
HAL Id: hal-02279627
https://hal.science/hal-02279627v1

Submitted on 5 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brief Announcement: Wait-Free Universality of
Consensus in the Infinite Arrival Model
Grégoire Bonin, Achour Mostefaoui, Matthieu Perrin

To cite this version:
Grégoire Bonin, Achour Mostefaoui, Matthieu Perrin. Brief Announcement: Wait-Free Universality of
Consensus in the Infinite Arrival Model. International Symposium on Distributed Computing (DISC)
2019, Oct 2019, Budapest, Hungary. �hal-02279627�

https://hal.science/hal-02279627v1
https://hal.archives-ouvertes.fr

Brief Announcement: Wait-Free Universality of Consensus in the

Infinite Arrival Model

Grégoire Bonin
LS2N, Université de Nantes, France
gregoire.bonin@etu.univ-nantes.fr

Achour Mostéfaoui
LS2N, Université de Nantes, France
achour.mostefaoui@univ-nantes.fr

Matthieu Perrin
LS2N, Université de Nantes, France

matthieu.perrin@univ-nantes.fr

Abstract

In classical asynchronous distributed systems composed of a fixed number n of processes where
some proportion may fail by crashing, many objects do not have a wait-free linearizable implemen-
tation (e.g. stacks, queues, etc.). It has been proved that consensus is universal in such systems,
which means that this system augmented with consensus objects allows to implement any object
that has a sequential specification. In this paper, we consider a more general system model called
infinite arrival model where infinitely many processes may arrive and leave or crash during a run. We
prove that consensus is still universal in this more general model. For that, we propose a universal
construction based on a weak log that can be implementated using consensus objects.

1 Introduction

Maurice Herlihy proved in [3] that consensus is universal in classical distributed systems composed of a
set of n processes. Namely, any object having a sequential specification has a wait-free and linearizable
implementation using only read/write registers (memory locations) and some number of consensus ob-
jects. For proving the universality of consensus, Herlihy introduced the notion of universal construction.
It is a generic algorithm that, given a deterministic sequential specification of any object, provides a
concurrent implementation of this object. Since then, many universal constructions have been proposed
for several objects [5], assuming the availability of hardware special instructions that provide the same
computing power as consensus, like compare&swap, Load-Link/Store-Conditional etc.

This last decade, first with peer-to-peer systems, and then with multi-core machines and the multi-
threading model, the assumption of a closed system with a fixed number n of processes and where every
process knows the identifiers of all processes became too restrictive. Hence the infinite arrival model
introduced in [4]. In this model, any number of processes can crash (or leave, in a same way as in the
other model), but any number (be it finite or not) of processes can also join the network. When a process
joins such a system, it is not known to the already running processes, so no fixed number of processes can
be used in the implementations as a parameter. Let us note that, at any time, the number of processes
that have already joined the system is finite, but can be infinitely growing.

Problem statement The aim of this paper is to extend universality of consensus to the infinite
arrival model. The question is thus “is it possible to build a universal wait-free linearizable construction
based on consensus objects and read/write atomic registers?” This is not trivial for different reasons.
First, although the lock-free universal constructions still work in the infinite arrival model because they
ensure a global progress condition, this is no more the case for wait-free universal constructions. Second,
wait-free implementations rely on what is called help mechanism, that has been recently formalized in
[1]. This mechanism requires any process, before terminating its operation, to help processes having
pending operations, in order to reach wait-freedom. One of the difficulties in the infinite arrival model
is that helping is not obvious. Indeed, helping requires at least that a process needing to be helped

1

1 operation append(v) is:
2 nodei ← last.read().propose(〈〈v,⊥〉,⊥〉) ; // add v to the log

3 last.write(nodei.tail);
4 while nodei.head 6= v do nodei ← nodei.tail.propose(〈v,⊥〉);
5 logi ← ε; listi ← first; nodei ← listi.head; // read the log

6 while true do
7 logi ← logi ⊕ nodei.head;
8 if nodei.head = v then return logi;
9 nodei ← nodei.tail; if nodei = ⊥ then listi ← listi.tail; nodei ← listi.head;

Algorithm 1: Wait-free weak log using consensus

is able to announce its existence to other processes willing to help it. Due to the infinite number of
potential participating processes over time, it is not reasonable to assume that each process can write
in a dedicated register, and to require helping processes to read them all. When only consensus and
read/write registers are accessible to a process, a newly arriving process must compete with a potentially
infinite number of other arriving processes on either a consensus object or a same memory location; and
may fail on all its attempts.

2 The Weak Log Abstraction

Similarly to [2] which first proposes a Collect object that will be used as a building block for a universal
construction, we propose a weak log object that is used as a list of presence where a process that arrives
registers. A weak log can then be used in Herlihy’s universal construction [3] instead of the array of
registers to achieve wait-freedom. In an instance of the weak log, each process pi proposes a value through
an operation append(vi), that returns the sequence of all the values previously appended. The weak log
is wait-free but not linearizable. Instead, it is specified by the following properties.

Definition 1 (weak log). All processes p0, p1, . . . propose distinct values v0, v1, . . . by invoking append(vi),
that returns a finite sequence wi = wi,1 · wi,2 · · ·wi,|wi| such that:

Validity All values in a sequence wi have been appended by some process.

suffixing The last value of the sequence returned by pi is its own.

Total order All pairs of values contained in both wi and wj appear in the same order.

Eventual visibility If pi terminates, finitely many returned sequences do not contain vi.

Wait-freedom : No process takes an infinite number of steps in an execution.

The main difficulty in the implementation of a weak log lies in the allocation of one memory location
per process, where it can safely announce its invoked operation. As it is impossible to allocate an infinite
array at once, it is necessary to build a data structure in which processes allocate their own piece of
memory, and make it reachable to other processes, by winning a consensus. A linked list in which
processes compete to append their value at the end follows a similar pattern, but it poses a challenge:
as an infinite number of processes access the same sequence of consensus objects, one process may loose
all its attempts to insert its own node, breaking wait-freedom.

Algorithm 1 solves this issue by using a novel feature, that we call passive helping : when a process
wins a consensus, it creates a side list to host values of processes concurrently competing on the same
consensus object. As only a finite number of processes have arrived in the system when the consensus is
won, a finite number of processes will try to insert their value in the side list, which ensures termination.

Processes executing Algorithm 1 build a linked list of linked lists of nodes of the form 〈list.head, list.tail〉
where list.tail is a consensus object that references nodes of the same form, and list.head = 〈node.head, node.tail〉
is a node of the side list, where node.head is a value appended by some process and node.tail is a consen-
sus object accepting values of the same type as list.head. Processes share a consensus object, first, that

2

references the first node of the list of lists, and a read/write register, last, that references a consensus
object list.tail.

In absence of concurrency, last references the end of the list starting with first. However, as the
consensus and the write on lines 2 and 3 are not done atomically, a very old value can be written in
last, in which case its value could move backward. The central property of the algorithm is that last
eventually moves forward, allowing very slow processes to find some place in a side list.

3 Conclusion

Consensus is a central problem in distributed computing, because it allows wait-free linearizable im-
plementations of all objects with a sequential specification, in systems composed of n asynchronous
processes that may crash. In this paper, we asked the question of whether the result still holds in the
infinite arrival model, in which a potentially infinite number of processes can arrive and leave during
an execution. We answered this question positively by introducing a weak log abstraction, that can be
implemented using only consensus objects and read/write registers and can be used in a wait-free and
linearizable universal construction.

Acknowledgement

This work was partially supported by the French ANR project 16-CE25-0005 O’Browser devoted to the
study of decentralized applications on Web browsers.

References

[1] Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, pages 241–250. ACM, 2015.

[2] Panagiota Fatourou and Nikolaos D. Kallimanis. Highly-efficient wait-free synchronization. Theory
Comput. Syst., 55(3):475–520, 2014.

[3] Maurice Herlihy. Impossibility and universality results for wait-free synchronization. In Proceedings
of the Seventh Annual ACM Symposium on Principles of Distributed Computing, Toronto, Ontario,
Canada, August 15-17, 1988, pages 276–290, 1988.

[4] Michael Merritt and Gadi Taubenfeld. Resilient consensus for infinitely many processes. In Interna-
tional Symposium on Distributed Computing, pages 1–15. Springer, 2003.

[5] Michel Raynal. Distributed universal constructions: a guided tour. Bulletin of the EATCS, 121,
2017.

3

