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3-anti-power uniform morphisms

Francis Wlazinski

September 5, 2019

Abstract

Words whose three successive factors of the same length are all different i.e. 3-anti-
power words are more natural extensions of square-free words (two successive factors of
the same length are different) than cube-free words. We give a way to verify whether a
uniform morphism preserves 3-anti-power words (the image of a 3-anti-power word is a
3-anti-power word).

A consequence of the existence of such morphisms is the possibility of generating an
infinite 3-anti-power word.

1 Preliminaries

Let us recall some basic notions of Combinatorics of words.

1.1 Words

An alphabet A is a finite set of symbols called letters. A word over A is a finite sequence
of letters from A. The empty word ε is the empty sequence of letters. Equipped with the
concatenation operation, the set A∗ of words over A is a free monoid with ε as neutral element
and A as set of generators. Since an alphabet with one element is limited interest to us, we
always assume the cardinality of considered alphabets is at least two. Given a non-empty
word u = a1 . . . an with ai ∈ A for any integer i from 1 to n, the length of u denoted by |u| is
the integer n that is the number of letters of u. By convention, we have |ε| = 0. We denote
by A+ the set of words of positive length over A, i.e., A+ = A∗ \ {ε}.
An infinite word over A is a map from IN to A that is an infinite sequence of letters a1 . . . an . . .

with ai ∈ A. And AIN is the set of all infinite words over A.

A word u is a factor of a word v if there exist two (possibly empty) words p and s such that
v = pus. We denote Fcts (v) the set of all factors of v. If u ∈ Fcts (v), we also say that v
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contains the word u (as a factor). If p = ε, u is a prefix of v. If s = ε, u is a suffix of v. If
u 6= v, u is a proper factor of v. If u, p and s are non-empty, u is an internal factor of v.

Let w be a non-empty word and let i, j be two integers such that 0 ≤ i − 1 ≤ j ≤ |w|. We
denote by w[i..j] the factor of w such that |w[i..j]| = j− i+1 and w = pw[i..j]s for two words
s and p verifying |p| = i− 1. When j > i, w[i..j] is simply the factor of w that starts at the
ith letter and ends at the jth. Note that, when j = i − 1, we have w[i..j] = ε. When i = j,
we also denote by w[i] the factor w[i..i] which is the ith letter of w. In particular, w[1] and
w[|w|] are respectively the first and the last letter of w.

Powers of a word are defined inductively by u0 = ε, and for any integer n ≥ 1, un = uun−1.
Given an integer k ≥ 2, since the case εk is of little interest, we call a k-power any word uk

with u 6= ε.

Given an integer k ≥ 2, a word is k-power-free if it does not contain any k-power as factor. A
primitive word is a word which is not a k-power of another word whatever the integer k ≥ 2.

Given an integer k ≥ 2 and an integer n ≥ 1, a (k, n)-anti-power sequence or simply a k-
anti-power [3] is a concatenation of k consecutive pairwise different words of the same length
n.

For instance, if A = {a, b}, the words u = aa ba bb ab and v = aba bab abb aaa are respectively
(4, 2)-anti-power and (4, 3)-anti-power sequences. But the prefixe abababab of v is not a 4-
anti-power sequence: it is even a 4-power.

Given an integer k, if Card (A) = α ≥ 2 then there exit αn different words in A∗ of length
n ≥ 1. Among the words of length k × n, there are αn different k-powers (of length k × n)

and Akαn =
(αn) !

(αn − k) !
different (k, n)-anti-power sequences if αn ≥ k and 0 otherwise. It

particulary means that there exists an integer k0 such that there are no (k′, n)-anti-power
sequence over A for any k′ ≥ k0.

For any alphabet A with Card (A) = α ≥ 2 and for any integer k, there exists a smallest
integer p0 such that αp0 ≥ k. And, if p ≥ p0, the set of (k, p)-anti-power sequences is greater
than the set of k-powers of length p× k.

A 2-anti-power word is simply a square-free word. Given an integer k ≥ 3, a word w is a
k-anti-power word if it is a (k − 1)-anti-power word and if any factor of w of length k × `

for every 1 ≤ ` ≤
⌊
|w|
k

⌋
is a (k, `)-anti-power. By this definition, a word of length n with

2 ≤ n < k is a k-anti-power word if and only if it is a n-anti-power word.

An infinite k-anti-power word is an infinite word whose finite factors are all k-anti-power
words. Obviously, the first question is whether such a word exists.

If A = {a, b}, the only 2-anti-power words are aba, bab and their factors. But, for any k ≥ 3,
the only k-anti-power words are a, b, ab and ba.
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If Card (A) ≥ 3, there exist infinite 2-anti-power (square-free) words [1, 7, 8].

If k = 3 and A = {a, b, c}, the only 3-anti-power words are abcab, the exchange of letters of
this word and their factors.

Remark 1.1 If we had chosen not to add that a k-anti-power word must be a (k − 1)-anti-
power word, we would have, for instance, that, for A = {a; b; c}, the word abcabcab would
have been a 3-anti-power word but not a 2-anti-power word.

More precisely, without the condition that a k-anti-power word w must be a (k−1)-anti-power
word, we only could say that all prefixes and all suffixes of w of length between k − 1 and⌊

(k − 1)|w|
k

⌋
are (k − 1)-anti-power words.

For an infinite word, it does not change anything to add the condition that a k-anti-power
word w must be a (k−1)-anti-power word. Indeed, every factor of w whose length is a multiple
of k − 1 can be extended to a factor whose length is a multiple of k. Obviously, if these k
factors are different, the same olds for k − 1 ones.

Lemma 1.2 [4, 5] If a non-empty word v is an internal factor of vv, i.e., if there exist two
non-empty words x and y such that vv = xvy, then there exist a non-empty word t and two
integers i, j ≥ 1 such that x = ti, y = tj, and v = ti+j.

1.2 Morphisms

Let A and B be two alphabets. A morphism f from A∗ to B∗ is a mapping from A∗ to B∗

such that f(uv) = f(u)f(v) for all words u, v over A. When B has no importance, we say
that f is a morphism on A or that f is defined on A.

Given an integer L ≥ 1, f is L-uniform if |f(a)| = L for every letter a in A. A morphism f
is uniform if it is L-uniform for some integer L ≥ 1.

A morphism f on A is k-anti-power (k ≥ 2) if and only if f(w) is a k-anti-power word for
every k-anti-power word w over A. For instance, the identity endomorphism Id (∀a ∈ A,
Id(a) = a) is a k-anti-power morphism.

By definition of k-anti-power words, a k-anti-power morphism is a (k−1)-anti-power morphism
when k ≥ 3. In particular, all k-anti-power morphisms are 2-anti-power morphisms, i.e.,
square-free morphisms. These last morphisms have been characterized in [2].

We say that a morphism is non-erasing if, for all letters a ∈ A, f(a) 6= ε. A k-anti-power
morphism, as every square-free morphism, is necessarily non-erasing.

A morphism on A is called prefix (resp. suffix ) if, for all different letters a and b in A, the
word f(a) is not a prefix (resp. not a suffix) of f(b). A prefix (resp. suffix) morphism is
non-erasing. A morphism is bifix if it is prefix and suffix.
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Proofs of the following lemmas are left to the reader.

Lemma 1.3 Let f be a bifix morphism on an alphabet A and let u, v, w, and t be words over
A.
The equality f(u) = f(v)p with p be a prefix of f(w) implies u = vw′ for a prefix w′ of w such
that f(w′) = p.
And the equality f(u) = sf(v) with s a suffix of f(t) implies u = t′v for a suffix t′ of t such
that f(t′) = s.

Lemma 1.4 Let f be a prefix morphism on an alphabet A, let u and v be words over A, and
let a and b be letters in A. Furthermore, let p1 (resp. p2) be a prefix of f(a) (resp. of f(b)). If
(p1; p2) 6= (ε; f(b)) and if (p1; p2) 6= (f(a); ε) then the equality f(u)p1 = f(v)p2 implies u = v
and p1 = p2.

Lemma 1.5 Let f be a suffix morphism on an alphabet A, let u and v be words over A, and
let a and b be letters in A. Furthermore, let s1 (resp. s2) be a suffix of f(a) (resp. of f(b)). If
(s1; s2) 6= (ε; f(b)) and if (s1; s2) 6= (f(a); ε) then the equality s1f(u) = s2f(v) implies u = v
and s1 = s2.

Taking p1 = p2 = ε (resp. s1 = s2 = ε) in Lemma 1.4 (resp Lemma 1.5), we get that a prefix
(resp. suffix) morphism is injective.

Definition 1.6 A morphism f from A∗ to B∗ is a ps-morphism (Keränen [4] called f a ps-
code) if and only if the equalities

f(a) = ps, f(b) = ps′ and f(c) = p′s
with a, b, c ∈ A (possibly c = b) and p, s, p′, s′ ∈ B∗ imply b = a or c = a.

Obviously, taking c = b, and s = ε in a first time and p = ε in a second time, we obtain that
a ps-morphism is a bifix morphism.

Lemma 1.7 [4, 5] If f is not a ps-morphism then f is not a k-power-free morphism for every
integer k ≥ 2.

Since a k-anti-power morphism is a square-free morphism, we get the following Corollary.

Corollary 1.8 For every integer k ≥ 2, a k-anti-power morphism is a ps-morphism.

Proposition 1.9 Let A and B be two alphabets with Card (A) ≥ 2 and let f be a morphism
from A∗ to B∗. If there exist five letters a, b, c, d and x (possibly equal) and four words p, s,
π and σ such that s is a suffix of f(a), p is a prefix of f(b), σ is a non-empty suffix of f(c),
π is a non-empty prefix of f(d), and sp = σf(x)π then f is not a square-free morphism.
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Proof.

Since |sp| > |σf(x)| and |sp| > |f(x)π|, we get |s| > |σ| and |p| > |π|.
Let s′ be the non empty prefix of f(x) such that s = σs′ and let p′ be the non empty suffix
of f(x) such that p = p′π.

If x = a and x = b, then f(x) is an internal factor of f(xx). By Lemma 1.2, f(x) is not
primitive i.e. f is not a square-free morphism.

Therefore, at least one of the word ax or bx is not a square. But f(ax) contains the square
s′s′ and f(xb) contains the square p′p′ i.e. f is not a square-free morphism.

Proposition 1.10 Let A and B be two alphabets with Card (A) ≥ 3 and let f be a L-uniform
morphism from A∗ to B∗. If L is an even number then f is not a 3-anti-power morphism.

Proof.

Let a, b and c be three different letters in A. Let A1 and A2 be the words such that f(a) =
A1A2 with |A1| = |A2|.
Then f(abcab) contains the non-3-anti-power sequence A2f(b) f(c)A1A2f(b) with abcab a
3-anti-power word.

A morphism f on A is k-anti-power up to ` (k, ` ≥ 2) if and only if f(w) is a k-anti-power
word for every k-anti-power word w over A of length at most `.

Proposition 1.11 Let A and B be two alphabets with Card (A) ≥ 3 and let f be a square-free
L-uniform morphism from A∗ to B∗ (with L odd).

Then f is a 3-anti-power morphism if and only if it is a 3-anti-power morphism up to 5.

Proof.

By definition of 3-anti-power morphisms, we only have to prove the ”if” part of Proposi-
tion 1.11.

By Lemma 1.7, f (square-free) is a ps-morphism and so injective.

By contradiction, we assume that a shortest 3-anti-power word w (not necessarily unique) such
that f(w) contains a non-3-anti-power satisfy |w| ≥ 6. We will show that this assumption
leads to contradictions.

Since the length of w is minimal, we may assume that there exist five words p, s, U1, U2 and
U3 such that f(w) = pU1U2U3s where p is a prefix of f(w[1]) different from f(w[1]) and s is
a suffix of f(w[|w|]) different from f(w[|w|]). Moreover, the words U1, U2, U3 have the same
length (≥ 1) and two of them are equal.
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If U1 = U2 or if U2 = U3, it means that f(w) contains a square with w a 3-anti-power word
so a square-free word. That is f is not a square-free morphisms: a contradiction with the
definition of f . The only remaining case is U1 = U3. To simplify notations, we denote by U
the words U1 and U3 and by V the word U2.

Let i2 be the shortest integer such that f(w) = pU is the prefix of f(w[1..i2]) and let i3 be
the shortest integer such that f(w) = pUV is the prefix of f(w[1..i3]).

If i2 = 1 then |V | = |U | ≤ |pU | ≤ |f(w[1])| = L and |pUV Us| < 4L. This is impossible since
|f(w)| ≥ 6L.

On a the same way, by a length criterion, the cases i2 = i3 and i3 = |w| are impossible.

If we denote x = w[2..i2 − 1], y = w[i2 + 1..i3 − 1], z = w[i3 + 1..|w| − 1], a1 = w[1], a2 =
w[i2], a3 = w[i3] and a4 = w[|w|] then w = a1xa2ya3za4 with |w| = 4 + |x| + |y| + |z|. It
implies that |x|+ |y|+ |z| ≥ 2.

Moreover, there exists some words pi and si (1 ≤ i ≤ 4) such that f(ai) = pisi with p1 = p,
s4 = s. By definition, the words s1, p2, p3 and p4 are non empty.

In other words, we have U = s1f(x)p2 = s3f(z)p4 and V = s2f(y)p3.

Since max{1+L|x|;L|y|} < |U | = |V | ≤ min{L(|x|+2);L(|y|+2)−1}, we get that ||x|−|y|| <
2. It means that, if |x| + |y| is even then |x| = |y| and, if |x| + |y| if odd then |x| = |y| ± 1.
In the same way, if |z|+ |y| is even then |z| = |y| and, if |z|+ |y| if odd then |z| = |y| ± 1.

• Case 1 : |s1| = |s3|
Since 2× |U | = |U |+ |V | = |s1f(x)p2|+ |s2f(y)p3| = (|x|+ |y|+ 2)× L, we get that |x|+ |y|
is even i.e. |x| = |y|.
From the equality s1f(x)p2 = s3f(z)p4(= U), we get s3 = s1( 6= ε). By Lemma 1.4, it also
implies z = x and p2 = p4( 6= ε).

In particular, since |x| = |y| and since w = a1xa2ya3xa4 is a 3-anti-power word, we have
a1 6= a3 and a2 6= a4.

Since |U | = |V |, we get |s1| + |p2| = |s2| + |p3|. Since |s1| = |s3|, we get |p1| = |p3| and
2|p1| = L+ |p1| − |s1| = L+ |p3| − |s1| = L+ |p2| − |s2| = 2|p2| i.e. |p1| = |p2|.
In a same way, since |p2| = |p4| we get |s2| = |s4| = |s3|.
If a1 = a2 then p1 = p2(= p4), f(a1) = p1s1, f(a3) = p3s3 = p3s1 and f(a4) = p4s4 = p1s4. It
means that f(a3a1a4) contains (s1p1)

2 with a3a1a4 square-free since a1 6= a3 and a1 = a2 6= a4:
a contradiction with the hypothesis that f is a square-free morphism.

In the same way, if a3 = a4, we get that f(a1a4a2) contains (s4p4)
2 with a1a4a2 square-free.

And, if a2 = a3, we get that f(a1a2a4) contains (s2p2)
2 with a1a2a4 square-free. Both cases

lead to the same contradiction.

Thus a1, a2 and a3 are three different letters and a2, a3 and a4 are also three different letters.
It means that a1a2a3a4 is a 3-anti-power word. But f(a1a2a3a4) contains the non-3-anti-power
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sequence s1p2 s2p3 s3p4 = s1p2 s2p3 s1p2: a contradiction with the minimality of |w|.
• Case 2 : s1 = f(a1) and s3 = ε

We have |f(a1)f(x)p2| = |s1f(x)p2| = |U | = |V | = |s2f(y)p3| = |s2f(y)f(a3)| i.e. |p2| = |s2|:
this contradicts the fact that L is odd.

• Case 3 : s1 6= s3

If x = ε and z = ε then i2 = 2, i3 = |w| − 1 and |y| = |w[i2 + 1..i3 − 1]| = |w| − 4 ≥ 2: this is
impossible.

Thus, in the equality s1f(x)p2 = s3f(z)p4(= U), we have either x 6= ε or z 6= ε.

Since the equality is symetric, without loss of generality, we may assume that |s1| < |s3|. In
this case, we necessarily have x 6= ε. Let χ be the first letter of x and let x′ be the word
such that x = χx′. If z = ε, let P = p4 and if z 6= ε let P = f(γ) where γ is the first letter
of z. In particular, we have P non-empty. Let π be the (non empty) prefix of f(x′)p2 such
that s1f(χ)π = s3P . By proposition 1.9, this last equation implies that f is not a square-free
morphism: a final contradiction.

2 An example

According to my computer, the following morphism h is a 3-anti-power morphism (but I do
not really trust my programming skills).

h : {a; b; c; d; e}∗ → {a; b; c; d; e}∗
a 7→ abceacd
b 7→ abecaed
c 7→ acbaecd
d 7→ acbeabd
e 7→ acebced

The word hω(a) = limn→+∞ h
n(a) = abceacd abecaed acbaecd acebced abceacd acbaecd acbeabd

abceacd abecaed acebced acbaecd abceacd ... generated by h is thus an infinite 3-anti-power
word.
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