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A numerical approach is presented to study and analyze the winding influence on the vibration problem of electrical machines. A 

multiscale homogenization method is developed to model the mechanical response of the winding structure, which is hard to be finely 

modeled. Associated with a magneto-mechanical formulation, this approach allows analyzing the mechanical deformation and vibration 

problem of electrical devices. The computational method has been applied to the magneto-mechanical analysis of a switched reluctance 

machine. The results show the importance of considering the windings in the vibration analysis of electrical machines. 

  

 
Index Terms—Finite element method, homogenization, magneto-mechanical effects, winding, vibration  

 

I. INTRODUCTION 

LECTRICAL energy in the transport sector is becoming 

increasingly important as more and more electromagnetic 

devices are put into service. However, most electromagnetic 

devices, particularly electrical machines, can present problems 

when exposed to high operating constraints and mechanical 

vibrations. Among the sources of mechanical vibrations, those 

of electromagnetic origin constitute a complex phenomenon 

combining electromagnetism and mechanics [1], [2]. Thus, a 

magneto-mechanical formulation and numerical tools are 

necessary to study mechanical interactions in electromagnetic 

devices. 

An electromagnetic device can be divided into two parts: an 

electric excitation part (such as windings) and a magnetic 

conducting part (such as ferromagnetic core). In the magneto-

mechanical modeling of electrical devices, the winding is 

generally not considered in the analysis of deformations or 

vibrations of the structure due to its topological complexity, 

meaning that the winding mechanical influence is neglected [3], 

[4]. However, the winding, due to its elastic properties and 

mass, directly impacts the mechanical response of the structure. 

In order to consider the winding influence, especially for 

solving the mechanical problem, two main methods have been 

used to date: 1) consider a fine mesh of the heterogeneous 

winding domain [5] and 2) consider an additional mass of the 

winding domain [6]. The first method is suitable in the study of 

high-power machines whose windings are made by copper bars, 

and in the end-winding modeling. However, for conventional 

windings made by winding copper wires, this method requires 

a very fine mesh in the area associated with the winding, which 

significantly increases the computation time. To deal with the 

winding modeling problem in the mechanical analysis of 

electrical machines, the second method equates windings to an 

increase of the pole mass. Therefore, this method does not allow 

us to consider the elastic behavior of the winding, which 

impacts the response of the structure, nor to take into account 

the forces acting on the winding. This method can only provide 

a rough evaluation of the winding influence. 

To solve the winding modeling problem and analyze its 

impact, this paper proposes to consider the winding by a 

homogenized electromagnetic and mechanical behavior. For 

this purpose, a homogenization method is used to compute the 

effective mechanical properties of the winding area. Thus, with 

a magneto-mechanical formulation, the global deformation and 

the stress distribution can be calculated in both parts (magnetic 

circuit and windings) of the device. The winding effects on the 

vibrations of electrical devices are then analyzed by considering 

the presence of the winding, thanks to its homogenized 

behavior. Finally, this numerical analysis approach has been 

applied to the magneto-mechanical analysis of a switched 

reluctance machine. 

II. MAGNETO-MECHANICAL FORMULATION 

To perform the mechanical analysis of electro-technical 

devices, a classical magneto-mechanical computational 

procedure based on the finite element method (FEM) is used. 

The magneto-mechanical formulation contains three steps, as 

illustrated in Fig. 1. The first step is to solve the magnetic 

problem by the finite element method with a classical magnetic 

vector potential formulation. After the magnetic problem is 

solved, the second step is to compute the magnetic force 

distribution by the virtual work method. The nodal magnetic 

forces associated with mesh nodes are computed from the local 

derivative of the Jacobian matrix. Once the local magnetic 

forces are computed, the mechanical problem is solved for the 

mechanically active parts using a displacement vector 

formulation. 

A. FEM Formulation for Magnetic Problem 

The first step is to solve the magnetic problem. Starting from 

the magnetostatic phenomenon [7] for an example, the weak 

formulation of the problem is 
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where A  is the magnetic vector potential,   is the inverse of 

the magnetic permeability of materials, ew  is the test function 

and J  is the current density. 
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The magnetic vector potential A  can be represented as first-

order edge element interpolation [7] as 
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where ew  is the test function of edge element j , jA  is the 

tangent component of magnetic vector potential A  on this 

edge, and eN  is the number of edge elements in the regions 

mesh. By applying the Galerkin method, the final algebraic 

solution system is 
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is the second member associated to the current source and  A  

is the unknown magnetic vector potential at each DOF. 

B. Nodal Magnetic Force Computation 

After the magnetic solution is obtained, the second step is to 

compute the magnetic force distribution. Among a large 

number of electromagnetic force calculation methods, the 

virtual work method can directly calculate the magnetic force 

distribution at each node of the mesh. Such a method is the most 

suitable for the following mechanical problem solution. By 

applying the principle of virtual work method, the nodal 

magnetic forces associated with mesh nodes are computed from 

the local derivative of the Jacobian matrix [8]: 
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where u  is a virtual displacement imposed at each node. 

Assuming the magnetic flux is kept constant, which is achieved 

by maintaining constant the circulation of the magnetic vector 

potential on the edges of the element (according to the Stokes' 

theorem), the magnetic energy     
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be used to calculate the magnetic force at each node. 

C. FEM Formulation for Mechanical Problem 

Once the local magnetic forces are computed, the mechanical 

problem is solved for the mechanically active parts using a 

finite element displacement formulation. 

  { } { }nK u f  (5) 

where K  is the system stiffness matrix, { }nf  is the nodal 

forces which are computed in second step and { }u  is the 

unknown displacement field. The mechanical active parts 

include magnetic cores and windings. 

III. WINDING HOMOGENIZATION 

From an electromagnetic point of view, the winding 

homogenization problem is trivial: the winding being 

traditionally considered as a homogeneous region with an 

adapted current density. Similar to the electromagnetic 

homogenization method, the mechanical homogenization is to 

find out the effective homogeneous properties of the 

heterogeneous domain. 

 

The periodic homogenization method has been chosen, 

which presupposes a regularity of the winding. As illustrated in 

Fig. 2, the principle of the multiscale periodic homogenization 

method is to select a unit cell that can generate the whole 

heterogeneous macroscopic domain by repetition [9]. The 

method consists of solving an elementary problem of elasticity 

on the unit cell and computing the average of mechanical results 

to construct the relation between the macroscopic scale and the 

unit cell. The elasticity problem on the unit cell consists of 

solving 
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where the   and   are the microscopic stress and strain in the 

unit cell, and c  is the stiffness matrix of the unit cell. In the 

elementary problem, 
0E  is the applied macroscopic strain 

source, and 
*

u  is the local displacement to be calculated. 

Once the elementary problem is solved, the local 

displacement 
*

u , calculated in relation with a macroscopic 

deformation applied to the unit cell, allows determining the 

local strains and stresses. Then, with the averaged microscopic 

stress  , the global homogenized stiffness matrix 
hom

C  

can be expressed as 

        hom *

0 0: :x x x   C E c u E  (7) 

The computational procedure is shown in Fig. 3. For a 

winding homogenization problem illustrated in Fig. 2, the 

heterogeneous winding area, consists of three phases: copper 

conductors, polyimide layers outside the conductors, and epoxy 

to enhance the insulation ability. After running the 

 
 

Fig. 1. Computation procedure of a magneto-mechanical coupling problem. 

 
 

Fig. 2. Illustration of the multiscale periodic homogenization method: (a) the 

macroscopic winding area and (b) its microscopic unit cell. 



 

 

homogenization procedure in the developed computational 

platform, the effective properties are illustrated in Table I. 

To validate the homogenization procedure, the mechanical 

strain energy is calculated in a heterogeneous winding domain 

and the corresponding homogenized one. The heterogeneous 

winding considered is a rectangular domain, composed of 9 unit 

cells according to the vertical edge and 10 unit cells according 

to the horizontal edge, as illustrated in Fig. 4. The problem is to 

impose a displacement on a vertical edge while keeping the 

second one fixed. Several meshes from coarse to fine have been 

considered for the homogenized domain. 

The differences in the strain energy between the 

heterogeneous and the homogenized winding domains are 

presented in Fig. 5. The results show a good agreement of the 

homogenized procedure, even for a coarse mesh. The 3\% 

difference is due to border effects where the homogenized 

properties do not represent well the border of the heterogeneous 

medium. For a larger heterogeneous medium, the difference 

would be much smaller. Moreover, the homogenized domain is 

robust, and the mesh does not have a significant influence on 

the results. 

IV. FINITE ELEMENT VIBRATION ANALYSIS 

To analyze the impact of the winding on the mechanical 

vibration, responsible for the acoustic noise emission of electric 

machines, a modal analysis [10] is performed. The method 

allows evaluating the global displacement of a given node by 

summing the displacement associated with individuals modes. 

Considering an undamped problem, the general equation of 

motion is given as: 

    { } { } { } M u K u f  (8) 

with the mass and stiffness matrices defined for each element 

by: 
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where  e x eB N   is the strain-displacement matrix, eN  is 

the nodal shape function and C  is the elasticity matrix of 

element e  calculated by the homogenization procedure for the 

winding. 

The free-vibration solutions of the structure, assuming that 

the solutions have a harmonic shape, lead to the eigensystem: 

  { } 0i i K M u  (10) 

where i  is an eigenvalue associated to eigenvector { }iu . 

The solution of the equation gives a set of natural frequencies 

for each vibrational mode, and the associated eigenvectors 

corresponding to the displacements of each node under a 

specific vibration mode. 

V. APPLICATION EXAMPLE: VIBRATIONAL ANALYSIS OF A 

SWITCHED RELUCTANCE MACHINE 

The proposed computational approach is applied to a 

switched reluctance machine (SRM). The SRM has six poles to 

the stator and four poles to the rotor (rotor diameter 34 mm, 

stator diameter 64 mm, air gap 0.4 mm, and stator thickness 5 

mm). A 2D resolution of the magneto-mechanical problem is 

 
 

Fig. 3. Computational procedure of the periodic homogenization method. 

 
 

Fig. 5. Winding homogenization convergence results. 

 
 

Fig. 4. Illustration of the winding domain to be homogenized: a) 

heterogeneous winding, b) mechanically homogenized winding. 

TABLE I 

WINDING HOMOGENIZATION RESULTS 

 

Original heterogeneous winding 
Homogenized winding 

(Orthotopic material) 

Material 
Young's Module 

 E / GPa 

Young's Module 

E / GPa 

Copper 120 Exx = 10.48 

Polyimide 2.5 Eyy = 10.45 

Epoxy 3.2 Ezz = 62.42 

Material Poisson’s ratio Poisson’s ratio 

Copper 0.33 vxy = vyx = 0.374 

Polyimide 0.34 vxz = vyz = 0.055 

Epoxy 0.34 vzx = vzy = 0.333 

 



 

 

considered, assuming a plane deformation hypothesis. Figure 6 

shows the machine geometry, the magnetic flux density 

distribution, and the local magnetic force distribution in the 

stator at an operation instant. 

The Von Mises equivalent stress is evaluated after solving 

the mechanical problem on configurations with (Fig. 7a) or 

without (Fig. 7b) the presence of the windings. A significant 

difference appears in the distribution and level of equivalent 

stresses. A difference of 18% on the average Von Mises 

equivalent stress is observed between the unwinding 

configuration ant the winding configuration. 

Of course, the winding also affects the vibration modes of the 

machine structure. Thanks to the homogenization procedure 

presented in section III, the free-vibration mode values of the 

SRM chosen structure, with or without winding, are presented 

in Table II. The results show that for all the six first vibrations 

modes, a significant difference is obtained on the frequency 

values. The related mode shapes (Fig. 8) are slightly different 

when considering the presence of the winding on the stator. 

This results in differences (between unwinding and winding 

configurations) on the maximum displacements of the stator 

outer surface between 27% and 48% depending on the 

deformation modes. 

The presence of the winding, therefore, results in a shift in 

the free-vibration modes and a significant reduction in the 

associated displacement of the stator outer surface. 

VI. CONCLUSION 

In the paper, a numerical approach for electrical machine 

vibration analysis is presented to study the winding influence 

on the mechanical response of electrical machines. The 

numerical approach is based on a finite element magneto-

mechanical formulation and a periodic homogenization to 

define the effective mechanical properties of the winding 

domain in electrical devices. This approach has been applied to 

an SRM for which it is clearly highlighted the importance of 

taking into account the presence of the winding in the vibration 

analysis of electrical machines, which results in a shift in the 

frequencies of the deformation modes and a reduction in the 

amplitudes of the associated deformations. 
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Fig. 7. Mechanical deformation and stress distribution in stator: (a) 

considering the homogenized winding and (b) without considering the 

winding domain. 

 
 

Fig. 8. Vibration mode shapes of the machine at the first four natural 

frequencies (considering the homogenized winding and without considering 

the winding domain. 

 
 

Fig. 6. Application example of a switched reluctance machine: (a) the 

geometry, (b) the magnetic flux density distribution, and (c) the nodal 
magnetic force distribution in the stator (winding included). 

TABLE II 

NATURAL FREQUENCY VALUE COMPARISON 

 

Mode 
With homogenized 

winding domain (Hz) 

Without winding 

domain (Hz) 
Difference 

1 1148.967 1109.785 3.53% 

2 1947.022 1805.582 7.83% 

3 2835.105 2951.513 -3.94% 

4 3538.308 3553.135 -0.42% 

5 6102.200 5630.270 8.38% 

6 7363.029 6269.792 17.44% 

 


