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Abstract—Multifractal analysis is a reference tool for the
analysis of data based on local regularity, which has been proven
useful in an increasing number of applications. However, in its
current formulation, it remains a fundamentally univariate tool,
while being confronted with multivariate data in an increasing
number of applications. Recent contributions have explored a
first multivariate theoretical grounding for multifractal analysis
and shown that it can be effective in capturing and quantifying
transient higher-order dependence beyond correlation. Building
on these first fundamental contributions, this work proposes and
studies the use of a quadratic model for the joint multifractal
spectrum of bivariate time series. We obtain expressions for
the Pearson correlation in terms of the random walk and a
multifractal cascade dependence parameters under this model,
provide complete expressions for the multifractal parameters
and propose a transformation of these parameters into natural
coordinates that allows to effectively summarize the information
they convey. Finally, we propose estimators for these parame-
ters and assess their statistical performance through numerical
simulations. The results indicate that the bivariate multifractal
parameter estimates are accurate and effective in quantifying
non-linear, higher-order dependencies between time series.

I. INTRODUCTION

Context: Multifractal analysis. Multifractal analysis is a

signal processing tool that provides a robust characterization

of data in terms of pointwise regularity properties [1], [2]. It

does so through an upper-bound L for the so-called multi-

fractal spectrum, which quantifies geometrically the pointwise

regularity fluctuations of data. Such fluctuations produce, on

average, scale-free dynamics, and are thus efficiently mod-

eled and analyzed through the paradigm of scale-invariance.

Multifractal analysis has led to significant successes in many

real-world applications in very different contexts [3]–[8], and

is nowadays established as a versatile and standard signal

processing tool. However, it remains essentially univariate,

which constitutes a major limitation in view of the increasing

number of applications involving multivariate data in many

domains. Indeed, multifractal analysis is currently conducted

independently for each component in such cases, hence not

accounting for the joint information and cross-dependencies in

the data. Surprisingly, attempts to extend it to a multivariate

setting remain scarce (see, e.g., [9], [10] for notable exceptions

in specific applicative contexts).

Related works. State-of-the-art tools for multifractal analysis

rely on the use of wavelet leaders, defined through a nonlinear

transformation of wavelet coefficients (see Section II-B, and

also [11] for a discussion and references on alternative for-

malisms). Very recently, the first cornerstone for a theoretical

foundation of multivariate multifractal analysis was laid in [12]

(see also [9] for the first historical work on the topic, in the

context of turbulence). Moreover, in the recent contribution

[13] a bivariate multifractal random process was defined and

studied, following earlier work in [14]. Further, [13] defined a

bivariate wavelet leader multifractal formalism and studied it

numerically, yielding first intuitions on what type of informa-

tion is actually captured by the bivariate multifractal spectrum

and showing that multifractal features can effectively capture

transient, local dependencies that cannot be accounted for by

the Pearson correlation coefficient.

Goals, contributions and outline. The present contribution

aims to build on, complement and go beyond [13] in several

ways. First, in Section II-C the analysis of [13] of the bivariate

multifractal spectrum is refined, a quadratic (i.e., second order)

model for the bivariate multifractal spectrum is proposed,

and the exact expression for L under this model is obtained.

Second, in Section II-D, a parametrization of L in natural

coordinates is derived, effectively capturing the leading-order

information contained in the multifractal spectrum in a small

number of easily interpretable quantities. Third, Section III-C

derives an expression for the Pearson correlation coefficient

of the model introduced in [13], [14], which complements

the analysis in [13] and provides a natural expansion of the

joint dependence structure of the quadratic multifractal model

in an (additive) self-similar random walk correlation and a

(multiplicative) multifractal correlation. Finally, Section IV

studies the performance of the estimators proposed for all

parameters of the model through Monte Carlo simulations

using synthetic multifractal data.

II. BIVARIATE MULTIFRACTAL ANALYSIS

A. Multifractal spectrum

The goal of multifractal analysis is the quantification of the

fluctuations along time of the regularity of a signal or function

X(t) at position t ∈ R, see, e.g., [1]. Pointwise regularity is

usually measured using the Hölder exponent, h(t) ≥ 0, as

follows: X is said to be in Cα(t), α ≥ 0, if there exist a

polynomial Pt with deg(Pt) < α and a constant C > 0 such

that

|X(t+ a)− Pt(t+ a)| ≤ C|a|α, |a| → 0, (1)

h(t) is defined as the largest α such that (1) is satisfied,

h(t) ! sup{α : X ∈ Cα(t)} ≥ 0. (2)



The closer h(t) to 0, the more irregular X is around t.
Let h(t) ! (h1(t), h2(t)) denote the Hölder exponents of

the components of the bivariate signal X = (X1, X2). The

bivariate multifractal spectrum D(h1, h2) of X is defined as

the collection of Hausdorff dimensions dimH of the sets of

points t ∈ R at which (h1(t), h2(t)) takes on the values h =
(h1, h2) [9], [12],

D(h1, h2) ! dimH

{

t : (h1(t), h2(t)) = (h1, h2)
}

. (3)

It provides a global, geometrical description of the pointwise

regularity properties of the components of X . Its precise shape

and width, and its orientation with respect to the h1, h2 axes,

quantify information regarding the joint local fluctuation and

dependence of the regularity of the components of X .

B. Wavelet leader bivariate multifractal formalism

The estimation of the multifractal spectrum (3) cannot be

based on its formal definition but requires taking recourse to

formulas that are numerically robust for discrete data, the so-

called multifractal formalisms. The state-of-the-art multifractal

formalism is constructed from the multiscale statistics of

wavelet leaders [1], [2], has been first developed for multivari-

ate data in [12], [13] and is briefly recalled in the following

paragraphs.

Let ψ denote the mother wavelet, an oscillating reference

pattern that is characterized by its number of vanishing mo-

ments Nψ , a positive integer defined as ψ ∈ CNψ−1 and

∀n = 0, . . . , Nψ − 1,
∫

R
tkψ(t)dt ≡ 0 and

∫

R
tNψψ(t)dt (= 0

and that is designed such that the collection {ψj,k(t) =
2−j/2ψ(2−jt − k)}(j,k)∈Z2 of its dilated and translated tem-

plates forms an orthonormal basis of L2(R) [15]. The discrete

wavelet transform coefficients dX(j, k) of X are defined as

dX(j, k) = 2−j/2〈ψj,k|X〉, where we have adhered to a L1

normalization. Then, the wavelet leaders of X are defined

as ℓX(j, k) ! supλ′⊂3λj,k
|dX(λ′)|, where λj,k = [k2j , (k +

1)2j) denotes the dyadic interval of size 2j and 3λj,k stands

for the union of λj,k with its 2 neighbors [1], [2]. It can be

shown that wavelet leaders reproduce Hölder exponents in the

limit of fine scales, LX(j, k) ∼ C2jh(t) as 2j → 0 for t = 2jk.

Consequently,

1

nj

nj
∑

k=1

LX1
(j, k)q1LX2

(j, k)q2 ∼ cq2
jζ(q1,q2), 2j → 0. (4)

Most importantly, the so-called scaling exponents ζ(q) in (4)

are tightly related to D(h) via their Legendre transform, the

bivariate Legendre spectrum

L(h) = inf
q

(1 + 〈q,h〉 − ζ(q)), (5)

which provides an estimate for D(h) for large classes of

processes, see [12].

C. Cumulant expansion of the bivariate Legendre spectrum

Using the arguments developed in [16], one can shown

that for a large number of commonly used classes of mul-

tifractal processes with scaling exponents ζ(q), the cumulants

Cp1p2
(j) of the 2-variable vector of logarithm of leaders

(lnLX1
(j, k), lnLX2

(j, k)) at scale 2j take the form [13]

Cp1p2
(j) = c0p1p2

+ j cp1p2
ln 2, p1 + p2 ≥ 1 (6)

and the coefficients cp1p2
are related to the ζ(q1, q2) as

ζ(q1, q2) =
∑

p1,p2≥0: p1+p2≥1

cp1p2
qp1

1 qp2

2 /(p1! p2!). (7)

Further, from (6), estimators for cp1p2
can be defined as linear

regressions of sample cumulants Ĉp1p2
(j):

ĉp1p2
!

j2
∑

j=j1

wjĈp1p2
(j)/ ln 2, (8)

over a range of scales j ∈ (j1, j2), where wj are linear

regression weights.

By truncating the sum in (7) to the leading order terms

p1, p2 ≥ 0 : 1 ≤ p1 + p2 ≤ 2, we can gain insight into

the information provided by the shape of the bivariate spectra

L(h). The quadratic approximation ζ(q1, q2) ≈ c10q1+c01q2+
c20
2 q21 +

c02
2 q2 + c11q1q2 yields the expression

L(h1, h2) ≈ 1 +
c02b

2

(

h1 − c10
b

)2

+
c20b

2

(

h2 − c01
b

)2

− c11b

(

h1 − c10
b

)(

h2 − c01
b

)

, (9)

where b ! c20c02 − c211 ≥ 0, showing that

- the position of the maximum of the bivariate spectrum is

given by hm = (c10, c01)
- c20 and c02 quantify the widths of the fluctuations inde-

pendently for each component and

- c11 yields a leading order joint characterization of the

regularity fluctuations of both components. As an extreme

case, when c11 = 0, L(h) = 1 + c20
2

(

h1−c10
c20

)2

+

c02
2

(

h2−c01
c02

)2

(i.e., it equals the sum of the univariate

spectra up to a constant) and the regularity fluctuations of

the components are independent (in consistency with the

generic properties of multivariate L(h) proven in [12]).

D. Bivariate multifractal parameters in natural coordinates

Inspection of the expression (9) leads to conclude that the

level sets and the support of L(h) are rotated and translated

ellipses in the (h1, h2) plane. Therefore, the natural parame-

ters for L(h) are given by its center hm, and by the rotation

angle θ and the major and minor half-axes α1 and α2 of

its support. Expressions for these quantities are obtained by

straight-forward but tedious calculations, and are given by

θ =
1

2
arctan

( 2c11
c20 − c02

)

, (10)

α1 = 2

√

c20c02 − c211
−
√

(c02 − c20)2 + 4c211 − c02 − c20
, (11)

α2 = 2

√

c20c02 − c211
+
√

(c02 − c20)2 + 4c211 − c02 − c20
, (12)



respectively. From these expressions, it can be seen that the

linear eccentricity of the support

ǫ !
√
α1 − α2 =

1

2

(√
γ − c02 − c20 −

√−γ − c02 − c20
)

,

(13)

where γ !
√

(c02 − c20)2 + 4c211, increases with |c11|, as

expected. Moreover, in the special case c02 = c20 (i.e.,

marginal spectra of equal width), θ = ±45◦, and α1,2 =
2
√

−c20 ± |c11|; in other words, the spectrum remarkably flips

between diagonal and anti-diagonal orientation as c11 changes

sign. Finally, estimators θ̂, α̂1, α̂2 and ǫ̂ can be readily defined

by replacing cp1p2
with estimates (8) in (10-12).

III. BIVARIATE MULTIFRACTAL MODEL PROCESS

A. Definition of bivariate multifractal random walk

Multifractal random walks (MRW) were originally proposed

as realistic models for multifractal data [17]. Their construc-

tion is based on the increments of fractional Brownian motion

(fBm), the reference Gaussian self-similar process [18], whose

variance is modulated using an independent process whose

properties mimic those of Mandelbrot cascades, and hence

impart their multifractality to the MRW [4], [17]. Building

on the unpublished work [14], a bivariate extension of MRW

was proposed in [13], which we denoted bMRW and briefly

summarize next.

The construction of bMRW requires two pairs of stochastic

processes: First, a pair of increments of fBm,
(

G1(t), G2(t)
)

,

which is determined by two self-similarity parameters, H1 and

H2, and a point covariance Σss. Its correlation coefficient is

hereafter referred to as ρss. These processes can be constructed

as a specific case of the operator fractional Brownian motion

framework developed in [19]. Second, a pair of Gaussian

processes
(

ω1(t),ω2(t)
)

with prescribed covariance function

Σmf , with entries given by

{Σmf}ij(k, l) = ρmf (i, j)λiλj log

(

T

|k − l|+ 1

)

, i = 1, 2

(14)

for |k − l| ≤ T − 1 and 0 otherwise, where T is an arbitrary

integral scale. To simplify notations, we consider ρmf (1, 1) =
ρmf (2, 2) = 1, and ρmf (1, 2) = ρmf . Both pairs of processes

are numerically synthesized as described in [20].

Finally, each component i = 1, 2 of bMRW is defined as

Xi(t) =

t
∑

k=1

Gi(k)e
ωi(k). (15)

B. Multifractal properties

As detailed in [13], following [14], [17], the bivariate

scaling exponents of bMRW are conjectured to take the form

(7), with and c10 = H1+λ2
1/2, c01 = H2+λ2

2/2, c20 = −λ2
1,

c02 = −λ2
2, and c11 = −ρmfλ1λ2. Moreover, cp1p2

≡ 0,

∀(p1, p2) such that p1 + p2 ≥ 3; therefore, the second order

approximation developed in Section II-C (in particular, (9)) is

exact for bMRW.
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Fig. 1. Log-scale diagram Ĉ11(j) and estimation performance for c11

(from left to right).

C. Correlation and dependence

The dependence between the components of bMRW is

clearly controlled by the correlation parameters ρss and ρmf

of the self-similar random walk and multifractal cascade com-

ponents entering its construction, respectively; we therefore

identify here expressions for these parameters involving quan-

tities that can be readily measured from data. An estimator for

ρmf can be defined as [13]

ρ̂mf ! −ĉ11/
√

|ĉ20ĉ02|. (16)

To identify the parameter ρss, we first derive the expression

for the Pearson correlation ρbMRW of the increments of the

components of bMRW. The increments are, for each k, the

product of mutually independent Gaussian and log-normal

random variables, see (15); using elementary expressions for

the product, expectation and variance of log-normal random

variables, we therefore have

E[∆Xi(k)] = E[Gi(k)] · E[e
ωi(k)] = 0

Var[∆Xi(k)] = σ2
i (e

λ2

i log(T ) − 1)eλ
2

i log(T )

+ σ2
i e

λ2

i log(T ) = σ2
i e

2λ2

i log(T )

E[∆X1(k)∆X2(k)] = E[G1(k)G2(k)] · E[e
ω1(k)+ω2(k)]

= ρssσ1σ2e
1

2
(λ2

1
+λ2

2
+2ρmfλ1λ2) log(T ),

and thus

ρbMRW =
E[∆X1(k)∆X2(k)]− E[∆X1(k)]E[∆X2(k)]

√

Var[∆X1(k)]Var[∆X2(k)]

=
ρssσ1σ2e

1

2
(λ2

1
+λ2

2
+2ρmfλ1λ2) log(T )

σ1σ2e(λ
2

1
+λ2

2
) log(T )

= ρsse

(

ρmfλ1λ2−
1

2
(λ2

1
+λ2

2
)
)

log(T ). (17)

Consequently, ρbMRW = ρss·f(ρmf ,λ1,λ2) takes the form of

a product of the correlation coefficient ρss of the random walk

components Gi(k) and a nonlinear function in the parameters

of the multifractal components eωi(k). Notably, this implies

that the Pearson correlation coefficient can equal zero (in case

ρss = 0) even when the data are actually highly dependent

(ρmf (= 0). Thus, the bivariate multifractal spectrum can be

seen as capturing transient local dependencies beyond second

order correlations, see [13] and Section IV.

Further, in view of the model described in Section III,

the parameters ρss and ρmf constitute natural expansion
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Fig. 2. Model and estimation for dependence parameters. Pearson
correlation coefficient ρbMRW (top left), self-similar random walk correlation
ρss (top right), and multifractal correlation ρmf (bottom row), for several ρss.

coefficients for the joint dependence of X . Upon substitution

of c11 = −ρmfλ1λ2, c20 = −λ2
1, c02 = −λ2

2, we can define

a natural estimator for ρss as

ρ̂ss ! ρ̂bMRW e

(

ĉ11−
1

2
(ĉ20+ĉ02)

)

log(T ). (18)

IV. ESTIMATION PERFORMANCE ASSESSMENT

A. Monte Carlo simulations and parameter setting

Estimation performance is analyzed through Monte Carlo

simulations over 100 independent copies of bMRW of sample

size n = 218. The parameters of the process are set to

(H1, H2) = (0.65, 0.75), (λ1,λ2) = (
√
0.03,

√
0.06), and

several values for ρss and ρmf are considered. The integral

scale in (14) is set to T = n. Wavelet analysis is conducted

with a Daubechies least asymmetric wavelet, with Nψ = 3.

B. Bivariate multifractality parameter c11

The estimation performance for univariate parameters c10,

c01, c20, and c02 remains unaltered in the multivariate setting,

and has been documented elsewhere (see, e.g., [2]). Here we

focus on the multivariate parameter c11. Fig. 1 (left) shows

that estimates of the quantities C11(j) behave as a clean,

linear function of octaves j as postulated by (6), allowing

the estimation of parameter ĉ11 by linear regression. Further,

Fig. 1 (right) clearly indicates the excellent performance of

the estimates ĉ11 for all values of ρmf , with negligible bias

and variance independent of ρmf .

C. Correlation and dependence

Figure 1 (top left) shows that the Pearson correlation

ρbMRW is a nonlinear function of the multifractal correlation

ρmf and tightly follows the predicted values (17). Moreover,

and notably, ρbMRW = 0 when ρss even if ρmf (= 0,

illustrating that ρmf measures a type of dependence to which

the second-order Pearson correlation is totally blind. Further,
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Fig. 3. Model and estimation for natural bivariate multifractal param-

eters. Semi-axes α1 (top left) and α2 (top right), eccentricity ǫ (bottom left)
and orientation θ (bottom right).

Fig. 2 (top right) shows that estimates ρ̂ss remain constant

with ρmf , and precisely recover the true values, with negligible

bias. Interestingly, the variances of ρ̂ss and ρ̂bMRW decrease

with increasing ρmf and decreasing ρss; a precise modeling

of this phenomenon is left for future work. Finally, Fig. 2

(bottom row) shows estimation performance of ρ̂mf , already

reported in [13]. Here, the performance is moreover shown to

be independent of ρss; further, the results indicate that it is

largely unaffected by the true value of ρmf .

D. Second order multifractal analysis in natural coordinates

Fig. 3 illustrates the estimation performance for the natural

parameters θ, α1,2 and ǫ, defined in (10-13), for the quadratic

bivariate multifractal model. It shows that the estimates for θ,

α1,2 and ǫ overall closely reproduce the theoretical values.

In particular, estimates for the rotation angle θ (i.e., the

orientation of the multifractal spectra in the (h1, h2) plane)

are found to be highly accurate. The estimates for both the

minor and major half-axes, α1, α2 are affected by a slight but

systematic negative bias, for all ρmf . However, this bias has

no negative effect on the estimates for the linear eccentricity

ǫ, which are very satisfactory. Similar results are obtained for

other values of ρss and not shown for space reasons (here,

ρss). Overall, this leads to conclude that while the scale of

the quadratic multifractal model is slightly underestimated,

estimates for its shape and orientation are highly accurate.

This is further investigated in Fig. 4, which illustrates the

level sets of the Legendre spectrum L (middle row) and its

estimate L̂ (bottom row), for ρss = 0 and several values

of ρmf , together with the major and minor half axes of the

second order model (blue dashed lines) and their estimates

(red lines). The results reveal an excellent agreement between

the estimates and their true values in all cases. Moreover, they

indicate that, despite the slight negative bias of α̂1 and α̂2,

these natural parameters of the second order model provide on
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average more accurate estimates of the size of the support of

the multifractal spectrum (hence, the domain of joint regularity

fluctuations) than the unconstrained Legendre spectra L, which

are further shrank as compared to theory.

It is worth pointing out that for all the examples considered

in Fig. 4 (top row), ρss = 0. Thus, ρbMRW = 0 and Pearson

correlation is unable to distinguish those time series. However,

their multifractal spectra L clearly capture a form of higher-

order statistical dependence beyond Pearson correlation, and

fully characterize these processes (see also [13]). This infor-

mation is conveniently summarized in the natural parameters

θ and α1,2, which characterize the orientation and strength of

joint regularity fluctuations.

V. CONCLUSION

In this work, the identification and estimation of second-

order joint multifractal properties for bivariate processes was

considered. Expressions for second order parameters in natural

coordinates were derived, and shown to provide an intuitive

and versatile description for the higher-order dependencies of

the data. Crucially, these parameters distinguish dependencies

that the usual Person correlation cannot identify. Moreover,

an expression for the joint dependence structure was provided,

enabling a factorization into an (additive) self-similar random-

walk correlation and a (multiplicative) multifractal correlation.

Estimators for the associated (multifractal and correlation)

parameters have been defined, and their performance was

assessed on synthetic data and shown to be highly satisfactory.

These developments open new and promising perspectives for

the analysis of real-world multivariate data, including applica-

tions in neuroscience, which are currently being explored.
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