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Lax-Wendroff schemes for elastic-plastic solids

Thomas Heuzé

Research Institute in Civil and Mechanical Engineering (GeM, UMR 6183 CNRS)

École Centrale de Nantes, 1 rue de la Noë, F-44321 Nantes, France

Abstract

Two formulations of the Lax-Wendroff scheme are proposed in this paper for its extension to
elastic-plastic solids. The unknown vector consists of the strain or stress components in addition
to the velocity ones according to the chosen formulation. The Lax-Wendroff scheme is here
implemented in its Richtmyer two-step version so that the projection of the elastic trial stresses
onto the yield locus is performed twice per time step. It is shown that it allows to reduce the
number of cells required for the approximation of discontinuous plastic waves with respect to
a classical one-step strategy consisting in an a posteriori projection of the elastic trial stresses
onto the yield locus. Elastic-plastic associated and non-associated constitutive models under
small strains are considered in examples. In particular, dynamic ratchetting is simulated with the
Armstrong-Frederick nonlinear kinematic hardening. Comparisons with respect to finite element
numerical solutions show good agreements.

Keywords: Elastic-plastic solids, Lax-Wendroff, Associated and non-associated plasticity

1. Introduction

The simulation of impacts on solids finds many applications in different domains such as
crash or high speed forming processes. They are modeled by means of hyperbolic initial bound-
ary value problems, whose solutions consist of possibly discontinuous waves that are important to
be tracked in order to properly understand the physical phenomena occurring in impacted parts.
Indeed for solid-type media, waves can propagate both continuous and discontinuous solutions,
as well as large strains and irreversible phenomena. Further, wave paths provide information
about the loading history undergone by each material particle in time, which in turn allows to
compute the residual strains and stresses once the steady state is achieved.

The numerical simulation of impacts on dissipative solids has been and is again mainly per-
formed with the classical finite element method coupled with the centered differences or New-
mark finite difference schemes in time [1, 2], which is implemented in many industrial codes.
Indeed, the finite element method enables an easy management of nonlinear partial differential
equations, especially for solid-type media for which history-dependent constitutive equations
can be implemented by means of appropriate integration algorithms [3], and internal variables
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are stored at integration points in each element. However, it is first well-known that explicit
finite element schemes can exhibit numerical noise near sharp solutions that can be hard to re-
move with artificial viscosity without loss of accuracy. Second, and especially for elastic-plastic
simulations, the stresses and plastic strains converge at a rate that is one order lower than that of
the displacement components.

On another side, the finite volume methods initially developed for the simulation of gas
dynamics [4, 5], have gained recently more and more interest for problems involving impacts on
solid media (see e.g. [6, 7, 8, 9, 10, 11, 12, 13]). This family of methods is constructed based on
the characteristic structure of hyperbolic equations, either introduced explicitly by means of the
solution of a Riemann problem at cell interfaces for upwind cell-centered schemes, or implicitly
for centered schemes through an average process to define the updated quantities. One interesting
feature of these schemes is that the same order of convergence is achieved for all components of
the unknown vector, and in particular for both the velocity and stress fields in solid mechanics
[9]. Next, some schemes permit to control locally the amount of numerical viscosity introduced
as a function of the local regularity of the solution, so as to deliver non-oscillatory numerical
solutions while preserving a high order of accuracy in more regular zones [4, 5].

Since the early work of Wilkins [14] and Trangenstein et al. [15], several authors have pro-
posed many ways to simulate impacts on dissipative solid media with this class of methods, both
for rate-independent and rate-dependent solid behaviours. Eulerian [16, 7, 6, 10, 13] as well
as Lagrangian [11, 12, 17] approches have been proposed, each pulling its own profits accord-
ing to the level of strain reached, mesh entanglement and refined history-dependent constitutive
equations. One key point that should be emphasized is that for rate-independent plasticity, no
elastic-plastic Riemann solvers exist for two or three-dimensional stress states, even approxi-
mate. Only that of Lin & Ballman [18] was introduced for combined tension-torsion loadings,
and is based on the analytical solution provided by Clifton [19]. Anyway these solvers are gen-
erally considered too complex or costly so that upwind schemes are usually coupled to linear
elastic/acoustic Riemann solvers to define an elastic trial solution, and then either it is projected
onto the yield locus for rate-independent constitutive behaviour [11, 20] or a relaxation step as-
sociated with a splitting scheme is performed for rate-dependent solids. The latter is often called
the Maxwell-type relaxation approach [21, 7, 6, 10, 13, 8] which actually refers to an adapted ver-
sion of Perzyna’s elastic-viscoplastic solids [22], and converge to the rate-independent solution
when the relaxation parameter tends to zero, provided the solution scheme employed to solve the
source term is asymptotic preserving and accurate [23, 24]. However, both approaches generally
yield a poor solution of discontinuous plastic waves (e.g. plane wave with linear hardening),
which are smeared over a lot of cells even though the Courant number is set at one since the
elastic precursor travels faster. Conversely, they behave better in more general cases for which
plastic waves are simple waves (for nonlinear hardenings or non plane wave propagation).

One way to go around the former approaches while still avoiding elastic-plastic Riemann
solvers can be done by looking at the well-known Lax-Wendroff scheme [25], that has two in-
teresting features for the computation of elastic-plastic solids. First, it belongs to the class of
centered schemes [26] so that no Riemann solver is required. Second, its Richtmyer two-step
implementation [27, 28] allows to perform the projection of the elastic trial stresses onto the
yield locus twice per time step, which can improve the solution of plastic waves in case these
are discontinuous. The purpose of this work is to develop this idea. Therefore, two formulations
of the Lax-Wendroff scheme are proposed in this paper for its extension to the computation of
elastic-plastic solids. The unknown vector consists either of the strain or stress components in
addition to the velocity ones according to the chosen formulation, hereafter denoted as ’strain’

2



and ’stress’ ones respectively. In the ’strain’ formulation, the integration of the elastic-plastic
constitutive equations is performed twice per time step, first at nodes, then cellwise. The ’stress’
one amounts, for its first step, to solve a small system of equations at nodes to update the stresses,
provided some effective elastic-plastic compliance moduli. Then, the stress update is performed
cellwise during the Richtmyer second step and still accounts for the yield threshold. At last,
the plastic strains and internal variables are updated iteratively by adjusting the elastic convex
so that the updated stress state lies on its boundary, consistently with the plastic flow rule and
hardening laws. The ’stress’ formulation presented here is actually an extension to two space
dimensional problems of that proposed in [17]. It should be noted that another extension of the
Lax-Wendroff scheme to hypoelastic-plastic solids has already been proposed in [20]. However,
only one projection onto the yield locus is performed per time step, and the formulations and
strategies presented in this work are completely different.

The paper is organized as follows. First, the elastic-plastic initial boundary value problem
is presented in Section 2. Next, the Lax-Wendroff scheme derived in its Richtmyer two-step
version is presented in Section 3. The proposed ’strain’ and ’stress’ formulations are derived
in this section. Section 4 is devoted to numerical applications. Several examples conducted
in two-dimensional plane strain conditions with associated and non-associated elastic-plastic
constitutive models are considered in the linearized geometrical framework, and comparisons
with analytical and finite element numerical solutions are presented. In particular, an example
of dynamic ratchetting is simulated with the Armstrong-Frederick [29, 30] nonlinear kinematic
hardening to show the possibilities of the proposed approach.

2. Elastic-plastic initial boundary value problem

2.1. Conservation laws

We consider a three-dimensional continuum body Ω ∈ R3, of boundary ∂Ω, and current
coordinates x = xiei. Considering the linearized geometrical framework and isothermal setting,
the conservation of linear momentum and the geometrical compatibility should be satisfied for
the time interval of interest t ∈ τ =]0,T ]:

ρv̇ − ∇ · σ = 0 (1)

ε̇ −
1
2

(∇v + (∇v)T ) = 0 (2)

which hold ∀(x, t) ∈ Ω×]0,T ], and where v,σ and ε refer to the velocity vector, the Cauchy stress
and the linearized strain tensors respectively. Equation (2) can also be written in conservative
form:

ε̇ − ∇ ·

(
v ⊗ 1 + 1 � v

2

)
= 0 (3)

where 1 is the second order identity tensor, and the operator � is defined in the cartesian coordi-
nate system as 1�v = δikv jei⊗e j⊗ek, δik being the Kronecker delta symbol. The system formed
by Equations (1) and (3) appears as a system of conservation laws, written as:

∂U

∂t
+ ∇ ·F = 0 (4)
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where U and F denote the arrays of conserved quantities and associated fluxes respectively,
defined as follows:

U =

{
v
ε

}
; F =

 −σ
ρ

−
(

v⊗1+1�v
2

) (5)

More precisely, System (4) can be derived in full matrix form with cartesian coordinates as:

∂U

∂t
+

3∑
k=1

∂Fk

∂xk
= 0 (6)

with vector components such that

U =

{
v

{ε · ei}1≤i≤3

}
; Fk =

 −
σ·ek
ρ{

−
( vpδik+viδpk

2

)
ep

}
1≤i≤3

 = F · ek (7)

where ei (1 ≤ i ≤ 3) refer to the cartesian basis vectors, and the redundant equations due to the
symmetry of the strain tensor are not considered. The fluxes F depend on both the velocity and
stress components, which also defines the following auxiliary vector:

W =

{
v
σ

}
(8)

The closure of the above system of conservation laws (4) is performed by means of a set of con-
stitutive equations, introduced thereafter. Besides, Systems (4) or (6) must also be supplemented
with appropriate initial and boundary conditions.

2.2. Elastic-plastic constitutive model
The thermodynamical state of the material is described by a set of state variables [31, 32]

that consists of the linearized strain tensor ε and the temperature T , plus some internal state
variables Z describing the evolution of the internal microstructure and stored energy due to plastic
deformations and other irreversible processes. Under the small strains assumption, the total strain
ε is additively decomposed into an elastic strain (εe) and a plastic strain (εp):

ε = εe + εp (9)

The set of internal state variables Z consists here of the plastic strain εp plus some additional
variables αI , 1 ≤ I ≤ N. From a Helmholtz free-energy density potential ψ(ε,T,Z) ≡ ψ(ε −
εp,T, αI, 1≤I≤N), concave with respect to the temperature and convex with respect to the other
variables, the state laws are derived as:

σ = ρ
∂ψ

∂εe ; s = −
∂ψ

∂T
; AI = ρ

∂ψ

∂αI
, 1 ≤ I ≤ N (10)

where s and AI refer to the entropy density and the force conjugated to the variable αI respec-
tively. Thus, the mechanical dissipation reads:

D = σ : ε̇p − AI · α̇I = Y · Ż ≥ 0 (11)

with
Y = {σ, AI} ; Z = {εp,−αI} (12)
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where the vector Y denotes the thermodynamic forces conjugated to the internal variables Z, and
the dot (�̇) applied to the quantity � stands for a time rate. A convex elastic domain

C = {Y| f (Y) ≤ 0} (13)

is defined by means of the yield function f , and plastic flow occurs if the current state lies
and remains on its boundary, defined by f = 0. Then, provided a dissipation pseudo-potential
Φ(Y), convex with respect to the flux variables Y, positive (Φ(Y) ≥ 0), and containing the origin
(Φ(0) = 0), the flow rules read:

Ż = λ̇
∂Φ

∂Y
; λ̇ ≥ 0 (14)

where λ̇ denotes the plastic multiplier satisfying the complementarity conditions λ̇ ≥ 0, f (Y) ≤ 0,
λ̇ f = 0, the identity Φλ̇ ≥ 0, and is determined by means of the consistency condition ḟ = 0.
The convexity of the flow function Φ(Y) ensures that the mechanical dissipation

D = λ̇Y ·
∂Φ

∂Y
≥ 0 (15)

is non-negative. The definition of both the flow and yield function Φ and f leads to the non-
associative framework for plasticity, which may be useful for instance for the modeling of non-
linear kinematic hardening. The associative case appears as a particular case of the former one,
identifying both flow and yield functions.

3. Lax-Wendroff numerical schemes

3.1. Mesh notations

The computational domain is divided into Nc non-overlapping polygonal cells. The nodes
p = 1, . . . ,Nn are defined at cell vertices. Following the p − c notations introduced in [11, 20],
the set of nodes connected to a cell c is denoted by P(c), that of cells connected to a node p by
C(p), that of edges linked to a cell c by E(c), and that of edges linked to a node p by E (p). The
outward unit normal to a cell c at an edge e ∈ E(c) is denoted by n(c)

e .
The dual mesh consists of non-overlapping polygons surrounding a node p, so that the ver-

tices of that polygon consist of the centroids of the cells C(p) connected to a node p, and the
midpoints of the primal edges e ∈ E (p) connected to a node p; see Figure 1(a). Thus, the
edges of dual cells consist of separator segments connecting the centroids of primal cells to the
midpoints of the primal edges E (p). The overlap between the primal and dual cells c and p
forms the subcell pc, which is a quadrangle. It is defined by the separators spc− and spc+, of
lengths lspc−, lspc+ and outward unit normal nspc−,nspc+ respectively, and by the half of the edges
e ∈ {p−p, pp+}. The length of these edges are denoted le, and their outward unit normals are
npc−,npc+ respectively. The volumes (actually areas in two-dimensions) of primal and dual cells
are hence related to these of subcells by the following relations:

Vc =
∑

p∈P(c)

Vpc ; Vp =
∑

c∈C(p)

Vpc (16)

Notice that a boundary node may be connected to two or three edges, so that its dual cell consists
of one or two subcells respectively (see Figure 1(b)).
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nspc+

npc+

(b)

Figure 1: The dual control volumes for interior and boundary nodes are shown in red background, and the edges e ∈ E (p)
connected to a node p in red. The normals to the dual cell boundaries are in blue, while the normals to primal edges are
in black. The reader is refered to the web version of this article for intepretation of colours.

3.2. Approximation

Consider a polygon of volume V , one defines the following approximation within this do-
main:

UV =
1
V

∫
V

U dV (17)

where UV denotes the unknown array, that is the integral average of the array of conserved
variables within the polygon V , which can stand for the primal cell c or the dual one p thereafter.
Let’s consider the time increment [tn, tn+1], the time step being defined as ∆t = tn+1 − tn, for
which the solution vector Un

V is known at time tn. Then the set of conservation laws (4) written
in integral form on the polygon V can be discretized as follows [20]:

V(Un+α
V − Un

V )
α∆t

= −
∑

e∈E(c)

leFn+α− 1
2

e · nn+α− 1
2

e (18)

where le is the length of an edge e ∈ E(c), and the time shift index α is either equal to 1/2 for the
first step or to 1 for the second step. The Lax-Wendroff scheme defined in its Richtmyer two-step
version consists in solving the discrete conservation laws (18) first on the dual mesh at half-time
step (α = 1/2), then on the primal mesh at the end of the time step (α = 1).
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3.3. Elastic-plastic ’strain’ formulation
3.3.1. Lax-Wendroff first step

Particularizing Equation (18) to a dual cell Vp and setting α = 1/2, one gets the updated
solution array at time tn + ∆t/2:

VpUn+ 1
2

p =
∑

c∈C(p)

(
VpcUn

c −
∆t
2

Fn
c · (lspc−nspc− + lspc+nspc+)

)
(19)

where the fluxes Fn
c are evaluated such that Fn

c = F
(
Wn

c
)
, Wn

c refering to the integral average of
the array W (8) on the primal cell c at time tn. Notice that for boundary nodes, boundary edges
exist in E (p), so that their lengths and normals le,npc+ appear in place of separator contributions
in Equation (19). The fluxes defined on these boundary edges are computed according to pre-
scribed boundary conditions. Ghost cells are used and combined with an elastic Riemann solver
to prescribe boundary conditions, and boundary fluxes are computed as the Godunov flux of the
Riemann solution.

The unknown vector Un+ 1
2

p consists of both the velocity vn+ 1
2

p and the strain components εn+ 1
2

p .
First, the velocity of a node p is used to compute its displacement at time tn+1:

un+1
p = un

p + ∆tvn+ 1
2

p (20)

Second, the updated strain components are used for updating the stresses and internal variables
at half-time step. To do so, the strain components, the thermodynamic forces as well as the set
of internal variables are approximated in the dual cell Vp at time tn by performing a weighted
average of their respective values in the primal cells C(p) connected to a node p:

(ε)n
p =

∑
c∈C(p) Vpcε

n
c

Vp
; Yn

p =

∑
c∈C(p) VpcYn

c

Vp
; Zn

p =

∑
c∈C(p) VpcZn

c

Vp
(21)

Then, the set of elastic-plastic constitutive equations can be integrated according to any available
integration algorithm [3], so that the update process can be formally written as:{

Yn+ 1
2

p ,Zn+ 1
2

p

}
= T ((ε)n+ 1

2
p ,Yn

p,Z
n
p) (22)

where T denotes the numerical integrator. In this work, the cutting-plane algorithm introduced
in [33, 34, 3] is used. It consists, when a plastic loading occurs ( f (Ytrial

n+1/2) > 0), in linearizing the
yield function f (k)

n+1/2 at iteration k about the current values Y(k)
n+1/2. Dropping the index n + 1/2

for the moment, this reads:

f ≈ f (Y(k)) +
∂ f
∂Y

∣∣∣∣∣(k)

· δY(k) = 0 (23)

where δY(k) = Y(k+1) − Y(k). Then, considering a freezed strain increment at a node p (given
∆εp), a plastic relaxation flow is computed consistently with the partition (9), the state laws (10)
and the flow rules (14). The linearization and composition of the latters yield:

δσ(k) = ρ
∂ψ

∂δεe ◦

(
−δλ(k) ∂Φ

∂σ

∣∣∣∣∣(k))
(24)

δA(k)
I = ρ

∂ψ

∂δαI
◦

(
−δλ(k) ∂Φ

∂AI

∣∣∣∣∣(k))
1 ≤ I ≤ N (25)
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Introducing (24)-(25) into (23) yields, accounting for the linearity of (24)-(25) with respect to
(−δλ(k)), the increment of the plastic multiplier between two iterations:

δλ(k) =
f (k)

ρ ∂ψ
∂δεe ◦

∂Φ
∂σ

∣∣∣(k)
+

∑N
I=1 ρ

∂ψ
∂δαI
◦ ∂Φ

∂AI

∣∣∣∣(k) ; λ(k+1) = λ(k) + δλ(k) (26)

Substitution of (26) into (24)-(25) gives the updated stress σ(k+1) and the thermodynamic forces
A(k+1)

I , while its introduction in the flow rules (14) yields the updated plastic strain (εp)(k+1)

and the internal variables α(k+1)
I , 1 ≤ I ≤ N. Initial conditions for the above return mapping

procedure are provided by the elastic predictor. The iterative process stops when the value of the
yield function is lower than a given tolerance.

3.3.2. Lax-Wendroff second step
Let’s now write Equation (18) on a primal cell c, and set α = 1. The updated solution at time

tn+1 is given by the following conservative formula:

Un+1
c = Un

c −
∆t
Vc

∑
e∈E(c)

(leFn+1/2
e · n(c)

e ) (27)

where le denotes the length of an edge e ∈ E(c). The fluxes Fn+1/2
e defined at these edges are

computed by averaging those defined at the end nodes p and p+ of an edge e, such that:

Fn+1/2
e =

Fn+1/2
p + Fn+1/2

p+

2
(28)

The fluxes Fn+1/2
p and Fn+1/2

p+ are computed from nodal solution arrays defined at time tn + ∆t/2:

Fn+1/2
p = F

(
Wn+ 1

2
p

)
; Fn+1/2

p+ = F
(
Wn+ 1

2
p+

)
(29)

where Wn+ 1
2

p denotes the integral average of the array W (8) on the dual cell Vp at half-time step.
Next, the set of elastic-plastic constitutive equations is integrated between time tn and time

tn+1 in a cell c according to the cutting-plane algorithm [33, 34, 3] (23)-(26). Therefore, the
update process can be formally written as:{

Yn+1
c ,Zn+1

c

}
= T (εn+1

c ,Yn
c ,Z

n
c) (30)

Hence, Equations (19) and (27) define the Richtmyer two-step algorithm for the elastic-plastic
’strain’ formulation, each being supplemented by a projection step of the elastic trial stresses
onto the yield locus, (22) and (30) respectively, to compute the elastic-plastic behaviour.

3.4. Elastic-plastic ’stress’ formulation
3.4.1. Quasi-linear form

From the system of conservation laws (4), a quasi-linear form is conveniently written as
follows [35]:

A
∂W

∂t
+

3∑
k=1

Bk
∂W

∂xk
= 0 (31)
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where the auxiliary array W , the matrix A and the kth matrix Bk are defined as:

W =

{
v
σ

}
; A =

∂U

∂W
=

[
12 03

03
∂ε
∂σ

]
; Bk =

∂Fk

∂W
= −

[
02

14·ek
ρ

14 · ek 04

]
(32)

where 1q denotes the identity tensor of order q, Fk = F · ek and ∂ε/∂σ ≡ S stands for the
elastic-plastic tangent compliance moduli if plastic flow occurs, or simply the elastic compliance
tensor for an elastic evolution.

3.5. Lax-Wendroff first step
Since the first equation of (31) is identical to that of (4), integrating it over the discrete

domain Vp ×
[
tn, tn+ 1

2

]
yields the same update of the velocity field at a node p at time tn+1/2 as the

one given by Equation (19):

Vpvn+ 1
2

p =
∑

c∈C(p)

(
Vpcvn

c +
∆t
2

lspc

ρ
σn

c · nspc

)
(33)

where lspcnspc = lspc+nspc+ + lspc−nspc−. However, the stresses now occur in the second equation
of (31), thus integrating it over the discrete domain Vp ×

[
tn, tn+ 1

2

]
yields:∫ tn+ 1

2

tn

∫
Vp

[
S : σ̇ − ∇ ·

(
v ⊗ 1 + 1 � v

2

)]
dVdt = 0 (34)

Considering that the compliance moduli are homogeneous in each cell, and using the divergence
theorem for the second term, it comes:∫ tn+ 1

2

tn

∑
c∈C(p)

VpcSc : σ̇cdt =
∆t
2

∑
c∈C(p)

∫
{spc−∪spc+}

(
vn ⊗ n + n ⊗ vn

2

)
dl (35)

where have been defined

σc =
1

Vpc

∫
Vpc

σdV ; vn =
1
∆t
2

∫ tn+ 1
2

tn
vdt (36)

Provided the linearized geometrical framework, one gets:

∑
c∈C(p)

Vpc

∫ σ
n+ 1

2
p

σn
c

Sc : dσ =
∆t
2

∑
c∈C(p)

lspc

(
vn

c ⊗ nspc + nspc ⊗ vn
c

2

)
(37)

Equation (37) is the two space dimension analog of Equation (38) derived for one-dimensional
problems in [17], which has been shown to be identical to the method of characteristics.

If an elastic constitutive response is assumed for the cells C(p), an elastic trial solution can be
first computed for the dual cell Vp at time tn+1/2. Assuming a homogeneous medium, the elastic
compliance moduli can be factorized in the computation of the left-hand-side of (37), so that the
elastic trial stresses read:

Vpσ
trial
p =

∑
c∈C(p)

(
Vpcσ

n
c +

∆t
2

lspcCc : vn
c ⊗ nspc

)
(38)
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where C is the elastic stiffness tensor. Notice that Equation (38) can be deduced from the second
equation of (19), associated with the ’strain’ formulation, by means of multiplication by the
elastic stiffness tensor.

The yield criterion (13) is then computed with the elastic trial stresses (38) in each cell c ∈
C(p). If the yield criterion is satisfied in all cells connected to a node p, then the elastic trial
stress state is the actual one, the evolution of the dual cell Vp is elastic on the time increment[
tn, tn+ 1

2

]
. If the yield criterion is not satisfied in at least one cell of this patch, then an elastic-

plastic correction is required.
The cells C(p) may have three types of evolution during the time increment

[
tn, tn+ 1

2

]
. A

first subset CE(p) ⊂ C(p) consists of cells having an elastic evolution, for which the elastic
trial stresses (38) satisfy the yield criterion. A second subset CEP(p) ⊂ C(p) consists of cells
undergoing a transition from elasticity at time tn ((ε̇p)n

c = 0) to elastoplasticity at time tn+1/2, for
which the yield criterion computed with the elastic trial state is not satisfied at time tn+1/2 while
these cells had an elastic evolution at time tn. A third subset CP(p) ⊂ C(p) consists of cells
having an elastic-plastic evolution, for which the yield criterion computed with the elastic trial
state is not satisfied at time tn+1/2, while plastic flow occured at time tn. The computation of the
left-hand-side of Equation (37) is thus performed accordingly, splitting the set of connected cells
C(p) into the three subsets CE(p), CEP(p) and CP(p). Further, the integral pertaining to the cells
CEP(p) should be split into two parts in order to account for the yield threshold, so that the stress
state σ∗c leading to the vanishing of the yield function f (σ∗c, (AI,1≤I≤N)n

c) = 0 appears in bounds
of integrals. Hence, denoting by S(σ) the elastic-plastic tangent compliance moduli, and by S
the elastic compliance moduli, the particularization of Equation (37) to the three above subsets
yields:  ∑

c∈CE(p)

VpcSc +
∑

c∈CEP(p)

VpcSc(σ∗c) +
∑

c∈CP(p)

VpcSc(σn
c)

 : σn+ 1
2

p

=
∑

c∈CE(p)

VpcSc : σn
c +

∑
c∈CEP(p)

VpcSc(σ∗c) : σ∗c −
∑

c∈CEP(p)

VpcSc : (σ∗c − σ
n
c)

+
∑

c∈CP(p)

VpcSc(σn
c) : σn

c +
∆t
2

∑
c∈C(p)

lspc

(
vn

c ⊗ nspc + nspc ⊗ vn
c

2

) (39)

where the integrals pertaining to plastic flow have been approximated assuming constant elastic-
plastic tangent compliance moduli over the load increment:

∫ σ
n+ 1

2
p

σ∗c

Sc(σ) : dσ ' Sc(σ∗c) :
(
σ

n+ 1
2

p − σ∗c

)
(40)

This approximation is valid if both the plastic strain increment is limited and the normal to the
yield function varies little on the time increment

[
tn, tn+ 1

2

]
. Since the time step ∆t is restricted by

the Courant condition, this approximation is reasonable in pratice.
The left-hand-side of Equation (39) appears as some effective compliance moduli Sp of the

dual cell Vp on the time increment, computed by a mixture rule. However, these effective compli-
ance moduli cannot be explicitly inverted. Indeed, the elastic-plastic tangent compliance moduli
S(σ) depend explicitly on the unit normal to the yield surface N(σ), whose eigenbasis depends
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on the plastic flow occurring in each cell connected to a node p, that may be different. Con-

sequently, the computation of the stresses σn+ 1
2

p has to be performed by solving a small linear
system of equations at each node of the mesh, of the form:

Sp : σn+ 1
2

p = Bp (41)

where Bp stands for the right-hand-side of Equation (39).

3.6. Lax-Wendroff second step
3.6.1. Stress update

The integration of the first equation of (31) over the discrete domain Vc × [tn, tn + 1] gives
the update of the velocity field in a cell c at time tn+1, which can be shown to be identical to the
first equation of (27). Next, the integration of the second equation of (31) over the same discrete
domain Vc× [tn, tn +1] yields an equation similar to (34), but with different bounds of integration.
Its discretization reads:∫ σn+1

c

σn
c

Sc : dσ =
∆t
Vc

∑
e∈E(c)

le

vn+ 1
2

e ⊗ n(c)
e + n(c)

e ⊗ vn+ 1
2

e

2

 (42)

where have been defined

σc =
1
Vc

∫
Vc

σdV ; vn+ 1
2 =

1
∆t

∫ tn+1

tn
vdt (43)

and vn+ 1
2

e is defined at an edge e according to (28), by averaging the velocities defined at the
nodes p and p+ at time tn+1/2:

vn+ 1
2

e =
vn+ 1

2
p + vn+ 1

2
p+

2
(44)

An elastic trial solution can be first computed for a cell c. In that case, Equation (42) reads:

σtrial
c = σn

c +
∆t
Vc
Cc :

∑
e∈E(c)

levn+ 1
2

e ⊗ n(c)
e (45)

and C is the elastic stiffness tensor. Equation (45) can also be deduced from the second equation
of formula (27) linked to the Lax-Wendroff second step of the ’strain’ formulation, multiplying
it by the elastic stiffness tensor. The trial elastic stresses (45) are then tested against the yield
criterion (13) in this cell c. If the yield criterion is satisfied, then the elastic trial stresses are the
actual ones, the evolution of that cell c is elastic during this step. Conversely, if the yield criterion
is not satisfied, an elastic-plastic correction must be performed.

The integral appearing in the left-hand-side of Equation (42) is thus computed according
to the evolution of a cell c on the time increment [tn, tn+1]. If it undergoes a transition from
elasticity at time tn to elastoplasticity at time tn+1, the integral is split into two parts in order
to account for the yield threshold, so that the stress state σ∗c corresponding to the yield surface
f (σ∗c, (AI,1≤I≤N)n

c) = 0 appears as an upper and a lower bound of the first and second integrals
respectively. Provided that a similar approximation to (40) is done:∫ σn+1

c

σ∗c

S(σ) : dσ ' S(σ∗c) :
(
σn+1

c − σ∗c
)
, (46)
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Equation (42), premultiplied by the elastic-plastic tangent stiffness tensor C(σ), reads:

σn+1
c = Cc(σ∗c) : Sc : σn

c + (14 − Cc(σ∗c) : Sc) : σ∗c

+
∆t
Vc

Cc(σ∗c) :
∑

e∈E(c)

levn+ 1
2

e ⊗ n(c)
e

(47)

The above expression can be further simplified in the case of isotropic elasticity and J2 flow
theory. The elastic-plastic tangent stiffness tensor C(σ) can be shown to be of the form [3,
Equation (2.3.9)]:

C(σ) = C − βN ⊗ N (48)

where β is a function of the elastic and hardening moduli, as well as hardening variables for
certain constitutive models, and N is the unit normal to the yield surface. Introducing (48) into
(47) gives the stress update for a cell undergoing an elastic-elastoplastic transition:

σn+1
c = σn

c +
β

2µ
N∗ ⊗ N∗ : (σ∗c − σ

n
c) +

∆t
Vc

Cc(σ∗c) :
∑

e∈E(c)

levn+ 1
2

e ⊗ n(c)
e (49)

where µ is the second Lamé parameter.
Conversely, if the stress state in a cell c already lied on the yield surface at time tn, then this

cell undergoes an elastic-plastic evolution on the time increment [tn, tn+1]. Provided an approxi-
mation similar to (46), Equation (42) gives:

σn+1
c = σn

c +
∆t
Vc

Cc(σn
c) :

∑
e∈E(c)

levn+ 1
2

e ⊗ n(c)
e (50)

3.6.2. Update of internal variables
The update of the plastic strains and additional internal variables appears for the ’stress’

formulation as a stress-driven process, while the integration algorithms used for elastic-plastic
constitutive equations are generally strain-driven [3], provided an increment of strain. The pro-
cedure thus amounts to adapt the size of the elastic convex and the location of its center (if both
isotropic and kinematic hardenings are accounted for) so that the updated stress state ((49) or
(50)) lies on its boundary, consistently with the plastic flow rule and hardening laws (14). Since
elastic-plastic equations are nonlinear, the solution process is performed iteratively. One general
way to proceed consists in modifying the cutting-plane algorithm [33] so that a stress-driven
update of internal variables be performed. Thus the yield function f (k) is linearized at iteration
k about current values of the sole additional thermodynamic forces AI 1 ≤ I ≤ N, the stresses
being given:

f ≈ f (σn+1, A(k)
I ) +

N∑
I=1

∂ f
∂AI

∣∣∣∣∣(k)

· δA(k)
I = 0 (51)

where δA(k)
I = A(k+1)

I − A(k)
I . Then introducing Equations (25) into (51) and following the same

procedure than that of Section 3.3.1 yields the increment of the plastic multiplier between two
iterations:

δλ(k) =
f (k)∑N

I=1 ρ
∂ψ
∂δαI
◦ ∂Φ

∂AI

∣∣∣∣(k) ; λ(k+1) = λ(k) + δλ(k) (52)
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The iterative process stops when the value of the yield function is lower than a given tolerance.
Notice that for the two-dimensional plane strain case, the out-of-plane stress component σ33
has to be updated together with the internal variables. Therefore, the yield function (51) is also
linearized with respect to that component. The increment of the plastic multiplier thus reads as
(26) with the sole out-of-plane component of (24).

4. Applications

4.1. Plane waves with Riemann-type initial conditions

Let’s consider a rectangular domain Ω : (x, y) ∈]0, L[×]0,H[, made of an elastic-plastic
material. Traction free conditions are set at the left and right sides, while zero shear stress and
normal velocity components are prescribed on the top and bottom sides, so that combined with
the plane strain assumption (zero out-of-plane velocity and strain components), planes waves can
be simulated. Riemann-type initial conditions are prescribed: the longitudinal component of the
velocity is prescribed to −v̄ in the first half of the medium x ∈ [0, L/2[, and to v̄ in the second
half x ∈]L/2, L], while the stresses are considered to be zero everywhere initially. The prescribed
velocity is set so that plastic flow occurs:

v̄ = 2
YH

ρcL
(53)

where YH = (λ + 2µ)σy/2µ denotes the Hugoniot elastic limit, cL is the speed of the elastic
pressure waves cL =

√
(λ + 2µ)/ρ, and λ, µ and ρ denote the Lamé parameters and the mass

density respectively. Provided linear isotropic or kinematic hardenings, an analytical solution of
that problem has been developed in [17]. This test case allows to generate a compressive plastic
reloading after an initial tensile one, by means of wave interactions and reflexions at free ends.

An elastic-plastic material with linear isotropic hardening is considered, associated with the
von Mises yield criterion:

f = σeq −Cp − σy ; σeq =

√
3
2

s : s ; C = {σ| f (σ) ≤ 0} (54)

where s is the deviatoric part of the Cauchy stress σ, C is the hardening modulus and p stands
for the cumulated plastic strain. Table 1 summarizes the material properties and geometrical pa-
rameters used for the simulations. Comparison is here performed between (i) the Lax-Wendroff

Material parameters Geometrical parameters
E = 200GPa C = 10GPa L = 6m
ν = 0.3 σy = 400MPa H = 0.08m
ρ = 7800kg.m−3

Table 1: Parameters

solutions obtained with the ’stress’ and ’strain’ formulations, (ii) a ’projected’ solution that
consists of a Lax-Wendroff elastic computation (the first step is computed with (38), the second
one with (45)) followed by a projection onto the yield locus by means of a radial return [14, 3],
(iii) a finite element solution obtained with the finite element code Cast3M [36] and computed
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with an explicit central difference time integrator, Q1 elements and a lumped mass matrix [1],
and (iv) the analytical solution. Computations are performed with a mesh made of 200 × 3
quadrangular grid cells and a Courant number set at 0.9.
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Figure 2: Comparison at time 4.37 × 10−4 seconds of the Lax-Wendroff solutions (’stress’ and ’strain’ formulations),
an elastic Lax-Wendroff solution projected onto the yield locus, a finite element solution and the analytical stress and
plastic strain fields.
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Figure 3: Comparison at time 1.38 × 10−3 seconds of the Lax-Wendroff solutions (’stress’ and ’strain’ formulations),
an elastic Lax-Wendroff solution projected onto the yield locus, a finite element solution and the analytical stress and
plastic strain fields.

Figures 2 and 3 show for two different times the superposed plots of the longitudinal stress
and plastic strain components computed with these different approaches. The solution first con-
sists of two discontinuous elastic predictors travelling leftward and rightward (see Figure 2),
captured in few cells by all the methods due to the chosen Courant number. The subsequent dis-
continuous plastic waves need much more cells to be captured. The numerical solutions obtained
with the finite elements and with the Lax-Wendroff ’stress’ and ’strain’ formulations give re-
sults close to each other for the longitudinal stress. They allow to slightly improve the capture of
the discontinuous plastic wave enabled by an a posteriori projection of a Lax-Wendroff elastic
solution onto the yield locus, although the finite element solution shows oscillations on the stress
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plateau. However, all the methods show a non-physical peak of plastic strain that appears at the
middle of the medium. This non-physical peak can be explained by the combination of the initial
discontinuous velocity profile and the fact that neither Lax-Wendroff nor FEM are monotone or
Total Variation Diminishing [4] (TVD) schemes. Indeed, the use of a TVD scheme in [17] on
that example allowed to remove that peak.

The finite element and Lax-Wendroff ’strain’ solutions slightly overestimate the plastic strain
plateau, while the Lax-Wendroff ’stress’ one underestimates it. The ’projected’ numerical solu-
tion seems closer to that plateau on this example, although its plastic waves are less sharp than
these obtained by the other methods. After reflexion of waves at the two ends, their interaction
yields a compressive plastic reloading as shown in Figure 3, in which the same trend as depicted
above is observed. The Lax-Wendroff ’stress’ formulation gives slightly less accurate plastic
strains on the compressive plastic plateau than the other methods.
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(a) Mesh of 100×3 grid cells
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(b) Mesh of 500×3 grid cells

Figure 4: Comparison at time 4.37 × 10−4 seconds of the Lax-Wendroff solutions (’stress’ and ’strain’ formulations),
an elastic Lax-Wendroff solution projected onto the yield locus and the analytical stress for coarser and finer meshes.

Results obtained from computations performed on coarser (100×3 grid cells) and finer meshes
(500×3 grid cells) are respectively shown in Figures 4(a) and 4(b). Coarse and underresolved
grids do not show any significant difference between a double projection onto the yield locus
and a single one. However as the mesh is refined, a clear and net difference between these two
procedures is observed in Figure 4(b): fewer cells are required for the Lax-Wendroff ’strain’ and
’stress’ solutions to capture the plastic discontinuity.

4.2. Partial impact on a plane

Let’s now consider the bidimensional square domain shown in Figure 5, submitted to an im-
pact on a part of its top face, by means of a step function of a pressure p. A symmetry condition is
considered on the left side, and free boundaries are set at the bottom, right, and remaining part of
top faces. This problem is treated in the bidimensional plane strain framework. For this test case,
a comparison between the Lax-Wendroff numerical solutions and a Q1-finite element one is con-
sidered. The finite element numerical solution is obtained with the code Cast3M [36], computed
with an explicit central difference time integrator, and uses a lumped mass matrix. Computa-
tions are performed with a mesh that consists of 100× 100 regular quadrangular grid cells, and a
Courant number set at 0.9. An elastic-plastic constitutive model with a linear isotropic hardening
is also considered for this example with parameters listed in Table 1, to which are added these
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Figure 5: Partial impact on a plane

associated with the geometry and the loading of the partial impact test case, summarized in Table
2.

Geometry Loading
a = 0.5m p = 2YH

L = 2m

Table 2: Parameters of the partial impact test case

Figures 6 and 7 show the comparison between the finite element and the Lax-Wendroff nu-
merical solutions at two different times. These figures consist on the one hand of plots of numer-
ical isovalues, in particular the normal stress σ22 and the cumulated plastic strain εeq ≡ p, and
on the other hand of superposed plots of these fields along the symmetry line (left side). At time
t = 1.88 × 10−4 seconds (see Figure 6), the pressure and shear waves generated by the step pres-
sure prescribed on a part of the top face propagate downward. An elastic precursor is followed
by a discontinuous plastic wave, which propagate plastic strains. As can be seen in Figures 6(a)
and 6(c), the Lax-Wendroff ’strain’ and ’stress’ formulations give numerical results close to
these provided by finite elements, though the latter shows much spurious numerical oscillations.
In particular, the three former solutions allow to capture well the discontinuous plastic wave,
better than the Lax-Wendroff projected solution. This is also seen on the plastic strain front (see
Figure 6(c)), though the overall isovalues shown in Figure 6(b) are comparable for all numerical
solutions.

Once the initial waves have done several round trips (see Figure 7), the plastic strains do
not evolve anymore in the structure. These have been much spread in the height of the domain,
and the four numerical solutions look very close to each other, and should yield almost the same
residual state.
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(a) Isovalues of the stress component σ22 (b) Isovalues of the cumulated plastic strain p
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(c) Plots along the symmetry line

Figure 6: Comparison at time t = 1.88×10−4 seconds of the Lax-Wendroff solutions (’stress’ and ’strain’ formulations),
an elastic Lax-Wendroff solution projected onto the yield locus and a finite element solution.

4.3. Dynamic ratchetting

Let’s consider an infinite bidimensional medium, containing a set of holes aligned vertically
and equally spaced, as shown in Figure 8. This infinite medium is submitted to given oscillating
pressure pulses propagating horizontally. This problem is reduced according to the symmetries
of the system so that the computational domain shown in Figure 9 with simplified boundary
conditions is considered for the analysis. An elastic-plastic material with a nonlinear kinematic
hardening is considered, with the von Mises yield criterion:

f = σeq(ξ) − σy ; σeq =

√
3
2
ξ : ξ ; ξ = s − X ; C = {(σ,X)| f ≤ 0} (55)
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(a) Isovalues of the cumulated plastic strain p
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Figure 7: Comparison at time t = 5 × 10−3 seconds of the Lax-Wendroff solutions (’stress’ and ’strain’ formulations),
an elastic Lax-Wendroff solution projected onto the yield locus and a finite element solution.

t

Figure 8: Infinite bidimensional medium, containing
a set of holes, submitted to given oscillating pressure
pulses propagating horizontally.

e1

e2
r

L

Lσ∞(t)e1

Figure 9: Computational domain and boundary condi-
tions

where X denotes the variable defining the center of the elastic convex, satisfying the Armstrong-
Frederick law [29, 30]:

Ẋ =
2
3

Cε̇p − γXṗ (56)
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where γ denotes an additional hardening parameter. The computational domain is submitted on
its right side to non-symmetric alternating tension/compression tractions:

σ∞(t) = σa sin
(
πt
2T

)
+ σ0 (57)

where σa, σ0 and T refer respectively to the stress magnitude, the stress offset and a period
defined as T = L/cL corresponding to the time required for an elastic pressure wave to travel
the length of the domain. Provided these non-symmetric alternating stress pulses, the nonlin-
ear kinematic hardening law is expected to produce plastic strains growing progressively with
constant pitch, especially close to the hole due to the geometry of the domain considered. This
phenomenon is known as ratchetting [32], and since it is triggered here by the propagation of
waves, we call it dynamic ratchetting. The present test case does not involve any discontinuous
solution, but rather aims at showing the ability of Lax-Wendroff schemes to simulate unconven-
tional dynamic plastic flows with ’refined’ elastic-plastic constitutive models.

Computations are performed in the bidimensional plane strain framework, and comparison is
made between the Lax-Wendroff numerical solutions and an explicit Q1-finite element solution
obtained with the code Cast3M [36] as for the previous example. Computations are performed
with a mesh that consists of 4200 non-rectangular quadrangular grid cells, and a Courant number
set at 0.55. The parameters used for the geometry and the loading are summarized in Table 3,
while these pertaining to the material are the same as these listed in Table 1, to which should be
added the value of the additional hardening parameter γ = 40 of the Armstrong-Frederick law.

Geometry Loading
r = 0.5m σa = 3YH

L = 1m σ0 = YH/2

Table 3: Parameters of the dynamic ratchetting test case

Figure 10 shows some comparisons between the finite element and the Lax-Wendroff nu-
merical solutions obtained with the ’strain’ and ’stress’ formulations at time t = 1.25 × 10−3

seconds, that is after two cycles of loading/unloading close to the hole area. It can be observed
that the isovalues of the longitudinal stress look very close for all numerical solutions, and predict
it reaches a peak value at that time close to the top point of the hole. The computed cumulated
plastic strain looks also quite close in the three numerical simulations, but shows however small
differences close to the top point of the hole. This is better observed in Figure 11 where, at that
point, plots of the time evolution of the plastic strain component εp

11, and of the stress compo-
nent σ11 as a function of this plastic strain component, are made. On the one hand it can be
observed that the simulations conducted with the above modeling actually predict the occurence
of a ratchet phenomenon as expected. On the other hand, slight differences in the computation of
the ratchet appear between the finite element and the Lax-Wendroff numerical solutions. First,
the ratchet pitch computed at that point by the finite elements appears slightly greater than these
obtained by the two formulations of Lax-Wendroff, which also give results close to each other.
Second, stresses computed with Lax-Wendroff are slightly larger than these obtained by finite
elements.

However, if we look a little bit away from that corner point as shown in Figure 12, the
agreement between numerical solutions looks better, the ratchet pitches computed by the finite
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(a) Isovalues of the stress component σ11

(b) Isovalues of the cumulated plastic strain p

Figure 10: Comparison at time t = 1.25×10−3 seconds of the Lax-Wendroff solutions (’stress’ and ’strain’ formulations)
and a finite element solution.

elements and the Lax-Wendroff ’stress’ formulation perfectly match, while that computed by
the ’strain’ formulation is slightly lower. These differences may be attributed to the different
ways of prescribing boundary conditions between the finite element and Lax-Wendroff schemes.
However, the results obtained show the ability of the Lax-Wendroff scheme to compute complex
plastic flows in dynamic elastic-plastic numerical simulations.

5. Conclusion

Two formulations were proposed in this work for the extension of the well-known Lax-
Wendroff scheme to elastic-plastic solids in the linearized geometrical framework. These formu-
lations are referred to as ’strain’ and ’stress’ ones since the strain or the stress components are
respectively included in the unknown vector in addition to the velocity ones. The Lax-Wendroff

scheme was here implemented in its Richtmyer two-step version so that the projection of the
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Figure 11: Plots at the top point of the hole (x1 = 0, x2 = r) of the time evolution of the plastic strain component εp
11 (at

the left), and that of the stress component σ11 as a function of this plastic strain component (at the right).
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Figure 12: Plots at the location (x1 = r/5, x2 = r) of the time evolution of the plastic strain component εp
11 (at the left),

and that of the stress component σ11 as a function of this plastic strain component (at the right).

elastic trial stresses onto the yield locus is performed twice per time step. It allows to reduce
the number of cells required to properly capture discontinuous plastic waves with respect to a
classical one-step strategy consisting in an a posteriori projection of the elastic trial stresses onto
the yield locus. Besides, it has been shown on bidimensional plane strain examples the abil-
ity of these formulations to compute complex plastic flows like dynamic ratchetting in dynamic
elastic-plastic numerical simulations.
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