
HAL Id: hal-02279406
https://hal.science/hal-02279406

Submitted on 5 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Industrial Requirements Classification for Redundancy
and Inconsistency Detection in SEMIOS

Manel Mezghani, Juyeon Kang, Florence Sèdes

To cite this version:
Manel Mezghani, Juyeon Kang, Florence Sèdes. Industrial Requirements Classification for Redun-
dancy and Inconsistency Detection in SEMIOS. IEEE 26th International Requirements Engineering
Conference (RE 2018), Aug 2018, Banff, Alberta, Canada. pp.297-303, �10.1109/RE.2018.00037�.
�hal-02279406�

https://hal.science/hal-02279406
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22497

Official URL

DOI : https://doi.org/10.1109/RE.2018.00037

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Mezghani, Manel and Kang Choi,
Juyeon and Sèdes, Florence Industrial Requirements
Classification for Redundancy and Inconsistency Detection in
SEMIOS. (2018) In: IEEE 26th International Requirements
Engineering Conference (RE 2018), 20 August 2018 - 24
August 2018 (Banff, Alberta, Canada).

Manel Mezghani

Semios for requirements

Prometil

Toulouse, France

mezghani.manel@gmail.com

Juyeon Kang

SEMIOS for requirements

Prometil

Toulouse, France

j.kang@semiosapp.com

Florence Sèdes

IRIT, University of Toulouse

CNRS, INPT, UPS, UT1, UT2J,

France

florence.sedes@irit.fr

Abstract—Requirements are usually ”hand-written” and suf-
fers from several problems like redundancy and inconsistency.
The problems of redundancy and inconsistency between require-
ments or sets of requirements impact negatively the success of
final products. Manually processing these issues requires too
much time and it is very costly. The main contribution of this
paper is the use of k-means algorithm for a redundancy and
inconsistency detection in a new context, which is Requirements
Engineering context. Also, we introduce a filtering approach to
eliminate ”noisy” requirements and a preprocessing step based
on the Natural Language Processing (NLP) technique to see the
impact of this latter on the k-means results. We use Part-Of-
Speech (POS) tagging and noun chunking to detect technical
business terms associated to the requirements documents that
we analyze. We experiment this approach on real industrial
datasets. The results show the efficiency of the k-means clustering
algorithm, especially with the filtering and preprocessing steps.
Our approach is using the software SEMIOS and will be
integrated as a new functionality.

Index Terms—Requirements engineering, redundancy, incon-
sistency, clustering, NLP, technical documents

I. INTRODUCTION

In order for a system to become operational in real applica-

tions, several stages of conception, development, production,

use, support and retirement must be followed (ISO/IEC TR

24748-1, 2010). During the conception stage, we identify and

document the stakeholder’s needs in the system requirements

specification [1]. Writing clearly all required elements without

ambiguities [2] in the specifications is an essential task before

passing to the development stage [3], [4]. According to the

2015 Chaos report by the Standish Group1, only 29% of

projects were successful2, 50% of the challenged projects are

related to the errors from the Requirements Engineering (RE)

and 70% of them come from the difficulties of understanding

implicit requirements. All these errors do not lead to project

failure but generate useless information. It is well known that

the costs to fix errors increase much more after that the product

is built than it would if the requirements defects [5] were

discovered during the requirements phase of a project [6], [7].

When writing or revising a set of requirements, or any

technical document, it is particularly challenging to make

1http : //www.standishgroup.com
2They studied 50,000 projects around the world, ranging from tiny enhance-

ments to massive systems re-engineering implementations.

sure that texts are easily readable and are unambiguous for

any domain actor. Experience shows that even with several

levels of proofreading and validation, most texts still contain a

large number of language errors (lexical, grammatical, style),

and also a lack of overall concordance, or redundancy and

inconsistency in the underlying meaning of requirements.

In particular, manually identifying redundant or inconsistent

requirements is an obviously time-consuming and costly task.

We tackle these problems in terms of similarity between

requirements since more than two similar requirements can

be classified as redundant or inconsistent requirements.

The problems of redundancy and inconsistency can be

handled according to different technologies. We focus on arti-

ficial intelligence approaches and more precisely classification

approaches. Automatic classification of requirements is widely

used in the literature using convolutional neural networks [8],

naives bayes classifier [9], text classification algorithms [10].

Data classification approaches could be data clustering through

algorithm such as k-means. This latter is studied in different

contexts due to its efficiency [11]. However, in requirements

engineering context, we could not find advanced works on the

redundancy and inconsistency issues using k-means algorithm.

The main contribution of this paper is the use of k-means

algorithm for a redundancy and inconsistency detection in a

new context, which is requirements engineering context. Also,

we introduce a preprocessing step based on Natural Language

Processing (NLP) techniques in order to assess the impact of

this latter to the k-means results. We use Part-Of-Speech (POS)

tagging and noun chunking to detect technical business terms

associated to the requirements documents that we analyze.

This paper is structured as follows: In Section II, we present

related works on the redundancy and inconsistency detection

through artificial intelligence approaches by focusing on the

k-means technique. In Section III, we present our clustering

approach. In Section IV, we explain the validation approach

used to evaluate the relevance of our results. In Section V,

we present the datasets used to evaluate our approach and

the results obtained by applying our clustering approach. In

Section VI, we discuss the associated results. In Section VII,

we conclude and give some future research directions.

Industrial requirements classification for redundancy
and inconsistency detection in SEMIOS

 :

II. RELATED WORKS

In this Section, we first present related works associated

to redundancy and inconsistency detection in specifications

documents or technical documents. Second, we give some

researches focusing on text preprocessing in requirements

engineering context. Finally, we focus on approaches using

k-means clustering in the latter context.

A. Redundancy and inconsistency detection

Researches on redundancy detection began by traditional

bag-of-words (BOW), TF-IDF frequency matrix, and n-gram

language modeling [12] [13]. Then, researchers like Juergens

et al. [14] use ConQAT to identity copy-and-paste reuses in

requirements specifications. Falessi et al. [15] detect similar

content using information retrieval methods such as Latent

Semantic Analysis. They compare NLP techniques on a given

dataset to correctly identify equivalent requirements. Rago

et al. [16] extend the work presented in [15] specifically

for use cases. Their tool, ReqAlign, combines several text

processing techniques such as a use case-aware classifier and

a customized algorithm for sequence alignment.

Inconsistency is analyzed in [17] by proposing the frame-

work of a patterns-based unsupervised requirements clustering

(based on k-means algorithm), called PBURC, which makes

use of machine-learning methods for requirements validation.

This approach aims to overcome data inconsistencies and

effectively determine appropriate requirements clusters for

optimal definition of software development sprints. Dermeval

et al., [18] present a survey about how using ontologies in

RE activities both in industry and academy, is beneficial,

especially for reducing ambiguity, inconsistency and incom-

pleteness of requirements.

Ambiguity is usually related to redundancy/inconsistency.

Recently, Sabriye et al., [19] are using POS tagging in order to

detect ambiguity in software requirements specification. Shah

et al., [20] present a survey of the currently available tools for

ambiguity resolution. According to this study, the presented

approaches are classified as automated and semi-automated

and they use NLP tools such as extracting requirements from

the document, tag the requirements sentence and find duplicate

requirements.

B. Preprocessing

Some researches introduce preprocessing steps in require-

ments analysis context. According to [21], the preprocessing

helps reducing the inconsistency of requirements specifications

by leveraging rich sentence features and latent co-occurrence

relations. It is applied through i) a Part-Of-Speech tagger [22],

ii) an entity tagging through a supervised training data, iii) a

temporal tagging through a rule-based temporal tagger and

iv) co-occurrence counts and regular expressions. This pre-

processing approach improved the performance of an existing

classification method.

Preprocessing data for redundancy detection is used in [23]

by performing standard NLP techniques such as removing En-

glish stop words and striping off the newsgroup related meta-

data (including noisy headers, footers and quotes). The Joint

Neural Network for redundancy detection approach in [23]

also uses normalized bag-of-words (BOW) as a preprocessing

approach. The normalized BOW generates a global uni-gram

based dictionary mapping. With the presence of the uni-gram

indexer, the authors could readily remove low frequency terms

and lengthy snippets.

C. k-means

k-means clustering is a popular type of unsupervised learn-

ing approach, which is used on unlabeled data (i.e., data with-

out defined categories or groups). The goal of this algorithm

is to cluster the data into k groups (k number of groups).

Classifying requirements is an important task in require-

ments engineering. Recently, some studies introduce k-means

in requirements classification tasks. Notably, [21] applies

different approaches such as i) topic modeling using Latent

Dirichlet Allocation (LDA) and Biterm Topic Model (BTM)

and ii) clustering using k-means, Hierarchical approach and

Hybrid (k-means and hierarchical) to classify requirements

into functional (FR) and non-functional requirements (NFR).

k-means algorithm shows its efficiency in this work.

III. CLUSTERING APPROACH

The main steps of our approach are shown in Figure 1.

Given an industrial specification, we extract first the require-

ment file containing only requirements to analyze using a

predefined function in SEMIOS software. Second, we apply

a pretreatment step in order to eliminate which we call noisy

requirements. Third, we use a POS tagging in order to extract

business terms. Last, we apply a k-means clustering algorithm.

We detail and explain these steps in the sections below.

A. Requirements quality analysis: SEMIOS

SEMIOS3 is a software for detecting errors in specifications

from the conception phase. The core semantic engine of this

tool is based on NLP techniques and works directly with RE

domains tools like IBM DOORS, IBM Doors Next Generation,

MS Word, MS excel, etc. It aims to control specifications qual-

ity and reduce management cost. The clustering approach that

we propose in this work will allow to overcome a shortcoming

in the current version of SEMIOS like possibility to analyze

requirements coming from different specifications. The result

of this work will be integrated as a new functionality.

B. Pretreatment

Redundancy has negative effects on document mainte-

nance, but it also eases readability, if relevant informa-

tion/requirements are repeated in the respective context.

In this section, we explain how we filter noisy requirements.

We consider some requirements as noisy when they are

written exactly in same words and found in different chapters.

According to our RE expert, these identical requirements are

in most cases non-redundant, therefore should be discarded.

Keeping all the specifications for analysis leads us to consider

3http://www.semiosapp.com/

Fig. 1. Clustering approach overview

all the requirements and may impact the clustering results.

That is the reason why we proceed to eliminate the obvious

false positive elements in the specifications before clustering.

As described in Figure 1, we use the software SEMIOS

to extract only requirements sentences from specifications

documents which contain normally many other elements than

requirements like table of contents, introduction, remarks,

conclusion, annexes, etc.

We explain the preprocessing step of creating a new re-

quirements file without identical requirements belonging to

the different chapter in the Algorithm 1. Let us assume

that a requirement file ReqFile = {Req1, ..., Req• ..., Reqn}
where • ∈ {1, n} and n is the number of requirements in

the ReqFile. Req• is defined with a unique ID and also a

path describing its position according to chapters information.

Req•.chapter() return a chapter information associated to

Req•.

The pretreatment is detailed as follows:

Algorithm 1 Create new requirements file

Require: i, j ≥ 0, ReqF ile, Req•.chapter(), RegF ile.length()
Ensure: NewReqFile

for i = 0 ; i < RegFile.length() ; i++ do

for j = i+ 1 ; j < RegFile.length()− 1 ; j++ do

if Reqi = ReqjandReqi.chapter() 6= Reqj .chapter()
then

NewReqFile← Reqi
end if

end for

end for

We remind that this algorithm do not aim to guarantee

uniqueness of the requirements, but remove identical require-

ments belonging to the different chapters. So, we may still

have the same requirements in the same chapters in the new

requirement file.

C. POS tagging

For the preprocessing step, we use the Part-Of-Speech

(POS) tagging and Noun chunking from SpaCy4 as a popular

tool in natural language processing field. SpaCy is a free open-

source library featuring state-of-the-art speed and accuracy and

a powerful Python API.

After applying this tagging approach, we proceed to detect

technical terms according to some combination of tags. Ac-

cording to our RE expert, technical business terms are often

expressed in open or hyphenated compound words (e.g. high

speed, safety-critical) and we observe that they are always

parts of a noun chunk5. For this paper, we first extracted all

noun chunks from our Corpus1, then observed the syntactic

patterns inside noun chunks referring to POStags, obtained by

SpaCy. The most used 13 combination patterns6 in business

terms are selected and validated in collaboration with our

RE expert: for example, noun-noun (e.g. runway overrun),

adjective-noun (e.g. normal mode), proper noun-noun (e.g.BSP

data), adjective-adjective-noun (e.g. amber visual indication),

noun-noun-noun (e.g. output voltage value).

Once the business terms are detected according to the

previous pattern, they will be integrated to the main document

as one word instead of several words. For example, ”runway

overrun” will be written in the new file as ”runway overrun”.

D. k-means algorithm

Principle: The k-means algorithm is used to partition a

given set of observations into a predefined amount of k

clusters. The algorithm as described by [24] starts with a

4https://spacy.io/
5A noun chunk is a noun plus the words describing the noun.
6We give here all patterns used in this work: noun-noun, adjective-noun,

proper noun-noun, adjective-adjective-noun, noun-noun-noun, number-noun,
proper noun-proper noun, proper noun-punctuation-proper noun, number-
proper noun, proper noun-proper noun-proper noun, proper noun-number-
noun, proper noun-noun-noun, adjective-noun-noun.

random set of k center-points (µ). During each update step, all

observations x are assigned to their nearest center-point (see

Equation 1). In the standard algorithm, only one assignment

to one center is possible. If multiple centers have the same

distance to the observation, a random one would be chosen.

S
(t)
i =

{

xp :
∥

∥xp − µ
(t)
i

∥

∥

2
≤

∥

∥xp − µ
(t)
j

∥

∥

2
∀j, 1 ≤ j ≤ k

}

(1)

Afterwards, the center-points are repositioned by calculating

the centroid of the assigned observations to the respective

center-points.

µ
(t+1)
i =

1

|S
(t)
i |

∑

xj∈S
(t)
i

xj (2)

The update process reoccurs until all observations remain

at the assigned center-points and therefore the center-points

would not be updated anymore.

This means that the k-means algorithm tries to optimize

the objective function 3. As there is only a finite number

of possible assignments for the amount of centroids and

observations available and each iteration has to result in better

solution, the algorithm always ends in a local minimum.

J =

N
∑

n=1

K
∑

k=1

rnk||xn − µk||
2 (3)

rnk =1 if xn ∈ Sk, 0 otherwise.

Example set: In order to illustrate the k-means algorithm,

we give an example of clustered requirements. Let’s assume

that we have a list of 11 requirements as follows :

1) If the estimated stopping distance is greater than the available
distance and the system is engaged, the system shall detect a
vehicle traveling with no throttle.

2) If a vehicle traveling with no throttle is detected and the system
is engaged, the system shall decelerate the vehicle.

3) Digital state : (switch conversion) states are calculated using
input voltage.

4) Digital state : (switch conversion) states are calculated for
frequency external inputs using input voltage.

5) Application data can be freely defined in remaining space by
the customer.

6) Application data can be freely defined by the customer.
7) Application data can be freely defined in the process document

by the customer.
8) The approval shall be stamped in conformance with 6.7.4, and

recorded.
9) The approval shall be marked in conformance with 6.7.4, and

recorded.
10) The system shall withstand acceleration up to 150m.s-2.
11) In climb-out phase, the system shall withstand an acceleration

up to 150m.s-2.

k-means algorithm will cluster this list into a set of k fixed

number of clusters. Let’s assume that k=5, the result of the

algorithm will be as follows:

• Cluster 1:

1) If the estimated stopping distance is greater than the
available distance and the system is engaged, the system
shall detect a vehicle traveling with no throttle.

2) If a vehicle traveling with no throttle is detected and the
system is engaged, the system shall decelerate the vehicle.

• Cluster 2:

1) Digital state : (switch conversion) states are calculated
using input voltage.

2) Digital state : (switch conversion) states are calculated
for frequency external inputs using input voltage.

• Cluster 3:

1) Application data can be freely defined in remaining space
by the customer.

2) Application data can be freely defined by the customer.
3) Application data can be freely defined in the process

document by the customer.

• Cluster 4:

1) The approval shall be stamped in conformance with 6.7.4,
and recorded.

2) The approval shall be marked in conformance with 6.7.4,
and recorded

• Cluster 5:

1) The system shall withstand acceleration up to 150m.s-2
2) In climb-out phase, the system shall withstand an accel-

eration up to 150m.s-2

The algorithm cluster the requirements according to

their similarities. So, each cluster contains the most similar

requirements. A cluster may contain one or more requirements

depending on the dataset. We have shown in this example

only the case of 2 requirements per cluster.

Challenges of k-means algorithm: k-means algorithm is a

very popular approach due to its efficiency. However, it needs

a predefined value of K as an input, which is the main issue

about using this algorithm. Some researchers focus on this

issue and present solutions based on the graphical (e.g. elbow

approach7, silhouette8 and Inertia9) or numerical value (e.g.

statistic gap [25]). We use in this paper the following solutions

to calculate the value of k:

• Inertia: calculated as the sum of squared distance for

each point to its closest centroid, i.e., its assigned cluster.

It can be recognized as a measure of how internally

coherent clusters are. The k-means algorithm aims to

choose centroids that minimize the inertia.

• Statistic gap: calculates a goodness of clustering measure.

The statistic gap standardizes the graph of log(W k),
where W k is the within-cluster dispersion, by comparing

it to its expectation under an appropriate null reference

distribution of the data [25].

IV. VALIDATION APPROACH

Since we use an unsupervised clustering approach, we do

not have any ground truth about the redundancy and/or the

inconsistency of the requirements. So, we give the results

related to the best value of k to our RE expert in order that

the expert evaluates the relevance of the generated clusters. A

cluster may contain one or more requirement(s).

7https : //en.wikipedia.org/wiki/Elbow method (clustering)
8https : //en.wikipedia.org/wiki/Silhouette (clustering)
9http : //scikit− learn.org/stable/modules/clustering.html

For a given k value, the validation is done according to two

methods:

• ”Strict” validation (SV): we assume that a relevant cluster

contains 100% correct requirements (fully redundant or

incoherent requirements), which means that we discard

clusters with partially relevant requirements. Also, we

consider only clusters with more than one requirement.

For example, let’s assume that we have cluster1 with

4 requirements, Cluster1={requirement1, requirement2,

requirement3, requirement4}. Cluster1 is considered

relevant only if all the 4 requirements are redun-

dant/incoherent. Otherwise, it is considered as non rel-

evant.

• ”Average” validation (AV): we calculate the average of

relevant requirements per cluster.

AVk =

∑k

i=1 precision(ci)

k′
(4)

where AVk is the average validation for a given value of

k. k is the number of clusters. k’ is the number of clusters

which their number of requirements is >1. The precision

a cluster ci is defined as:

precision(ci) =
NumberOfRelevantRequirements

TotalNumberOfRequirements
(5)

The NumberOfRelevantRequirements is the sum of all

relevant (redundant) requirements within a cluster ci.

For example, let’s assume that we have cluster with

4 requirements Cluster1={requirement1, requirement2,

requirement3, requirement4} and only requirement1 and

requirement2 are redundant/incoherent and the other two

requirements are not redundant/incoherent. Then this

cluster is 50% relevant.

V. EXPERIMENTATION RESULTS

In this section, we present in Section V-A the datasets

used in the experiment. In Section V-B we explain how to

determinate the best k value used in our clustering approach.

In Section V-C we present the result of our approach.

A. Datasets

In order to test our approach, we extracted list of re-

quirements from 2 industrial specifications. For confidentiality

issues, we are not allowed to reveal the identity of the

companies. The main features considered to validate our

datasets are: 1) texts following various kinds of business

style and format guidelines imposed by companies, 2) texts

coming from various industrial areas: aeronautic, automobile,

spatial. Theses datasets enable us to analyze different types

of redundancy and inconsistency in terms of frequency and

context. We present characteristics of these datasets (written

in English) as follows:

• Corpus1: dataset that contains ∼360 pages and ∼913

requirements with no a priori information of redundancy

and inconsistency,

• Corpus2: dataset that contains ∼111 pages and ∼326

requirements with no a priori information of redundancy

and inconsistency.

These datasets generally have a low rate of redundancy

and inconsistency according to RE expert. However, detecting

this problem is very significant in this case of industrial

requirements.

B. Determining the best number of K

From the datasets already detailed in Section V-A, we

extract a new requirement file for each dataset by applying

the algorithm explained in Section III-B and then the POS

tagging explained in Section III-C.

The new number of requirements of each new requirement

file are mentioned in Table I. For Corpus1, we will analyze

902 requirements (instead of 913) and for Corpus2, we will

analyze 280 requirements (instead of 326). The pretreatment

steps deduces the size of the datasets but they still significantly

important compared to the rate of redundancy/inconsistency a

priori existent.

We apply then k-means algorithm on each new requirement

file using the Euclidean distance as similarity metric since we

had best results comparing to other similarity metrics such as

TF-IDF, JACCARD, Correlation and Dice according to our

expert.

We determinate in this Section the best number of K by

calculating the inertia (the clusters errors) of new requirement

file of Corpus1 and Corpus 2 in Figure 2 and Figure 3

respectively. Since the inertia is reflecting the clusters errors,

we should choose the minimum value to determine the value

of k.

Fig. 2. Inertia curve for Corpus1 dataset

According to Figure 2 and Figure 3, determining visually

the number of k cannot always be unambiguously identified.

In order to leverage this ambiguity, we choose to apply the

statistic gap approach which allows to obtain a numerical value

reflecting the coherence of the clusters. We apply the statistic

gap to our datasets and the best number of k for Corpus1 is

38 and for Corpus2 is 42. These values are coherent according

to the two previous figures, since the curves become almost

stable starting from these values.

Fig. 3. Inertia curve for Corpus2 dataset

C. Classification results of our approach

We apply the k-means algorithm on files already prepro-

cessed and POS tagged. Table I shows the new number

of requirements after applying the pretreatment step, and

summarizes the different results obtained on Corpus1 and

Corpus2 datasets. In Table I, we present different best values

of k according to the static gap previously detailed and also

a new value related to a percentage of errors. This latter aims

to fix a value according to the ”usual” percentage of errors in

requirements files and it is provided by our RE expert. In our

case, the RE expert estimates this value about 20%.

We note that in Corpus1, among 721 clusters, only 115

clusters contain more than one requirement. In Corpus2,

among 224 clusters, only 25 clusters contain more than one

requirement. As explained before, the clusters with only one

requirement are discarded from the validation calculation

process.

According to the best value of k, we can clearly see that

the statistic gap is not appropriate to Corpus1 and Corpus2

since we did not had many relevant clusters. However, the

best k value based on RE expert, provides much better results

in both SV and AV. In these industrial documents, the statistic

gap is not appropriate to the domain and can not be used

in large corpus. Redundancy and inconsistency are detected

in Corpus1 and Corpus2 with a better relevancy for k value

based on RE expert. So, a better number of relevant clusters

is found compared to the statistic gap.

VI. DISCUSSION

The k-means results are given to our RE expert to judge the

best value of k from his/her own domain-based expertise. We

found a difference between the generated k value (according

to the statistic gap) and the best value according to our

expert. After several experiments, it seems that the statistic

gap generates in most cases very low number of k value

independently of the corpus size. For example, in Corpus 1,

when we analyze clusters of k=38, value obtained by the

statistic gap, among 38 clusters, 24 clusters contain more

than 10 requirements in a cluster and there was also found

clusters containing more than 100 requirements. Our RE expert

observes that almost of them do not show the similarity

between them.

Otherwise, the decision based on the errors rate (20%) as

best k value shows significantly improved results. We also

experimented on Corpus1 and Corpus2 varying potential errors

rate from 15% to 30%. The best SV and AV obtained are only

49.72% and 52%, respectively.

VII. CONCLUSION

In this paper, we proposed an automatic approach for redun-

dancy and inconsistency detection in requirements engineering

context that will be integrated to SEMIOS software. This

approach is based on an artificial intelligence technique and

more precisely unsupervised machine learning algorithm, k-

means. This approach is tested on real industrial datasets with

different characteristics of redundancy and/or inconsistency.

Also, we introduced the preprocessing step based on the NLP

techniques in order to see the impact of this latter to the k-

means results. We used Part-Of-Speech (POS) tagging and

noun chunking in order to detect technical business terms

associated to the requirements documents that we analyze.

k-means algorithm is tested according to the best k value

generated by the statistic gap method and also by a value

defined by our RE expert. The statistic gap did not provide

relevant results and it is not appropriate to our two corpus.

According to the best k value provided by our expert, k-means

provides very relevant results by generating only clusters (with

more than one requirement) with relevant information.

Our approach is applicable to every textual requirements.

So, this work is domain-independent and may be applied to

every type of requirements written in Natural Language and

without any a priori knowledge.

Our experiments on the clustering approach applied in this

work show encouraging results as a first step for detecting re-

dundancy and inconsistency, and some directions for the future

works. First, we plan to investigate on how to automatically

obtain the optimal value of k for specifications documents.

In parallel, we will evaluate more diverse corpus and analyze

clustering results applying the best value of k based on the

errors rate. It will allow us to confirm the accuracy of applying

20% as usual errors rate. Second, our expert only evaluated the

content of the proposed clusters. We plan to evaluate whether

the requirements placed by k-means in different clusters are

really redundant/inconsistent. Third, in order to improve the

clustering results, we will introduce semantic approach on

lexical level using Word2Vec, for example. Last, even with

high quality results for Corpus1 and Corpus2, we are not

able yet to differentiate redundancy or inconsistency in very

similar clusters. To overcome this shortcoming, we plan to

apply another clustering approach on similar clusters. This new

clustering will be based on semantic features.

ACKNOWLEDGEMENTS

This work is financially supported by the Occitanie re-

gion of France in the framework of CLE (Contrat de

recherche Laboratoires-Entreprises)-ELENAA (des Exigences

TABLE I
RESULTS: NEW NB. OF REQUIREMENTS, BEST VALUE OF K, VALIDATION RESULTS AND THE ASSOCIATED NUMBER OF RELEVANT CLUSTERS FOR EACH

DATASET

Dataset New nb. of req. Best value of K SV (Nb. of relevant clusters) AV (Nb. of relevant clusters)
Based on statistic gap Based on RE expert

Corpus1 902
38 – 11.11% (4) 26.17% (31)
– 721 48.69% (56) 51.31% (64)

Corpus2 280
42 – 8.33% (2) 19.54% (11)
– 224 76% (19) 76% (19)

en LanguEs Naturelles à leurs Analyses Automatiques)

project. We would like to thank Audrey Speronel from

Prometil for her contribution to generate adapted files from

Semios software.

REFERENCES

[1] K. J. Elizabeth Hull and J. Dick, Requirements Engineering. Springer-
Verlag London, 2011.

[2] E. K. Daniel M. Berry and M. M. Krieger, From Contract Drafting to

Software Specification: Linguistic Sources of Ambiguity, 2003.

[3] D. Galin, Software Quality Assurance: From Theory to Implementation,
2003.

[4] P. Bourque, Guide to the Software Engineering Body of Knowledge

(SWEBOK Guide, 2004.

[5] A. A. Alshazly, A. M. Elfatatry, and M. S. Abougabal, “Detecting
defects in software requirements specification,” Alexandria Engineering

Journal, vol. 53, no. 3, pp. 513 – 527, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1110016814000568

[6] R. L. Glas, Facts and Fallacies of Software Engineering. Addison-
Wesley Professional, 2002.

[7] B. D. B. H. R. L. Jonette M. Stecklein, Jim Dabney and G. Moroney,
“Error cost escalation through the project life cycle,” in Proceedings of

the 14th Annual International Symposium, Toulouse, France, 2004.

[8] J. Winkler and A. Vogelsang, “Automatic classification of requirements
based on convolutional neural networks,” in 2016 IEEE 24th Interna-

tional Requirements Engineering Conference Workshops (REW), Sept
2016, pp. 39–45.

[9] E. Knauss, D. Damian, G. Poo-Caamao, and J. Cleland-Huang, “De-
tecting and classifying patterns of requirements clarifications,” in 2012

20th IEEE International Requirements Engineering Conference (RE),
Sept 2012, pp. 251–260.

[10] D. Ott, Automatic Requirement Categorization of Large Natural

Language Specifications at Mercedes-Benz for Review Improvements.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 50–64.
[Online]. Available: https://doi.org/10.1007/978-3-642-37422-7 4

[11] A. K. Jain, “Data clustering: 50 years beyond k-means,”
Pattern Recognition Letters, vol. 31, no. 8, pp. 651 –
666, 2010, award winning papers from the 19th International
Conference on Pattern Recognition (ICPR). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865509002323

[12] J. Allan, V. Lavrenko, D. Malin, and R. Swan, “Detections, bounds,
and timelines: Umass and tdt-3,” in Proceedings of Topic Detection and

Tracking Workshop (TDT-3). Vienna, VA, 2000, pp. 167–174.

[13] P. F. Brown, P. V. deSouza, R. L. Mercer, T. J. Watson, V. J. D.
Pietra, and J. C. Lai, “Class-based n-gram models of natural language,”
Computational Linguistics, vol. 18, no. 4, pp. 467–480, 1992. [Online].
Available: http://www.aclweb.org/anthology/J92-4003

[14] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz,
S. Wagner, C. Domann, and J. Streit, “Can clone detection support
quality assessments of requirements specifications?” in Proceedings of

the 32Nd ACM/IEEE International Conference on Software Engineering

- Volume 2, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 79–
88. [Online]. Available: http://doi.acm.org/10.1145/1810295.1810308

[15] D. Falessi, G. Cantone, and G. Canfora, “Empirical principles
and an industrial case study in retrieving equivalent requirements
via natural language processing techniques,” IEEE Trans. Softw.

Eng., vol. 39, no. 1, pp. 18–44, Jan. 2013. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2011.122

[16] A. Rago, C. Marcos, and J. A. Diaz-Pace, “Identifying duplicate
functionality in textual use cases by aligning semantic actions,”
Software & Systems Modeling, vol. 15, no. 2, pp. 579–603, May 2016.
[Online]. Available: https://doi.org/10.1007/s10270-014-0431-3

[17] P. Belsis, A. Koutoumanos, and C. Sgouropoulou, “Pburc: a
patterns-based, unsupervised requirements clustering framework for
distributed agile software development,” Requirements Engineering,
vol. 19, no. 2, pp. 213–225, Jun 2014. [Online]. Available:
https://doi.org/10.1007/s00766-013-0172-9

[18] D. Dermeval, J. Vilela, I. I. Bittencourt, J. Castro, S. Isotani,
P. Brito, and A. Silva, “Applications of ontologies in requirements
engineering: a systematic review of the literature,” Requirements

Engineering, vol. 21, no. 4, pp. 405–437, Nov 2016. [Online].
Available: https://doi.org/10.1007/s00766-015-0222-6

[19] A. O. J. Sabriye and W. M. N. W. Zainon, “A framework for detecting
ambiguity in software requirement specification,” in 2017 8th Interna-

tional Conference on Information Technology (ICIT), May 2017, pp.
209–213.

[20] U. S. Shah and D. C. Jinwala, “Resolving ambiguities in natural
language software requirements: A comprehensive survey,” SIGSOFT

Softw. Eng. Notes, vol. 40, no. 5, pp. 1–7, Sep. 2015. [Online].
Available: http://doi.acm.org/10.1145/2815021.2815032

[21] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K. Schneider,
“What works better? a study of classifying requirements,” in 2017 IEEE

25th International Requirements Engineering Conference (RE), Sept
2017, pp. 496–501.

[22] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,”
in Proceedings of the 41st Annual Meeting on Association for

Computational Linguistics - Volume 1, ser. ACL ’03. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2003, pp. 423–430.
[Online]. Available: https://doi.org/10.3115/1075096.1075150

[23] X. Fu, E. Ch’ng, U. Aickelin, and S. See, “Crnn: A joint neural network
for redundancy detection,” in 2017 IEEE International Conference on

Smart Computing (SMARTCOMP), May 2017, pp. 1–8.
[24] J. MacQueen, “Some methods for classification and analysis of mul-

tivariate observations,” in Proceedings of the 5th Berkeley Symposium

on Mathematical Statistics and Probability - Vol. 1, L. M. Le Cam and
J. Neyman, Eds. University of California Press, Berkeley, CA, USA,
1967, pp. 281–297.

[25] M. Mohajer, K.-H. Englmeier, and V. J. Schmid, “A comparison of gap
statistic definitions with and without logarithm function,” 2010. [Online].
Available: http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-
epub-11920-3

