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3-anti-power uniform morphisms

Words

An alphabet A is a finite set of symbols called letters. A word over A is a finite sequence of letters from A. The empty word ε is the empty sequence of letters. Equipped with the concatenation operation, the set A * of words over A is a free monoid with ε as neutral element and A as set of generators. Since an alphabet with one element is limited interest to us, we always assume that the cardinality of considered alphabets is at least two. Given a non-empty word u = a 1 . . . a n with a i ∈ A for any integer i from 1 to n, the length of u denoted by |u| is the integer n that is the number of letters of u. By convention, we have |ε| = 0. We denote by A + the set of words of positive length over A, i.e., A + = A * \ {ε}.

An infinite word over A is a map from IN to A that is an infinite sequence of letters a 1 . . . a n . . . with a i ∈ A. And A IN is the set of all infinite words over A.

A word u is a factor of a word v if there exist two (possibly empty) words p and s such that v = pus. We denote Fcts (v) the set of all factors of v. If u ∈ Fcts (v), we also say that v contains the word u (as a factor). If p = ε, u is a prefix of v. If s = ε, u is a suffix of v. If u = v, u is a proper factor of v. If u, p and s are non-empty, u is an internal factor of v.

Let w be a non-empty word and let i, j be two integers such that 0 ≤ i -1 ≤ j ≤ |w|. We denote by w[i..j] the factor of w such that |w[i..j]| = j -i + 1 and w = pw[i..j]s for two words s and p verifying |p| = i -1. When j > i, w[i..j] is simply the factor of w that starts at the i th letter of w and ends at the j th . Note that, when j = i -1, we have w[i..j] = ε. When i = j, we also denote by w[i] the factor w[i..i] which is the i th letter of w. In particular, w [START_REF] Berstel | Axel Thue's papers on repetition in words: a translation[END_REF] and w[|w|] are respectively the first and the last letter of w.

Powers of a word are defined inductively by u 0 = ε, and for any integer n ≥ 1, u n = uu n-1 . Given an integer k ≥ 2, since the case ε k is of little interest, we call a k-power any word u k with u = ε.

Given an integer k ≥ 2, a word is k-power-free if it does not contain any k-power as factor. A primitive word is a word which is not a k-power of another word whatever the integer k ≥ 2.

Given two integers p > q > 1 and two words x and y with xy = ε, a word of the form (xy) α x with α + |x| |xy| = p q is called a p q -power. For instance, the word anchorman is a (1 + 2 7 =) 9 7 -power and the word abaabaa is a (2 + 1 3 =) 7 3 -power. In particular, a 3 2 -power is a word of the form xyx with |x| = |y| = ε. For instance, the word antman is a 3 2 -power. A word is p q -power-free if it does not contain any -power as factor with ≥ p q . The word abcaba is not 3 2 -power-free. Indeed, it contains the word abc ab which is a 5 3 -power. Given an integer k ≥ 2 and an integer n ≥ 1, a (k, n)-anti-power sequence or simply a kanti-power [START_REF] Fici | Anti-powers in infinite words[END_REF] is a concatenation of k consecutive pairwise different words of the same length n.

For instance, if A = {a, b}, the words u = aa ba bb ab and v = aba bab abb aaa are respectively (4, 2)-anti-power and (4, 3)-anti-power sequences. But the prefixe abababab of v is not a 4anti-power sequence: it is even a 4-power.

Given an integer k ≥ 1, if Card (A) = α ≥ 2 then there exit α n different words in A * of length n ≥ 1. Among the words of length k × n, there are α n different k-powers (of length

k × n) and A k α n = (α n ) ! (α n -k) ! different (k, n)-anti-power sequences if α n ≥ k and 0 otherwise.
It particulary means that there exists an integer k 0 such that there are no (k , n)-anti-power sequence over A for any k ≥ k 0 .

For any alphabet A with Card (A) = α ≥ 2 and for any integer k ≥ 2, there exists a smallest integer p 0 such that α p 0 ≥ k. And, if p ≥ p 0 , the set of (k, p)-anti-power sequences is greater than the set of k-powers of length p × k.

A 2-anti-power word is simply a square-free word. Given an integer k ≥ 3, a word w is a k-anti-power word if it is a (k -1)-anti-power word and if any factor of w of length k × for every 1 ≤ ≤ |w| k is a (k, )-anti-power sequence. By this definition, a word of length n with 2 ≤ n < k is a k-anti-power word if and only if it is a n-anti-power word.

An infinite k-anti-power word is an infinite word whose finite factors are all k-anti-power words. Obviously, the first question is whether such a word exists.

If A = {a, b}, the only 2-anti-power words are aba, bab and their factors. But, for any k ≥ 3, the only k-anti-power words are a, b, ab and ba.

If Card (A) ≥ 3, there exist infinite 2-anti-power (square-free) words [START_REF] Berstel | Axel Thue's papers on repetition in words: a translation[END_REF][START_REF] Thue | Uber unendliche zeichenreihen[END_REF][START_REF] Thue | Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen[END_REF].

If k = 3 and A = {a, b, c}, the only 3-anti-power words are abcab, the exchange of letters of this word and their factors. Let us note that the word abcab is not 3 2 -power-free. A 3 2 -power-free word contain neither a factor of the form xyx with |x| = |y|, nor a factor of the form xx. Thus a 3 2 -power-free word is a 3-anti-power word (but the converse does not hold). Thus a Dejean's word [START_REF] Dejean | Sur un théorème de Thue[END_REF][START_REF] Currie | A proof of dejean's conjecture[END_REF][START_REF] Rao | Last cases of dejean's conjecture[END_REF] over a four-letter alphabet, which does not contain any -power with > 7 5 -power-free, is a 3-anti-power word. More generally, a non-k-anti-power word (among k consecutive factors of the same length of this word, at least two of them are equal) contains at least one fractionnal -power with ≥ k k-1 . Therefore, when k ≥ 3, a Dejean's word over a (k + 1)-letter alphabet is a k-antipower word.

Remark 1.1 If we had chosen not to add that a k-anti-power word must be a (k -1)-antipower word, we would have, for instance, that, for A = {a; b; c}, the word abcabcab would have been a 3-anti-power word but not a 2-anti-power word.

More precisely, without the condition that a k-anti-power word w must be a (k -1)-anti-power word, we only could say that all prefixes and all suffixes of w of length between k -1 and

(k -1)|w| k are (k -1)-anti-power words.

For an infinite word, it does not change anything to add the condition that a k-anti-power word w must be a (k -1)-anti-power word. Indeed, every factor of w whose length is a multiple of k -1 can be extended to a factor whose length is a multiple of k. Obviously, if these k factors are different, the same holds for k -1 ones.

Lemma 1.2 [START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF][START_REF] Leconte | Codes sans répétition[END_REF] If a non-empty word v is an internal factor of vv, i.e., if there exist two non-empty words x and y such that vv = xvy, then there exist a non-empty word t and two integers i, j ≥ 1 such that x = t i , y = t j , and v = t i+j .

Morphisms

Let A and B be two alphabets. A morphism f from A * to B * is a mapping from A * to B * such that f (uv) = f (u)f (v) for all words u, v over A. When B has no importance, we say that f is a morphism on A or that f is defined on A.

Given an integer

L ≥ 1, f is L-uniform if |f (a)| = L for every letter a in A. A morphism f is uniform if it is L-uniform for some integer L ≥ 1.
Let k ≥ 2 be an integer and Let A and B be two alphabets. A morphism f from A * to B * is k-anti-power if and only if f (w) is a k-anti-power word over B for every k-anti-power word w over A For instance, the identity endomorphism Id (∀a ∈ A, Id(a) = a) is a k-anti-power morphism. In particular, a 2-anti-power morphism is a square-free morphism. These last morphisms have been characterized in [START_REF] Crochemore | Sharp characterizations of squarefree morphisms[END_REF].

We say that a morphism is non-erasing if, for all letters a ∈ A, f (a) = ε. A k-anti-power morphism, as every square-free morphism, is necessarily non-erasing.

A morphism on A is called prefix (resp. suffix ) if, for all different letters a and b in A, the word f (a) is not a prefix (resp. not a suffix) of f (b). A prefix (resp. suffix) morphism is non-erasing. A morphism is bifix if it is prefix and suffix.

Proofs of the two following lemmas are left to the reader.

Lemma 1.3 Let f be a prefix morphism on an alphabet A, let u and v be words over A, and let a and b be letters in A. Furthermore, let p 1 (resp. p 2 ) be a prefix of

f (a) (resp. of f (b)). If (p 1 ; p 2 ) = (ε; f (b)) and if (p 1 ; p 2 ) = (f (a); ε) then the equality f (u)p 1 = f (v)p 2 implies u = v and p 1 = p 2 .
Lemma 1.4 Let f be a suffix morphism on an alphabet A, let u and v be words over A, and let a and b be letters in A. Furthermore, let s 1 (resp. Obviously, taking c = b, and s = ε in a first time and p = ε in a second time, we obtain that a ps-morphism is a bifix morphism. Lemma 1.6 [START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF][START_REF] Leconte | Codes sans répétition[END_REF] If f is not a ps-morphism then f is not a k-power-free morphism for every integer k ≥ 2.

Remark 1.7 It means that a 2-anti-power morphism is a ps-morphism. Proposition 1.8 Let A and B be two alphabets with Card (A) ≥ 2 and let f be a uniform morphism from A * to B * . If there exist five letters a, b, c, d and x (possibly equal) and four words p, s, π and σ such that s is a suffix of f (a), p is a prefix of f (b), σ is a non-empty suffix of f (c), π is a non-empty prefix of f (d), and sp = σf (x)π then f is not a square-free morphism.

Proof. Let s be the non empty prefix of f (x) such that s = σs and let p be the non empty suffix of f (x) such that p = p π.

If x = a and x = b, then f (x) is an internal factor of f (xx). By Lemma 1.2, f (x) is not primitive, i.e., f is not a square-free morphism.

Therefore, at least one of the word ax or bx is not a square. But f (ax) contains the square s s and f (xb) contains the square p p , i.e., f is not a square-free morphism. Proposition 1.9 Let A and B be two alphabets with Card (A) ≥ 3 and let f be a L-uniform morphism from A * to B * . If L is an even number then f is not a 3-anti-power morphism. A morphism f on A is k-anti-power up to (k, ≥ 2) if and only if f (w) is a k-anti-power word for every k-anti-power word w over A of length at most . Proposition 1.10 Let A and B be two alphabets with Card (A) ≥ 3 and let f be a square-free L-uniform morphism from A * to B * . Then f is a 3-anti-power morphism if and only if it is a 3-anti-power morphism up to 5.

Proof.

If L is an even number, the image of the word abcab of length 5 shows that f is not a 3-antipower morphism (see the proof of Proposition 1.9). It ends the proof. So we may assume that L is odd.

By definition of 3-anti-power morphisms, we only have to prove the "if" part of Proposition 1.10. By Lemma 1.6, f (square-free) is a ps-morphism and so injective.

By contradiction, we assume that a shortest 3-anti-power word w (not necessarily unique) such that f (w) contains a non-3-anti-power satisfies |w| ≥ 6. We will show that this assumption leads to contradictions.

Since the length of w is minimal, we may assume that there exist five words p, s, U 1 , U 2 and

U 3 such that f (w) = pU 1 U 2 U 3 s where p is a prefix of f (w[1]) different from f (w[1]) and s is a suffix of f (w[|w|]) different from f (w[|w|]
). Moreover, the words U 1 , U 2 , U 3 have the same length Λ(≥ 1) and two of them are equal.

If U 1 = U 2 or if U 2 = U 3 ,
it means that f (w) contains a square with w a 3-anti-power word so a square-free word. That is f is not a square-free morphisms: a contradiction with the definition of f . The only remaining case is U 1 = U 3 . To simplify notations, we denote by U the words U 1 and U 3 and by V the word U 2 .

Let i 2 be the shortest integer such that pU is the prefix of f (w[1..i 2 ]) and let i 3 be the shortest integer such that pU V is the prefix of f (w[1..i 3 ]).

If i 2 = 1 then Λ ≤ |pU | ≤ |f (w[1])| = L and |pU V U s| < 4L. This is impossible since |f (w)| ≥ 6L.
On a the same way, by a length criterion, the cases i 2 = i 3 and i 3 = |w| are impossible.

If we denote x = w[2..i 2 -1], y = w[i 2 + 1..i 3 -1], z = w[i 3 + 1..|w| -1], a 1 = w[1], a 2 = w[i 2 ], a 3 = w[i 3 ] and a 4 = w[|w|] then w = a 1 xa 2 ya 3 za 4 with |w| = 4 + |x| + |y| + |z|. It implies that |x| + |y| + |z| ≥ 2.
Moreover, there exists some words p i and s i (1 ≤ i ≤ 4) such that f (a i ) = p i s i with p 1 = p, s 4 = s. By definition, the words s 1 , p 2 , p 3 and p 4 are non empty.

In other words, we have U = s 1 f (x)p 2 = s 3 f (z)p 4 and V = s 2 f (y)p 3 . Let x j 1 and x j 2 be two different words of {x, y, z}, we have ||x j 1 | -|x j 2 || ≤ 1. Indeed, in the contrary, for instance, if |x j 1 | ≥ |x j 2 | + 2, we get that both Λ > |f (x j 1 )| ≥ |f (x j 2 )| + 2L and Λ < |f (x j 2 )| + 2L: this is impossible. Since |x| + |y| + |z| ≥ 2, it also implies that at least two of the words x, y and z are non empty.

• Case 1 : If a 1 = a 2 then p 1 = p 2 (= p 4 ), f (a 1 ) = p 1 s 1 , f (a 3 ) = p 3 s 3 = p 3 s 1 and f (a 4 ) = p 4 s 4 = p 1 s 4 . It means that f (a 3 a 1 a 4 ) contains (s 1 p 1 ) 2 with a 3 a 1 a 4 square-free since a 1 = a 3 and a 1 = a 2 = a 4 : a contradiction with the hypothesis that f is a square-free morphism.

|s 1 | = |s 3 | Since 2 × |U | = |U | + |V | = |s 1 f (x)p 2 | + |s 2 f (y)p 3 | = (|x| + |y| + 2) × L,
In the same way, if a 3 = a 4 , we get that f (a 1 a 4 a 2 ) contains (s 4 p 4 ) 2 with a 1 a 4 a 2 square-free. And, if a 2 = a 3 , we get that f (a 1 a 2 a 4 ) contains (s 2 p 2 ) 2 with a 1 a 2 a 4 square-free. In theses both cases, we again get a contradiction with the hypothesis that f is a square-free morphism.

Thus a 1 , a 2 and a 3 are three different letters and a 2 , a 3 and a 4 are also three different letters. It means that a 1 a 2 a 3 a 4 is a 3-anti-power word. But f (a 1 a 2 a 3 a 4 ) contains the non-3-anti-power sequence s 1 p 2 s 2 p 3 s 3 p 4 = s 1 p 2 s 2 p 3 s 1 p 2 : a contradiction with the minimality of |w|.

• Case 2 :

s 1 = f (a 1 ) and s 3 = ε We have |f (a 1 )f (x)p 2 | = |s 1 f (x)p 2 | = |U | = |V | = |s 2 f (y)p 3 | = |s 2 f (y)f (a 3 )|, i.e., |p 2 | = |s 2 |:
this contradicts the fact that L is odd.

• Case 3 : s 1 = s 3 Since, at least two of the words x, y and z are non empty, we have x = ε or z = ε. Since the equality s 1 f (x)p 2 = s 3 f (z)p 4 is symetric, without loss of generality, we may assume that |s 1 | < |s 3 |. In this case, we necessarily have x = ε. Let χ be the first letter of x and let x be the word such that x = χx . If z = ε, let P = p 4 and if z = ε let P = f (γ) where γ is the first letter of z. In particular, we have P non-empty. Let π be the (non empty) prefix of f (x )p 2 such that s 1 f (χ)π = s 3 P . By proposition 1.8, this last equation implies that f is not a square-free morphism: a final contradiction.

An example

As stated in the first section, Dejean's words are anti-power words. But we can build 3-powerfree words without using fractionnal powers.

According to my computer, the following morphism h is a 3-anti-power morphism (but I do not really trust my programming skills). Let us remark that h ω (abcac) is also a 3-anti-power word. But it contains an infinite number of factors that are 5 3 -powers.

s 2 ) 1 = s 2 .

 212 be a suffix of f (a) (resp. of f (b)). If (s 1 ; s 2 ) = (ε; f (b)) and if (s 1 ; s 2 ) = (f (a); ε) then the equality s 1 f (u) = s 2 f (v) implies u = v and s Taking p 1 = p 2 = ε (resp. s 1 = s 2 = ε) in Lemma 1.3 (resp Lemma 1.4), we get that a prefix (resp. suffix) morphism is injective. Definition 1.5 A morphism f from A * to B * is a ps-morphism (Keränen [6] called f a pscode) if and only if the equalities f (a) = ps, f (b) = ps and f (c) = p s with a, b, c ∈ A (possibly c = b) and p, s, p , s ∈ B * imply b = a or c = a.

  Since |sp| > |σf (x)| and |sp| > |f (x)π|, we get |s| > |σ| and |p| > |π|.

  Let a, b and c be three different letters in A. Let A 1 and A 2 be the words such that f (a) = A 1 A 2 with |A 1 | = |A 2 |. Then f (abcab) contains the non-3-anti-power sequence [A 2 f (b)] f (c)A 1 [A 2 f (b)] with abcab a 3-anti-power word.

  we get that |x| + |y| is even, i.e., |x| = |y|. From the equality s 1 f (x)p 2 = s 3 f (z)p 4 (= U ), we get s 3 = s 1 ( = ε). By Lemma 1.3, it also implies z = x and p 2 = p 4 ( = ε). In particular, since |x| = |y| and since w = a 1 xa 2 ya 3 xa 4 is a 3-anti-power word, we have a 1 = a 3 and a 2 = a 4 . Since |U | = |V |, we get |s 1 | + |p 2 | = |s 2 | + |p 3 |. Since |s 1 | = |s 3 |, we get |p 1 | = |p 3 | and 2|p 1 | = L + |p 1 | -|s 1 | = L + |p 3 | -|s 1 | = L + |p 2 | -|s 2 | = 2|p 2 |, i.e., |p 1 | = |p 2 |. In a same way, since |p 2 | = |p 4 |, we get |s 2 | = |s 4 | = |s 3 |.

h

  : {a; b; c; d; e} * → {a; b; c; d; e} * a → abceacd b → abecaed c → acbaecd d → acbeabd e → acebcedThe word h ω (a) = lim n→+∞ h n (a) = abceacd abecaed acbaecd acebced abceacd acbaecd acbeabd abceacd abecaed acebced acbaecd abceacd ... generated by h is thus an infinite 3-anti-power word.
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