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ABSTRACT

Song recommendation from listening counts is now a clas-

sical problem, addressed by different kinds of collabora-

tive filtering (CF) techniques. Among them, Poisson ma-

trix factorization (PMF) has raised a lot of interest, since

it seems well-suited to the implicit data provided by listen-

ing counts. Additionally, it has proven to achieve state-of-

the-art performance while being scalable to big data. Yet,

CF suffers from a critical issue, usually called cold-start

problem: the system cannot recommend new songs, i.e.,

songs which have never been listened to. To alleviate this,

one should complement the listening counts with another

modality. This paper proposes a multi-modal extension of

PMF applied to listening counts and tag labels extracted

from the Million Song Dataset. In our model, every song is

represented by the same activation pattern in each modality

but with possibly different scales. As such, the method is

not prone to the cold-start problem, i.e., it can learn from a

single modality when the other one is not informative. Our

model is symmetric (it equally uses both modalities) and

we evaluate it on two tasks: new songs recommendation

and tag labeling.

1. INTRODUCTION

New albums and songs are released every day and are in-

stantly available on streaming platforms. An important is-

sue for streaming companies is therefore to develop rec-

ommender systems which are able to handle such new

songs [13, 20]. More generally, additional information on

those songs is needed to enrich the catalog, allowing the

user to efficiently explore and find the songs he might like.

In this perspective, tag labeling has proven to be very use-

ful. The labels can be attributed by experts or by the user,

and algorithms can complement this information with au-

tomatic labeling [7].

For both tasks (song recommendation and tag label-

ing), matrix factorization (MF) techniques [12, 17], and

in particular Poisson MF (PMF), reach significant perfor-

mance. Unfortunately, these techniques suffer from the

well-known cold-start problem: such a recommender sys-

©c Olivier Gouvert, Thomas Oberlin, Cédric Févotte. Li-

censed under a Creative Commons Attribution 4.0 International License 
(CC BY 4.0). 

tem cannot recommend songs which have never been lis-

tened to, and similarly it cannot labeled untagged songs.

A joint modeling of both modalities can achieve cold-start

recommendation, as soon as at least one modality is ob-

served for every song [8, 22].

In this paper, we propose a new matrix co-factorization

model based on PMF, which performs those two tasks

jointly. Our model is robust to the cold-start problem for

both modalities. It can recommend a song which has never

been listened to, based on its associate tags. And symmet-

rically, it can associate tags on a song based on who lis-

tened to it. To do that, we separately model the scale (pop-

ularity) of each song according to each modality, while the

patterns across the topics are shared.

The state of the art of co-factorization techniques is

presented in Section 2, along with some background on

PMF. Then, in Section 3 we will present our new model

and explain its properties. In Section 4, we provide

a majorization-minimization (MM) algorithm for solving

our optimization problem and underline its scalability. Fi-

nally, in Section 5, we test our model on songs recommen-

dation and tag labeling in various settings.

2. RELATED WORKS

In this paper, we will focus on works based on so-called

hybrid techniques [1] and Poisson matrix factorization.

Note that recommendation tasks can also be addressed

with other techniques such as factorization machines [19].

2.1 Poisson matrix factorization

PMF is a non-negative MF (NMF) technique [14]. Let Y

be a matrix of size F × I , where each column represent

an item (song) i according to F features. MF approxi-

mates the observed matrix Y by a low-rank product of two

matrices: Y ≈ WH
T , where W ∈ R

F×K
+ represents a

dictionary matrix, and H ∈ R
I×K
+ represents a matrix of

attributes (activations), with K ≪ min(F, I).

When observed data are in the form of counts, i.e.,

Y ∈ N
F×I , a classical hypothesis is to assume that each

observation is drawn from a Poisson distribution:

yfi ∼ Poisson([WH
T ]fi). (1)

The maximum likelihood (ML) estimator of W and H

is therefore obtained by minimizing the cost function de-



fined by:

C(W,H) = − log p(Y|W,H)

= DKL(Y |WH
T ) + cst (2)

s.t. W ≥ 0, H ≥ 0,

where cst is a constant w.r.t. W and H, and where DKL is

the generalized Kullback-Liebler (KL) divergence defined

by:

DKL(Y|X) =
∑

f,i

(

yfi log
yfi
xfi

− yfi + xfi

)

. (3)

This low-rank approximation is known as KL non-

negative matrix factorization (KL-NMF) [9, 15].

The cost function C is scale invariant, i.e., for any

diagonal non-singular matrix Λ ∈ R
K×K
+ , we have

C(W,H) = C(WΛ−1,HΛ). To avoid degenerate solu-

tions, a renormalization such that
∑

f wfk = F is often

used, where wfk = [W]fk.

Several extensions based on Bayesian formulations

have been proposed in the literature [3,5,6,10,17]. In [10],

the authors developed a hierarchical Poisson factorization

(HPF) by introducing new variables: the popularity of the

items and the activity of the users. These variables play a

significant role in recommendation tasks.

2.2 Co-factorization

A way of circumventing the cold-start problem is to intro-

duce new modalities [8, 11, 16]. Co-factorization frame-

works have been developed to jointly factorize two matri-

ces of observations (two modalities): Y
A ≈ W

A(HA)T

and Y
B ≈W

B(HB)T , with shared information between

the activation matrices: HA ≈ H
B .

2.2.1 Hard co-factorization

Hard co-factorization [8, 21] posits that the link between

activations is an equality constraint: H
A = H

B = H.

This is equivalent to concatenate the observations YA and

Y
B , and the dictionaries WA and W

B :

DKL(Y
A|WA

H
T ) + γDKL(Y

B |WB
H

T )

= DKL

((

Y
A

γYB

)

|

(

W
A

γWB

)

H
T

)

, (4)

where γ ∈ R
+ is a weighting hyperparameter.

As in Section 2.1, scale invariance issues can

be solved by a renormalization step such that:
∑

u w
A
uk + γ

∑

v w
B
vk = U + V .

2.2.2 Soft co-factorization

Soft co-factorization [21] relaxes the equality constraint on

the activations replacing it by a soft penalty controlled by

an hyperparameter δ ∈ R
+:

DKL(Y
A|WA(HA)T ) + γDKL(Y

B |WB(HB)T )

+δ Pen(HA,HB). (5)

A popular choice for this penalty is the ℓ1-norm:

Pen(HA,HB) =
∥

∥H
A −H

B
∥

∥

1
. It is adapted when both

modalities are likely to share the same activations, except

at some sparse locations where they can differ significantly.

2.2.3 Offset models

Bayesian formulations of the soft co-factorization problem

have also been developed through the introduction of an

offset latent variable [11,22]. The link between activations

is therefore given by:

hB
ik = hA

ik + εik, (6)

where ε is a latent random variable.

In particular in [11], a co-factorization model is devel-

oped based on PMF, with εik ∼ Gamma(α, β). This

choice is motivated by the conjugacy propriety of the

gamma distribution with the Poisson distribution. Never-

theless, the model is not symmetric with respect to (w.r.t.)

the activations H
A and H

B , as hB
ik > hA

ik by construc-

tion. Thus, it can solve the cold-start problem only for the

modality A and not for B.

3. PROPOSED MODEL

3.1 Notations

In this article, we work with two different modalities. The

first modality, denoted by A, corresponds to the listening

counts of U users on I songs. The second modality, de-

noted by B, corresponds to the tags assigned to these I
songs, among a set of V tags. W

A and W
B thus denote

the preferences of users and the atoms of tags across the K
patterns, respectively.

3.2 Link between attributes

We propose an equality constraint on normalized activa-

tions. We denote by nA
i =

∑

k h
A
ik and nB

i =
∑

k h
B
ik, the

sum of the rows of the activations. We impose, for each

item i:

hA
ik

nA
i

=
hB
ik

nB
i

= dik, (7)

when nA
i > 0 and nB

i > 0.

• The I × K matrix D with entries dik controls

the attributes patterns subject to the constraint
∑

k dik = 1. This information is shared by activa-

tions of both modalities. For example, the K pat-

terns can be related to genre information: we ex-

pect that experimental rock songs share the same

patterns.

• N
A = diag(nA

i ) controls the scale of songs across

the modality A. It corresponds to the popularity of

the song, in the sense that a lot of people listen to it.

• N
B = diag(nB

i ) controls the scale of songs across

the modality B. It corresponds to the fact that a song

can have more or less tag labels.



Two songs can have the same attributes patterns D but

different scales. For example, a song i can be a very pop-

ular song, known by a large panel of people: nA
i ≫ 0, but

lack tag labeling: nB
i ≈ 0. On the contrary, another song i

can be unpopular (because it is new or not well-received):

nA
i ≈ 0, but have a lot of tag information (a set of experts

may have labeled the song): nB
i ≫ 0.

The counterpart of Equation (2) is the following cost

function C, which we aim to minimize:

C(WA,WB ,D,NA,NB) (8)

= DKL(Y
A |WA(NA

D)T )

+ γDKL(Y
B |WB(NB

D)T )

s.t. WA ≥ 0, WB ≥ 0, D ≥ 0,

diag(NA) ≥ 0, diag(NB) ≥ 0.

We denote by Z = {WA,WB ,NA,NB ,D} the set of

variables to infer.

3.3 Scale invariance

Let Θ = diag(θi) be a diagonal matrix of size I × I with

non-negative entries. We have the following scale invari-

ance:

C(WA,WB ,Θ−1
D,NAΘ,NBΘ)

= C(WA,WB ,D,NA,NB). (9)

This scale invariance allows us to impose the constraint on

D, described in Section 3, by applying a renormalization

step (see Section 4.2).

Let Λ = diag(λk) be a diagonal matrix of size K×K with

non-negative entries, W̄
A = W

AΛ−1, W̄
B = W

BΛ−1

and D̄ = DΛ. We also have the following scale invari-

ance:

C(W̄A,W̄B , D̄,NA,NB)

= C(WA,WB ,D,NA,NB). (10)

In practice, this invariance is not an issue and we do not

apply a renormalization step. However, this kind of invari-

ance plays a role for the scores used in recommendation as

discussed in Section 3.4.

3.4 Recommendation tasks

In recommender systems, a classical problem is to propose

a ranked list of songs, users or tags. We develop how to

construct this list on two tasks: in- and out-prediction.

3.4.1 In-matrix recommendation

In-matrix recommendation is a task of recommendation on

users and items which do not suffer from the cold-start

problem. For in-matrix recommendation, we propose a

ranked list of songs for each user, based on the score de-

fined by:

sAui =
∑

k

wA
ukh

A
ik. (11)

This score and our cost function C have the same scale

invariance described in Eq. 10.

3.4.2 Cold-start (out-matrix) recommendation

Cold-start (or out-matrix) recommendation is a task of rec-

ommendation on items which suffer from the cold-start

problem (on modality A or B). In this section, we take the

example of a cold-start problem on modality A, i.e., the

song has no information in the modality A (nobody has

listened to this song yet) but has tags associated to it. The

following remark would hold for a cold-start problem on

modality B.

For cold-start (out-matrix) recommendation the score is

defined by:

sAui =
∑

k

wA
ukdik =

∑

k

wA
uk

hA
ik

∑

l h
A
il

. (12)

Contrary to in-prediction, we use D and not HA = N
A
D

since the popularity in the modality A is close to zero for

songs with no information, i.e., nA
i ≈ 0.

This score and the cost function C do not have the same

scale invariance described in Eq. 10. In fact, if we denote

w̄A
uk = λkw

A
uk and h̄A

ik = λkh
A
ik, we have:

s̄Aui =
∑

k

w̄A
uk

h̄A
ik

∑

l h̄
A
il

= sAui

∑

k h
A
ik

∑

k λkhA
ik

= sAuici, (13)

where ci =
∑

k
hA

ik∑
k
λkh

A

ik

.

This means that, if we want to rank the different scores

sAui, we have to do it for a fixed item. Therefore, to properly

evaluate the cold-start problem for songs, we will propose

a ranked list of users (or tags), for a given item.

For a streaming company, it corresponds to obtaining

a ranked list of users which are likely to listen to this new

song, or a ranked list of tags which corresponds to the song.

4. OPTIMIZATION

4.1 Auxiliary function

The objective function C has no closed-form minimum

and is not convex. We use a MM algorithm [9] to reach

a local minimum. The MM algorithms start by design-

ing a majorizing surrogate G of the objective function

C(Z) ≤ G(Z | Z̃) which is tight at the current value Z̃,

i.e., C(Z̃) = G(Z̃ | Z̃).

We use Jensen inequality on terms of the form

log(
∑

i xi). We define:

φA
uik =

w̃A
ukd̃ik

∑

k w̃
A
ukd̃ik

, cAuik = yAuiφ
A
uik, (14)

φB
uik =

w̃B
ukd̃ik

∑

k w̃
B
ukd̃ik

, cBuik = yBuiφ
B
uik. (15)



It leads to the following upper-bound:

G(Z | D̃,W̃A,W̃B) (16)

=
∑

uik

[

−cAuik log(w
A
ukn

A
i dik) + wA

ukn
A
i dik

]

+ γ
∑

vik

[

−cBvik log(w
B
vkn

B
i dik) + wB

vkn
B
i dik

]

+ cst.

4.2 Updates

The auxiliary function G can be optimized by using a block

descent algorithm. At each iteration, we optimize one la-

tent variable, keeping all the others fixed. This technique

leads to four update rules described in the following.

• Variables WA and W
B :

wA
uk ←

∑

i c
A
uik

∑

i n
A
i dik

; wB
vk ←

∑

i c
B
vik

∑

i n
B
i dik

(17)

• Variables NA and N
B :

nA
i ←

∑

u y
A
ui

∑

uk w
A
ukdik

; nB
i ←

∑

v y
B
vi

∑

vk w
B
vkdik

(18)

• Variable D:

dik ←

∑

u c
A
uik + γ

∑

v c
B
vik

nA
i

∑

u w
A
uk + γnB

i

∑

v w
B
vk

(19)

As discussed in Section 3.3, we add a renormalization

step at the end of each iteration. The update is as follows:

θi =
∑

k

dik/I, (20)

D← Θ−1
D; NA ← N

AΘ; NB ← N
BΘ. (21)

4.3 Algorithm

The complete algorithm is summarized in Algorithm 1.

Note that the inference only requires browsing the non-

zero data yAui > 0 and yBvi > 0, during the update of the

local variables cAuik and cBuik. Hence, our algorithm has the

same scalability as PMF, making it particularly well-suited

for processing huge sparse matrices, as it is the case in rec-

ommender systems (see Table 1).

The algorithm is stopped when the relative increment of

the cost function C is lower than a chosen parameter τ .

5. EXPERIMENTS

5.1 Experimental Setup

5.1.1 Datasets

We use two datasets extracted from the Million Song

Dataset (MSD) [2] and merge them on songs:

• The Taste Profile dataset provides listening counts of

1M users on 380k songs [18]. We select a subset of

the users and pre-process the data to remove users

and items with few information [16]. We keep only

users who listened to at least 20 songs, and songs

which have been listened to by at last 20 users.

Algorithm 1: MM Algorithm

Input : YA, YB , K, γ

Initialize: WA,WB ,NA,NB ,D
repeat

for each pair (u, i) such that yAui > 0: Eq. 14

for each pair (v, i) such that yBvi > 0: Eq. 15

for each user u and tag v: Eq. 17

for each item i: Eq. 18-19

normalization step: Eq. 21

until C converges;

Taste Profile Last.fm

# columns (songs) 15, 667 15, 667
# rows (users or tags) 16, 203 620
# non-zeros 792, 761 128, 652
% non-zeros 0.31% 1.32%

Table 1. Datasets structure after pre-processing.

• The Last.fm dataset provides tag labels for around

500k songs. These tags were extracted from the

Last.fm API [4]. Since the tags were collected via

user annotation, they are quite noisy. To avoid miss-

labeling in the train data, we pre-process it. We

keep only the 1000 most used tags in the whole

dataset. For each couple song-tag, a confidence rat-

ing is given by Last.fm, we keep only couples with

confidence higher than 10. Finally, we keep only

tags which appears at least in 20 songs. The top 10

of the tags in the dataset after the pre-processing are

shown in Table 2.

We binarize the two datasets. Structure of both datasets is

described in Table 1.

5.1.2 Evaluation metric: ranking prediction

In each experiment, we will propose a ranked list L of N
items (which can be songs, tags or users) and evaluate its

quality w.r.t. a ground-truth relevance. For this, we calcu-

late the discounted cumulative gain (DCG) and its normal-

ized version, the NDCG:

Tags Occ. Tags Occ.

rock 6703 electronic 2413

alternative 4949 female vocalists 2407

indie 4151 indie rock 2171

pop 3853 Love 1875

alternative rock 2854 singer-songwriter 1786

Table 2. Occurences (Occ.) of the top tags in the dataset

after pre-processing.



Experiment OUT-A OUT-B IN-A

Score NDCG@20 NDCG@200 NDCG@1∗ NDCG@10 NDCG@100 NDCG∗∗

P-coNMF
0.0824
±1.48e−5

0.122
±1.33e−5

0.416
±5.85e−4

0.266
±1.59e−4

0.129
±4.24e−6

0.286
±2.82e−6

H-coNMF
0.0873
±1.39e−5

0.131
±2.21e−5

0.391
±1.73e−4

0.264
±1.00e−4

0.122
±5.72e−6

0.283
±2.96e−6

KL-NMF . . . .
0.163

±5.36e−7

0.313
±1.50e−7

Table 3. Performance of three models: P-coNMF, H-coNMF, KL-NMF, on three different tasks: out-matrix song recom-

mendation (OUT-A), tag labeling (OUT-B), in-matrix recommendation (IN-A). Each algorithm is run 5 times, the mean

and the variance of the NDCG metrics are displayed. ∗ NDCG@1 corresponds to the percentage of success on the first

predicted tag. ∗∗ NDCG is not truncated in this column, it is equivalent to chose N = I .

DCG@N =
N
∑

n=1

rel(n)

log2(n+ 1)
, (22)

NDCG@N =
DCG@N

IDCG@N
, (23)

where rel(n) is the ground-truth relevance of the n-th item

in the list L. In the following, rel(n) = 1 if the item is

relevant and rel(n) = 0 if not.

The denominator of the DCG penalizes relevant items

which are at the end of the ranked list. It accounts for

the fact that a user will only browse the beginning of the

list, and will not pay attention to items which are ranked

at the end. IDCG is the ideal DCG. It corresponds to the

DCG score of an oracle which ranks perfectly the list, thus

scaling the NDCG between 0 and 1.

5.1.3 Compared methods

For each experiment, we will compare the performance of

our model, proportional co-factorization NMF (P-coNMF)

with two other methods:

• KL-NMF, presented in Section 2.1. It can only be

used for in-matrix prediction as it suffers from the

cold-start problem.

• Hard co-factorization (H-coNMF), presented in Sec-

tion 2.2.1), that use KL-NMF algorithm on concate-

nated matrix. For out-matrix prediction, we will use

a mask that indicates what columns are missing. The

objective function is then:

C(W,H) = DKL(X⊗Y |X⊗WH
T ), (24)

where ⊗ is the elementwise multiplication, and X

is the mask. Note that the masked H-coNMF is ex-

pected to perform as good as soft coNMF with the

ℓ1−norm, since it does not enforce common activa-

tion for new songs.

For both methods, we chose K = 100 latent factors.

The hyperparameter is set such that γ = U
V

, which al-

lows to compensate for the size difference between the two

datasets (V ≪ U ).

5.2 Cold-start recommendation

In this section, we evaluate our algorithm on cold-start rec-

ommendation tasks for both modalities A and B. For this,

we artificially replace columns of YA and Y
B by columns

full of zeros, in order to create the train datasets Y
A
train

and Y
B
train. It leads to 10% of songs with only listening

counts information, 10% of songs with only tag informa-

tion and 80% of songs with both informations. The re-

moved columns form the test datasets YA
test and Y

B
test.

For each song among the never-listened-to songs, we

want to find a set of users that is likely to listen to it.

We train all the algorithms on Y
A
train and Y

B
train. For each

song, we create a ranked list of users based on the score

defined in Section 3.4.2. We evaluate its relevance based

on the NDCG metrics with ground-relevance defined by:

rel(u, i) = 1(yAtest,ui > 0), where 1(x) is the indicator

function which is equal to 1 when x is true and 0 other-

wise.

Similarly, for each song among the untagged songs,

we want to find a set of tags that can annotate that

song. Then we propose a ranked list of tags and calcu-

late the NDCG score with ground-relevance defined by:

rel(v, i) = 1(yBtest,vi > 0).

The columns OUT-A and OUT-B of Table 3 present the

results of P-coNMF and H-coNMF on the two cold-start

problems. For recommending potential listeners (OUT-

A), H-coNMF seems to be slightly better than our method.

However, P-coNMF outperforms H-coNMF on tag label-

ing task. P-coNMF presents a success rate of 42% on the

first predicted tag. This is an acceptable rate since the tag

dataset is noisy: it has not been labeled by experts but by

users and presents some incoherences. For example, the

tag ’Hip-Hop’ can also be written ’hip hop’. More details

on tag labeling are provided in Section 5.4. Contrary to

H-coNMF, P-coNMF does not need a mask to know which

columns are missing. Additionally, the scale variables NA

and N
B are able to explain different scalings of the same

song in the two datasets. This seems interesting because

the amount of listening counts and tags for the same song

is often highly different.



FACTOR #94 FACTOR #29 FACTOR #30

Top tags

Hip-Hop
hip hop
classic
rap
Gangsta Rap

new wave
post-punk
Guilty Pleasures
intense
Post punk

experimental
Experimental Rock
Avant-Garde
noise
weird

Top songs

based on H
A

Eminem - “Mockingbird”
Eminem - “Without Me”
Kid Cudi - “Day ’N’ Nite”
Kid Cudi - “Up Up & Away”
Kid Cudi - “Cudi Zone”

The Cure - “Boys Don’t Cry”
The Smiths - “There Is A Light [...]”
The Smiths - “This Charming Man”
The Smiths - “What Difference Does It Make?”
Wolfsheim - “Once In A Lifetime”

Animal Collective - “Fireworks”
Sigur Ros - “Staralfur”
Sonic Youth - “Youth Against Fascism”
Grizzly Bear - “Little Brother”
TV On The Radio - “Crying”

Top songs
based on D

DMX - “Where The Hood At”
Lil Jon - “Crunk Juice”
50 Cent - “Straight To The Bank”
Eminem - “The Kiss”
The Notorious B.I.G. - “Respect”

New Order - “The Perfect Kiss”
Talking Heads - “Burning Down The House”
Joy Division - “Disorder”
Tears For Fears - “Goodnight Song”
The Smiths - “Miserable Lie”

The Mars Volta - “Tira Me a Las Aranas”
Cocorosie - “Gallows”
The Mars Volta - “Concertina”
The Mars Volta - “Roulette Dares”
TV On The Radio - “Golden Age”

Table 4. Three examples of factors, with, for both of them, the 5 top tags associated to it, the 5 top songs associated to it,

with or without the notion of popularity.

5.3 In-matrix song recommendation

We also evaluate our algorithm on in-matrix prediction.

The goal is therefore to predict which songs a user is likely

to listen. There is no cold-start recommendation here, and

KL-NMF can be trained.

We artificially split the listening counts dataset in two.

20% of non-zero values of YA are removed to create the

test set YA
test. The 80% remaining form the train set YA

train

on which the different models are trained. Each method is

evaluated with NDCG metric. For each user, a list of songs

is proposed based on the score defined in Section 3.4.1,

among the songs he never listened to. The ground-truth

relevance is defined by rel(u, i) = 1(yAtest,ui > 0).
The results are presented in the third column (IN-A) of

Table 3. P-coNMF is slightly better than H-coNMF, but

we observe that KL-NMF achieves state-of-the-art perfor-

mance. This is not surprising, since adding information on

another modality (tags here) can be viewed as a regulariz-

ing term. We lose in precision in in-matrix recommenda-

tion task but we solve the cold-start problem. This seems

an interesting trade-off.

5.4 Exploratory Analysis

In Table 4, we present for each of the three factors

k ∈ {29, 30, 94}:

• in the first row, the tags which corresponds to the five

highest values of WB .

• in the second row, the songs which corresponds to

the five highest values of HA = N
A
D.

• in the third row, the songs which corresponds to the

five highest values of D.

The top tags associated to each factor are consistent: for

example, genre as ’new wave’ and ’post-punk’ are in the

same factor. The model is also robust to the different

spellings used by the users (’post-punk’ and ’Post punk’

for example). Then, we see that the top songs in each fac-

tor are related with the top tags. Eminem, 50 Cent and The

Notorious B.I.G. are rap artists. The Cure, The Smiths and

Joy Division are the leading figures of the new wave. TV

On The Radio, The Mars Volta and Animal Collective are

known to be experimental rock bands. Finally, we see that

the popularity of songs NA has an important influence on

the diversity of the top songs in each factor. When this no-

tion is removed (last row of the table), less popular songs

and bands appear in the top songs.

6. CONCLUSION

In this paper, we proposed a new Poisson matrix co-

factorization, in which the attributes of each modality are

assumed proportional. Contrary to hard and ℓ1-based soft

co-factorization, in this new model each item may have

different scaling (or popularity) in each modality. This is

of particular interest when tackling cold-start recommen-

dation, in which one scaling is close to zero. The benefits

of the algorithm over standard co-factorization have been

illustrated for song recommendation, with emphasis placed

on cold-start situations.

This raised interesting short-term perspectives, such as

the derivation of more involved Bayesian models, and

inference or extensions to different, possibly non-binary

datasets. Future works should also consider datasets with

highly different dimensions or dynamics, by means of a

tri-factorization.

7. ACKNOWLEDGMENTS

This work has received funding from the European Re-

search Council (ERC) under the European Unions Horizon

2020 research and innovation program under grant agree-

ment No 681839 (project FACTORY).

8. REFERENCES

[1] Gediminas Adomavicius and Alexander Tuzhilin.

Context-aware recommender systems. In Recom-

mender Systems Handbook, pages 191–226. Springer,

2015.



[2] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian

Whitman, and Paul Lamere. The million song dataset.

In Proceedings of the 12th International Conference on

Music Information Retrieval (ISMIR), 2011.

[3] John Canny. GaP: A factor model for discrete data.

In Proc. International Conference on Research and

Development in Information Retrieval (SIGIR), pages

122–129, 2004.
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