Iulian Ober
email: iulian.ober@irit.fr

Revisiting Bounded Reachability Analysis of Timed Automata Based on MILP

We study the reduction of bounded reachability analysis of timed automata (TA) to a Mixed Integer Linear Programming (MILP) problem. While bounded model checking of timed automata has been explored in the literature based on the satisfiability of Boolean constraint formulas over linear arithmetic constraints verified using SAT Modulo Theory (SMT) solvers, the approach presented in this paper opens up the alternative of using MILP solvers. We present some preliminary results comparing the two approaches and provide ideas on how linear optimization can be useful for analyzing the behavior of TA. The results are supported by a prototype implementation which relies either on a MILP solver (Gurobi) or an SMT solver (MathSAT). Certain techniques for reducing the search space and improving the performance are also discussed.

Introduction

Timed automata [START_REF] Alur | A theory of timed automata[END_REF] allow the specification of time-dependent behavior and they have been used as underlying semantic model for real-world, industry-grade languages used in the design and analysis of real-time systems, such as SDL [START_REF] Bozga | Timed extensions for SDL[END_REF][START_REF] Graf | Expression of time and duration constraints in SDL[END_REF] and extensions of UML [START_REF] David | Formal verification of UML statecharts with realtime extensions[END_REF][START_REF] Graf | OMEGA: correct development of real time and embedded systems[END_REF][START_REF] Knapp | Model checking -timed UML state machines and collaborations[END_REF]. As S. Graf remarked in [START_REF] Graf | Expression of time and duration constraints in SDL[END_REF], "at the semantic level, it is interesting to have a minimal number of basic primitives allowing expression of all concepts" [related to time], and timed automata primitives fill this need both for functional design elements and for non-functional aspects.

Since the applications for these models are often safety-critical (e.g., realtime systems, communication protocols), their formal verification has received wide attention in the research literature. There are several mature tools for verifying or simulating various flavors of timed automata-based models, including [START_REF] Behrmann | Developing UPPAAL over 15 years[END_REF][START_REF] Bozga | The IF toolset[END_REF][START_REF] Wang | Efficient verification of timed automata with BDD-like data structures[END_REF][START_REF] Yovine | KRONOS: A verification tool for real-time systems[END_REF]. Although timed automata give raise to infinite state spaces due to the dense domain of time, both reachability and model checking of various logics are decidable based on finite representations of the state space. The tools and analysis methods cited above rely on symbolic representations of state sets, such as the Difference Bound Matrices (DBMs, introduced in [12]), or more efficient ones such as CDDs, RED [START_REF] Larsen | Clock difference diagrams[END_REF][START_REF] Wang | Efficient verification of timed automata with BDD-like data structures[END_REF].

Bounded model checking (BMC) [START_REF] Biere | Symbolic model checking without BDDs[END_REF] on the other hand is a successful method for analyzing models that yield very large state spaces. It relies on encoding the next-state relationship as a logical formula and on instantiating this formula a bounded number of times to encode all possible runs of depth equal to the bound. Then, a valid run corresponds to an assignment of the variables that satisfies the formula. The verification of properties on runs is hence reduced to the Boolean satisfaction problem (SAT) for the logical formula encoding possible runs. BMC was initially introduced for discrete state-transition systems and formulas are expressed in plain propositional logic. BMC has also been studied for timed automata (see Sect. 5), generally based on formulations that use Boolean constraint formulas over linear arithmetic constraints, i.e., Boolean combinations of propositional variables and linear relations over real variables that can be fed to an SMT solver.

In this paper we study an alternative approach to bounded reachability analysis of timed automata, based on Mixed Integer Linear Programming (MILP). We propose several formulations that aim to increasingly improve performance through reducing the search space and we compare these formulations based on two benchmark examples. Since the formulation is also expressible as a Boolean constraint problem over linear arithmetic constraints, we are able to compare the performance of the MILP-based method with one based on SMT. In this first study we have limited the scope to the verification of simple reachability properties; the method can nevertheless be extended to bounded model-checking for more complex temporal properties.

The paper is structured as follows: Sect. 2 provides the definitions for the version of timed automata used in the paper and introduces MILP. Section 3 discusses different formulations of the bounded reachability as a MILP problem. Section 4 discusses and compares experimental results for the different variants and solvers. Sections 5 and 6 discuss the related work before concluding.

Preliminaries

Timed Automata

We rely on a standard definition of timed automata [START_REF] Alur | A theory of timed automata[END_REF]. A timed automaton is a state-transition graph in which transitions may be guarded with conditions on clock variables, used to measure the progress of time. Clocks may be reset when a transition fires and they advance at the same rate.

Let X be a finite set of clock identifiers. A valuation is a function v : X → R assigning a real value to each clock. A clock predicate ζ over X is a logical conjunction of conditions of the form x ⊲⊳ c where x ∈ X, c ∈ Z (or c ∈ R when the integrality hypothesis is not needed) and ⊲⊳ is one of <, ≤, >, ≥, or =. Our notation will not distinguish between the predicate and the set of valuations that satisfy it; thus, v ∈ ζ denotes that the valuation v satisfies the predicate ζ. Let Cond(X) be the set of clock predicates over X.

A timed automaton is a tuple A = (L, l init , X, Inv, Ch, T) where L is a finite set of identifiers (the locations), l init ∈ L is the initial location, X is a finite set of clocks, Inv : L → Cond(X) is a function associating an invariant to to each location, Ch is a set of identifiers (the synchronization channels), and T is a set of tuples of the form t = (src, dst, syn, grd, rst) (the transitions) such that: src, dst ∈ L, syn ∈ {ǫ} ∪ {?, !} × Ch, grd ∈ Cond(X), rst ⊆ X. The components of t designate the source/destination location, synchronization action (ǫ for no synchronization), the guard condition and respectively a set of clocks that are reset to zero. When several automata are involved, we will use the superscripts to refer to the components of a particular automaton B, e.g., L B , X B ; for the components of transition tuples, we will use projection functions having the same name as the respective component in the definition above (e.g., src(t), dst(t)).

The semantics of a timed automaton is given by its transition system, i.e. a graph in which vertices are configurations and edges represent transitions. A configuration is a pair (l, v) where l is a location and v is a clock valuation such that v ∈ Inv(l). There are two kinds of transitions: elapsing of a duration

δ ∈ R, denoted (l, v) δ -→ (l, v + δ) (where v + δ is the valuation such that (v + δ)(x) = v(x) + δ) and discrete transitions, denoted (l, v) t -→ (l ′ , v ′)
where t ∈ T . Time elapsing is conditioned by v+δ ∈ Inv(l). The discrete transition t is conditioned by l = src(t), l ′ = dst(t), v ∈ grd(t) and v ′ (x) = 0 for all x ∈ rst(t) and v ′ (x) = v(x) for all x ∈ X \ rst(t). A path in the transition system is called a run. A run is in canonical form if it starts and ends with a time elapsing transition (possibly of duration zero) and the sequence of transitions composing it strictly alternates time elapsing transitions and discrete transitions. It is easy to see that any run can be transformed into an equivalent cannonical run by summing up the delay of successive time transitions and by inserting zero-delay transitions where needed.

Given a set of timed automata A 1 , ..., A n with pairwise disjoint sets of locations and clocks, the system of timed automata A = A 1 . . . A n is defined by its transition system as follows. The configurations are pairs of the form ((l 1 , ..., l n), v 1 ⊔ ... ⊔ v n), where (l 1 , ..., l n) ∈ L A 1 × ... × L A n and ⊔ is the union operator for functions with disjoint domains. Time elapsing transitions ((l 1 , ..

., l n), v 1 ⊔ ... ⊔ v n) δ -→ ((l 1 , ..., l n), v ′ 1 ⊔ ... ⊔ v ′ n) are possible iff ∀k, (l k , v k) δ -→ (l k , v ′ k). Discrete transitions without synchroniza- tion ((l 1 , ..., l n), v 1 ⊔ ... ⊔ v n) ǫ -→ ((l ′ 1 , ..., l ′ n), v ′ 1 ⊔ ... ⊔ v ′ n) are possible iff ∃k, (l k , v k) ǫ -→ (l ′ k , v ′ k
) and ∀j = k, l j = l ′ j and v j = v ′ j . Discrete transitions with synchronization are possible only in pairs of an output (!) and an input (?):

((l 1 , ..., l n), v 1 ⊔...⊔v n) c -→ ((l ′ 1 , ..., l ′ n), v ′ 1 ⊔...⊔v ′ n) iff ∃c ∈ Ch A 1 ∪...∪Ch A n , k, l such that (l k , v k) !c -→ (l ′ k , v ′ k), (l l , v l) ?c -→ (l ′ l , v ′ l) and ∀j ∈ {k, l}, l j = l ′ j and v j = v ′ j .
This version of non-associative n-ary composition is commonly used in practice, for example in the UPPAAL tool [START_REF] Behrmann | Developing UPPAAL over 15 years[END_REF].

The reachability problem for timed automata is known to be decidable [START_REF] Alur | A theory of timed automata[END_REF]. The decision procedure relies on the integrality of constants used in clock predicates. Our bounded reachability method, as well as others proposed in the literature, can relax this hypothesis and work with real constants (e.g., represented as floating point numbers). On the other hand, since MILP problems only admit non-strict linear constraints (see next paragraph), we forbid strict comparisons in clock predicates. One can replace strict comparisons used in the automata with non-strict ones by fixing a minimum gap.

MILP

A Linear Programming problem is a mathematical optimization problem in which constraints are linear inequalities and the objective function is also a linear. A Mixed-Integer Linear Programming (MILP) problem is an LP problem in which some of the variables are constrained to be integers [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF]. Like SAT, MILP is NP-complete, but many solvers are capable of solving very large problems arising in practice and their performance has vastly improved during the past decades.

Binaries (i.e., integer variables with value 0/1) can be used to represent Booleans and MILP can encode arbitrary Boolean constraints through inequalities, sometimes more compactly than using the standard logical operators.

In addition to inequalities, some solvers may accept a number of additional constraint types, such as indicator constraints [16] which have the form b → C where b is a binary variable and C is a linear inequality that has to be satisfied by the solution only if b has the value 1. This is the only form of non-linear constraint that we will use in our formulation of the reachability problem.

Formulating Bounded Reachability in MILP

Let A = A 1 . . . A n be a system of timed automata. We discuss here the way in which reachable states and transitions of the system are encoded as variables and constraints of a MILP problem. Several options are available for the encoding, one of the goals of this section being to define the variants so that their performance can be compared in the experiments section.

Let us remind first that the formulation concerns the states of the system that can be reached through a sequence of transitions of bounded length. To simplify the definitions, we consider first that there is a total order between the states and between the transitions, although this constraint will be relaxed later on.

Encoding of State

The state of the automaton A k at step i is characterized by the location in which it resides and the values of its clocks. To encode these, we use:

-a set of binary variables, one for each location of A k :

V L A k i = {l i |l ∈ L A k , 0 ≤ i ≤ B}
-a set of continuous variables, one for each clock of A k , which will designate the last time (with respect to a time reference frame) when the clock was reset:

V X A k i = {reset x i |x ∈ X A k , 0 ≤ i ≤ B}
Since A k can only be in one state at a time, the following constraint holds:

l∈V L A k i l = 1 (1)
To encode the initial state of each automaton, the following constraints have to hold:

∀l ∈ L A k : l 0 = 1 iff l = l A k init (2) ∀x ∈ X A k : reset x 0 = 0 (3)
The global state of the system at step i also includes the time since the beginning of the run: now i (with the constraint now 0 = 0). For the moment we consider the case where the transitions of the system are totally ordered in a sequence, hence we can use a global time reference frame. This will no longer be the case when the total order constraint is relaxed, later on.

The state of each automaton has to observe the invariant of its current location. Since each location invariant is a conjunction of atomic clock conditions, each of these can be treated as a separate MILP constraint. By notation abuse, we will write c ∈ Inv(l) when c is an atomic clock condition part of the conjunction Inv(l). At step i, an atomic condition x ⊲⊳ α is equivalent to the linear expression now ireset x i ⊲⊳ α and an atomic condition xy ⊲⊳ α is equivalent to the linear expression reset y ireset x i ⊲⊳ α. Let LE c i denote the linear expression corresponding to condition c at step i. Then, the following constraints have to hold:

∀l ∈ L A k , ∀c ∈ Inv(l) : l i → LE c i (4)
The purpose of the model is to verify reachability of certain states. For the experiments, we specified the searched state as a conjunction of conditions on automata locations and clocks values at step B, for which the encoding is straightforward.

Encoding of Transitions

To allow for an efficient formulation of the possible runs of the system, our MILP model allows, by construction, only for canonical runs (in which discrete steps and time elapsing steps strictly alternate). Thus, a step i is in our case formed of a time elapsing step (possibly of delay equal to zero) followed by a discrete step. Thus, when we refer to a sequence of length B, this is actually a sequence of 2B + 1 steps: B pairs formed of a time step and a discrete step, plus a final time step in order to allow for time to go on after the last discrete step. Steps are numbered from 0 to B.

The time elapsing steps are not explicitly encoded, which further simplifies the model. Instead, we simply add the condition that time has to progress in the right direction:

∀i

: now i ≤ now i+1 (5)
With this in mind, now i designates the current time before the pair (time delay, discrete transition) of rank i. Thus the discrete transition i takes place at time now i+1 .

A first consequence is that the constraint (4) given above models the satisfaction of location invariants before the time step i but not after. In order to ensure the satisfaction of the invariant after the step i (and hence, between the two, since invariants are convex), we need an additional constraint. Let LEA c i denote the linear expression corresponding to condition c after step i. It is easy to see that LEA c i can be built similarly to LE c i , based on now i+1 (time after the delay step i) and on the values of reset x i (reset dates before the discrete step i).

∀l ∈ L A k , ∀c ∈ Inv(l) : l i → LEA c i (6)
For each discrete transition we will use an auxiliary binary variable that models the fact that the transition is triggered at step i. While this is not usually done in other formulations used for BMC, we find that this makes it easier to express the constraints and to reconstruct the sequence of transitions when the solver finds a feasible solution. Thus:

V T A k i = {t i |t ∈ T A k , 0 ≤ i < B}
Except for synchronization which is discussed in the next section, the other necessary conditions for a discrete transition are given below. To simplify the formulas, the components of a transition t (i.e., src(t), dst(t),...) will also be denoted by src(vt), dst(vt), ..., for any vt ∈ V T A k i that corresponds to t.

∀t ∈ V T A k i : t → src(t i) ∧ dst(t i+1) (7) ∀t ∈ V T A k i , ∀c ∈ grd(t) : t → LEA c i (8) ∀t ∈ V T A k i , ∀x ∈ V X A k i s.t. x ∈ rst(t) : t → (reset x i+1 = now i+1) (9) ∀t ∈ V T A k i , ∀x ∈ V X A k i s.t. x ∈ rst(t) : t → (reset x i+1 = reset x i) (10)
Instead of a discrete transition, an automaton A k may perform a special "skip" transition at step any i, without changing either the state or the values of reset variables. In the following section we will discuss some additional conditions that ensure that skip steps of individual automata are only used under certain conditions, so that the global system runs continue to have the canonical form. To represent the skip transitions, a binary variable skip A k i is introduced for each i and A k , along with these constraints:

∀i, ∀x ∈ X A k : skip A k i → (reset x i+1 = reset i) (11) ∀i, ∀l ∈ L A k : skip A k i → (l i+1 = l i) (12
)
Skip transitions are also useful for encoding the fact that a bounded sequence of length B may be followed by one final time step: we extend the length of the sequence by one and we require that the last discrete step (numbered B) be a skip.

Relaxing the Order of Transitions and Handling Synchronization

From this point on, several variants of the model will be considered. They all share the variables and constraints described previously and differ essentially in the way in which transitions of individual automata are ordered within the global run and in how synchronization between automata is handled.

A first variant (denoted SS for sequential steps) is to consider that transitions are ordered sequentially. At each step, only one automaton may fire a discrete transition. In order to account for synchronization, the constraints ensure that an input on some channel can only be executed by an automaton immediately after an output on the same channel was executed by a different automaton (i.e., in the next step and so that now does not change between the two). To preserve the canonical form of runs, a constraint ensures that, once a skip transition appears, all subsequent transitions are skips. Let inputs/outputs designate the set of all transitions that specify an input (resp. output) synchronization and conjugated(t) be a function that gives the set of all transitions t ′ which specify an output synchronization with the same channel name as t. We do not formally define these, but it is relatively easy to see how they are syntactically derived from the definition of a system. The formulation is as follows:

∀i : k (skip A k i + t∈V T A k i t) = 1 (13)
∀i, ∀t ∈ outputs :

t i → t ′ ∈conjugated(t) t ′ i+1 = 1 (14)
∀i > 0, ∀t ∈ inputs :

t i → t ′ ∈conjugated(t) t ′ i-1 = 1 (15) ∀i.0 < i < B, ∀t ∈ inputs : t i → (now i = now i+1) (16)
By experimenting with this formulation, one rapidly concludes it is inefficient, mainly for two reasons. Firstly, since only one automaton is allowed to step at a time, one has to choose a relatively large bound B, which in itself penalizes performance. Secondly, if the model is used for establishing the unreachability of some configuration (as it is the case when one tries to verify a safety property), a positive result is achieved when the model is infeasible (the term used by MILP solvers, meaning unsatisfiable). However, the difficulty of proving infeasibility is generally correlated with the size of the Infeasible Irreducible System (IIS, equivalent of the UNSAT-core in SAT/SMT). Experiments show that with the SS formulation, the IIS is generally the entire model (i.e., no constraint can be removed without breaking infeasibility) -and therefore establishing infeasibility is hard.

This finding led us to seek more efficient formulations. A first variant (MS1 for multi-step with unique time basis) is to allow for multiple automata to trigger discrete transitions within the same step. This also allows a simpler handling of input/output synchronization, which can now be performed within the same step. The formulation is as follows: ∀i, ∀k : skip

A k i + t∈V T A k i t = 1 (17)
∀i, ∀t ∈ outputs :

t i → t ′ ∈conjugated(t) t ′ i = 1 (18)
∀i, ∀t ∈ inputs :

t i → t ′ ∈conjugated(t) t ′ i = 1 (19
)
This formulation is more efficient as it allows to use a lower value for the bound B, since several automata can trigger during a step. However, the use of a unique time basis for all automata (the now i variables) introduces dependencies between their behaviors. As a consequence, even when a safety property could in principle be proved locally on one or a small subset of the system's automata, the actual IIS is still usually the entire model, and therefore infeasibility remains hard to prove.

A solution to this problem can be to de-correlate time progress in the different automata forming a system. As long as an automaton progresses without synchronizing with others, it can use its own value of now which can be different from the others', in a way similar to what was proposed in [START_REF] Malinowski | SAT based bounded model checking with partial order semantics for timed automata[END_REF]. Only when two automata synchronize, they must agree on their respective value of now. To encode this we replace each now i variable by a set of variables now A k i , and the constraints (4), (5), (6), (8) and (9) are rewritten to refer to the local now of the concerned automaton. Of course, this implies that an automaton can only read/reset its own clocks.

In this model, there are several ways to achieve input/output synchronization. A first variant (denoted MSm for multi-step with multiple time bases) will rely on the same constraints as MS1, i.e., [START_REF] Knapp | Model checking -timed UML state machines and collaborations[END_REF], (18) and (19), while adding two more:

∀i, j, k, ∀t ∈ V T A j i , ∀t ′ ∈ V T A k i s.t. t ′ ∈ conjugated(t) : t ∧ t ′ → (now A j i+1 = now A k i+1) (20)
meaning that local nows agree in case of synchronization, and ∀j, k : now

A j B = now A k B) (21)
meaning that local nows agree at the end of the sequence.

To ensure that we obtain a canonical run with MSm, we can add a constraint enforcing that, if all automata perform a skip at step i, they will continue doing the same for all steps j > i. However, even with this constraint, an individual automaton may still perform a skip at step i and some discrete transition at a later step. As this seems to be a source of combinatorial explosion, we have sought to remove it, by no longer relying on the fact that inputs/outputs have to take place in the same step (constraints (18) and (19)). This opens up interesting possibilities:

-The steps of the different automata forming the system are completely decorrelated. The run is no longer a unique sequence of (multi-)steps but a set of sequences, one for each automaton. -The sequences can be of different length. One can imagine fixing the depth bound B differently for each automaton (e.g., depending on its own complexity). -Each individual sequence can be constrained to be in canonical form, i.e., no more spurious skip transitions (except at the end of each run).

However, this also raises new challenges, as the global coherence of the model still has to be ensured. A solution is to use a matrix of auxiliary binary variables to represent the fact that step i of an automaton A n synchronizes with step j of A m . Constraints were added to ensure that synchronizations take place at the same time (similar to condition (20)), and that message overtaking does not occur. Details are omitted here, they can be found in the code of the prototype. Henceforth, this variant of the formulation will be denoted ISs (independentsteps with synchronization).

MILP Objective

The difference between an SMT-based bounded model checker/reachability analyzer and one based on MILP is that the latter may integrate an optimization objective. The objective has the form of a linear expression on model variables (depending on the solver, other forms of expressions, such as quadratic forms, may also be used). The objective proves to be useful for selecting a system run out of the set of feasible ones based on minimizing/maximizing various criteria. For example, for model debugging it is often convenient to obtain the shortest run that leads to the searched state, i.e. the run that contains the smallest number of (non-skip) discrete transitions. This can be obtained by minimizing the objective:

obj = i,k t∈V T A k i t
Other examples of uses for the objective function include searching for runs that optimize the time of residence in certain locations. It is also easy to extend the model to handle weighted timed automata [6], which add costs on states/locations, so as to search for runs that optimize the total cost.

Experimental Results

The method described in the previous section was implemented in a prototype1 written in Python and using Gurobi [16] as back-end MILP solver. In order to allow comparisons, the prototype can also encode the reachability problem as an SMT problem over linear arithmetic constraints, and use MathSAT [21] as backend (via the pysmt API). Both formulations use exactly the same constraints, therefore providing an interesting basis for comparison. The automata are specified programmatically directly in Python; however, the format is relatively close to the textual format of UPPAAL, to the point that we could adapt some benchmark generation scripts2 to generate models for our experiments. Experiments were performed on a Linux machine with 8 Intel Core 2.4 GHz CPUs and 16 GB of memory. Note that the version based on Gurobi exploits the platform parallelism, whereas the one based on MathSAT only uses one of the processors.

Examples Used

Several examples have been built in order to exercise the prototype. We will concentrate in the following on two of them: the now-classical Train-Gate-Controller (TGC) example [START_REF] Alur | A theory of timed automata[END_REF] and the CSMA/CD (Carrier Sense, Multiple-Access with Collision Detection) protocol, based on the model included in the UPPAAL benchmarks [START_REF] Möller | CSMA/CD protocol specification (UPPAAL benchmark)[END_REF]. The CSMA/CD protocol allows to assign a broadcast network channel to one of several competing transmitters. A detailed description is given in [START_REF] Yovine | KRONOS: A verification tool for real-time systems[END_REF]; let us note that the model is parametric in the number of transmitters.

Results for Feasible Models (Reachable States)

In the first experiment reported here, we search for a state for which we know that it may be reached at a certain depth. In the CSMA/CD example, for a model with N transmitters, an interesting candidate is the state bus collisionN of the automaton corresponding to the bus, since we know that it may be reached at a minimum depth of N + 1. For each value of N two tests are performed, one with a depth bound B = N + 1 and another one with a larger bound. For each combination of N and depth, the different variants of formulation presented in Sect. 3.3 have been tried, both using the MILP encoding (Gurobi) and the SMT encoding (MathSAT). The quantitative results are listed in the Fig. 1; the green background designates the solver which produced faster results for a particular configuration. In all experiments the time limit was set to 1000 s.

On this experiment the speed of the two solvers is generally comparable, with a slight advantage for the MILP solver for lower values of B and for the SMT solver for larger ones. It is worth noting however that the MILP encoding provides results that are qualitatively more interesting: we have set the objective of finding traces with a minimum number of (non-skip) discrete transitions. In the case where the bound is strictly larger than N + 1, the runs provided by the SMT solver contain many more transitions than necessary for reaching the goal state, while the runs provided by the MILP solver have exactly N +1 transitions. Thus, when reachability analysis is used for model understanding and debugging purposes, the MILP solution provides more interesting results. As the numbers in Fig. 1 indicate, the CSMA/CD example does not benefit from the partially ordered runs afforded by the MSm and ISs variants. This is caused by the centralized nature of the example, as all the transitions of the transmitting stations synchronize with a transition of the bus, whose behavior is essentially sequential.

We proceed with a second experiment which exhibits an increased degree of parallelism. Based on the TGC example [START_REF] Alur | A theory of timed automata[END_REF], we build a system composed of N Train-Gate-Controller triplets. In order to demonstrate the interest of having multiple time bases (the case of the MSm and ISs variants), the waiting delay before the Controller sends the signal to raise the Gate is set to a different value in each triplet. The reachable configuration that will be searched is one in which every Gate is in state raising, after a train has passed. The search times for different values of N are given in Fig. 2. Note that for the MS1 variant, N+5 steps are necessary to reach the search state, whereas for the variants that use a separate time basis for each automaton (MSm and ISs) the same state can be reached in a constant number of steps [START_REF] Biere | Symbolic model checking without BDDs[END_REF]. This explains the wide difference in performance between the three variants. It is also to be noted that the relative performance of the solvers is widely different depending on the variant: the SMT solver is orders of magnitude faster on MS1 while the MILP solver is up to 50 times faster on MSm and ISs.

Results for Infeasible Models (Unreachable States)

When reachability analysis is used for verifying a safety property (i.e., that some "bad state" is never reached), the MILP model (respectively the SMT problem) will be infeasible (unsatisfiable) when the property is verified. Experiments show that the performance of the solvers is not uniform whether the purpose is finding scenarios in a feasible model or proving that the model is infeasible. This section is dedicated to experiments for the latter case.

For the TGC example, a safety property is that the Gate cannot be in a state other than closed when the Train passes the Gate. We try to prove this property holds up to a "reasonable" bound for depth. The choice of the bound is somewhat arbitrary, but is informed by the results of experiment 2, which show that a full cycle of gate lowering -train passing -gate raising can be achieved in N+5 steps for MS1 and in 5 steps for MSm and ISs. The bound is thus chosen to be 2*N for MS1 and respectively 10 for MSm and ISs.

The computation times for deciding infeasibility are given in Fig. 3. Notice that the SMT solver performs significantly better on this task than the MILP solver. The MSm and ISs formulations also perform much better than MS1 for large models, ISs being the only formulation for which the MILP solver can handle larger systems in a reasonable time.

Related Work

Applying bounded model checking [START_REF] Biere | Symbolic model checking without BDDs[END_REF] to timed automata has been the subject of many studies in the past, beginning with [START_REF] Audemard | Bounded model checking for timed systems[END_REF][START_REF] Niebert | Verification of timed automata via satisfiability checking[END_REF][START_REF] Sorea | Bounded model checking for timed automata[END_REF]. The problem is reduced to satisfiability of formulas in a decidable first order logic (e.g., propositional logic with linear arithmetic constraints or difference logic). Most recent works rely on SMT solvers, which have made significant progress in the past years and are able to handle large specifications. To our knowledge, Mixed Integer Linear Programming has not yet been explored for formulating bounded model-checking problems, except in the realm of linear hybrid automata [START_REF] Fränzle | Efficient proof engines for bounded model checking of hybrid systems[END_REF]. The authors of [START_REF] Fränzle | Efficient proof engines for bounded model checking of hybrid systems[END_REF] concentrate on the integration of a DPLL-based SAT solver with a linear programming routine in order to benefit from the capacity of the LP routine to solve large conjunctive systems of linear inequalities over the reals. Although the method proposed by [START_REF] Fränzle | Efficient proof engines for bounded model checking of hybrid systems[END_REF] could be adapted to fit our needs, we have chosen to rely on an off-the-shelf MILP solver and we concentrated on making the formulation as efficient as possible and on comparing the MILP solution with one based on SMT.

The idea of reducing the length of runs (and hence the size of the search space) by allowing several automata to make discrete transitions in the same (multi-)step has been explored in [START_REF] Malinowski | SAT based bounded model checking with partial order semantics for timed automata[END_REF]. It follows up on work on partial order reductions for timed automata [START_REF] Bengtsson | Partial order reductions for timed systems[END_REF][START_REF] Lugiez | A partial order semantics approach to the clock explosion problem of timed automata[END_REF]. We take the multi-step idea two steps forward, first by allowing the clocks of different automata to be de-synchronized in the same multi-step, and then by allowing synchronizing transitions to take place in different steps, which allows to separate the representations of the runs of different TAs and use different bounds on the run length for each automaton. A similar approach was presented in [9] in the context of linear hybrid automata.

Conclusions

The results presented in this paper show that there is a place for MILP-based bounded reachability analysis in the spectrum of analysis methods used for timed systems. While the SMT-based method outperforms it when there are no satisfying runs, which makes SMT a better candidate for approaching model-checking problems, the MILP-based method proves to be relatively fast for finding satisfying runs when they exist. Moreover, the method allows to search for runs that optimize certain criteria. Since different criteria may be encoded in the optimization objective, such as run length or time of residence in certain states, our approach provides a convenient method for exploring behavior, model understanding and debugging.

The paper also discusses certain techniques for reducing the size of the search space based on allowing as much as possible independent progress of the different automata forming the system. Several different formulations of the reachability problem are presented and we provide experimental data allowing to compare their relative performance. One formulation (ISs) is particularly interesting, both from the point of view of raw performance, and because it separates the representations of the runs of different automata, which allows to set different bounds on their respective length. We think that this should allow to handle more efficiently large systems that mix components of varying complexity.

The prototype implemented for this study handles only a minimalist communicating timed automata model. Future work is needed for enriching the model, e.g., with local/shared data, data communication over synchronization, shared clocks, location and transition weights [6], etc. Although we do not aim for a full-fledged bounded model checker, it would be interesting to provide counterexample generation for more complex temporal logic properties. This paper is dedicated to Susanne Graf on the occasion of her anniversary event, as a mark of my admiration and respect for her scientific achievements and for her human qualities. It is an honor and an inspiration to have her as colleague and friend.

Fig. 1 .

 1 Fig. 1. Experiment 1 (CSMA/CD) -times in s.

Fig. 2 .

 2 Fig. 2. Experiment 2 (TGC) -times in s.

Fig. 3 .

 3 Fig. 3. Experiment 3 (TGC with unreachable end state) -times in s.

https://www.irit.fr/ ∼ Iulian.Ober/brat.

https://www.it.uu.se/research/group/darts/uppaal/benchmarks.