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SPARSE BAYESIAN BINARY LOGISTIC REGRESSION USING
THE SPLIT-AND-AUGMENTED GIBBS SAMPLER

Maxime Vono, Nicolas Dobigeon

University of Toulouse, INP-ENSEEIHT
IRIT, CNRS, Toulouse, France

ABSTRACT

Logistic regression has been extensively used to perform classifica-
tion in machine learning and signal/image processing. Bayesian for-
mulations of this model with sparsity-inducing priors are particularly
relevant when one is interested in drawing credibility intervals with
few active coefficients. Along these lines, the derivation of efficient
simulation-based methods is still an active research area because of
the analytically challenging form of the binomial likelihood. This
paper tackles the sparse Bayesian binary logistic regression problem
by relying on the recent split-and-augmented Gibbs sampler (SPA).
Contrary to usual data augmentation strategies, this Markov chain
Monte Carlo (MCMC) algorithm scales in high dimension and di-
vides the initial sampling problem into simpler ones. These sam-
pling steps are then addressed with efficient state-of-the-art methods,
namely proximal MCMC algorithms that can benefit from the recent
closed-form expression of the proximal operator of the logistic cost
function. SPA appears to be faster than efficient proximal MCMC al-
gorithms and presents a reasonable computational cost compared to
optimization-based methods with the advantage of producing cred-
ibility intervals. Experiments on handwritten digits classification
problems illustrate the performances of the proposed approach.

Index Terms— Bayesian inference, data augmentation, logistic
regression, Markov chain Monte Carlo, sparsity, variable splitting.

1. INTRODUCTION

Logistic regression, developed at least 60 years ago [1,2], has been
extensively studied [3-5] and used for classification problems over
the past decades. For instance, this model has been succesfully re-
sorted in machine learning [6], medicine [7] and social sciences [8].
In those areas, and especially in medicine, interpretation of logistic
regression coefficients and credibility intervals are often required to
take an important decision. Thus, under these considerations, one
cannot rely on a deterministic formulation of the logistic regression
and can use a probabilistic derivation of this model. Additionally,
the number of attributes D (often called features) can be large with
respect to (w.r.t.) the number of observations N and giving an inter-
pretation to each attribute could be challenging. To cope with this
problem, it is widely admitted to use a sparsity-inducing regulariza-
tion [9] in order to take into account the most relevant attributes only.

Much research has been conducted to tackle the Bayesian lo-
gistic regression problem with simulation-based methods. The main
issue is the analytically challenging form of the binomial likelihood
(no common conjugate prior distributions can be proposed) which
has been overcome in different ways. Thus, since the work of [10] on
the probit model, analogue data augmentation techniques have been
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applied to re-write the logistic distribution. For instance, [11] repre-
sented this distribution as a normal-scale mixture and considered a
Gaussian prior on the weights vector 3. Few years laters, this model
was challenged and/or improved by surrogate data-augmentation
schemes proposed in [12—-14]. The majority of the above approaches
considered a Gaussian prior distribution on 3 leading to normal
posterior distributions. Although this type of prior distributions is
convenient (well-understood properties, conjugancy, etc.), it restricts
the use of other informative priors which can be non-smooth and/or
even non-convex. Additionally, these approaches, by involving for
some of them multiple layers of latent variables, could be compli-
cated to implement and their computational cost in high-dimensional
classification problems could be problematic. Recently, these issues
have been unlocked by so-called proximal Markov chain Monte
Carlo (MCMC) algorithms [15] which take advantage of convex
analysis (proximal operators and Moreau-Yoshida envelopes) to
build efficient sampling schemes from possibly non-smooth log-
concave distributions scaling in large dimension. These sampling
methods are special instances of Metropolis-Hastings algorithms
based on the Langevin diffusion process which were improved
in [16]. More recently, the connection between simulation-based
algorithms and optimization has been strengthened by the so-called
split-and-augmented Gibbs sampler (SPA) [17]. This algorithm
stands for a general tool to conduct Bayesian inference that uses a
“divide-and-conquer” strategy. Relying on variable splitting akin
the alternating direction method of multipliers (ADMM), it divides
the initial sampling tasks into simpler ones. Then, efficient existing
MCMC algorithms can sample from each conditional probability
distribution (e.g. data-augmentation or proximal MCMC schemes).
This paper addresses the sparse Bayesian binary logistic regres-
sion problem using this very recent approach and compares the per-
formances of the latter with the ADMM and state-of-the-art prox-
imal MCMC algorithms. To this purpose, Section 2 presents the
sparse Bayesian binary logistic regression problem. Section 3 intro-
duces SPA through its two main ingredients namely variable split-
ting and data augmentation. Its close relation with the ADMM is
also discussed. Section 4 derives SPA for the sparse Bayesian logis-
tic regression and details the implementation of each sampling step.
Section 5 illustrates and compares the performances of SPA with
ADMM and the proximal Moreau-Yoshida unadjusted Langevin al-
gorithm (P-MYULA) proposed in [16]. Finally, Section 6 draws
concluding remarks and possible extensions of this work.

2. PROBLEM FORMULATION

This section reviews the derivation of the sparse Bayesian logistic
regression for binary classification problems. A possible extension



of this binary classifier to multiclass classification problems is to
consider a one-versus-all approach which is simpler and may be as
relevant as the multi-class approach [18].

2.1. Sparse Bayesian binary logistic regression

The so-called sparse Bayesian binary logistic regression is recalled
hereafter. Suppose that one observes binary responses y € RY
which are conditionally independent Bernoulli random variables
with probability of success h (xiT,B). The function h is the standard
logistic function defined as for all ¢t € R,

exp(t)

h(t) = 1+ exp(t)’

(€Y

B € RP represents the vector of regression coefficients to be esti-
mated and for all i € {1,..., N}, x; € R” stands for the features
vector associated to the i-th observation. Under this model, the like-
lihood has the form

s = [T (8)" (-0 (78) ™
i=1

Adopting a sparsity-inducing regularization in a Bayesian frame-
work boils down to consider an appropriate informative prior distri-
bution on the parameters vector 3. A common choice for this prior
is the Laplacian (or double exponential) distribution used in [19,20]
for the Lasso problem and defined as

p(B) o exp [—7[|B]|,] A3)

where 7 > 0 is an hyperparameter controlling the sparsity degree.
This choice is strengthened by the well-justified sparsity-inducing
properties of the Laplacian prior [21,22] which were resorted in a
lot of applications [23,24]. The application of Bayes’ rule leads to
the posterior distribution

p(Bly) =exp [—T 161, + 33 og {r(xI8)} @

=1

+(1 —y)log {1 —h (x?ﬁ) }] .

2.2. Related work

The posterior distribution (4) being log-concave with a gradient-
Lipschitz smooth term — log p(y|3) along with a closed-form ex-
pression of the ¢;-norm proximal operator (soft-thresholding opera-
tor), proximal MCMC algorithms and especially P-MYULA can be
resorted to sample from it. However, considering directly the poste-
rior in (4) within the same sampling step could slow down the con-
vergence of the Markov chain associated to 3 towards its stationary
distribution. To alleviate this issue, sampling from (4) will be con-
ducted with SPA whose construction and properties are presented in
Section 3.

3. SPLIT-AND-AUGMENTED GIBBS SAMPLER

In this section, SPA is resorted for the approximate sampling from
the general distribution

m(B) xexp |—g(B) — Y _ f(ki B) )

i=1

where f : R - R, ¢ : R” — Rand k; € RP is the i-th line of
the matrix K € R™*P_ Tts key ingredients are presented, namely
variable splitting and data augmentation. Additionally, the parallel
between this MCMC algorithm and the ADMM is recalled.

3.1. Split-augmented distribution

In place of sampling from the target distribution (5) such as proximal
MCMC algorithms [15, 16], SPA samples from another distribution
Tp,a called split-augmented distribution.

Variable splitting — The construction of this distribution first relies
on a variable splitting step which consists in introducing two split-
ting variable z; € R and zo € R leading to the so-called split
distribution defined by

i=1

7, 2 p(B,21,22) X exp [—g(za) - Zf(z“)]

1 1
exp [ b KB = — oz 18— 2]
(6)

where z1; is the -th component of z;. This joint distribution pre-
ludes the use of a Gibbs sampler to sample from each conditional
distribution associated to 3, z1 and z», respectively. Sampling from
these conditional distributions instead of (5) might be easier because
f and g will be dissociated. Although the split distribution is dif-
ferent from the target distribution (5), the marginal distribution of
B under 7, coincides with (5) in a limiting case as pointed out by
Theorem 1.

Theorem 1 [17, Theorem 1] Let p,(B) = /Wp(ﬁ,zl,zQ)dzlsz.

Then, it follows
(|7 *pﬂHTV 5 » 0. )
p=—0

Data augmentation — In order to ensure that this variable splitting
step will work, one might set p? to a small value, see Theorem 1.
However, such a small value can lead to higher correlation between
MCMC draws. One surrogate to improve these mixing properties
is to consider a data augmentation scheme ensuring less interactions
between MCMC samples [25]. Under the first splitting step, the
introduction of auxiliary variables u; € RM and us € RP leads to
the so-called split-augmented distribution

Tp,a ép(,&ZhZ%UhUQ) (8)

N
X exp {—g(m) - Zf(zu)]
=1
1 2 1 2
< exp [—272 KB~ (= )} = 515 18 (22— wo)

1 1
exp [ 5 Il = 5 sl ©

Considering this joint distribution is relevant since the introduction
of auxiliary variables u; and u2 does not alter the split distribution
m, in (6). The proof derives from straightforward marginalization
of u; and uz in (8). Note that the spirit of this data augmenta-
tion step differs from data augmentation schemes [11-14]. Thus,
the latter introduce latent variables in order to simplify the sampling
from (4). On the other hand, the data augmentation leading to the
split-augmented distribution (8) is built from an approximation of
(4), namely the split distribution (6), in order to improve the mixing
properties of the Markov chain built with SPA.



Algorithm 1: SPA

Input: Functions £, g, operator K, hyperparam. p?, a2, total
nb of iterations T, nb of burn-in iterations 71,;,
initialization z.”,z") u{” & u{”

1 fort <— 1 to Tc do

2 9% Drawing the variable of interest
3 Sample 3 according to
» (3\th71)7 Zétﬂ)’ ugt71)7 uét71)> (10) :
4 9% Drawing the splitting variables
5 Sample each component of z(lt) according to

p (214089, 7V) (1)
6 Sample zgt) according to p (zz|ﬂ(t), u;t_n) (12) 5
7 9% Drawing the auxiliary variables

8 Sample ugt) according to p (u1|ﬁ(t), zgt)) (13);

9 Sample ugt) according to p (u2|ﬁ(t)7 zét)) (14) ;

10 end
Output: Collection of samples
T
) ) ) () (t>} ME
{ﬂ 7Z1 7Z2 7u1 7u2 t:Tbi+1
distributed according to (8).

asymptotically

3.2. SPA algorithm

Sampling from such a distribution leads naturally to a special in-
stance of Gibbs samplers, SPA, whose formulation is closely related
to the ADMM main steps.

Gibbs sampler — SPA (see Algo. 1) considers the sampling from
each conditional distribution associated to (8), that is

1
p(Blz1, 22,1, u2) o exp [*ﬁ KB — (21 —w)|l3
1
selB-@-wiE] a0

p(21,i|8,u1,4) o< exp |:—f(zl,i) - % (kfﬂ — (21,1 — ul,z‘))j

(1)
[ 1
p(z2|8,u2) x exp | —g(z2) — 37 18 — (22 —u2)|\§] (12)
plunlBym) o exp [~ sl - 515 18 - (a1 — wn]
(13)
I 1 2 1 2
p(uz|B, z2) o exp 3z [luzll5 — 2,7 1B — (22 —u2)|l3
(14)

As stated in [17], SPA can be viewed as a “divide-and-conquer”
approach where the initial sampling difficulty is divided in different
easier sampling steps. Thus, the conditional distributions associated
to B, ui and uz are Gaussian with diagonal covariance matrices
for the last two distributions. Thereby, sampling from these dis-
tributions can be performed efficiently even in high dimension.
On the other hand, sampling from the distributions (11) and (12)
will depend on the form of functions f and g. For instance, the
derivation of SPA for the sparse Bayesian binary logistic regression

leads to log-concave conditional distributions where efficient prox-
imal MCMC algorithms can be proposed as described in Section 4.2.

Parallel with ADMM - An interesting property of SPA is its close
relation with the ADMM (see Algo. 2). Thus, computing the max-
imum a posteriori (MAP) estimates of each conditional distribution
involved in SPA boils down to the ADMM main steps. Addition-

Algorithm 2: ADMM (scaled version)
Input: Functions £, g, operator K, penalty parameter p~ 2,
initialization ¢ <— 0 and z§°),zg°),u§°> ,uéO)
1 while stopping criterion not satisfied do
2 % Minimization w.r.t. 3

3 BM e

argming — logp (,3|z§t_1), z(;_l), ugt_l), u;t_l)) ;
4 9% Minimization w.r.t. zs and each component of z;

5 zﬁ € argmin,, , —logp (mﬂﬂ“%uﬁ?”);

6 zéﬂ € arg min,, — logp (zz|ﬁ("), ugt_1)>;
7 % Dual ascent

38 ugt) = u&til) + K,@(z) — z%t) R

9 uét) = ugt_l) +B8® — z(;) ;

10 % Updating iterations counter

1 t<—t+1;

12 end
Output: Approximate solution of the optimization problem

8.

ally, SPA and ADMM share a general framework that yields simpler
sub-problems to be considered and can embed efficient algorithms
at each step, see Section 4.2.

4. SPARSE BAYESIAN BINARY LOGISTIC REGRESSION
WITH SPA

This section derives SPA and discusses implementation details for
the considered sparse Bayesian binary logistic regression problem.

4.1. Applying SPA

In the particular case where the responses y are binary and take val-
ues in {—1, 1}", the posterior distribution defined in (4) becomes

N
p(Bly) ocexp {—T 1811, = > tog {1 + exp (—yix! B) }] :
i=1
(15)

This posterior distribution involves two terms that can be identified
with the general target distribution defined in (5), namely

vBER?, J(kIB)=log{l+exp(-Kk'B)} (16
vBeR”, g(B) =718l an

where k; = y;x;. Thereby, the matrix K € RN *P is defined by
K=D,X (18)

where Dy is the NV x NN diagonal matrix with y; as ¢-th diagonal
element and X is the observation matrix associated to the features.



4.2. Implementation details

As noted in Section 3.2, only the conditional distributions associated
to z2 and to each component of z; are not standard. More precisely,
the conditional distribution associated to each component 21 ;, ¢ €
{1,..., N} has the form

p(21,i|B,u1,i) < exp [—log {1 + exp (—z1,i)}

2

—2—/1)2 (kI8 = (21— w)) } - (19
Instead of using further data augmentation strategies [11] to sam-
ple from (11), SPA leads naturally to N independent sampling steps
which can be processed in parallel. Interestingly, the log-concavity
of these N distributions enables to consider P-MYULA [16]. This
algorithm relies on the proximal operator of a possible non-smooth
function. Here, the logistic loss function ¢ — log {1 + exp (—t)} is
differentiable on R and its closed-form proximity operator has been
proposed recently in [26]. The formulation of the latter involves the
generalized W-Lambert function introduced in [27, 28] as detailed
hereafter.

Theorem 2 [26, Proposition 2] Let X € |0, +oo| and fiog : t —
log {1 + exp (—t)}. Then

VtE€R, proxy (1) =t + Weep-nAexp(~1)),  (20)

where prox;h)g (t) = arg min, {%(t —8)% 4 fioa(s) }

The generalized W-Lambert function can be efficiently evaluated as
described in [28] and its C++ implementation is available online.
The conditional distribution associated to zs in (12) becomes

1
p(z2]3, 2) o exp [—T Joally = 5z 16 — (o2 - u2>||§] e

Since the proximal operator associated to the ¢1-norm is the well-
known soft-thresholding operator, P-MYULA can also be applied to
sample from this conditional distribution.

5. EXPERIMENTS

This section reports and compares results obtained with SPA, P-
MYULA and ADMM on binary classification problems. Addition-
ally, in order to apply the proposed approach to a challenging multi-
class classification problem, the one-versus-all approach [18] is pro-
posed as it involves the training of binary classifiers. All the results
were obtained using MATLAB, on a computer equipped with an In-
tel Xeon 3.70 GHz processor with 16.0 GB of RAM.

5.1. Experimental design

In order to assess the performances of the proposed approach, the
sparse Bayesian binary logistic regression problem defined in Sec-
tion 4 applied to handwritten digits classification is considered.
Two well-known and often-studied datasets are resorted namely
MNIST and USPS whose characteristics are recalled in Table 1.
Such datasets have been chosen as 4) they involve a set of roughly
similar binary classification problems where performances (e.g.
computational cost and number of iterations) can be averaged and
i) the number of features D is important (> 102). Note that this
value takes into account the intercept which was not penalized as

prescribed in [6, Section 4.4.4]. Six binary classification problems
(three for each dataset) are considered. In addition, a possible exten-
sion (one-versus-all approach) of the proposed approach has been
used to tackle the multiclass classification problem on the MNIST
dataset. Thus, such an approach has been performed by training ten
independent binary classifiers and then by choosing the classifier
which outputs the largest value. All results associated to binary clas-
sification problems were obtained and averaged over three 5-fold
cross-validation procedures. Due to more demanding computational
costs, results associated to the MNIST one-versus-all experiment
were obtained and averaged over one 5-fold cross-validation pro-
cedure. The simulation-based algorithms SPA and P-MYULA are
considered and compared to the deterministic counterpart of SPA
namely ADMM, see Section 3.2. The number of burn-in iterations
have been set to Ty,; = 200 for SPA and to T = 95200 (due to
slower mixing properties) for P-MYULA. For each MCMC method,
4800 samples obtained after the burn-in period were used. For the
different algorithms, the regularization parameter has been fixed to
7 = 1 (tuned by cross-validation with ADMM).

The hyperparameters associated to SPA have been set to
(p,a) = (3,1). The choice p = 3 is a trade-off between the
short computational time and the good classification scores. Sam-
pling from (19) and (21) has been conducted by P-MYULA with
paramters (), ) = (p?, p?/4) as recommended in [16]. ADMM
(similarly to SPA) was implemented using the proximal operator
defined in Theorem 2 with a fixed penalty parameter u = 7/50.
ADMM was run until the stopping criterion

-],
!

was satisfied (6 = 0.01). Improved versions of the ADMM have
been proposed recently but this version has been found sufficient to
get an idea of the gap between state-of-the-art simulation and vanilla
optimization-based methods.

<4 (22)

Table 1. Datasets considered in the experiments.

# observations N  # features D  # classes
MNIST 60000 785 10
USPS 9298 257 10

5.2. Performance results

Table 2 shows the average classification score obtained over the three
(resp. one) 5-fold cross-validation procedure for each algorithm and
binary classification experiment (resp. MNIST one-versus-all ex-
periment) detailed in Section 5.1. Concerning the simulation-based
algorithms, the minimum mean square error (MMSE) estimator of
3 has been used to compute the probabilities of belonging to each
class and take a decision. The standard deviation (over the different
folds) associated to the binary and one-versus-all classification prob-
lems was of the order 10™" (%) for the different algorithms. The
latter share roughly similar classification performances. Of course,
we are aware that these classification results are far from the 99.79%
score [29] made by neural networks on MNIST multiclass classifi-
cation problem. Nevertheless, the results obtained by the proposed
approach permit to compare state-of-the-art simulation-based meth-
ods on a challenging classification problem where i) the weights in
3 are interpretable and 47) credibility intervals can be drawn.



Table 2. Average classification score (%) over the cross-validation
procedure for each experiment and algorithm.

ADMM | P-MYULA SPA
MNIST 1-vs-7 99.53 99.44 99.47
USPS 1-vs-7 99.18 99.06 99.11
MNIST 4-vs-6 99.06 98.88 99.12
USPS 4-vs-6 96.21 95.30 96.49
MNIST 3-vs-5 96.10 95.58 95.76
USPS 3-vs-5 97.83 97.08 97.47
MNIST one-vs-all  91.49 90.97 90.35

Table 3. Average number of iterations and computational time over
the cross-validation procedure for the different algorithms (for the
binary classification problem associated to MNIST only).

# iterations time (s) time (x ADMM)
ADMM 113 19 1
P-MYULA 10° 5022 264
SPA 5% 10% 695 37

The main differences between the methods implemented are
twofold. First, the number of iterations and thereby the computa-
tional time associated to each method can widely differ, see Table
3. Second, the results given by SPA and P-MYULA carry also
credibility intervals contrary to ADMM. Thus, ADMM only pro-
vides a point estimate for the parameter 3 (corresponding to the
MAP estimator) whereas the proposed SPA offers a comprehensive
description of the solution through an approximation of the pos-
terior distribution. For instance, these confidence information are
discussed in Section 5.3 and could be used to identify challenging
observations to classify correctly.

Table 3 presents the average number of iterations performed
by each algorithm and their average computational time (in sec-
onds and w.r.t. ADMM). Only the results associated to the MNIST
binary classification problems are depicted, conclusions with the
USPS dataset are similar. Note that the number of iterations and
thereby the computational time of ADMM was adapted at each ex-
periment contrary to simulation-based methods. P-MYULA appears
to be slower than SPA (mainly due to slower mixing) which, by em-
bedding the former, improved its computational time by a factor of
about 7. Additionally, the latter has a reasonable computational cost
compared to vanilla ADMM: it is only 37 times slower. This corre-
sponds to the price to pay to get credibility intervals which can be
decisive in a lot of applications (e.g. medicine).

5.3. Sparsity and credibility intervals

Sparsity — As introduced in Section 1, interpreting too many active
weights of 3 could be challenging and of little interest. Thus sparsity
is induced in the weights vector 3 by the Laplacian prior distribution
(3). Figure 1 (left) shows an example of the MMSE estimator of a
weights vector learned by SPA from MNIST data in the one-versus-
all experiment. The active coefficients (dark blue & red) appear to
correspond to the contours of the average target label (here the label
2) which is coherent with the classification task. The sparsity of
this weight vector is illustrated by the histogram of its coefficients

(right), as promoted by the sparsity-inducing Laplacian prior (3).
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Fig. 1. MNIST one-vs-all experiment: Example of the MMSE esti-
mator of a weight vectors 3 learned by SPA for the 2-vs-all binary
classifier (left) and its associated histogram (right).

Credibility intervals — More importantly, the Bayesian inference
conducted by simulation-based algorithms permits to draw credibil-
ity intervals on each feature and thereby on the output of each binary
classifier. Such intervals could be used to detect the observations
where the classification made by the models could be wrong. For
instance, on the MNIST one-versus-all experiment, the percentage
of potentially missclassified digits identified by SPA under 90%
credibility intervals was of the order 21.98%. By removing these
digits with uncertain decision, the classification score increased to
98.36% (48 percentage points) assessing that under 90% credibility
intervals, SPA is able to deliver decisions with high accuracy.
Figure 2 shows some observations detected as potentially mis-
classified by the analysis of 90% credibility intervals associated to
SPA. As the one-versus-all approach cannot deliver joint estimated
probabilities of belonging to each class, we cannot interpret the cred-
ibility intervals associated to the ten binary classifiers outputs simi-
larly to the ones drawn from a multiclass classifier. Nevertheless, the
resulting 90% intervals were used to point out the second and third
most probable labels. Typical uncertain cases are depicted in Figure
2. For each of these labels, the probability that the associated binary
classifier gave a larger response than the winning predicted label has
been indicated (in blue). This probability was calculated empirically
using the 4800 samples associated to each classifier. As a benefit, the
proposed approach is able to propose a choice of potentially more or
less credible alternative choices to the main output of the classifier.

6. CONCLUSION

This paper tackles the probabilistic inference of the sparse Bayesian
binary logistic regression problem by relying on the recent split-
and-augmented Gibbs sampler. The method relies on P-MYULA
along with the recently proposed proximal operator of the logistic
cost function, enabling new routes toward fast and efficient sam-
pling schemes for regularized Bayesian logistic regression. Such
a problem applied to handwritten digits classification can be solved
efficiently with SPA with a reasonable computational cost compared
to vanilla ADMM. In particular, the resulting Bayesian credibility
intervals can be used to identify particularly uncertain decisions, in
contrast with optimization-based methods. Such decisions could be
for instance revised by conducting further analysis, training another
classifier or asking for an expert choice. Future works could include
the scaling of the proposed approach for big data settings where the
datasets might not fit on a single machine as pointed out in [30].
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Fig. 2. MNIST one-vs-all experiment: Example of 8 handwritten
digits identified as possibly missclassified by SPA (under 90% cred-
ibility intervals). The true label (black), the predicted one (green for
correct decisions and orange for wrong ones), the second and third
most probable labels (blue) and their respective weight (blue) are
depicted at the bottom of each sub-figure.
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