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Abstract

Considerable improvements in the technology and per-
formance of SAT solvers has made their use possible
for the resolution of various problems in artificial intel-
ligence, and among them that of generating plans. Re-
cently, promising Quantified Boolean Formula (QBF) 
solvers have been developed and we may expect that in
a near future they become as efficient as SAT solvers.
So, it is interesting to use QBF language that allows us
to produce more compact encodings. We present in this 
article a translation from STRIPS planning problems 
into quantified propositional formulas. We introduce
two new Compact Tree Encodings: CTE-EFA based on 
Explanatory frame axioms, and CTE-OPEN based on 
causal links. Then we compare both of them to CTE-
NOOP based on No-op Actions proposed in (Cashmore, 
Fox, and Giunchiglia 2012). In terms of execution time 
over benchmark problems, CTE-EFA and CTE-OPEN 
always performed better than CTE-NOOP.

Introduction
An algorithmic approach for plans synthesis is automated 
compilation (i.e., transformation) of planning problems. In 
the SATPLAN planner (Kautz and Selman 1992), a planning 
problem is transformed into a propositional formula whose 
models, corresponding to solution plans, can be found using 
a SAT solver. The SAT approach searches for a solution-
plan of fixed length k. In case of failure to find such a plan, 
this length is increased before restarting the search for a 
solution. In the classical framework, the complexity of 
finding a solution to any problem is PSPACE-hard, but the 
search for a fixed-size solution becomes NP-hard (By-lander 
1994). This compilation approach directly benefits from 
improvements in SAT solvers1. The most obvious ex-ample 
is the planner BLACKBOX (Kautz and Selman 1998; 1999) 
(and its successors SATPLAN’04 (Kautz 2004) and 
SATPLAN’06 (Kautz, Selman, and Hoffmann 2006)). These 
planners won the optimal (in the number of plan steps) plan-

ning track of the International Planning Competitions2 

IPC-2004 and IPC-2006. This was unexpected because these

1http://www.satcompetition.org/
2http://www.icaps-conference.org/index.

php/Main/Competitions

planners were essentially updates of BLACKBOX and did not
include any real novelty: improved performance was mainly
due to progresses in the underlying SAT solver.

Numerous improvements of this original approach have
been proposed since then, in particular via the develop-
ment of more compact and efficient encodings (Kautz and
Selman 1996; Ernst, Millstein, and Weld 1997; Mali and
Kambhampati 1998; 1999; Rintanen 2003; Rintanen, Hel-
janko, and Niemelä 2004; 2006; Rintanen et al. 2008).
Following these works, numerous other similar techniques
for encoding planning problems have been developed: Lin-
ear Programming (LP) (Wolfman and Weld 1999), Con-
straint Satisfaction Problems (CSP) (Do and Kambhampati
2001), SAT Modulo Theories (SMT) (Shin and Davis 2005;
Maris and Régnier 2008; Rintanen 2015). More recently, a
Quantified Boolean Formulas (QBF) approach had been pro-
posed by (Rintanen 2007; Cashmore, Fox, and Giunchiglia
2012).

Currently SAT solvers outperform QBF solvers and the
SAT approach is the most effective because SAT solvers and
encodings have been greatly improved since 1992. How-
ever, over the past decade, there has been a growing interest
in the QBF approach. The competitive evaluation of QBF
solvers QBFEVAL3 is now a joint event with the interna-
tional SAT conference and QBF solvers improve regularly.
QBFEVAL’16 had more participants than ever and QBF-
related papers represented 27% of all papers published at
SAT’16. Some promising techniques have been adapted to
QBF solving such as counterexample guided abstraction re-
finement (CEGAR) (Clarke et al. 2003; Janota and Marques-
Silva 2015; Janota et al. 2016; Rabe and Tentrup 2015).
For comparable SAT / QBF encodings, the QBF approach
also have the advantage to generate more compact formulas
(Cashmore, Fox, and Giunchiglia 2012). Even if the QBF
approach is not as efficient as the SAT approach, it deserves
the interest of the community.

Our paper shows that beyond the implementation of
solvers, further work must be done to improve the encod-
ings. In particular, we introduce two new QBF Compact
Tree Encodings of STRIPS planning problems: CTE-EFA
based on Explanatory frame axioms, and CTE-OPEN based
on causal links. Then we compare both of them to CTE-

3http://www.qbflib.org/index_eval.php
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Figure 1: Both possible transitions in a CTE following the
branching structure of a QBF: X0 → Xi (from leaf to node
on the left) and Xi → X0 (from node to leaf on the right).
Note that i refers to any level (except for the leaf layer), not
only the root.

NOOP based on No-op Actions proposed in (Cashmore,
Fox, and Giunchiglia 2012). In terms of execution time
over benchmark problems, CTE-EFA and CTE-OPEN al-
ways performed better than CTE-NOOP.

Planning as QBF

Two different approaches of planning as QBF have been
proposed by (Cashmore, Fox, and Giunchiglia 2012): Flat
Encoding, that was first introduced by (Rintanen 2001) as
an approach to general reachability, and Compact Tree En-
coding (CTE). Cashmore, Fox, and Giunchiglia showed in
(2012) that Compact Tree Encodings outperform Flat En-
codings. Both these planning encodings make use of the
branching structure of the QBF to reuse a single set of
clauses that describes a single step in the plan. The two as-
signments inside each universal variable represent the first
and second half of the plan split around that branch. The
assignments to each existential set represent action choices
within a single step.

Preliminary Definitions

Let F be a finite set of fluents (atomic propositions). A
STRIPS planning problem is a tuple 〈I,A, G〉 where I ⊆ F
is the set of initial fluents, G ⊆ F is the set of goal flu-
ents and A is the set of actions. An action a ∈ A is a tuple
〈Pre(a),Add(a),Del(a)〉 where

• Pre(a) ⊆ F is the set of fluents required to be true in
order to execute a,

• Add(a) ⊆ F and Del(a) ⊆ F are the sets of fluents re-
spectively added and removed by the action a.

All QBF encodings studied in this paper use propositional
variables for actions. The Compact Tree Encoding proposed
in (Cashmore, Fox, and Giunchiglia 2012) is based on the
planning graph introduced in (Blum and Furst 1997) and
uses additional no-op actions as frame axioms. We denote it
by CTE-NOOP. Considering every action as a propositional

variable, we define a set of propositional variables X , given
by X = A ∪ {noopf | f ∈ F}.

In a CTE formula, we want to select two consecutive steps
in order to define transitions (Figure 1). For each depth i of
the tree, Xi denotes a copy of the set of variables X .

For CTE-NOOP, there exists a single variable ai ∈ Xi

for each action and a single variable noopf,i ∈ Xi (no-
op action) for each fluent used to determine a transition in
the plan. At a same depth i, the value of these variables de-
pends on the node (corresponding to a step in the plan) se-
lected by the values of upper universal branching variables
bi+1 . . . bdepth. More details can be find in the slides4.

An upper bound on the plan length is 2k+1 − 1, where
k is the number of alternations of quantifiers in the quanti-
fied boolean formula associated with the planning problem.
In the case of CTE, k is also the compact tree depth. The
number of possible states for a given planning problem is

bounded by 2|F|. Then, the existence of a plan can be deter-
mined using a linear QBF encoding with at most k =| F |.

In the sequel, we propose two new encodings of plan-
ning problems into QBF. The first, denoted by CTE-OPEN,
is based on causal links (plan-space). It has been first in-
troduced by (Mali and Kambhampati 1999) but needs to
be adapted using additional variables for open conditions.
The second, denoted by CTE-EFA, is based on explanatory
frame axioms (state-space) first introduced by (Kautz and
Selman 1992) and uses variables for fluents as well as for
actions.

Causal Link Encoding: CTE-OPEN

The plan-space encodings of (Mali and Kambhampati 1999)
cannot be directly adapted to the CTE. All these encodings
refer to three indexed (not necessarily consecutive) steps of
the plan. This is not possible in a CTE because each rule can
refer to only one branch of the tree. To overcome this prob-
lem, it would be possible to duplicate the tree by adding, for
each branching variable bi, two more branching variables
b′i and b′′i , and for each node Xi, two node copies X ′

i and

X ′′
i , and equivalence rules

∧

xi∈Xi

(

(xi ↔ x′i) ∧ (xi ↔

x′′i )
)

. Unfortunately, this would increase the branching fac-
tor unnecessarily. So, we propose a new plan-space encod-
ing which allows us to only refer to consecutive steps in the
plan.

For every fluent f ∈ F , we create a propositional variable
openf to express that f holds in some previous step and must
be protected at least until the current step. In Figure 2, the
fluent f is an open condition in step Si, entailing that either
f ∈ I or an action a′ which adds f is executed in a previous
step Si−k. Open conditions are propagated backwards until
the initial state or some step in which they are added by an
action.

We define the set of “open” variables, denoted as ∆, as
∆ = {openf | f ∈ F}. Considering every action as a propo-
sitional variable, we define a set of propositional variables
X , given by X = A ∪∆.

4https://www.irit.fr/˜Frederic.Maris/

documents/coplas2018/slides.pdf



Quantifiers For each depth i of the tree, Xi denotes a copy
of the set of variables X . It exists a single variable ai ∈ Xi

for each action used to determine last transition in the plan
and a single variable openf,i ∈ Xi for each fluent used to
determine if f is an open condition. At a same depth i, the
value of these variables depends on the node (corresponding
to a step in the plan) selected by the values of upper universal
branching variables bi+1 . . . bdepth.

∃
a∈A

adepth. ∃
f∈F

openf,depth.∀ bdepth.

∃
a∈A

adepth−1. ∃
f∈F

openf,depth−1.∀ bdepth−1.

. . .

∃
a∈A

a1. ∃
f∈F

openf,1.∀ b1. ∃
a∈A

a0. ∃
f∈F

openf,0.

In the following, a node now refers to a non-leaf node
(i.e., an inner node) and depth is the depth of the tree. The
predecessor of a node at level i is the rightmost leaf of the
left subtree. The successor of a node at level i is the leftmost
leaf of the right subtree. In order to select these transitions,
we introduce the leaf-to-node operator left(i) defined as:

left(i) ≡ ¬bi ∧

i−1
∧

j=1

bj .

Symmetrically, we introduce the node-to-leaf operator
right(i) defined as:

right(i) ≡ bi ∧

i−1
∧

j=1

¬bj .

Open conditions If an action a is executed in a step of the
plan, then each precondition of a must be an open condition
at this step (i.e., a causal link is required for this precondi-
tion).

depth
∧

i=0

∧

a∈A



ai ⇒
∧

f∈Pre(a)

openf,i





In the last plan step leading to the goal (i.e. the rightmost
leaf of the tree), all the goal fluents must be either open con-
ditions or added by actions executed in this step.

depth
∧

i=1

bi ⇒
∧

f∈G









openf,0 ∨
∨

a∈A
f∈Add(a)

a0









a

f ∈ Pre(a)

openf

Si−1 Si

propagate
openf

Si−k

openf

a′

f ∈ Add(a′)

Figure 2: Causal link: a′produces f for a.

Propagate and close No conditions should remain open
in the first plan step (i.e. the leftmost leaf of the tree) if it is
not provided in the initial state.

depth
∧

i=1

¬bi ⇒
∧

f∈F\I

¬openf,0

Any open condition in a step must either remain open or
be added (closed) by an action in the previous step.

depth
∧

i=1

∧

f∈F









(

openf,i ∧ left(i)
)

⇒









openf,0 ∨
∨

a∈A
f∈Add(a)

a0

















depth
∧

i=1

∧

f∈F









(

openf,0 ∧ right(i)
)

⇒









openf,i ∨
∨

a∈A
f∈Add(a)

ai

















Protect open conditions An open condition in a given
step cannot be removed in the previous step. This guaran-
tees not to break any causal link in the plan.

depth
∧

i=1

∧

f∈F









(

openf,i ∧ left(i)
)

⇒
∧

a∈A
f∈Del(a)

¬a0









depth
∧

i=1

∧

f∈F









(

openf,0 ∧ right(i)
)

⇒
∧

a∈A
f∈Del(a)

¬ai









Prevent negative interactions In a given step, if an action
removes a fluent which is needed or added by another action,
then these two actions cannot be both executed in this step.

depth
∧

i=0

∧

a∈A

∧

f∈(Add(a)∪Pre(a))

∧

a′∈A
a 6=a′

f∈Del(a′)

(¬ai ∨ ¬a
′
i)

State-Space Encoding: CTE-EFA

In this encoding, we define the set of propositional variables
as X = A ∪ F . Each step is now defined by a transition (as
in CTE-OPEN) as well as the resulting state (valuation of
the fluents in F). The formula is an adaptation to the CTE
of the well known state-space SAT encoding rules based on
explanatory frame axioms of (Kautz and Selman 1992).

Quantifiers At each depth i of the tree, it exists a single
variable ai for each action used to determine last transition
in the plan and a single variable fi for each fluent used to
determine the state. At a same depth i, the values of these
variables depend on the node (corresponding to a transition



in the plan and the resulting state) selected by the values of
upper universal branching variables bi+1 . . . bdepth.

∃
a∈A

adepth. ∃
f∈F

fdepth.∀ bdepth.

∃
a∈A

adepth−1. ∃
f∈F

fdepth−1.∀ bdepth−1.

. . .

∃
a∈A

a1. ∃
f∈F

f1.∀ b1. ∃
a∈A

a0. ∃
f∈F

f0.

Goal In the state after the last plan transition (i.e. the right-
most leaf of the tree), all goal fluents must be achieved.

depth
∧

i=1

bi ⇒
∧

f∈G

f0

Conditions and effects of actions If an action a is exe-
cuted in a transition of the plan, then each effect of a occurs
in the resulting state and each condition of a is required in
the previous state.

depth
∧

i=0

∧

a∈A



ai ⇒





∧

f∈Add(a)

fi



 ∧





∧

f∈Del(a)

¬fi









depth
∧

i=1

∧

a∈A



ai ∧ left(i)⇒
∧

f∈Pre(A)

f0





depth
∧

i=1

∧

a∈A



a0 ∧ right(i)⇒
∧

f∈Pre(A)

fi





Moreover, an action which do not have all conditions in
initial state cannot be executed in the first plan transition (i.e.
the leftmost leaf of the tree):

depth
∧

i=1

¬bi ⇒
∧

a∈A
Pre(a)6⊂I

¬a0

Explanatory frame axioms If the value of a fluent
changes between two consecutive states, then an action
which produces this change is executed in the plan transi-
tion between these states.

depth
∧

i=1

∧

f∈F









(¬f0 ∧ fi ∧ left(i)) ⇒









∨

a∈A
f∈Add(a)

ai

















depth
∧

i=1

∧

f∈F









(¬fi ∧ f0 ∧ right(i)) ⇒









∨
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a0
















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∧
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
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









depth
∧
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∧
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





(fi ∧ ¬f0 ∧ right(i)) ⇒









∨

a∈A
f∈Del(a)

a0

















An extra rule is also required to describe explanatory
frame axioms for the first plan transition from initial state
(i.e. the leftmost leaf of the tree):

∧

f∈F\I













(

f0 ∧

depth
∧

i=1

¬bi

)

⇒
∨

a∈A
f∈Add(a)
Pre(a)⊂I

a0













∧

f∈I













(

¬f0 ∧

depth
∧

i=1

¬bi

)

⇒
∨

a∈A
f∈Del(a)
Pre(a)⊂I

a0













Prevent negative interactions Unlike in CTE-NOOP and
CTE-OPEN, contradictory effects are already disallowed by
previous rules (effects of actions). Then, this rule only need
to prevent interactions between conditions and deletes of ac-
tions. If an action removes a fluent which is needed by an-
other action, then these two actions cannot be both executed
in a same plan transition.

depth
∧

i=0

∧

a∈A

∧

f∈Pre(a)

∧

a′∈A
a 6=a′

f∈Del(a′)

(¬ai ∨ ¬a
′
i)

Experimental Trials

To compare these three encodings on a same basis we
used our translator TouIST5 (Comte et al. 2015) that can
use several QBF solvers. We ran all available STRIPS IPC
benchmarks (1 through 8, except for the 7th which was
not available and authors did not answer) on an Intel Xeon
CPU E7-8890 v4 @ 2.20GHz, 512 GB of RAM. The do-
mains tested include Gripper, Logistics, Mystery, Blocks,
Elevator, Depots, DriverLog, ZenoTravel, FreeCell, Airport,
Pipesworld-NoTankage, Pipesworld-Tankage, PSR, Satel-
lite, OpenStacks, Pathways, Rovers, Storage, TPP, Trucks,
ChildSnack, Hiking, VisitAll and the non-IPC Ferry.

We tried to consider as many QBF solvers as possible
using the QBFEval 2017 as a reference. Qute (version of
2017-07-09, based on dependency learning QCDCL) and
CaQE (version of 2017-07-08, based on CEGAR clausal

5https://www.irit.fr/touist



abstraction) were not able to give a valuation for the outer
existential quantifier. AIGSolve and Qell weren’t available
for download. GhostQ was skipped (but we should have in-
cluded it). DepQBF (version 6.03 of 2017-08-02, based on
generalized Q-resolution, described in (Lonsing and Egly
2017)) and RAReQS (version 1.1 of 2013-05-07, based on
a CEGAR approach, detailed in (Janota et al. 2012)) were
the only solvers left. RAReQS was consistently twice as fast
as DepQBF, we thus dismissed DepQBF and only shown re-
sults for RAReQS. Finally, we did not apply any QBF pre-
processor (e.g., Bloqqer).
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Figure 3: Plan decision time (EFA/OPEN vs NOOP).

We ran these benchmarks using our new encodings CTE-
EFA and CTE-OPEN as well as the state-of-the-art compact
tree encoding (CTE-NOOP). We compared them two-by-
two by considering the time needed to prove the existence of
a plan (decision time, Figure 3) and the overall time required
to obtain a plan (extraction time, Figure 5). The “decision”
step consists of launching incrementally the QBF solver on
a CTE of increasing depth until the solver returns true or
reaches the upper bound (total number of fluents). The “ex-
traction” step consists of one solver launch per node of the
tree in order to retrieve the plan. Each experiment had a 60
minutes6 timeout for searching the plan and 60 minutes for
extracting it. The benchmark results are available as an Ex-
cel file7.

The results show that our encodings CTE-EFA and CTE-
OPEN are more efficient than CTE-NOOP both in plan ex-
istence as well as in plan extraction. CTE-EFA by a factor of
2.1 (1/0.4843) and CTE-OPEN by a factor of 1.7 (1/0.5953).
Also, the comparison between CTE-EFA and CTE-OPEN
(Figure 4, Figure 6) consistently shows that CTE-EFA out-
performs CTE-OPEN by a factor of 1.4 (1/0.7266). Table 1
gives a summary of the benchmark results.

Contrary to what happens with flat encodings, the gain
over CTE-NOOP cannot be explained by the difference in
quantifier alternations as the depth is the same in the three
encodings. However, the way actions are represented in
these encodings may explain this difference.
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Figure 4: Plan decision time (EFA vs OPEN).

6The grounding step (i.e., action instantiation) is not included
in the elapsed time.

7https://www.irit.fr/˜Frederic.Maris/

documents/coplas2018/results.xls



Encoding Solved problems Decision Time Literals Clauses Transitions-over-nodes ratio

CTE-NOOP 412 over 2112 (20%) 0% 0% 0% 30%
CTE-EFA 463 over 2112 (22%) -55% -26% +15% 47%
CTE-OPEN 445 over 2112 (21%) -41% -2% -28% 17%

Table 1: Comparison of the presented encodings across 65 STRIPS domains from IPC 1 through 8 (IPC 7 excepted) with
a total of 2112 problems. Decision time, literals count, clauses count and the transitions-over-nodes ratio are averages. The
transitions-over-nodes ratio measures the quantity (in average) of transition-based constraints over node-based constraints.
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Figure 5: Plan extraction time (EFA/OPEN vs NOOP).
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Figure 6: Plan extraction time (EFA vs OPEN).

Discussion
In order to identify the source of these improvements, we
propose two hypothesis:

Hypothesis 1 “The performance gain is correlated to a de-
crease in the number of clauses and/or literals across en-
codings”. Although the size of the problem is known to
be noticeably non-correlated with its hardness in SAT,
we wondered if we could see the same non-correlation.
As shown in Table 1, we do not observe any clear ten-
dency: CTE-EFA tends to have a slightly higher number
of clauses (+15%) than CTE-NOOP although having less
variables (-26%). CTE-OPEN has the same number of lit-
erals and much less clauses than CTE-NOOP, but result-
ing in a lower performance gain (-41%) than CTE-EFA
(-55%). This non-correlation leads us to reject this hy-
pothesis.

Hypothesis 2 “The performance gain is due to a difference
in the number of transition-based constraints compared
to the number of node-based constraints”. Intuitively, one
can think that a lower ratio of transition-based constraints
over node-based constraints would ease the solving pro-



cess: in node-based constraints, a clause has the same con-
text8 across the whole QBF expansion. In branch con-
straints, the corresponding clause has different contexts
depending on the selected branch. The idea is that clauses
based on different contexts slow the solver down. As dis-
played in Table 1, this hypothesis does not appear to
be correct experimentally: although CTE-OPEN shows a
lower transitions-to-nodes ration, it does not lead to the
best performance gain. On the contrary, CTE-EFA has a
poorer ratio, although being the most efficient compared
to CTE-NOOP. We thus refute this hypothesis as we did
not see any noticeable correlation supporting it, although
we noticed a slight tendency where the decrease of time
and of number of clauses were correlated.

Through these hypotheses, we tried to understand the
causes of these enhancements. None of these hypothesis
proved to be useful.

Conclusion

We have proposed two new QBF Compact Tree Encodings:
CTE-OPEN based on causal links (plan-space) and CTE-
EFA based on explanatory frame axioms (state-space). We
compared these encodings with the state-of-the-art QBF en-
coding CTE-NOOP. In average over all available STRIPS
IPC benchmarks, CTE-EFA performed twice as fast as CTE-
NOOP (respectively 1.7 times faster for CTE-OPEN).

Through experiments, we refuted the two hypotheses we
had formulated in order to explain the causes of this en-
hancement: neither the difference in the number of literals
and clauses nor the transitions-to-nodes ratio between the
three encodings allow us to draw conclusions.

Although it is fair to say that the work we are present-
ing lacks explanations on the reasons for the gain in perfor-
mance, we think that this paper aims at showing the inter-
est of systematically studying the statistical properties of the
various action representations in encodings in order to un-
derstand the ontological choices related to these action rep-
resentations.

Furthermore, it is noticeable that the performance rank-
ing of the various action representations of SAT encodings
(e.g., No-op performs better than EFA) is different in QBF
(as we showed, EFA performs better than No-op in the CTE
encoding). It would be interesting to study more broadly the
methods used in SAT for encoding actions and see how their
QBF counterpart behave.

8Context and expansion are defined in (Cashmore, Fox, and
Giunchiglia 2012). Intuitively, the expansion is a tree representing
the QBF and a context is a leaf in that tree.
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