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Abstract

Geometrical registration of a query image with respect to a 3D model, or pose
estimation, is the cornerstone of many computer vision applications. It is often
based on the matching of local photometric descriptors invariant to limited view-
point changes. However, when the query image has been acquired from a camera
position not covered by the model images, pose estimation is often not accurate and
sometimes even fails, precisely because of the limited invariance of descriptors. In
this paper, we propose to add descriptors to the model, obtained from synthesized
views associated with virtual cameras completing the covering of the scene by the
real cameras. We propose an efficient strategy to localize the virtual cameras in
the scene and generate valuable descriptors from synthetic views. We also discuss a
guided sampling strategy for registration in this context. Experiments show that the
accuracy of pose estimation is dramatically improved when large viewpoint changes
makes the matching of classic descriptors a challenging task.
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1 Introduction

Camera pose estimation is a recurring problem in computer vision and has applications
in various domains such as augmented reality applications [1, 2], vision-based robot
positioning [3], or aerial image geo-registration [4]. The initialization of the pose is a
critical step in all pose estimation methods and is needed either when starting a system
or when pose tracking fails. In some application domains, it is possible to initialize
the pose with additional information such as GPS localization. It is, however, often
not possible to rely solely on GPS localization, either because the GPS estimate is not
accurate enough for the application under study, or because the environment is GPS-
denied. In this article we address the problem of camera pose initialization, or kidnaping
problem, from a single image and a point cloud model.

In many applications, the pose is estimated relative to a model of the scene recon-
structed from images through a structure-from-motion (SfM) algorithm. Local photo-
metric descriptors of the 3D points are extracted from the construction views as, e.g.,
SIFT features [5]. Afterward, these descriptors are used to match interest points of
the query view and 3D points, which makes it possible to solve the perspective-n-point
(PnP) problem [6] and estimate the pose. This approach presents a major issue when the
construction views do not cover the whole set of potential viewpoints. Indeed, a query
view taken from an uncovered viewpoint is likely to give too few reliable point corre-
spondences because of the limited invariance of the photometric descriptors to viewpoint
changes [7]. A good example of such a situation is described by the authors of [4] who aim
at registering a view from an aerial drone to a model built from ground-level construction
views. It is worth noting that some approaches do not rely on feature matching for pose
estimation, such as PoseNet [8] and methods derived from it, which use a convolutional
neural network to directly compute the pose associated with an input image. To this
date, the accuracy of these approaches is significantly lower than the accuracy of feature
based methods, as mentioned in [9, 10]. In addition, as a regression, the method does
not allow coping with viewpoints which are significantly different from those used dur-
ing learning, although the authors of a very recent paper [9, 10] propose to augment the
training data with synthetic viewpoints and claim attaining a pose accuracy comparable
to feature-based methods. In this context, the present paper is focused on geometric
feature matching over large viewpoint changes. In line with [9, 10], the proposed con-
tribution is of interest for regression methods, although these latter approaches are not
within our scope.

To solve the matching problem, two approaches exist: either defining descriptors
invariant to viewpoint changes, or simulating these viewpoint changes and extracting
local descriptors from the synthesized views. The authors of [11] compare the robust-
ness of theoretically affine invariant descriptors to various transformations. Concerning
robustness to viewpoint changes, Hessian-affine descriptors [12] and MSER [13] perform
best, but matching still fails for angles larger than 40◦. Another comparison paper [7]
concludes that no descriptor performs well under viewpoint changes larger than 30◦.
Recently, learned descriptors such as LIFT [14] made use of deep learning techniques
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to achieve robustness to various conditions changes. While robustness to illumination
changes outperforms existing descriptors, robustness to viewpoint changes is still lim-
ited and on par with affine invariant descriptors. An alternative approach to enhance
robustness to viewpoint changes consists in synthesizing new local patches through sim-
ple geometric transformations of a rough scene model. For instance, an adaptation of [15]
to SLAM relocalisation is proposed in [16]. Instead of synthesizing with limited-range
transformations (for example, camera tilt varies between −30◦ to +30◦ in [15]), it is pos-
sible to synthesize new views with large baseline changes. The objective of the papers in
this research line is to complete a set of real views with synthetic views from uncovered
viewpoints. For example, it is proposed in [17] to use view synthesis for data augmen-
tation in image classification tasks. View synthesis is also the ground of ASIFT [18] for
image matching and of [19] for pose estimation. Although these approaches outperform
invariant descriptors, they are, however, generally dedicated to specific scene types or do
not scale up well. The contribution of the present article is precisely to show that view
synthesis dramatically improves pose computation and that both the synthesis process
and the pose computation step can be achieved in an efficient way. The following sec-
tion discusses the literature related to view synthesis for pose estimation through feature
matching.

1.1 View synthesis for pose estimation

In [17, 20], view synthesis is used to augment data for image classification, in order to go
beyond the limited invariance of descriptors. In [17], transformations modeling viewpoint
changes are iteratively selected to augment the training data, improving classification
accuracy significantly. In [20], it is proposed to generate new views by interpolation.
This requires a relatively dense coverage of the scene for the interpolation to produce
images consistent with actual observations. The authors of [21] (after [15]) use affine
transformations randomly drawn to train a classifier for keypoint recognition. In [22, 23],
it is proposed to iteratively select pertinent transformations rather than applying a set of
pre-defined or random ones. While such approaches aim at limiting the computational
burden, they essentially rely on heuristics to define synthetic viewpoints. Let us mention
a mathematical analysis of these heuristic choices available in a recent paper [24].

Since these works deal with image classification or image registration and not with
pose estimation, naively estimating pose from such methods gives a limited accuracy.
In particular, no geometric model of the considered scene or object of interest is used,
and the transformations are thus likely to produce incoherent results. Although it is
not crucial for image classification tasks, accurate and efficient pose estimation requires
well founded view synthesis, since aberrant synthetic views give spurious matches that
have to be discarded by random sampling strategies such as RANSAC, at the price of a
potentially high calculation cost.

Concerning pose estimation, several authors use viewpoint simulation strategies with
application-dependent assumptions limiting the range of the required transformations,
which is another way of alleviating the computational burden. The authors of several
papers [25, 26, 27] generate fronto-parallel views of planar structures, which comes down
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to choosing a single virtual position in front of the considered scene planes. Robustness
to viewpoint changes is improved but still limited in case of slanted views of the plane.
In the context of real-time tracking, the authors of [28] make use of a 3D rendered
model to match edges. Place recognition and pose estimation in a urban environment
are addressed in [29]. The virtual positions lie on a dense grid at street level and a rough
3D planar model of the scene is used. Synthetic views, generated by ray-tracing, are
matched to the query view, which gives reliable place recognition. Synthetic views from
street level are also used in [30, 31] to improve image registration to urban models. The
authors of [4] address the ground-to-aerial registration problem where this simplifying
assumption does not hold. Nevertheless, they assume that an estimation of the aerial
position is available from GPS tags. This makes it possible to generate a synthetic view
from a dense reconstruction of the scene corresponding to the GPS position, which can
be accurately registered to the query view. A similar idea is exploited in [3] for vision-
based robot localization, where it is assumed that a coarse estimation of the pose is
available to drive view synthesis. The same assumption is used in some simultaneous
localization and mapping (SLAM) applications to generate synthetic patches, after [32],
or in tracking-by-synthesis methods [33, 34]. The authors of [35] propose to refine bundle
adjustment by taking into account photometric reprojection error, which amounts to
rendering synthetic views based on a mesh model of the scene.

It should be noted that most of these works require either a dense scene model (or a
multiplanar textured reconstruction of the scene) [30, 26, 29, 27, 28], or an initial guess
for the pose [3, 4, 34, 35]. As a conclusion of this short survey, and to the best of our
knowledge, it seems to us that existing view synthesis approaches generally need some
prior information depending on the application domain or do not simply scale up to
larger scenes.

1.2 Contributions

This paper is an extension of our previous works on pose initialization. In [19], we
propose an approach where no initial guess is available and the scene model is an un-
structured 3D point cloud. It is assumed, however, that virtual viewpoints are regularly
distributed on a sphere centered on the model. This restricts the applicability to rela-
tively small object-centered scenes. In addition, all viewpoints have to be simulated to
produce synthetic patches for all 3D points, making the algorithm quite demanding in
terms of computation time. In [36], we propose a more efficient synthesis approach that
is usable with any scene that contains planar areas. The problem of increased matching
time due to the amount of added descriptors has yet to be addressed in this latter work.

The present paper deals with pose estimation from a query view, based on an SfM
model of the scene, without any initial pose guess. As mentioned earlier, an application
domain is the initialization of a tracking process. Each 3D point of the model is endowed
with the collection of the corresponding SIFT descriptors matched in the SfM step. SIFT
keypoints from the query view are matched to the model points by nearest-neighbor
matching followed by RANSAC [37] and PnP [6]. Our goal is to add SIFT descriptors
coming from synthesized patches in order to facilitate keypoint matching when the query
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view is not covered by the construction views. The additional SIFT descriptors are
extracted around the reprojected scene points in the synthesized patches. The synthesis
itself relies on a coarse segmentation of the 3D scene model in planar areas, the virtual
cameras being distributed around these areas.

Three contributions are proposed. In Section 2 we discuss the transformation model
used for synthesis and we show that view synthesis dramatically improves pose compu-
tation. In Section 3 we introduce a method for positioning virtual viewpoints and gen-
erating synthetic patches from these viewpoints. The basic assumption of the method
is that scenes are piecewise planar, which is sound in man-made environments. This
method makes minimal hypothesis on the scene, essentially that there are some planar
areas in the scene, and is tractable for large scene models. In Section 4 we propose a ran-
dom sampling approach for efficiently searching image-model correspondences. Section 5
discusses experimental results.

2 View synthesis for pose estimation: A proof of concept

In this section, we discuss how to produce synthetic views and use them to enrich the
SfM model with new descriptors.

The problem can be formulated as follows: Given an SfM model, as described in
the introduction, and a viewpoint, defined by a camera with its intrinsic and extrinsic
parameters, how to generate a new view of the scene? The model being built from a set of
images, the idea is to render new views of some parts of the scene by applying a geometric
transformation to an input image. Augmenting the SfM model to a textured mesh is not
an option here, since it basically consists in a limited-accuracy point cloud. Assuming
that the scene is locally planar, which is verified in a wide variety of environments,
producing synthetic views consists in using geometric transformations of existing views of
the scene planes. Homographic and affine transformations are considered, corresponding
to pinhole and affine camera models, respectively.

We assume for a while that the virtual viewpoints have been chosen beforehand and
we focus on the synthetic view generation and model enrichment. The positioning of the
virtual viewpoints is thoroughly discussed in Section 3.1.

2.1 Pinhole camera

Considering pinhole camera models, the transformation between the images of a plane
from two different viewpoints is given by a homography [38]. Let P1 = K1[R1|T1]
and P2 = K2[R2|T2] be the two camera projection matrices, P1 corresponding to a real
observation and P2 to a virtual viewpoint. A plane described by its equation nTX+d = 0
is considered, n being a normal vector. The transformation induced by the plane between
the two cameras is the homography H given by the following equation:

H = K2(R− TnT /d)K−1
1 (1)

where R = R2R
−1
1 and T = T2 −RT1.

5



Φ

θ

λ

ψ

n

Figure 1: Affine camera parameters (λ, θ, φ, ψ) relative to a plane described by its normal
n. λ is a scale factor, ψ the rotation around the optical axis, θ the latitude and φ the
longitude.

Matrix R2 can be written R2 = Rz(κ)Ry(φ)Rx(ω) where (X,Y, Z) is an orthonormal
basis such that Z is the camera axis and (κ, φ, ω) are the associated Euler angles. SIFT
descriptors being invariant to any planar similarity, any rotation around the optical axis
or focal change of camera 2 produces the same descriptors. Therefore, we only need to
set the camera parameters up to a rotation around the optical axis and the focal can
be fixed arbitrarily. As pointed out in [18], this argument based on ideal, continuous,
images remains valid with sampled images if the Shannon-Nyquist conditions are met.

The normal n to the plane is required to compute the homography H. It is obtained
by principal component analysis [39].

2.2 Affine camera

With affine cameras, the transformation between the images of the plane becomes an
affine transformation. Considering a plane nTX+d = 0, an affine camera is fully defined
by its orientation relative to the plane (ψi, θi, φi) and a zoom parameter λi, as illustrated
in Figure 1. The affine transformation between the fronto-parallel view and the image
from this camera can be written as:

Ai = λi

(
cos(ψi) − sin(ψi)
sin(ψi) cos(ψi)

)(
ti 0
0 1

)(
cos(φi) − sin(φi)
sin(φi) cos(φi)

)
(2)

with ti = 1/ cos(θi) the tilt of the camera [18]. As SIFT descriptors are invariant to
similarities, the same descriptors are, theoretically, computed for any value of λi and
ψi. As a consequence, we can arbitrarily set λ = 1 and ψ = 0 for any affine camera
we consider. The two remaining parameters, θ and φ, describe the view direction of the
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camera with respect to the plane. The affine transformation A between the images of
the plane viewed from two affine cameras (θ1, φ1) and (θ2, φ2) is eventually obtained by
composition:

A = A2A
−1
1 (3)

2.3 Adding new descriptors to the model

Using these transformation models, it is possible to generate synthetic views by trans-
forming a real view of the scene. In this section, synthetic views are patches of size
100× 100 pixels, centered on a point of the model. The scene plane inducing the trans-
formation is given by the point position and the normal to the scene surface at this
point.

Once a synthetic view is generated, we use it to add new descriptors to the model.
We have two possibilities to extract the descriptors: Either we extract them at the exact
location where the point of the model project in the image, or we run a standard SIFT
keypoint detection on the synthetic view, giving potentially several candidate descriptors.
We use the latter approach for two reasons. First, in order to extract descriptors at a
specific location we have to define a scale of extraction, and we did not find a suitable
heuristic for this purpose. Second, our goal is to produce descriptors that would be
obtained from the virtual viewpoint, which is what we obtain when extracting SIFT
keypoints from the synthetic view.

Finally, we add a descriptor from the synthetic view to the set of descriptors attached
to a 3D point of the model provided that it has been extracted at a distance smaller
than a certain threshold to the reprojection of the 3D point. The distance threshold is
set to the average reprojection error in the SfM model.

2.4 Affine or homographic transformation?

We can use the above-mentioned method to enrich SfM models with homographic or
affine synthesis, and compare how they improve pose computation. The experimental
protocol consists in computing 100 poses from each model to compare the repeatability of
the pose computation alongside pose accuracy. Poses are computed from the model using
approximate nearest neighbor matching of the descriptors [40], followed by RANSAC
filtering of the correspondences between the query image and the 3D model, the pose
being eventually estimated by direct least square PnP [6].

Figure 2 illustrates the results typically obtained with a planar scene. We do not
have a ground truth for the computed pose, so the accuracy is estimated visually by
displaying the computed poses in the scene geometry and projecting some of the scene
edges according to the computed poses. Without synthesis, the inlier rate in the image-
model matching step is 5% and computed poses are completely scattered, and therefore
unreliable. When using the model enriched with affine synthesis, the inlier rate is 20%
and the computed poses are grouped around the expected pose. In Figure 2 we see that
book edges are projected close to their correct position but not properly aligned. This
shows that affine synthesis adds here new descriptors that ease pose computation enough

7



Figure 2: One hundred pose computation results using the SfM model (left), the model
enriched with descriptors from affine synthesis (middle) and the model enriched with
descriptors from homographic synthesis (right). Top row shows the computed poses
(blue) and bottom row shows the reprojection of the edges of the book on the right of
the image according to the computed poses. The red viewpoints are the ones used to
build the model with SfM.

to get a coarse localization. Finally, with the model enriched by homographic synthesis
the inlier rate is 43% and all 100 computed poses are superposed and close to the correct
position.

The affine model is generally used when the scene geometry is not available, as in [3].
In our context, the main point in favor of the less complex affine transformations is that
they are easier to parameterize, as we do not need to set the camera-scene distance.
However, this is the case because we fixed the scale factor λ = 1 in Equation 2, which
relies on a hypothetically perfect invariance of SIFT to scale changes. In practice, it is
only valid up to a certain scale change [41]. In addition to this, affine camera model
is only a coarse approximation of the epipolar model which is still needed for common
focal lengths and scene depths. For these reasons, we use homographic synthesis in the
remainder of this article.

3 Geometrically consistent synthesis

Although the method of the previous section proves that view synthesis yields more
accurate pose estimation, it does not scale to environments larger than object-centered
scenes. In this proof of concept, a patch is indeed synthesized for each model point
and each virtual viewpoint. A lot of overlapping patches are computed, which means
that some parts are synthesized multiple times. Beside the complexity issue, the po-
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Input: A set of images
Output: A point model of the scene, each point being associated with sets of
SIFT descriptors, coming either from input images or from synthetic images
associated with virtual viewpoints

1. Build an SfM model with, e.g., [52]: 3D points are endowed with SIFT
descriptors from the input images

2. Segment the resulting point model into planar patches (Section 3.1.2)

3. Patch synthesis:

• Sample the virtual viewpoint directions around the planar patches
(Section 3.1.1)

• Generate synthetic views of the planar patches from the real images
(Section 3.2.1)

• Add new descriptors from synthetic views to 3D points by adding the
corresponding SIFT descriptors, provided the 3D point is actually
visible from the virtual viewpoint (Section 3.2.2)

Figure 3: View synthesis for enriching a point model of the scene.

sitioning of the virtual viewpoint proposed in the previous section is only adapted to
small-scale object-centered scenes. We therefore propose to segment the SfM model
into independent planar components, virtual viewpoints being positioned with respect
to these components and the available real cameras. This permits us synthesizing views
of the whole planar components, reducing in turn the algorithmic complexity. For ease
of reading, the complete algorithm is summarized in Figure 3.

3.1 Virtual viewpoint positioning

The following sections discuss how to sample virtual viewpoints around a planar patch,
and how to segment a point model into a set of planar patches.

3.1.1 View direction sampling

Considering a planar patch, we want any potential view of the patch to be close enough
either to one of the simulated viewpoints or to one of the construction views, in order that
SIFT features extracted from them can be matched. With affine cameras, the transition
tilt, defined in [18], is a good indication of how easy it is to match SIFT features.
Although it has been shown in [19] and recalled in Section 2 that homographic synthesis
yields better results than affine synthesis, the affine model, as a first order approximation,
is sufficient to position virtual viewpoints. If A is the affine map between two images I1
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Figure 4: Parameterization of an affine camera pointing to a planar patch (1). Sampling
of the virtual viewpoints around a planar patch (from [18]) (2). Map of the transition
tilts to the closest viewpoint (blue is 0 and red is greater than the

√
2) for a planar

patch of the pot dataset: with respect to the real viewpoints only (3) and with respect
to the additional virtual viewpoints (4). The centers of the blue patches correspond to
the viewpoint positions. We can see in (4) that most potential viewpoints are within a
limited tilt of a real or virtual viewpoint, making it possible to match SIFT features.

and I2 of a planar scene (that is, I2 = AI1), then A has a unique decomposition:

A = λR(ψ)TtR(φ) (4)

= λ

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)(
t 0
0 1

)(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
(5)

where R(ψ) and R(φ) are rotation matrices, and t ≥ 1 is the transition tilt between
the two views. If one of the views is fronto-parallel, the parameters correspond to the
notations of Figure 4 (1), with t = 1/ cos(θ). Parameter t expresses how much the view
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Figure 5: Virtual viewpoint positioning relative to some of the segmented patches (green
points). In the first scene, only two rings of virtual viewpoints (in green) are added as
the other potential viewpoints would have been close to existing viewpoints (in red).

is flattened out. SIFT features being invariant to similarities, Equation (5) shows that,
at fixed t and φ, any λ and ψ give the same features. This motivates to position the
virtual viewpoints around the planar patch similarly to [18], that is, at (t, φ) such that
t = 2m/2 (m ∈ {1, 2, 3}) and φ = n 72◦/t (n such that φ spans [0, 360◦]. The resulting
sampling is shown in Figure 4 (2). It should be noted that only affine cameras are
considered in ASIFT [18]. This justifies that ASIFT limits φ to [0, 180◦] (for symmetry
reasons) and does not consider the distance to the scene. Since we consider pinhole
cameras, we have to set the distance of the virtual camera to the planar patch. We use
the average distance of the real cameras to limit interpolation artifacts during synthesis.
This camera positioning strategy is similar to the one used in ASIFT: In both cases, it
is based on the observation that tilts, and therefore appearance changes, are larger for
view direction with a large angular deviation to the normal to a plane, which calls for a
finer sampling of the viewpoints when moving away from the normal.

In order to limit information redundancy, we do not add virtual viewpoints near real
viewpoints. Virtual viewpoints are thus added only if the transition tilt to one of the
real viewpoints is larger than

√
2. This is illustrated in Figure 4 (3-4).

The next section explains how to segment the scene into planar patches, each one
of them being associated with virtual viewpoints through the preceding process, as in
Figure 5.

3.1.2 Planar segmentation

It turns out that SfM point clouds are noisy and non-uniformly sampled. We first
estimate the normals at each point, via PCA on the neighboring points as in [39]. A
simple iterative RANSAC scheme is used: RANSAC (with a fitting criterion based on
both the distance between the points and the plane and the consistency of the normals at
each point, described in [42]) gives points lying on a plane, which are iteratively removed
until 90% of the model points are associated with a plane. Note that the fitting criterion
eliminates points around the edges of the scene, the normal of these points being not
consistent [43]. This makes the estimation of n, needed for Equation (1), more robust.
It should also be noted that this segmentation scheme might fail for large point clouds
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Figure 6: Three segmentation examples on an object-centered scene (top) and a build-
ing (bottom). The datasets are the Book, Pot and CAB datasets that can be seen in
Figure 10. Each planar patch is in a different color. We can see that the curved surface
of the pot is correctly approximated by a set of planar patches.

when each plane only fits a small fraction of the points. This typically occurs for models
of the scale of a city. However, the segmentation process is still adapted for models of
the scale of a building, which is the case in our application scenario where we expect a
rough GPS localization.

Synthesizing the appearance of a patch far away from a virtual camera is likely to
suffer from image quantization. This typically happens when synthesizing the appear-
ance of large planes such as building façades. We therefore segment further the planes
into smaller sets of points included in square cells oriented along the two principal direc-
tions of the plane, and of width equal to the average distance between a point and the
cameras that reconstructed it. Note that these cells are not necessarily aligned with the
scene edges. Pieces of planes obtained by this segmentation are called planar patches.

Illustrative examples of such a planar segmentation are shown in Figure 6. Virtual
viewpoints are positioned around the planar patches as in Figure 5.
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3.2 Patch synthesis

This section describes the synthesis process. At this step, the scene model is supposed
to be segmented into planar patches, each one of them being associated with a set of
virtual viewpoints, according to the algorithm of Section 3.1.

3.2.1 Image transformation

For each virtual viewpoint, the aspect of each planar patch is synthesized with the
homography given in Equation (1). SIFT descriptors are extracted from the simulated
views and associated with the corresponding 3D points. The simulated view is obtained
by transformation of a single real view. One could argue that fusing the information from
multiple views to generate the new one could be beneficial, using super resolution for
example. Unfortunately, the cameras poses associated with the real views are subject to
small errors as they are known through the SfM reconstruction. In practice we observe
reprojection errors up to 10 pixels. As such, gathering information from multiple views
to generate a new one is not practical. This in an intermediate approach between [30]
where synthetic views come from full images, and [19] (additional experiments available
in [44]) where many small overlapping patches are produced.

The remaining problem is to define from which construction view the synthetic
patches should be simulated. As a patch may not have been fully observed in a sin-
gle construction view, we may have to use several construction views. The views are
selected using a greedy approach, by iteratively selecting the construction viewpoints in
which the largest number of model points belonging to the considered planar patch are
visible. The stopping criterion is that 90% of the patch points are visible from at least
one of the viewpoints. A point of the model is considered visible in a construction view
if there is a descriptor extracted from this view associated with this point in the SfM
model. In all our experiments, we needed at most five views to cover 90% of the points
on a planar patch.

Figure 7 shows the set of points in a planar patch and the associated construction
view in the same color. SIFT descriptors extracted from simulated views based on the
construction view are associated with these 3D points.

This way to perform view synthesis is much more efficient than the method of
Section 2 in which all the synthetic patches were synthetized for all the 3D points
and all the virtual viewpoints. In this latter case the number of patch synthesis is
nb 3d points×nb virtual views, whereas with the proposed method, the number is less
than nb planes× nb cameras per plane. In our experiments, the number of planes was
less than 20 and the number of cameras used per plane was 32.

3.2.2 Visibility from virtual viewpoints

The preceding procedure simulates the aspect of planar shapes from virtual viewpoints,
but it does not take into account potential occlusions from other parts of the scene.
This means that it could simulate the appearance of some parts of a patch from a
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Figure 7: Examples of real viewpoint selection to be used in patch synthesis. The points
and their associated construction camera are drawn with the same color.
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Figure 8: 2D examples of the behavior of the hidden points removal algorithm [45] in
the presence of noise. The points (in red) are on a circle, with some added noise. On
the left we show the transformed points (in blue) according to different R parameters;
on the right, we show which points are marked visible by the algorithm (in green).

position where they are actually not visible. The resulting descriptors would not only
unnecessarily increase the complexity of the model, but would also increase the outlier
rate in the matching stage.

We therefore impose an additional visibility constraint. The authors of [45] propose
an efficient method to directly extract visibility information from the point cloud (no
meshing is needed) which performs well on point clouds with a non uniform density. The
set of model points visible from a point O is computed as follows. The model points are
transformed using the so-called flipping transformation given by:

p′ = p+ 2(R− ||p||) p/||p|| (6)

where p is a vector from O to a point of the model and R is a smoothing parameter.
Let P ′ be the set of the transformed points. The set of points visible from O belongs to
the preimage of the convex hull of P ′ ∪O. It is shown in [45] that the number of visible
points increases with R, as shown in Figure 8. This method was originally designed for
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point models with noise levels much lower than in an SfM reconstruction, which imposes
us to set R carefully.

In order to choose R, we isolate each planar patch and run visibility tests from a
fronto-parallel viewpoint for increasing R. Noise-free points lying on a plane should all
be visible; this is not the case here. We choose R as the smallest value such that at least
90% of the points in the isolated patch are visible. Whereas R is a critical parameter
in the original paper, it is not the case in our application. Indeed, we only want to
eliminate points that we are sure they are not visible. To that end, we can over evaluate
the value of R, which will result in accepting more points as visible.

It is worth noting that we can tolerate a few mislabelling as pose estimation is
performed with RANSAC. The gain from this step is contextual, depending on the
presence of occlusions in the scene. It may, however, be significant. For instance, in the
pot dataset, the size of the model goes from 160, 000 descriptors to 134, 000 when using
this visibility constraint, see Figure 10. All of these discarded descriptors would anyway
incorporate spurious data in the model.

4 Efficient guided matching for image-model correspon-
dences

The proposed enrichment process increases the number of descriptors in the model sig-
nificantly and consequently the time needed by the image-model RANSAC matching
step. Indeed, though RANSAC can find the correct solution even in the presence of
large outlier rates, the number of samples increases dramatically. There has been a lot
of efforts aimed at increasing the efficiency of RANSAC algorithms, see [46] for a review.
We propose here a variant of guided-sampling approaches [47] which seeks to modify
the sampling process in order to generate preferentially the more plausible correspon-
dences. This method integrates the observation that point correspondences in query
image are not distributed on many images of the model but that the correspondences
are concentrated on a small set of real or virtual images of the model.

4.1 Hypothesis generation

The first step of pose computation is to generate a set of candidates correspondences
between points in the 2D image and points in the 3D model. Note that with the enriched
model, each 3D point p is associated with a set Dp of SIFT descriptors generated either
from reconstruction views or from our synthetic views. The distance between an image
feature f characterized by its descriptor df and a model point p is defined as the minimum
distance between the image descriptor and any of the model descriptors:

dist(f, p) = min
dp∈Dp

(||df − dp||) (7)

The set of correspondence hypotheses is the set of all pairs formed by an image feature
and its closest point in the model.
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As shown in [48], using nearest neighbors is substantially better than bag of words
when trying to find correspondences between an image and a model. This is especially
true when using our view synthesis approach, because correct descriptors might be iso-
lated in the model. However, the main issue with nearest neighbor search is the com-
plexity. For that reason, we use approximate nearest neighbor algorithm with kd-trees
to generate the set of candidate correspondences [49].

4.2 Ordering functions

Depending on the inlier ratio among the image-model correspondences, the matching
computation time ranges from one second to one minute in our experiments. To overcome
this issue we use a progressive sampling strategy in RANSAC instead of a uniform
drawing over the set of candidate 2D/3D correspondences. The critical points of such
algorithms are the ordering function, the sampling strategy and the stopping criterion.
We describe in Sections 4.2.1 and 4.2.2 two ordering functions that are commonly used to
score the quality of the correspondences and then describe our strategy in Section 4.2.3.

4.2.1 Best to second best distance ratio

The score of a match in the nearest neighbor sense between an image feature f and
a model point p is given by dist(f,p)

dist(f,p′) where dist is the distance between the associated

descriptors and p′ is the second closest point to f in the model, as in Equation 7.
Correspondences are sorted along increasing distance ratios. The reason is that reliable
correspondences are supposed to be well separated from the second closest point, thus
dist(f, p) << dist(f, p′). This corresponds to the “quality measure” of [47], adapted here
to the pose estimation problem.

4.2.2 Inverse best to second best ratio

In [50], the authors argue that the large amount of descriptors in the model makes the
best to second best distance ratio unreliable, as dist(f, p′) is more likely to be close to

dist(f, p). They propose to use instead the ratio dist(f,p)
dist(f ′,p) where f ′ is the second closest

feature to p in the image, and to sort the correspondences along increasing values of this
ratio.

4.2.3 View count

The previously discussed ordering functions do not fit our problem correctly because
they rely solely on photometric information but do not take into account the multi-view
context of the matching.

An interesting example of work considering the multi-view context is [51] where an
ordering of the samples (i.e. groups of four correspondences) based on co-occurrence
is proposed. The score of a group is the number of images in which their respective
3D points appear together. In the context of worldwide localization, co-occurrence over
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multiple views is a good yet tractable quality measure. Nevertheless, in the problem
of interest, namely strong viewpoint changes between the construction views and the
query view, the range of the scene is limited and co-occurrence of correspondences is not
informative due to possible point occlusions depending on the viewpoints.

However, taking this idea a little further, we propose an ordering function based on
the distribution of correspondences with respect to the views - real or virtual - used to
build the model. Given a representative query view, we observe that most of the model
descriptors among the correct correspondences are extracted from a relatively small set
of views, as shown in Figure 9. The inlier ratio is also significantly higher when we
only consider correspondences obtained from these views. This leads us to define the
score of a correspondence (f, p) as follows: Let v be the view in which dp was extracted.
The score is the total number of correspondences associated with v in the query image.
As a result, all correspondences associated with the same view obtain the same score.
Correspondences are then sorted along decreasing view counts. To refine this score, we
further sort correspondences with equal view counts according to increasing values of
the previously described best to second best distance ratio.

4.3 Random sampling strategy

Let e1, e2, . . . , eN be the sequence of N candidate correspondences, ordered by one of the
function described in the preceding paragraph, and En = {e1, . . . , en} for any 1 ≤ n ≤ N
be the nested sets made of the n first correspondences. The progressive sampling strategy
consists in drawing sets of minimum four-samples from E4, then E5, etc. We use four-
samples as estimating a projection matrix requires at least m = 4 correspondences. As
in PROSAC [47], for a given n, a sample consists in the n-th correspondence en and three
others randomly chosen in En−1. This ensures that new samples are actually drawn as
n increases. For each n, tn samples are successively drawn from En, tn being defined as
a proportion α of all possible samples among n, that is,

tn = dα
(
n− 1

3

)
e (8)

where dxe is the smallest integer greater than x. In our experiments, α was fixed to 0.1.
In practice, we increment n whenever the current number of iterations t is greater than
t4 + · · ·+ tn, the first drawing set being E4, for which t1 = 1.

4.4 Stopping criterion

4.4.1 Online inlier ratio estimation

As the inlier ratio greatly varies from one experiment to the other, an adaptive stopping
criterion is needed. The standard stopping criterion for RANSAC is presented in [38].
The inlier ratio is estimated at runtime according to the cardinality of the current best
consensus set I(P ) associated with the pose P :

τ =
#I(P )

N
(9)
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Figure 9: Number of correspondences associated with each viewpoint after the 2D/3D
matching step (left) and number of ground truth inliers associated with each viewpoint
(right). Contribution from real viewpoints (resp. virtual viewpoints) is in red (resp. in
green). The top contributing viewpoints in terms of correspondences are also the ones
that produce inliers. Top raw is computed for one image of the Book sequence whereas
second raw is computed with one image of the Pot sequence. In the Book sequence, the
first image is very far from the construction views with most inliers coming from one
synthetic view.

Assuming that the samples are independently drawn and that each correspondence has
a probability τ to be correct, it is easy to show that, with probability p∗, a sample made
of four correct correspondences is drawn after t∗ iterations where

t∗ =
log(1− p∗)
log(1− τ4)

(10)

This criterion relies on the estimation of the inlier ratio made on the whole set of
correspondences. As the proposed sampling scheme is estimated over En, we therefore
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estimate the inlier ratio only on the n best correspondences:

τn =
#In(P )

n
(11)

where In(P ) = I(P )∩En is the consensus set restricted to the n best correspondences in
the sense of the chosen ordering function. The number of iterations is calculated as in
(10). As the first correspondences have a higher probability of being correct, τn is likely
to be greater than τ and the required number of iterations to be lower than t∗ required
by classic RANSAC.

4.4.2 Low values of n

The preceding criterion is, nevertheless, not reliable when n is small (typically n ≤ 10).
In this case, the estimator of the inlier rate (11) has a large variance, which potentially
yields unwanted early stops. A minimal number of samples n0 that have to be drawn to
ensure the confidence in the solution must thus be defined. In PROSAC [47], this issue
is handled by considering the probability β that “an incorrect model calculated from a
random sample containing an outlier is supported by a correspondence not included in
the sample”. This probability is used to prevent stopping after the first few iterations.
However, this probability is never known in practice and implementations of the method
usually set it to an experimentally validated value.

In our implementation, we define the minimal number of correspondences n0 as the
number of correspondences obtained from the view that produced the more correspon-
dences, i.e., on the set En0 . This ensures that τ is evaluated on a set of correspondences
with a high inlier ratio, according to the observations made in Section 4.2.

Figure 1 summarizes the whole algorithm which is referred to as COSAC in the
following.

5 Experimental results

After describing the experimental setup in Section 5.1, we show in Section 5.2 that a
model enriched with the proposed method leads to more accurate poses, and even gives
accurate poses when pose estimation simply fails without synthesis. Computation times
are discussed in Section 5.3. Examples of augmented views are shown in Section 5.4.
Finally, the efficiency of the guided matching strategy is demonstrated in Section 5.5.

5.1 Experimental setup

The experimental setup consists in estimating the pose of a query view independent
from the construction views, the model being built with VisualSfM [52]. The query view
is typically chosen far away from the construction views. Poses are computed from the
model using approximate nearest neighbor matching of the descriptors [40], followed by
filtering of the query/model correspondences, the pose being eventually estimated by
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input : E : set of ordered candidate correspondences
n0: number of correspondences associated with the predominant view

1 begin
2 t← 0;
3 n← m;
4 tstop ← tmax;
5 while t < tstop do
6 t+ +;
7 if t > t4 + ...+ tn then
8 n+ +;

9 τn ←
#Imax(n,n0)(P)

max(n, n0)
;

10 tstop ←
log(1− p0)

log(1− τmn )
;

11 end
12 draw sample s in E3

n−1 × {en};
13 compute pose P from s;
14 if IN (P) > IN (P∗) then
15 P∗ ← P;

16 τn ←
#Imax(n,n0)(P)

max(n, n0)
;

17 tstop ←
log(1− p∗)
log(1− τmn )

;

18 end

19 end
20 compute final pose Pfinal from IN (P∗);
21 end

output: the camera pose Pfinal

Algorithm 1: The proposed progressive RANSAC algorithm (COSAC). As we
can see, the stopping parameter tstop is updated whenever n increases or a larger
consensus set is found.

Direct PnP [6]. RANSAC stopping criterion is based on the online estimation of the
inlier ratio proposed in [38].

Experiments have been conducted on five datasets which go from a small object to a
large building (Figure 10). The size of the scenes is limited to a few objects or buildings,
which is a realistic assumption even in city-scale environments if a rough localization
is available (through GPS for instance). Poster is a simple planar scene. Pot and book
are small object-centered scenes from [53]. Tower is a relatively simple outdoor scene
from [54] that essentially consists in two planar facades. CAB is a larger outdoor scene
from [55]. This model is significantly larger (49, 000 points and 325, 000 descriptors,
reconstructed from 300 images).
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Figure 10: Sample images of five datasets and the reconstructed 3D point clouds. From
left to right: poster (17 images), book (53 images), pot (21 images), tower (21 images)
and CAB (300 images).

For most cases, we have or we built a SfM reconstruction from a large image sequence
but consider for our experiments only a sub-part of the sequence and the associated SfM
reconstruction. Test images are views from the large sequence which are far from the
sub-sequence. The associated ground truth can thus be computed by registering the
SfM reconstruction associated with the whole and to the partial sequence. Registration
is based on the set of camera centers which are common to the whole and the partial
sequence. First, Procrustes analysis on this set of matched points allows computing scale
and displacements between the SFM coordinate frames. All the camera poses can then
be expressed into the partial SfM frame (see Appendix A for details). Tests have been
also realized in the case of CAB with images taken from Google Street View and, in this
case, the recovered position is only visually assessed.

We consider several evaluation criteria in order to assess the accuracy of the pose
associated with a query image. The reprojection error and the distance to the camera
ground truth are classic criteria. Since augmented reality applications are targeted, we
also consider visual means to assess the quality and the stability of an augmented scene.

5.2 Evaluation of pose accuracy

One hundred runs of the pose estimation estimated with the SfM and the enriched
models are shown in Figure 11 for the representative pot and tower datasets.

For each query view (column b) the pose computed for each of the 100 trials is
displayed using the SFM model (column c) and the enriched model (column d). The
improvement brought by the enriched model both on the stability and on the accuracy of
the estimated poses can be visually assessed in this figure. The average reprojection error
is presented in Table 1. For all the sequences, the reprojection error and the associated
standard deviation are considerably reduced. In some cases as poster and tower, the pose
estimation computed with the SfM model is very unstable and cannot be used for any
localization or AR task, whereas much more accurate estimation is obtained with the
enriched model. Finally, there are more inliers obtained with the enriched model than
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with the SfM model. Figures 12 and 15 show that they are spread more evenly in the
query image, thus leading to a much better accuracy of the computed pose.

In the case of the pot sequence, we have studied the accuracy of the pose with
respect to the ground truth. As explained in Section 5.1, the ground truth is obtained
by registering the full SfM reconstruction onto the partial SfM used in our experiment.
One hundred trials for pose computation both for the SfM based and the enriched method
are considered. We then compute for each method the distance from the ground truth
to the estimated poses and compute the mean and the standard deviation. For the SfM
based method, the mean distance to the ground truth is 1.69 and the standard deviation
is 1.26 whereas for the enriched model, the mean distance to the ground truth is 0.277
and the standard deviation is 0.053. To take into account the scale of the scene, we
normalize the error with the mean camera-scene distance, which is 8.67. This leads
to a relative error on the pose with respect to the mean camera-to-object distance of
19.05% for the SfM based model and of 3.04% for the enriched model. This result is
representative of our experiments and proves the improvements in terms of stability and
accuracy of our method.

5.3 Computation time and model efficiency

To show the efficiency of our model, we compare in Table 2 the time needed by the
offline construction of the model and the time needed by the online pose estimation for
both the SfM and the enriched model. The times are obtained on an Intel i7 quad core
2.7 GHz with 16 Gb memory. In all these experiments, the computing time for adding
descriptors through patch synthesis was smaller than the reconstruction time, in spite
that our implementation of patch synthesis is a MATLAB code, while VisualSfM is a
compiled software. Although the construction step is done offline, it is important to note
that the additional time needed for computing the enriched model is smaller or of the
same order than the SfM reconstruction.

While the enriched models are significantly larger than the initial ones (for instance,
it grows from 32, 000 descriptors to 134, 000 descriptors in pot), the pose estimation is
not proportionally longer. Table 2 shows that in our experiments the computation times
for matching, computed using an approximate nearest neighbor search, are only a few
seconds longer when using an enriched model, with a MATLAB implementation. This
is primarily because the SIFT descriptors coming from synthesized patches increase
the inlier ratio and consequently decrease the number of RANSAC iterations. In all
our experiments, the tentative correspondences obtained using the enriched model have
always a higher inlier ratio than the ones from the initial model: The inlier ratio increases
by 7% for CAB and by 37% for poster. As a result, the time needed by the matching+pose
step is most of the time significantly smaller for the enriched model.

5.4 AR applications

When Augmented Reality applications are targeted, another way commonly used to
assess the accuracy of the pose is to define objects linked to the 3D model and to check

23



SfM model enriched model

poster 1175±1.72 1.21±0.97

book 3.47±2.31 2.32±1.26

pot 19.79±26.70 4.39±4.50

tower 32.92±50.27 6.72±3.27

CAB 26.94±17.23 15.53±13.72

Table 1: Average pixel reprojection error of 3D scene edges in the query view, plus/minus
the standard deviation. The large errors for poster and tower correspond to situation
where the RANSAC / PnP step did not actually converge to a reasonable pose, as shown
in Figure 11.

poster book pot tower CAB

SfM time 6min 11min 15min 5min 18min

synthesis time 3min 6min 10min 4min 9min

SfM model

# descriptors 47,643 225,207 32,568 7,774 324,360

matching time 2.53s 3.15s 2.65s 1.48s 7.55s

pose time 35.2 15.64s 10.17s 35.16s 8.29s

enriched model

# descriptors 664,848 887,216 134,484 85,949 1,523,298

matching time 5.51s 4.60s 4.38s 3.72s 13.76s

pose time 0.06s 0.80s 0.44s 0.38s 1.30s

Table 2: Computation times for synthesis and for the different steps of pose estimation.
Matching times are slightly higher when using an enriched model but pose estimation is
significantly faster because of the higher inlier ratio in the tentative correspondences.
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a b c d

Figure 11: Pose computations on the pot and tower datasets. From left to right: the
construction viewpoints, the query viewpoint, 100 tentative pose estimations without
synthetic patches, 100 tentative pose estimations with synthetic patches.

that the projected objects really appear as fixed to the scene in the augmented image.
In a first step, we consider a set of 3D prominent edges of the scene and check whether
their reprojection is visually correctly aligned with the image (Figure 13). These edges
were obtained by manually extracting them (column a) in the construction views and
reconstructing them using multi-view stereovision. The segments computed with 100
trials using the SFM model are shown in column (b) and with the enriched model in
column (c). As can be seen, the reprojected edges are almost superposed with patch
synthesis for the three sequences. On the contrary, and depending on the viewpoint
changes between the query and the construction views, the reprojection can be inaccurate
(poster sequence) or completely wrong (poster and tower sequences) for pose computed
with the SfM model.

Views augmented with a 3D chair are provided for the pot sequence in Figure 14. The
augmented views are computed when the ground truth pose (left), the pose computed
from the SfM (middle) and the pose computed from the enriched model (right) are used.
As can be seen, the image computed with the enriched model is very close to the one
computed with the ground truth, whereas the one computed with the SfM model is
significantly different and appears to be mispositioned on the ground.

Lastly, in the case of the CAB dataset, we consider in Figure 15 a query view taken
from Google Street View, for which the acquisition conditions (camera, weather, view-
point) are significantly different from the ones of the construction views. In this ex-
periment, the intrinsic camera parameters of the query view are estimated from two
orthogonal vanishing points using the method described in [56]. Difficulties are of sev-
eral kinds: Besides the fact that the query viewpoint is far from the initial positions of
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Figure 12: Pot sequence: inlier points when pose is computed from the SFM model (left)
and with the enriched model (right).

a b c

Figure 13: Poster, book, pot, and tower datasets. From left to right: query camera and
hand-picked scene edges; reprojection of these edges with 100 pose estimations without
synthetic patches; reprojection of these edges with 100 pose estimations with synthetic
patches.
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Figure 14: Pot augmented with a chair (upper right corner of the images) using the
ground truth pose, the pose computed from the SfM model and the pose computed from
the enriched model (from left to right).

the camera, there are several occluding trees which result in dissimilarities between the
model and the query view. In this example the inlier ratio grows from 20% with the
SfM model to 27% with the enriched model. Even in this difficult case, the accuracy of
the pose is improved using the enriched model.

5.5 Time improvement with the guided matching strategy

The goal of this section is to quantify time improvement with the proposed COSAC
guided matching strategy. We first compare the three ordering functions considered in
Section 4. Given the n first correspondences ranked by these functions, we plot for two
image sequences book and pot (see Figure 16) the ground truth inlier ratio for any n.
This inlier ratio can be obtained because the ground truth poses for all images in these
sequences is known and we thus can decide whether or not a correspondence is an inlier.
As such, these graphs cannot be obtained when running the algorithm.

Figure 16 shows that the view count ordering is always better than the two others.
Indeed, its inlier ratio curve in red is almost always above the green and blue curves,
especially within the first n0 correspondences. Consequently, the number of iterations
needed by the progressive sampling is significantly smaller.

It should be noted that in experiments, the stopping criterion with the view count
ordering is often satisfied before the number of correspondences in the drawing set En
reaches n0. This means that the correspondences in which samples are drawn are all
associated with the first, prominent, view. In all of the experiments we did, the maxi-
mum number of views used to draw the random samples (before satisfying the stopping
criterion) was three, as shown in the last column of Table 3. This shows that preferential
sampling among the most productive view is a sound approach.

Our algorithm for pose computation based on view count ordering, COSAC, is com-
pared to the standard RANSAC approach and to an adaptation of PROSAC [47] to pose
computation. PROSAC uses two parameters TN and β. Parameter TN defines after how
many samples the behaviour of PROSAC and RANSAC becomes identical. Parameter β
is the probability, that an incorrect model calculated from a random sample containing
an outlier is supported by a correspondence not included in the sample. We fixed these
parameters to TN = 200, 000 and β = 0.01, as suggested in [47].
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Figure 15: CAB sequence: pose computation with a view taken from Google Street
View. First row: the initial SfM model with the associated cameras, and the query
view. Second row: 100 trials of pose computation. Third row: the set of inliers. Fourth
row: reprojection of a part of the facade (marked in red in the query view) with the
computed poses. In second, third, and fourth rows, left and right columns provide results
obtained with the SfM model and the enriched model, respectively.
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iterations RANSAC PROSAC COSAC number of
views used

book 234±36 413±15 6±0 1
pot 145±30 71±1 69±1 2
CAB 6867±581 625±193 103±0 3

Table 3: Mean and standard deviation of the number of iterations required with the
view count ordering function.

Tables 3 and 4 show the required numbers of iterations and the computation times,
respectively. Both tables are consistent but are not exactly proportional because of
implementation details. Note that all the results have been obtained with a MATLAB
implementation so the actual computation times could be improved. However, we can
still evaluate performance gains by comparing the numbers of iterations.

As we can see, COSAC converges up to 100 times faster than standard RANSAC. It
also converges consistently faster than PROSAC, with an acceleration factor up to 50.
The standard deviation of the number of iterations is also significantly lower when using
PROSAC or the proposed COSAC.

As in Section 5.2, we compute the average and the standard deviation of the distance
of the computed pose to the ground truth on the pot sequence. Table 5 gives the average
and the standard deviation of the distance between the computed camera center and the
ground truth center. These errors are computed both for the COSAC and the classic
RANSAC method over 21 views different from the views used in SfM. The corresponding
cameras are shown in green in Figure 17, where the number attached to each camera
is the row number in Table 5. The SfM cameras are in red. We give the results for
the first 21 camera positions, as camera positions 22 to 27 are very close to the SfM
camera positions and give results similar to view 21. The last row of Table 5 gives the
median of the error and of the standard deviation over the 21 images. As can be seen
the errors are very close with the two methods and the standard deviation is usually
smaller with the COSAC method. A standard deviation equal to 0 means that all runs
give the same final inlier set from which the pose is calculated. These results prove that,
in addition to being computationally efficient, COSAC does not introduce bias in the
pose computation. As a sanity check, we also provide the result for classic RANSAC on
the raw SfM model, that is, without additional information provided by view synthesis.
In this example, camera positions 1 to 3, with large baselines with respect to real views,
gives much larger pose errors without view synthesis. When the camera position gets
closer to the real views (say, at position no.≥ 12), there is almost no difference between
pose estimated with or without view synthesis. Of course, it is at the cost of a much
longer computation time, as illustrated by Tables 3 and 4, since much more iterations
are needed to find a consistent final inlier set.
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time RANSAC PROSAC COSAC

book 1.37 1.62 0.02
pot 15.67 1.94 0.04
CAB 25.48 2.4 0.38

Table 4: Time needed for computing the pose in seconds (averaged over 100 trials).

View no. COSAC COSAC inlier RANSAC RANSAC inlier SfM SfM inlier
err std number err std number err std number

1 0.2349 0.0235 48 0.2706 0.0502 47 1.8955 2.0431 34
2 0.4725 0.1949 55 0.2249 0.0553 59 0.5309 0.4518 45
3 0.1658 0.0000 58 0.1502 0.0240 58 0.2704 0.3720 47
4 0.9520 2.8114 35 0.0922 0.0262 38 0.1776 0.2005 42
5 8.2488 5.3150 15 3.2751 4.1145 19 5.7962 5.6045 18
6 3.9636 4.9515 22 0.0695 0.0099 38 0.7857 2.7422 41
7 0.6499 0.5035 38 0.0754 0.0129 67 0.0836 0.0433 68
8 0.1112 0.0089 97 0.1188 0.0361 96 0.1216 0.0348 102
9 0.5567 0.4312 116 0.1382 0.0147 136 0.1547 0.0322 140
10 0.2701 0.1057 122 0.1417 0.0144 128 0.1587 0.0460 108
11 0.2380 0.0263 101 0.2036 0.0353 100 0.2115 0.0361 86
12 0.1624 0.0123 208 0.1528 0.0048 208 0.1667 0.0320 195
13 0.1840 0.0355 290 0.1689 0.0324 290 0.1690 0.0438 261
14 0.1492 0.0034 344 0.1481 0.0068 345 0.1495 0.0231 344
15 0.1092 0.0014 348 0.1200 0.0118 348 0.1408 0.0182 357
16 0.1175 0.0000 291 0.1349 0.0255 291 0.1359 0.0181 292
17 0.0982 0.0037 204 0.1119 0.0295 204 0.0925 0.0146 208
18 0.1294 0.0000 195 0.0770 0.0249 195 0.1019 0.0291 215
19 0.0608 0.0171 122 0.0595 0.0317 122 0.0693 0.0337 137
20 0.0582 0.0035 139 0.0444 0.0175 139 0.0839 0.0456 147
21 0.0471 0.0017 314 0.0552 0.0165 314 0.0687 0.0220 319

med. 0.1658 0.0171 0.1349 0.0249 0.1547 0.0361

Table 5: Average and standard deviation of the distance between the computed camera
center and the ground and number of inliers for the COSAC method (columns 2 to 4)
and the classic RANSAC method (columns 5 to 7). The same figures are given for the
classic RANSAC method on the raw output of the SfM model without view synthesis
(columns 8 to 10). The last row gives median values.
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Book Pot

Figure 16: Comparison of the three ordering functions using the ground-truth inlier ratio
among the n first correspondences for the book (Left) and the pot (right) sequence. The
ordering functions are: best to second best ratio (blue), inverse best to second best ratio
(green) and view count (red). The figure shows the graph of the inlier ratio for the n
first correspondences against n for the book and pot experiments. The number n0 of
correspondences produced by the top contributing view is marked by the vertical line.

Figure 17: Test with the Pot sequence: cameras in red are used to build the SfM model,
whereas cameras in green are used as tests for pose computation.
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6 Conclusion

In this paper, we have discussed a view synthesis approach to pose computation. The
scene is segmented in several planar patches, around which virtual cameras are posi-
tioned. Synthesized views of these patches allow adding new descriptors to the scene
model. These new descriptors permit the matching step to go beyond the limited ro-
bustness of standard descriptors as SIFT to viewpoint changes, giving an improved pose
accuracy. A new guided matching strategy, adapted to this context, makes registration
fast.

A Registering cameras from two SfM reconstructions

We here have two SFM reconstructions. One is built from the full image sequence and
the second is built from a subsequence. Let R1 and R2 be the world coordinate frames
attached to these SfM reconstructions.

Given a camera matrix P1 = [R1T1] expressed in R1, our goal is to compute its
projection matrix P2 = [R2T2] expressed in R2.

The rigid + scale transformation (s,R, T ) betweenR1 andR2 can be easily recovered
using Procrustes analysis from the set of corresponding camera centers. Since we consider
the same camera, the viewing coordinates are the same in the two coordinates frames.
As the link between the viewing and the world coordinate in homogeneous coordinates
is given by X1

vc = R1X1
wc + T 1, we can deduce:

X2
vc = X1

vc = R1(sRX2
wc + T ) + T 1 = s(R1RX2

wc + 1/s (R1T + T 1))

Therefore, the expression of the camera matrix P1 in R2 is

[R1R, 1/s (R1T + T 1)].
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