Lipschitz boundary such that interior(é U(C+ ei)), i =1,2, is connected,

o S.={6€Z? | (e€+eY)Nw#B},EL={6€Z? | (€+eY )N # 0},
o (= interior( UgeEE (e€ + ezé)), QF = interior( UgeE; (€ + gé)),

o Wi = interior(U&EE (g€ +€?)), Wy = {x € R? | dist(z,w) < 1}, w C wi,

° w:;é"t = {a: cw | dist(z,0w’) > 35}, Zrint = {§ €5, | (e€+eY) mwéént ” @}7
o Qint = interior( Ueezyint (€€ + 5@)).

Note that the domain € is a connected open set and if € is small enough, we have Q¥ C wy x (—¢/2,¢/2).

The space of all admissible displacements is denoted by V.:
Ve = {oe BN QP | 3 € HYQL), v=1fo., ' =0in QL \ QF}.

We are interested in the elastic behavior of a structure occupying the domain Q¥ and fixed on a part of its boundary
(see above).

The constitutive law for the material occupying the domain €} is given by the relation between the strain tensor
and the stress tensor (see also )

o (u) = afjklekl(u) Yu € Vg,
where the coefficients afjkl the same as in Subsection
Let f bein L? (wl)g. We define the applied forces f. as follows
fs,a = 52fa

The unknown displacement u. : 2 — R? is the solution to the linearized elasticity system

Qs fez=¢efilo:, a=1.2 (3.1)

V-0o%(us) =—fc in QF,
ue =0 on T.NQ, (3.2)
0% (ue) - ve =0 on ONI\T,,

where v, is the outward normal vector to 9Q%. The variational formulation of problem (3.2)) is
Find u. € V. such that,

/ o (ue) : e(v)dx = fe-vde, Yv € V.
Q Q:

3.2 The unfolding-rescaling operator

Definition 3.1. For every measurable function u: Qf — R3 the unfolding operator T* is defined as follows:
/!

T2 (w)(@', X) = u(=]%

7} —|—6X’,€X3) for a.e. (z/,X) € wf* x C,
€

where ¥’ = (x1,x2), X = (X', X3) = (X1, X2, X3).

Below we recall some properties of 7.* (for further results see [9]).



Lemma 3.1. For every u € L*(Q)

1
/ T (u)(2', X) dz'dX = 7/ u(z) dz,
wtx C Qr

3

(3.4)
172 @l wseixer = gl
€ £ \/g €
For every u € H(Q)
1
T (Vu)(2', X) = EVX'TE*(U)(xl,X) for a.e. (z',X) € we x C. (3.5)
3.3 Weak limits of the fields and the limit problem
Denote by Hi (w) the space of functions in H'(w) that vanish on 7y
H,i(w) = {u € H (w) |u=0on 'y},
and by HZ2(w) the space of functions in H?(w) that vanish on v and their derivatives vanish on v as well
H%(w) = {u € H*(w) |u=0and Vu =0 on ’y}.
Lemma 3.2. The solution u. of the problem satisfies
le(ue)lzaas) < O (I z2ony + lgllzzcony ). (36)

Proof. Taking into account the decomposition of the displacements introduced in Subsection of the appendix,
the Cauchy—Schwarz inequality, the estimates (5.14]) and (5.21]) of Corollary we have

‘ fs.usdz‘:‘Z/ fs.usdeSZ‘/ fs.(us—ng)dx’JrZ’/ fE~R65dx’. (3.7)
Q cez, Vel ¢ e(§+C) cez, Je(€+C)

£+C) €E.
Each term in the right-hand side of (3.7)) can be estimated as follows:

’ forlu —Rg)dz‘g /
5%:2 /e(£+c) A 2 c(6+C)

§€E€
< el eeropllue — Reell 2 e e+cy)

fo- (ue = Reg) | da

§EE,
< \/ > ||fe||%2(s<g+c»\/ Y llue =Rl ercy) < C2 12w le(ue)llzaz),
§E€E. £EE,



[ hReds] - fi - (U= + R(6) A (v — ) do]
(¢+0) iz | Jeero)

<0y /(&Y/ [t (6) f1 ()| da’ + £°C Z/ Ua(6) f2 (") da”

€e= ceg, Je(E+Y)

4 ! /
veto 3 [ e ds

£eE. V¢

“ Ra ) dz’
o 52535 /€(§+Y' [Ra(e) |(6|f3 N+ |fa(a )|)
' !
e Céezaa /5(€+Y’ [Ra(e€) |(|f1 )| + el f3(2' |) dx
10 o
T 5%52 -/6(£+Y' [Ra(=6) ’<|f2 )|+ | f1(a’ ])

< ECIfillzn, | Y (P2 + 2Ol fall Lany, | Y Ue(c6) |22

EeEe EEEL

+ ' Clfallron), | D Us(e€)2e2 + Ce* | > [R(e€) 22| fll 12 (o)
£EE. £EE,L

< O fll 2o lle(ue) 220z

And finally,
| [ ferueda] < O fllpago lle(ue) 2(0z)-
Q
Using this estimate, we obtain (3.6]). O

Taking into account the result in Subsection [5.3| of the Appendix the following decomposition holds:

1(2") + 23Re 2(2) ,
ue(x) = Ug(z) + Ue(x) = | Ue2(x ’Z)/{— 3(237)% 1@ | +ue(n), x=(2,2) = (z1,22,73) € QL™ (3.8)

here U € H (wyi)3, R. € H(w3i")? and 7. € H (w3t x (—5/2,5/2))3.

Moreover, the strain tensor of the displacement u. is the symmetric matrix

. ORea 1 (0Ue, . . [ OR.. IR, 1 .
8$11 + {L‘ alEll 2 ( 89021 + 8112) + L; ( 8w22 - 89:11) 5 (RE 2 + 8$13)
() = e(U2) + (@) = . Moy O 3~ Ren + 2e2) |+
* * 0
O, 1 ( Ou, e 1 ( Ou. Ou.,
Owll 5( awzl + 8z12> 2 ngl + 8z13
e 1 ([ Ou. O,
+ * ch; 2 851232 + ch;
Ole 3
* * i
(3.9)
From Lemmas and Proposition we obtain the following estimates of the terms (Ue, R., e ):
Lemma 3.3. For every displacement u. € V. one has
C
Z ||Us,a||H1(wé§nt) + el (whinty T EZ ||Re,a||H1(wg§nt) + ||Rs,3||H1(wéth) < 51W||€(UE)||L2(SZ;)’
« «
lue1llz(e) + [lue 2l L2 (@x) + ellue sllLzz) + el Vue|lL2(z) < Clle(ue)l|L2(ax)s (3.10)

C
Re A eq < ElW|\e(u€)||[,2(gz), a=1,2,

Haxa
||UEHL2(Q/Eint) =+ E”VﬂEHL‘Z(Q/&q‘,M) < CEH@(’LLE)HLz(Q;).

L2(wéi5nt)
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We extend Ue, R. and their gradients by 0 in w’ \ wy™ and the field . by 0 in QL \ QLint,

Lemma 3.4. For a subsequence, still denoted {c},
(i) there exist U, € H (W), a=1,2, Us € H*(w') such that

1
—Ue.o —> Uy strongly in L3(W),
5
1
U3 — Uz strongly in  L*(W'),
51 (3.11)
— VU0l i — VU, weakly in  L*(W)?,
EQ ’ u)35
1
gvueyglwém — VUs weakly in L*(W)?,
(i) there exists R € Hl(w’)2 such that
1
“Rea — Ra strongly in  L*(w'),
i , (3.12)
ng&alwéint —~ VR, weaklyin L*(w')",
ond o o
Ry = 78732’ Ry = 87*:’ ae inw,a=12; (3.13)
furthermore, the fields Uy, R, Us and VUs vanish in w’' \ @,
(i1i) there exists u € L*(w'; Hj .. (C))? such that
1
6—27'6* (W) — 0 strongly in L*(w' x C)°,
(3.14)

1
6—27': (Vulor) — Vxu weakly in L2 (W' x C)g.

Proof. In order to prove (i)-(ii) we note that from estimates (3.6) and (3.10); in Lemma and Lemma it
follows that there exist functions & € H'(w’)® and R € H'(w')? such that following convergences hold

1 1

—Uec.a = Uy weakly in L3 (W), —2VZ/{5,alwém — VU, weakly in L?*(w')?
€ € c

1 1

—Ue 3 —Us weakly in LA (W), fVLlE,;;lwém — VU3 weakly in L?*(w')?,

5 € E

1 1
“Rea = Ra weakly in L), ZVRealyi = VRa weakly in L2 (W)’

Now we prove that the fields Uy, R, Us and VU3 vanish in o’ \ @.
Let O be an open subset such that O € w’\ @. Since u. vanishes in Q2 \ QF, then the fields U., R. vanish in

wl \ whnt If € is small enough then O C w. \ wj. Thus by construction the fields U; o, R, Ue,3 and VU, 3 vanish
in O. As a consequence, their weak limits also vanish in O. Since that is true for every open set O strictly included
in w’ \ @, thus that is also satisfied in the full set w’ \ @.

Estimate (3.10), leads to

1
- (87/{3,5 + Rl,s) 1 ime — 0 strongly in L*(w'),
€ 61‘2 3e
1
- (82/{35 —Rs 5> 1 4 — 0 strongly in L*(w').
e \ Oz ’ “3e
From convergences (3.11])4 and (3.12)); we also have
1 /ou ou. .
- (a;; +R1,e> 1rime = ({TC;}’ + Ry weakly in L*(w),
1 81/[3,5 82/{3 : 20,1
g ( axl — RQ,E) ]-w;int 87:[,'1 - RQ Weak]y mn L (w )
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and then we get the equalities (3.13)). Thus, one has U3 € H*(w')
(ili) From estimate (3.10),, we obtain

* (— 1 —
172 (W)l 2w xo) < %Iluellmmgnt) < Ce2|le(ue) | 20z < CE°,

|L2(w’><C) < 61/2HVEEHL2(Q/EM15) < 051/2||e(u8)\|L2(Q;) < CES.

IVxTZ (1)l 22w xc) = €l T2 (Vi 1ar)

Thus, for a subsequence, still denoted by {e}, there exists w € L?(w'; Hj ,,,.(C)) such that convergences (3.14] 12
hold. O

Since the fields U, R, Us and gradient Vif3 vanish in o’ \ @ then
Uy € H,i(w), Us H,%(w), R e H,i(w)z.
Lemma 3.5. For a subsequence, still denoted by {e}, we have

1
=T (Ue,a) = U strongly in L*(w' xC), a=1,2,
€

1
ET*( .3) = Us strongly in  L*(w’ x C),

1 .ou au, (3.15)
—T* Ea]_ Line | — o ; L2 !
T ( By Lok ) 925 weakly in (W' x C),
R (85{55 L) = gZZ (a,8=1,2) strongly in  L*(w' x C);
and
1 1
-T2 (Req) — _ s T (Re2) — oty strongly in  L*(w' x C),
e ¢ Oxy’ €'°¢ ' 1, 16
1 OR:1 0%Us 1, (0R. 02Us ‘ . .
gT ( Oz, 1 2"t> NS =T, ( oz, lwsiam) D100 weakly in  L*(w" x C).

Proof. Applying [8, Proposition 2.9] and equality (3.13) we have convergences (3.15)1,2, (3.16)1 and there exist
functions Ra, Ue, Us € L*(w'; Hy ey o(C)), (v =1,2) such that

* aRE (&3 621/{5 aﬁa . 2/
,T ( 81‘5 1wé7;:nt) _m (97)(,3 Weakly m L (UJ X C),
1 (OUea My U, o,
ST 5 e ) = 5 3.17
527; ( D2 1 ) D5 + 95 weakly in  L*(w’ x C), (3.17)
1, 0U.3 s s e . 2
ETE ( 925 1w31€nt) 8375 + X, a,f0=1,2 weaklyin L*(w x C).

From Remark [5.1] . the functions R. o, Ue o, U. 3 are piecewise linear with respect to the variables Xz (8 = 1,2).
Thus, the functions Ra, Z/Ia, Z/Ig are also piecewise linear. As they are periodic, these fields are independent on Xg,
B e {1,2}. Hence

ORo _ OUs _ s _

0Xs 0Xpg 0Xp

and convergences 37 2 hold. O

For any u € H'(w)?, v € H?(w) we denote

duy Quy 4 Oup v
8931 <8x2 + 311> O aw% 6321812 O
EM () = 1( 0uy dug Ous EB(v) = d*v %v
( ) 2\ Ozo + Oz Oxo 01> ( ) Oz1022 Bx% 0
0 0 0 0 0 0

12



Lemma 3.6. Let u. be the solution to (3.2]). Then the following convergences hold:

oUs

X5
* 0y

1 82/1

1
6—27;* (Ue1) = Uy — strongly in  L*(w x C),

6—27' (ue2) = Uy — X3— O strongly in  L*(w x C), (3.18)
1’7’:(115,3) —Us  strongly in  L*(w x C).
€
Moreover
1 ~ .
= T (e(ug)lw;?,,,) — EMUyp) — X3EB(Us) +ex (W)  weakly in L*(w x C)?, 5.19)
1 . .
5—27;*((7](%1 :mt)) Qijki (Ekl (Unm) — XgEkl(u:;) +ex (U )) weakly in L*(w x C),
where the functions U, = (Uy,Usz), Us, & are the solution to the following unfolded problem:
/ Qi (E}Q{ (Un) — X BE(Us) + exu(@) (BY (Vi) = XsBE(Va) + ex,15(®) ) da'dX
wxC
8‘/3 / /
=|C| fa "da' + ngX fa &E — (@) + ga (@) Vo (2" | do (3.20)
aV
/ X2 dX/ =3 )da:’, V® € L*(w; Hy ., (C))?, Vo € HY(w), @ =1,2, V5 € H (w).
Proof. From (3.15)), ,, (3.16), (3.14),, we obtain the convergences ([3.18).
From estimate (3.10),; and one has
H T —R. /\ea>1 int < Ce2.
o L2 (w)
Then there exists X € L?(w)” such that
1 (% —Re, 2) wint = X1 weakly in L (w),
. azjl (3.21)
—( 8;’3 + R 1) wint — X, weakly in Lz(w).

Due to (3.16),, (3-21) and [9, Lemma 11.11] there exists a function Z € L?(w s Hj ., (C)) such that, up to subse-
quence,

Jr*((au”—&z) “’)Azmaé—ﬁz weakly in - L*(w x C),

axl 6X1
* au€,3 82 . 2
;27; (( O +Re1) mt) Xo + —— X, +R;, weakly in L*(w x C),

where the field ﬁa is introduced in Lemma (see (3.17))). Since R is independent of X; and Xs with mean value
on a cell equal to zero. Hence, one has

weakly in  L?*(w x C),

8:61 (9X1 (3 22)
1 sk au573 82 : 2
6—27’E (( s + R 1) mt) - Xy + X, weakly in  L*(w x C),
In order to prove (3.19)); note that from (3.9)) and convergences (3.15)), (3.16) we have
au 2us 1(ou au o2uU. 1 02
1 a3 T *(ax;Jr 2)* 33m0r, 3\ M T ax,
ity . N U, 1 9Z +ex(u)
LR B g e gg)] e
* * 0
au ouy, | ou ou U 92
B %(mi + mf) et o O\ 1 (00 Mo -
=| « ?)Z:; 0] —Xs| x %%3 0] t5|* 0 A+ g—é +ex(u).
* * 0 * * 0 * % 0
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Set
1(1‘, X) + X3X, (CL‘)

2(2, X) + X3X5(x)
us(z, X) + Z(z, X)

and thus (3.19)), follows. Then, taking into account definition (2.3)), we have (3.19)),.
To obtain the limit problem (3.20) let us define the following fields

u
Wz, X) = |

Vo €Hl(w), =1,2, V€ H2(w), ¢€Dw), o€ H;,,(C)?

and take the test function in (3.3)) as

AV
, Vi(z') — 2 5.2 (2") , o)1 ()
ve(@) = € [ Va(a)) — L5 (a!) | +e¢ sﬁ(xi)%z(l’) ;
1yy(a) p(2")e 3(x)
T
where ¢, (z) = 1p(—). Then
AV, 1( 8V, V- %V 9%V
) .z 2 (37; + Txf) 0 a;;f axéaig 0
=€ 1[0V, V- V- — € 0°Vs 9°Vs
o(ve) 2 (37; + aT;f) Pre 0 3| 520ms  oa3 U
0 0 0 0 0 0
dp 1( 0¢ dp 1( 9¢ dp
2.1 3 (,97521/11 + ,97511/12) 5 37531/}1 + 50 ¥s
3| 1( 90¢ Oy oy 1( O¢ Oy
+e' | 2ot + a2 Das V2 2 B2 V3 T a5, V2 (3.23)
1( O¢ oy 1( O¢ oy Jdp
o+ avs) 3 (TMZZJ?, + 3731/12> 925 V3
oY1 1( 0 0o 1( 091 + 03
X1 2\ox; T ox; 2\ox; T ax;
2 1( 0y oY oY oY Ote 2
tee | slox T ax, 9% (axgz T ox, )
1(091 4 09s (aws I fwa,z> O3
2\axs T axy X, T BX; X3

Applying the unfolding operator 7.* to the stress tensor e(v.) (3.23]) and passing to the limit as € — 0, we obtain

;127;*(6(’05)) — EM(Vm) — XgEB(Vg,) +ex(¥)e strongly in L2(w X C)9, (3.24)

where Vm = (Vl, Vz)
Unfold the left hand side of (3.3) and taking into account that by virtue of (3.6, (3.23) and Cauchy-Schwarz
inequality

€ : < € N iy = 5/2 /2 _ 5
g 00 02 < o e oy = O () O(72) = o(<7)

J

we have

o (ue) : e(ve)de = 5/ . ﬁ*(aa(uslw;gm) T2 (e(ve)) dz’'dX +/ o (ue) : e(ve) dzx

: Qr\Qnt
1 1
_ 55/ LT (0% (el )+ =T (e(0e) da'dX + o(<%).
wxC € “se €
Unfold the right hand side of ({3.3)
fove dx zs/ T2(f) T2 (ve) da'dX
Qr wxC
2 (3.25)
=¢ Z T2 (fea) TS (ve,q) da'dX + 6/ T2 (fe3) T2 (ve,3) da’dX.
wxC wxC

a=1
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Taking into account the form of the applied forces (3.1) the first term in the right-hand side of (3.25) can be
rewritten as follows

£ T (fero) T2 (Ve,0) dzdX = €° T*(fa) T (ve.o) da'dX
wxC wxC

1
+e° X37;*(ga)€—27;*(v87a) dr'dX, a=1,2

wxC

and, thus, as € — 0 we have

/ 7'5*(]”,1)6%7;*(@6@) dx'dX —|—/ Xgﬁ*(ga)g%ﬁ*(ve,a) dx'dX
wxC

wxC
> [ fal@)(Vale Nt x 2 ")) da'dX
wxC (9
b Xagule) (vm') XS () di'dX
wxC Ox
=10l [ fat@. d$+/X3dX/fa e ()
/X3dX/ga " dx' +/X3dX/ o(T )g;/?’(x')dx'7 a=12.
Using the second term in the right-hand side of can be rewritten as follows
€ T (fo8) T (v 3) da'dX = &° T*(f?,) = (ve3) da'dX
wxC wxC

and, thus, as e — 0

T*(fg) 7 (ve,3) da'dX — /

wxC

fs(aVa(') da'dX = |C| / S(@)Va(e') da.

wxC

Hence, taking into account (3.19)), (3.24) and the convergences obtained above, we can pass to the limit as e — 0

/ aijim (B Unr) — XsEf(Us) + ex (@) (B} (Var) — X3E[ (Vs) + pex ij (1)) da'dX
wxC

8V 8V
|C|/f1 ') dz’ +/X3dX/ fola) 72 (a') da’ + ga (2 Va(2')] da’ +/X3dX/ga 2 (2') da.
81'(1 axa
Finally, since the tensor product D(w) ® Hj ,,.(C) is dense in L?(w; H ,,,.(C)), we obtain the limit problem
[3.20). 0

3.4 Homogenization

In this section we give the expressions of the microscopic displacement « in terms of the membrane displacements
U, and the bending Us.
Taking V' = 0 as a test function in (3.20)), we obtain

/ aijrl(Ef] Unm) — XsEF(Us) + exu(@))ex,ij(®)dX =0 V& € Hy ., (C)>.
C

This shows that the microscopic displacement @ can be written in terms of the tensors EM, EB.
Set

1 00 01 0 0 0 O
MUY=1(0 0 o], M2=(1 0 0], M*2=(0 1 0
0 0 0 0 0 0 0 0 0
Since the tensors EM, EB have 6 components we introduce 6 correctors

(a, B) € (1,1), (1,2), (2,2),

3
X%v XEB € H21,per(C)
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which are the solutions to the following cell problems

/ @ijkl (eX,kl(X%) + MZf) ex,ij(®(X))dX =0,
c

(3.26)
[ o (exalns) = XaMi) ex s (®(0)dX =0, a,p= 1.2
C
for all ®(X) € L*(w; Hy ,,.,(C))*>.
As a consequence, the function @ from (3.19)) is given in terms of U as follows
2
. 0%Us ('
u(r', X) = Oé%; [eaﬁ(um(x’))xﬁg(X) + ax;’(;iﬁ)xfﬁ(X) for a.e. (', X) € wx C. (3.27)
Theorem 3.1. The limit displacement
U= Un,Us) € H(w)?* x H2(w)
is the solution to homogenized problem
o’Uu
hom 3
/w (%ﬁa’ﬁ/eaﬂ(um)ea’ﬁ/(v )+ baﬁa’ﬁ/mea’ﬁ'(v m)
0%V 0*Us 0*Vs
bhom/ Jeq Z/{m e I hom/ , )d /
* bagars Cas )8xa/3xﬁ/ Capa’p 010018 0o Ox v (3.28)
oV~
:/faV da’ +—/X3dX/ fag> 3 —l—gaVa}d:E
w IC|
1 2 1 2
+|C|/CX3 al)(/wgaadfc'7 V Vi€ Hy(w), m=1,2, V3 € H3(w).
where
ag%%ﬁf = |C| / az]kl ex kl Xaﬁ) + M, )<€X,ij (Xév{g/) + M p ) ax,
A g = |C| / azykl exn(xs) — X3M;?lﬁ> (ex,z'j (xals) + M 7 ) X, (3.29)

hom B 1 at
i = g [ oun(exn(x5) = XaM) (exis () = XM ) ax.
Proof. Take ® =0 as a test function in (3.20). Replacing u by its expression (3.27)), yields

et (e 3 570 (entad) o0

Vs
6‘:100/ 31’5/

| |/fan$+/X3dX/ fa%+gaadx+/X3dX/gagV3d/

Taking into account the variational problems (3.26|) satisfied by the correctors, the problem (3.28]) with the homog-
enized coefficients given by (3.29)) is obtained by a simple computation. O

x M3 (ea/ 5(Vin) — X3 ) da'dX

Lemma 3.7. The left-hand side operator in Problem (3.28)) is uniformly elliptic.
Proof. Using formulas (3.29)) of the homogenized coefficients, we obtain

h h b h b h b b
aa%@/ﬁl’]—%’rg}ﬁ/ + baOﬂZ’ﬂ’TaﬁTg}ﬁ’ + ba%”g’ﬁ’Tg’LﬂTa’ﬁ/ + Ca%rg/ﬁ/TaﬁTa/ﬂ/
= / Qijkl (eX,kl(\Ij) + Mkl) (eX,ij (\I/) + Mij> dX, T(Tﬂa ng € ]\4'52><2
C

where
M = (s = Xamlg) M®P, W =70l + TasXhs:
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Then, in view of (2.2)) and following the proof of [9][Lemma 11.19], we obtain
h h b h b h b b
aa%’rg/ﬁ/'ro%’ryﬂ/ + ba%’rg/ﬂ’TaBT(Z}ﬁ' + ba%rg/B/To%Ta/B/ + Ca%”z'ﬁ/T(xﬁTa/ﬁ’

ZCO/ (eX,ij (\I/) -+ Mlj) (BXJ‘]‘ (\I/) -+ Mz]) dX 2 C(T(%T(% -+ T(ZBT(I;ﬁ)' D
C

4 Periodic beam

4.1 Notations and geometric setting

Let C € R? be a bounded domain with Lipschitz boundary and L be a fixed positive constant. In this section,
we also assume that the interior of C U (C + e3) is connected and C N (C + e3) = (). The beam-like structure is

N-1 L

Q::interior( U e(ies +6)), =
i=0

We choose as centerline of the structure the segment whose direction is e3 and origin the center of mass of the first
cell (thus the other centers of mass are also on this segment). The orthonormal basis (e, ez, e3) is chosen in such

I, :/ z2 dz.
C

Concerning the directions e; and es it is important to note that they do not necessary correspond to the
principal axes of inertia.
The space of all admissible displacements is denoted by V.

way to get / r1x2 dr = 0 and we set
c

V.={ue H'(Q:)? |u=00nT.}, where I'.=(cC—ee3)NeC.

Here also, we are interested in the elastic behavior of a structure occupying the domain €2} and fixed on the part
I'c of its boundary. The constitutive law for the material occupying the domain 2} is given by the relation between
the strain tensor and the stress tensor

o5 (u) = agjyen(u) Yu e Vo,

where the coefficients aj;;, are given in Subsection

Let f and g be in L?(0, L)3, we define the applied forces f. € L*(2%)? by

Jea(z) = (52f1($1) + 37293(56‘1))
feo(z) = (2 fo(z1) — 2193(71))
fs,s(ff) = (€f3($1) —x191(21) — $292($1))|Q;,

QF
Qr, for a.e. z € Q. (4.1)

The unknown displacement u. : QF — R? is the solution to the linearized elasticity system

V-0o(us) =—f in QF,
ue =0 on T.NQz, (4.2)
0% (ue) - ve =0 on ONI\T,,

where v. is the outward normal vector to 9.
The variational formulation of problem (4.2)) is

Find u. € V. such that,

/ o°(ue) s e(v)de = fe-vda, Yv € V..

Q2
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4.2 The unfolding-rescaling operator

Definition 4.1. For every measurable function ¢ : QF — R3 the unfolding operator T is defined as follows:
* Zs3
T (6) (23, X) = ¢(5X1,5X2,5[?} + sxg) for a.e. (x3,X) € (0,L) x C.

Lemma 4.1 (Properties of the operator 7).
(a) For every ¢ € L2(Q2)

/ T (@) (23, X) dxsdX = % o(z)dz,
(0,L)xC € Jar (4.4)
1
172 (D) 20,2y xC) = g||¢||L2(Q;)~
(b) For every ¢ € H*(Q2})
T2 (Vo) (e, X) = TVXTX ()5, X) for . (25, X) € (0,) x C. (4.5)

4.3 Weak limits of the fields and the limit problem
Denote by HL(0, L), H2(0, L) the space of functions from H'(0, L), H?(0, L) respectively that vanish at 0 :

H(0,0) = {we H'(0,0) | u(0) =0}, HE(0,L) = {u e H*(0,L) | u(0) = /(0) = 0}.
Taking into account the results from Appendix (see Subsection the following decomposition holds:
ue(z) = UL(z) + Ue(x) = U (x3) + Re(x3) A (T1€1 + 202) + T (), for ae. z = (21,22, 23) € O, (4.6)
where U, R. € W1°(0, L) and satisfy U.(0) = R.(0) = 0. The displacement 7. belongs to V..
Lemma 4.2. The solution us to problem satisfies the following estimate:
le(ue)llLz(az) < C* (I1f 220,y + lgllz2(0,1))- (4.7)

Proof. Taking into account the estimates in Lemma [5.12] we have

[ v = | [ (@060 5 ra0sa) Qeate) ~ 2sReslas) + 72 (w)

+ (52f2(333) — x193(3)) (Ue 2(23) + 21 Re 3(23) + Ue 2())
+ (5f3($3) —z101(23) — $2g2($3)) (ue,B(‘r?:) + 22Re1(23) — 21Re2(23) +ﬂs,3($))) dff’

< 62‘ J1(w3)Ue 1 (3) diﬂ’ + 62‘ J1(w3)te 1 () dx‘ + ’ / 2393(23)Re 3(3) d:v‘

Q: Qr

+s2] fg(xg)us,z(zg)dz‘wﬂ f2(x3)a€,2(x)dx\+] / :L’%gg(xg)?—\’,ag(l‘g)dx‘
Qz Qz z

el [ palasttes(os) da] <] fg(xg)ag,g(x)dx‘+]/mx§g2(x3)ns,l(x3)dx‘

Qr

‘*“/ $%91($3)Rs,2($3)d$‘

Qr

< CeY| fillrz o, U1l 20,0y + CE N fill 2o,y [Tt | 220y + C*llgsll 20,0y |1 Re 3l L2(0,1)
+ Ce*|| fall 20,0y IUe 21l 20,y + C%(| f2ll 22 (0,1) I[Te 2l 22y + Ce*llgall L2 0,1y | Re 3]l L2 (0,L)
+ CE| fall 2o,y IUe 31l 20,y + C2[| f3ll L2 (0,1) I[Te 3l L2(022) + Ce*llg2llL2(0,L) | Re 1l L2 (0,L)

+ Ce*llgrllr20.0) | Re 2l 20,1y < CE2<Hf||L2(O,L) + ||9||L2(0,L)> le(w)llz2(az)-

and thus (4.7)) follows. O
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The strain tensor for the displacement wu. is

e(us) = e(US) + e(ue)

1 dus,l dRe 3 aﬂe,l 1 855,1 BU/E 2 1 855,1 BU/E 3
0 0 § d:L’g - RE 2= $2 d:vg 8I1 § ( 8:62 + le ) 5 8:E3 + 61?1 (4 8)
— 1 dUe,2 dRe3 Juc 2 1 [ Ouc,2 Juc 3 ’
* 0 2\ dzs + Ra 1+ T dzs + * Oxo 2\ Oz Oxo
dU. 3 dRe 1 dRc 2 e 3
* % das + X9 drs U1 g, * * Dzs

In order to simplify the expression of the strain tensor e(U¢), we define a new triplet (u., Ue, ©,). Set

3
U.(z3) = / Re(t) Aesdt, u_(x3) = U (x3) — Uc(x3), O, =R.3 forae x3€(0,L).
0
Then, one has

dRE,l o _d2U572 dRE,g o dQUg,l

dzs dz3 ’  dxs dz3
dU: 1 dUey —Uen)  du.y  dUe CdUep —U.p)  du.,
- Re 2 = - ) + RE 1 — - )
d$3 dIg dxg dl‘g ’ dl‘g dl‘3
U.3=0.
From now on, we have a new decomposition of the fields U¢(z
dUE 2
“drs
U(a) = . (w3) + Us(as) + df;;; (v161 + 7265)
(4.9)
U871(l‘3) + Ue 1 .133 .1‘2@ (
= Ue2(w3) + ue o(w3) + m1@ ( ) for a.e. z €
du;, U.,
U, 5(w3) — 21 5=t (3) — 220552 (w3)
and the strain tensor of the displacement U¢ is
1 [ du., de.
0 0 2 dzgl b2 dxs
e dﬂg
e(Us) = [+ o0 =2 +m Cflfg (4.10)
du, 5 d’U. 1 d’Ue. »
Ok dxzs -1 dz? L2 dz?
We note that boundary conditions on the decomposition are
dU. _ oF
u.(0) =U.(0) = 7 (0)=0.(0)=0, u.=0 forae zel.NOQ
T3
and also note that, since R. o, € HA(0, L), one has U, , € HZ(0, L).
Lemmas lead to the following estimates for the terms appearing in the decomposition of w.:
Lemma 4.3. For every displacement u. € V. one has
C
luellzo,y < *|| (ue)llL2(0s)s
(4.11)

1Ue.allzz0,0) + 1Ocllaro,) < g”e(ue)HL?(Q;) a=1,2
and
_ 1,
||Ua,3||L2(Q;)+||Vue||L2(Q;)+g||ue||L2(Q;)+5(|

5+ @) Vel 2z)) < Clle(uo)llp2z). (4.12)
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Lemma 4.4. For a subsequence, still denoted by {e},
(i) there exists U € H2(0, L)? such that the following convergences hold:

U. -~ U weakly in  H?(0, L),

S(U:) = U strongly in LQ((O,L);H2(0, 1))27
g(dx;) — j s strongly in LQ((O,L),Hl(o’ 1)>2,
(U dPU o, i
: ( dx? ) daZ  weablyin L ((0,L) x (0,1))%

(ii) there exists © € HL(0,L) such that the following convergences hold:
0. ~ 0 wedkly in H(0,L),
*(©.) = © strongly in  L*((0,L), H'(0,1)),

€

L (49N  dO , 5 .
(daj3> s weakly in  L*((0,L) x (0,1));

m

(iii) there exist u € H}(0,L)3, 4, € L*((0,L), H{ ,.,.(0,1)) (o = 1,2) such that

1
—u_ —u weakly in H'Y(0,L)3,
€

“(u.) = u strongly in  L*((0,L), H'(0,1))%,

m

*

Tx;; + 67)(3 weakly in  L*((0,L) x (0,1)),

[0}

(dyg,a> du,  Ou

dxg

m

M= 0= o=

d$3 dxg

(iv) there exists u € L*((0, L); H{ ., (C))? such that

1 * [— — .
?TE (@) ~u weakly in L*((0,L); H'(C))?
1
gT: (V@) = Vxu weakly in L*((0,L) x C)?

é’];*(e(ﬂg)) s ex(@)  weakly in L2((0, L) x C)°.

d d
(E>Ag weakly in L*((0,L) x (0,1)), i=1,..

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

Proof. (i)-(iii) From Lemma (formula (4.11), 3) and [8, Theorem 3.6], [, Corollary 1.37] it follows that there
exist functions U € HZ(0,L), © € HL(0,L), u € HE(0, L)3 such that convergences (4.13), (4.14), 5, (4.15), (4.16),,

(4.17) and (4.18), hold.

The functions R., u, ; are piecewise linear with respect to the variable z3, hence

(AR dR o
E(da:;),) do, ekly in L0, L) x (0, 1).

As a consequence

¢\ da3 dxs dxs dx?

7-6*(d®6> _ 7-5*<de ~e3> N 372 weakly in ~ L*((0,L) x (0,1)),

dl‘3 dZE3

1, d@673 dus . 2
()~ 0B ety L2(0.0)x (0.1)

From estimates ({.7) and (4.11)), there exists @, € L*((0,L), H{ ,.,.(0,1)) (o € {1,2}) such that

T (d@s a) du,  0Ou,

d.%'g dl‘g 8X3

20

d*U dR dR d*U
T*( 5):7'6*( = e;;)—\—/\egz— weakly in  L2((0, L) x (0,1

—2 4 =% weakly in  L?((0,L) x (0,1)).



(iv) From (4.12)), (4.4), and (4.5) it follows that

% (— 1,
72 (@e) | 20,0y x ) = gi|u€||L2(Q;) < Ce?
IV x T2 ()l 20,0y x ) = el T2 (V) || L2((0,0)x0) = Ve 12(02) < CE>.

and, thus, for a subsequence, still denoted by {e}, there exists w € L?((0, L); H'(C)) such that convergence ([4.19),
holds. The periodicity of w, that is w € L*((0,L), H{ (C)), can be proved in a similar way as in [6, Theorem 2.1].

1 e'r
From (L19), and (4), we have (LT9), and (L1 =

Let us introduce the following vector space:
Vo = {u € H'(0,L)°, Ue H*(0,L)*, ©® € H'(0,L)| w(0) = U(0) = —(0) = ©(0) = o} .

For every (u, U, ©) € Vs, we define the symmetric tensor E by

1(du de
00 o\ — X2 d,
Ew,U,0)=]% 0 %Z?Jr)ﬁ%

dug d? [U1 dU,
* ok X1 — X5

Lemma 4.5. Let u. be the solution to [A.2)). Then there are functions (u, U, ©) € Vi, u € L*((0,L), H{ ., C)?
that the following convergences hold

T (te,o) = Uy weakly in L2((0, L), Hl(C))7

1__, IR . 2 1

?7; (te,o —Uqp) = u, — X2©  weakly in  L*((0,L), H(C)), (4.20)
17;*(%3) g — Xy Uy _ y,dU: weakly in  L*((0,L), H'(C)),

€ ’ dxs dx3

é F(e(us)) = BE(u, U, ©) +ex(u) weakly in L*((0,L) x C)?,

(4.21)
1 ~ )
~T2 (05(u)) = aigua (Bua(w, U, ©) + exu(@)  weakly in L((0,L) x ©),

where the functions u, U, ©, U are the solution to the following unfolded problem:

/ aiy (Bra(tt, U, ©) + ex (@) (Eyy (V. W, Z) + ex.15 (®)) drsd X
(0,L)xC

2
AW, 4.22
:Z{|C| faWadx3+Ia/ [ T_g?’zi dmg}—i—C/ [3Vadxs, (4.22)
0,1) ©0.1) *

Vo e LQ((O7L)iH1,per(C)) ) (‘/7 VV, Z) € VM

Proof. From 4.14 1 2, 4.16)),, (4.18),, (4.19),, we obtain convergences (4.20]).
By virtue of 4.14) ., (4.16),, (4.18), ; we have

du de u

1 (00 iT;_XQd“ (00 =
STH(U) =5 [+ 0 o g Tolx 0 g
c % 2% ox dUl —2X5 d2U2 ’
dzs 1 * ok 0

3

Set
ﬂ1(1:))() +@1($37X3)
Uz, X) = | ua(z, X) + Uy (3, X3)
ﬂ3(x7X)

and thus (4.21); follows. Then, taking into account definition (2.3), we have (4.21]),.
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To obtain the limit problem (4.22). Let us introduce the following fields

(V,W, Z) e Vi
and take the test function in (4.3)) as
%Wl(ﬂﬁrs) + Vi(ws) — 2 Z(x3) Ve (z)
ve(z) =¢ Wo(x3) + Va(wz) + 2 Z(x3) +e%p(x3) | Ye2(z) |,
Vs (ws) — 2 G0 () — 22902 (5) Ve ()
where . (z) = ¢(f) v € Hi,,,(C)°. Then
19
av; dz )
- 0 0 ?(.ﬁg) % lileS 52 0 0 Twi'(/}l
6(1}5):5 * 0 Wi(x:‘er%E +5 * 0 %"/Q
Ok % - %dd?gfl Q%ddz? ook 2%1#3
our 1 (&m n awz) 1( 001 | 0 (4.23)
ax, 2\ax; T ax, 2lax, T ax,
oY 1( 0% oY
Tep | o« 9% 2o T ox,
* * gg’(i

Applying the unfolding operator 7.* to the stress tensor e(v.) (4.23]) and passing to the limit as € — 0, we obtain

37'6* (e(ve)) = E(V,W,Z) +ex(¢)p strongly in L*((0,L) x C)°. (4.24)
Unfold the left hand side of
1 1
/ o (u2) : e(v.) da = a/ T (0% (u2)) : T (e(v.)) davs dX = 53/ Lot ) : L1 (ew2) das dx.
Q: (0,L)xC (0,L)xC € €

Unfolding the right hand side of (4.3)) and applying (4.1)), we have

3
fevedr = 5/ T(f)TZ (ve) desdX =€ Z/ TX(fi)TS (ves) desdX
Q (0,L)xC = Jo

,L)xC
dW, dWs

= gS/ [f1W1 + foWa + f3V3 — X2293Z — X1293Z + X%gld— + X%ggT drsdX
(O,L)XC I3 T3

Hence, taking into account (4.21)), (4.24)) and the convergences obtained above, we can pass to the limit as e — 0
/ aijkt(Eri(w, U, ©) + ex (W) (B (V. W, Z) + pex () drsdX
(0,L)xC

2
dW,
:Z{|C|/ faWadx3+Ia/ [QUCT—ggZ} dx3}+\C\/ f3‘/3d$3.
o1 (0,L) (0,L) €T3 (0,L)

Finally, since the tensor product D(0, L) ® H{ ,,.,.(C) is dense in L*((0, L); H] ,.,.(C)), we obtain the limit problem
@29). 0

4.4 Homogenization
In this section we give the expressions of the microscopic displacement @ in terms of the macroscopic fields u,

U and ©.
Taking (V, W, Z) = 0 as a test function in (4.22)), we obtain

/ aijit (Eri(u, U, ©) + ex 11 (@)) ex,i; (®)) degdX = 0.
(0,L)xC
This shows that the microscopic displacement @ can be written in terms of the tensor E.
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Set

The tensors E(u, U, ©) have 6 components

d
E(u, U, ©) = Z I

XL
g=1 3

a=1

and introduce 6 correctors
Xi5 X X € Hi o o(C)? a=1,2,i=1,2,3,

which are the solutions to the following cell problems
/ XdX =0, / agga (ex 0 (g) + M )ex(®)dX =0, f=1,2,3,
c C
/ XadX =0, / aijrt (€, ki (Xg) - XQM%?) ex,ij(®)dX =0, a=1,2, (4.25)
c c

/ x®dX =0, / aijir (ex,m (X)) + XiMj3 — XoM}F) ex i () dX =0
C C

for all @ € Hiper(C)?’.
As a consequence, the function @ is given in terms of u, U, © as follows

3
du d*U, d
u(xs, X) = dfﬂxu - Z Xa o ——2xY + d—@X@ for a.e. (z3,X) € (0,L) x C. (4.26)
ps=1 u a=1 T3 T3

Theorem 4.1. The limit displacements (u, U, ©) € Vs is the solution to the homogenized problem
/L { hom d2UD¢ dea’ hom dyﬁ dVB/ 4 Chom@ﬁ bhom <d2UO‘ dVﬁ dﬁ d2Wa)
0

Gaa’ dz3  da? BB dxs das drs drs Pap dz? dvs = dzs dad
de d&*w, d*U,, dZ dug dZ de dV,
hom [e] o hom B B
—_— —_— b d 4.27
“« (dxg dz3 dz3 dx;»,) +oes (dx;; dzs + s drs da:3> } 3 (4.27)

L I
1, dWw,,
= {/ faWaodxs + */ [9&7 - 932} dx3} +/ f3Vadxs, Y(V,W,Z)ecVy.
0 IC| Jo das 0

where )
andr = @/c aij (M + ex ki (xa)) (M?JS +exii(Xar)) XaXo dX,

M 1 v l 5
15y | o ) (4 a2 5

1
com = @/ aijer (X1ME; — XoMG? + ex i (x©)) (XM — XoM}? + ex u(x°)) dX,
c

(4.28)
1 u
abhy" = ] /c aijr (M + ex i (X)) (Mff +ex,ij (XE)) XodX,
om 1
e = o O ) 0 0% K
bc hom = ‘C‘ / A5kl M}cl +ex kl(Xﬁ)) (XIM _XQMU +ex z]( 9)) ax.
Proof. We take ® =0 in . Replacing u by its expression (4.26)), for every (V, W, Z) € V) yields
du d?U, doe
=B
/ . az]kl(dx (Mfl +ex kl(Xg)) Xo—— e (Mkl +ex ki (Xa)) + dT?za(Xle? — XoM} + ex u (X®)>>
dVs W, 33 23 13\ 42
(d—M ~ X gt MY (xiv —XgMij)d—xB) dugdX
2
dW,
-2 {lol ] faWadz+ L[ a'gs - sz]dn} il [ plade,
= or) U drs (0.1)
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Taking into account the variational problems (4.25)) satisfied by the correctors, the problem (4.27)) with the homog-
enized coefficients given by (4.28]) is obtained by a simple computation. O

Lemma 4.6. The left-hand side operator in Problem (4.27)) is uniformly elliptic.
Proof. Using formulas (4.28]) of the homogenized coefficients, one obtains

atomrUrU 4 bhﬁ, TB 7'5, + om0 4 Zabg%mTUTB + 2actomrVr9 4 2bch°mrﬁ 2r®
= /C Qijki (ex,kl(\l/) + Mk:l) (eX,ij (V) + Mij) X,
where
M = (Tlg — X27'®>M13 + (7’2M + X176>M23 + (Tl N )M33
U = xoTe + X575 + x°7€, oy Tho ek, o f=1,2
Then, in view of and following the proof of [9, Lemma 11.19], we obtain
>

aggﬁn U U + bg%T,”Tﬂ Ty + chom0.6 4 2abhom UTB + 2achom U © 4 2bchom TRT

2/ Co (eXng(\I/) + Mkl) (eXJ-j (\I/) + Mij> dX > C(Tg + Tﬁﬂ-i- 7'9) (r,}[f, + TBH, + T®)
c

which ends the proof. O

5 Appendix

5.1 A lemma
For every open set O in RY and § > 0, denote O;"" = {z € O | dist(z, 00) > §}.

Lemma 5.1. Let O be an open set in RY and {¢.} be a sequence of functions belonging to H*(O™Y) (k is a fized
strictly positive constant) satisfying

el (oimey < C (5.1)

where C does not depend on €. We extend ¢. and V. by 0 in RN \ (9““ (extensions with the same names).
Then, there exist a subsequence of {€}, still denoted by {€}, and ¢ € Hl(O) such that

b — ¢ weakly in L*(0),
Vélom — Vé  weakly in L*(O)"
Proof. Tt follows from (5.1]) that there exist ¢ € L*(0) and ® € L?(O)Y such that (up to a subsequence still

denoted {e})
¢ — ¢ weakly in L?(0),

Voeloine — @  weakly in L*(o)N

Now, we show that V¢ = ®, so ¢ belongs to H*(O). Let O’ be an open subset of O such that O’ € O. If ¢ is small
enough, one has O’ C O, For all ¢y € D(O")", using the above convergences we obtain

Vo - pde=— | ¢ div(yh)de — — qﬁdiv(z/z)dx:/ d -1 da.

(ol (ol o’ ’

Hence ® = V¢ for every open set O’ strictly included in O. Thus ® = V¢ a.e. in O. So, we have ¢ € H(0). O
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\/*a Se an
5.2 Korn’s type inequality
See Section [2.1] for the main notations. We also denote (see figure

st ={eezN |e(¢+Y) ) &}
First, we recall the following lemmas proved in [9, Lemmas 5.22 and 5.35]:

Lemma 5.2. Let Q be a bounded domain in RN with Lipschitz boundary. There exists 69 > 0 such that for all
§ € (0,00] the sets Qi are uniformly Lipschitz.

Lemma 5.3. Suppose p € [1,+00). Let £ be a function defined on E.. There exists a constant C' which only
depends on p and 0N) such that

N
Sor <o Y uOr+>] Y e +e) — (F).

£€E, gexmint i=1 €2, ,

Proposition 5.1 (Poincaré-Wirtinger inequality). Assume Q is a bounded domain in RN with a Lipschitz boundary.
Then, the domains Q5" (resp. Q) with § € (0,8] satisfy a uniform Poincaré-Wirtinger inequality for every
€ [1,400), i.e., there exists a constant C independent of 6 (resp. €) (it depends only on p and 02) such that

lp = Maine (@)l Lr(ainty < ClIV@lLoiney, Vo € WHP(QFH),

. (5.2)
(resp. |l — Ma:(9)llriar) < ClIVeliror), Vo€ WH(QD)),

where
1 1

Main () = T S o(z) dz, (resp.  Ma:(p) = @l Jq o(z)dz).
s € <

Let ® be a displacement in Wl’p(Cj)N, p € (1,400) and j € {1,...,N}. Applying the Korn inequality in C
and C + e; gives two rigid displacements R, o, R;1

Rjo(z) =a;0+Bjoz,

ajo, aj1 €ERY, zeRY
Rji(z) =a;1+Bj1(z —ej), n ’ ’
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where B o, B; 1 are antisymmetric N x N matrices. One has

[ —Rjollwirc) < Clle(®)|zr(c),

(5.3)
[® = Rj1llwir(cre;) < Clle(®)|Lr(cre))
where the constant depends only on C.
Lemma 5.4. The following estimates hold:
B.1 —B,g| <C|le(® N,
B 50l = Clle(®) s e)) j=1,...,N, (5.4)

a1 — a0 = Bj1e;l < Clle(®)| e (c)),
where the constant C' depends only on C.

Proof. Since the domain Cj; is connected with a Lipschitz boundary, it satisfies the Korn inequality. Hence, there
exists a rigid displacement R ;

Rj(x)zaj—i—Bj(x—ej/Z) ajERN, reRY
where B; is an antisymmetric N x N matrix. It satisfies
@ — Rjllwir(c,) < Clle(®)|zr(c;)- (5.5)
where the constant C' depends on C;. Hence, by (5.3) and (5.5)
IV(R; —Rjo)llr(c) + [IV(R; — Ryj1)llLr(cre;) < Clle(®)zr(c;)- (5.6)
Taking into account the inequality (5.6[), we obtain

IB; — Bjol < CIV(R; —Rjo)llzr(c) < Clle(®)||Lr(c;)s

(5.7)
IB; —Bj1| < C[[V(R; — Rj1)[lLr(cre;) < Clle(®) | ze(c))-
Subtracting yields (5.4);.
Now we prove (5.4])s. First observe that
1 1
Haj T30~ §Bj ejHLP(C) = Haj +B (- §ej) ~ (a0 + Bj’O)HLP(C) * HBj - Bj’OHLp(C)' (5:8)

Besides, one has

1
Haj +B; (- —5e) — (a0 + Bm)’ =R = Rjoll o) £ [12 = Ril ooy + 12 = Rioll 1oy

L?(C)
<[le- RJ'HLP(Cj) +le - RFOHLP(C) < Clle(®)]|Lr(c))-
The previous estimate together with and give
‘aj —aj0 — %Bj ej‘ < Clle(®)l e (c,)-
Similarly we obtain
‘aj —aj1+ %Bj ej‘ < Clle(®)l e (c,)-
Hence 2 holds. O

Now, let u be a displacement in Wl’p(Q:)N. By the Korn inequality in (£ + C) there exist rigid displacements
REE (f € Ee)
R.¢(z) = a(e€) + B(&€) (x — €8), zeRN

such that (using (5.3) and after e-scaling)

[V(u—=Ree)l|zr(c(e+c)) < Clle(u)llrr(ce+c))s
[u = RegllLr(c(e+c)) < Celle(w)l|Lr(c(e+c))-
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As above we obtain the following estimates for every & € = ;:

[B(e€ + cer) — B(e€)| < C=™7le(w)| .
[a(e€ + cer) — a(e€) — eB(et + ceser] < O le(w) |,
where C¢ = interior ((C + &) U (e; + £ + C)).
As immediate consequence of Lemma we have

Lemma 5.5. The following estimates hold:

2152 (e€ +cei) = B(eE) Y < Clle()l 0z

2 €Eci

N

2 Slalet +zei) — al=t) — cB(eE + ey el < CePew)[7, o,

i=1 €€, ;
where the constant C' depends only on C.

Let € be in Z.. If all the vertices of the parallelotope (£ +Y) belong to Z., we extend the field a (resp. B) in
this parallelotope as the ()1 interpolate of its values on the vertices of the parallelotope.
We obtain a field, still denoted a (resp. B), defined at least in Q;Zt\m It belongs to WlOO(Q;Zt\F) (resp.
Wl oo(ant )N><N).
2evVN

Lemma 5.6. For every displacement u € W1P(Q2)N one has

C
IVBIlLraine ) < ;H@(U)HLP(Q;),
HVa—BHLp(Qm < Clle(u)|lLr(os) (5.10)

le@)l o aene <G||(>||LP<Q;>,

where the constants do not depend on .

Proof. A straightforward calculation and the estimates in Lemma [5.5| E yield -1 2. Then (5.10)2 gives (5.10))3
(recall that B is an antisymmetric N x N matrix). O

As a consequence of Lemmas [5.2 and [5.6] one has

Lemma 5.7. There exists an antisymmetric N x N matriz B such that
> B = BIPeY < Clle(w)l}0 s (5.11)
§EE.

where the constant does not depend on €.

Proof. Since the boundary of Q;Zf/ﬁ is uniformly Lipschitz, the Korn inequality and (5.10))3 give a rigid displacement
R such that

la =Rl|y0gqine ) < Clle@] oo ) < Clle@llzr@z).

Then (5.10)2 and the previous estimate lead to

B~ VR, g0 < Cllet)linon
Set B = VR. Hence

Z B(c€) — BIPe™ < Clle(u )”L:D(Q )

geEéni

The first estimate in Lemma together with the above and Lemma yield (5.11)). O
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We assume that there exists a domain ' with a Lipschitz boundary such that Q C Q' and Q' NoQ =T.
Set o
WP (@) = {p e WHI(QL) | 30/ € WHH(QL), & = tfg., @ =0in QU \ DF},

where
Q= interior( U (e€ + 86)), EL={¢€Z’ | (€+eY)NQ #0}
==

Proposition 5.2 (Korn inequality). For every displacement u € WIP(QHN  p € (1,4+00), there exists a rigid
displacement R such that
lu = Rfwrror) < Clle(u)]e@r)- (5.12)

Furthermore, if u € WrP ()N then
lullwrr@z) < Clle(w)llLe sy, (5.13)

where the constants do not depend on .

Proof. Estimates ) and ( - ) lead to
[Vu — Bl Lrax) < Clle(u)||Lrz)-

Then, using this estlmate and the Poincaré-Wirtinger inequality (5.2 . we obtain
If u belongs to W, ’p(Q*) , applying the previous result - with u’ (resp. Q ) in place of u (resp. Q) gives
a rigid displacement R’ such that
[u" = R lwiwr) < Clle(u)||Le@)-

Let O be an open set such that O € (Q’ \ﬁ) For € small enough, the function u' vanishes in O N QL. Hence

IR lw.rona) < Clle(u)|| Ly s
which allows to obtain an estimate, independent of &, for the components of R’. And thus the estimate (5.13)
follows. H

5.3 Korn’s type inequality in a plate-like domain

In this subsection the proofs of the lemmas follow the same lines as the proofs of those in the previous subsection.
The notations are those of Subsection [31] We recall that C is a domain with Lipschitz boundary included in
Y = (—1/2,1/2)% and satisfying C; = interior(C U (e; + C)), j = 1,2, connected.

Here the notations are
o . ={(eZ? | (€+eY)Nw#D}, Eca={(€E. | {+ea €l }, a=12,

o EM = {teZ? | (e£+¢eY’) Cuwitt},

o O = interior( U (e€ + 66)), Qint = interior( U (e€ + 86))

EEEL gegint

Let u be in HY(Q7)3. For every £ € =, there exists a rigid displacement R
Ree(x) =U(6) + R(E) N (x — )z €R?,
such that

[V(u = Ree)llL2ce+0) < Clle(Wllr2eeray), v —Regllrzeercy) < Celle(u)l 2 rc))- (5.14)
Remark 5.1. By construction, the fields U, R are piecewise linear in each cell.

In a similar way as in Lemma [5.5] we obtain
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Lemma 5.8. The following estimates hold:

2
DoY) Rt +cen) — RGP < Clle(w)l|Fa(qny, = 1,2,
S (5.15)
Z D U+ ceq) —U(EE) — eR(eE + ceq) A ea|’e® < Ce?|le(u)]|72(0z)-
a=1¢€E; o
The constant C' depends only on C.
int

As in the previous subsection, using (); interpolation we extend the fields # and R to the whole domain wj?
and obtain two fields U € W1 (wir*)? and R € W (wirt)? satisfying

3¢
U(E) =U(E), R(e€) =R(e€)  VE € E-Nwil.
Define the displacement U€ by
U¢(z) =U(2") + R(z") A z3e3, Vo e QI 2l = (w1, 22).
Lemma 5.9. For every displacement u € H'(Q})? we have

C
IVRI| L2 (winty < m”e(u)ﬂw(ag),
(5.16)

C
H———RA% < sl a=1.2.

Oy

L2( znt)
The constant C' depends only on C.

Proof. Estimates (5.16|) are the consequences of ((5.15)) and the fact that the fields & and R are piecewise linear on
every cell. O

Theorem 5.1. For every displacement u € H(Q})3 there exists a rigid displacement R. such that

C
ua — Rallrzaz) < Clle(u)l|r2z), Jus — Rallzz(az) + V(v = R)|[L2(0x) < ;||€(U)||L2(Q;)~

The constant C' does not depend on €.

Proof. From Proposition there exits (b1, be) € R? such that
C
[Ra = ballL2(iny < ﬁ”e(u)an(Q;)' (5.17)
Then, the above estimate, (5.15)); and Lemma yield

D |Ra(e€) = bal?e® < *|| (W)l z2(0z)-

EGE:—:
Besides, 2 and ( - ) lead to
oUs oUs C
— < — « =1,2.
Haxl ’L2(w§"t) Hc’m 1’ L2(wint) — gl/2 leCllza@z), =1,

Proceeding as above, there exists az € R such that

5 C
Z |U3(€f) — a3+ b2€£1 — b1€§2|2€3 S §€||€(u)||L2(Q;).

§E€EL
From ([5.16))2 we also obtain
#1212+ 2 St
Oz llL2(wint Oz Il L2 (wint Oy | Oxy lL2int) — £l/2 Lraz)-
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Since the boundary of wi? is uniformly Lipschitz, the 2D-Korn inequality gives a rigid displacement 7(xq,z2) =
(CLl - b3.’172>el + (ag + b3$1)€2 such that

C
I — 71l g winty + Uz = 72|l 1 (wint) < m||e<u)||L2(Q;)-

3e Wae

These estimates and (5.16))2 imply that

C
IRs = bslluzugzy < zallellzaon

Then, as above we obtain
C
Z |Rs(e€) — b3|263 + Z U (e€) — ay + b3€§2|253 + Z |Us(e€) — ag — b3€£1|2€3 < ;||e(u)||Lz(Q;).
£EE. §E€E. §EE.
By choosing R(z) = a + b A z and using (5.14]) that ends the proof of the theorem. O

Let v be a subset of dw with a non null measure. Assume that there exists a domain w’ with Lipschitz boundary
such that

/

wCw and W NOow=r.

Denote _
V. = {v e H\(Q)? | 3 € HY Q) v=1lg,, v/ =0inQ \ Q}

where
O = interior( U (€ + Eé)), EL={¢e€ 77 | (e€+eY)Nuw # 0}.

§EEL
Theorem 5.2. For every displacement u in V. one has
C
lluillz2(az) + luzllz2(@:) < Clle(w)|l L2 (o), llusllz2(oz) + IVl L2 () < ;HG(U)HL?(Q:)~ (5.18)
The constant C' does not depend on €.

Proof. Since u belongs to V., there exists u’ € H(2.*)3 such that u = uiQ*, ' =0in Q* \ Qf. Then, applying
Theorem with «’ (resp. ') in place of u (resp. Q) gives a rigid displacement R’ such that

C
lue = Rallzzr) < Clle(llzzon,  llus = Rallzzor) + IV = R)llz@r) < Zlle(@)llz@y.  (5.19)

Let O be an open set such that O € (w'\©). For ¢ small enough, the function v’ vanishes in O x (—¢/2,£/2) N QL.
Then the terms of its decomposition Y’ and R’ vanish in O too. Hence, one can choose R’ = 0 without changing

the estimates (5.19). So, (5.18) follows. O

As a consequence of the two previous theorems, one has

Corollary 5.1. For every displacement u in V. the following estimates hold:

C
il gy + W2l oy + IRl s gy < 7z lle(@llzzcar),

C 5.20
sl iy + IRl iy + IRelar iy < 7 lle(@lzages, (5:20)
[Tl L2 (@inty < Celle(u)| L2y, [Vl L2(qinty < Clle(u)||r2az)-

and

C
Yo IRIEOPE + Y [Ra(e6)Pe? + ) Ua(e6) e < Slle@lzz:),

£eE, §EE. §E€E,

o (5.21)
Z [Rs(e€)%e® + Z th (e€)%* + Z Us(£€)[?e* < ;HG(U)H%‘Z(Q;)-
§EE. §EE. £EE.

The constants do not depend on €.
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5.4 Korn’s type inequality in a beam-like domain

In this subsection the notations are those of Subsection F1l

For every displacement u € H'(7)3, the Korn inequality applied in the domain (¢ + C), £ € Z,, gives a rigid
displacement R.¢

R.¢(z) =U() + R(e€) N (x — €§) z e R3
such that
[V(u = Reg)llL2e(e+0)) < Clle(W)ll 240y v — Reellrzee+c)) < Celle(u)l L2 ¢+c))- (5.22)
Remark 5.2. By construction, the fields U and R are piecewise constant.
In a similar way as in Lemma we obtain

Lemma 5.10. The following estimates hold:

D IR(e€ +ces) — R(€)%e® < Clle(w)|F2 ),

€.

D U6 + ces) —U(e) — eR( + es) A esl’e® < Ce?|le(u)||72 (-
€.

(5.23)

The constant C depends only on C.

Set
R(Ne) =R((N — 1)), U(Ne)=U((N — 1)) + eR(Ne) Nes.

Now, using @Q; interpolation, we extend the fields i and R and we obtain two fields &, R belonging to W1:°°(0, L)3
and such that

UEs) =UES),  R(e€) =R(eE),  vEe€{0,...,N}.
Define the displacement U€ by

U(z) = U(z3) + R(z3) A (161 + 22€2), Vo e QF.

Lemma 5.11. For every displacement u € H*(Q5)3 one has

C
> §||6(U)|\L2(Q;),

Hd:cg L2(0,L)

L I C&‘ e ( 4)
< —

H (U°) HL2(Q;) < Clle(w)|z2@z)-

Moreover,
[V(u=U%)r20:) < Clle(u)llr2z),  lu=Ur2ar) < Celle(u)| r2(az)- (5.25)

The constant C' depends only on C.

Proof. Estimates (5.23) yield (5.24)1 2. A straightforward calculation and (5.24); 5 lead to (5.24)5. Then taking
into account (5.22)) we obtain (5.25)). O

Denote

H(0,L) = {¢ € H'(0,L) | $(0) = 0}.
Lemma 5.12. For every displacement u € V. one has
C
[Usllmro,0) + e (Il a0,y + IWell o,y + IRl z2(0,1)) < ;HG(U)HH(Q;) (5.26)

and
us|l2s) + €(luall L2y + lluall L2y + [IVullL2x)) < Clle(u)||L2qs).- (5.27)

The constant C' does not depend on €.
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Proof. We extend u by 0 in the cell 8( —e3 + C). Then, proceeding as in Lemma we obtain

[RO)e* < Clle(u)lZ2ir):  U0)]e® < Ce?[le(w)l|72(qy)-
Without losing the estimates (5.24)), we set U (0) = R(0) = 0. Estimates (5.26) are the immediate consequences of
(5.24)1,2 and the Poincaré inequality. Finally (5.22]) and (5.26)) lead to (5.27). O

As a consequence of the previous lemma and (5.22)), we have the following decomposition of a displacement
u € Vg
u=U°®+u,
where
Ue(l') = U($3) + R(.ﬁg) VAN (3?161 + l‘g@g), Vx € Q;, U, R € H(O,L)3
and the displacement u € V. satisfies the estimates
@l 2(:) < Celle(u)|l2(sy, IVl L2(:) < Clle(w)lL2(az)- (5.28)

The constant C' does not depend on .
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