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Abstract. NoSQL systems are based on a “schemaless” approach that not does require schema

specification before writing data, allowing a wide variety of representations. This flexibility leads
to a large volume of heterogeneous data, which makes their querying more complex for users
who are compelled to know the different forms (i.e. the different schemas) of these data. This
paper addresses this issue focusing on simplifying the heterogeneous data querying. Our work
specially concerns graph-oriented NoSQL systems.
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1 Introduction

The growing usage of “Not-only-SQL” storage systems, referred as NoSQL, has given
ability to efficiently handle large volume of data [4]. Graph-oriented systems are among
the most increasingly used NoSQL approaches. A special attention has focused on how
to model data in the form of graphs [4]. In this approach, data is represented as nodes,
edges and attributes, which allows the modelling of different interactions between data.
Graphs modeling is ubiquitous in most social networks, semantic web and bioscience
(protein interactions …) applications.

Graph-oriented systems belong within the “schemaless” framework [2, 7], that
consists in writing data without any prior schema restrictions; i.e., each node and each
edge have its own set of attributes, thus allowing a wide variety of representations [6].
This flexibility generates heterogeneous data, and makes their interrogation more
complex for users, who are compelled to know the different schemas of the manipu-

lated data. This paper addresses this issue and consider a straightforward approach for
the interrogation of heterogeneous data into NoSQL graph-oriented systems. The
proposed approach aims at simplifying the querying of heterogeneous data by limiting

the negative impact of their heterogeneity and leads to make this heterogeneity
“transparent” for users.

This paper is organized as follows. We highlight in Sect. 2 the issues addressed in
this paper. Section 3 gives an overview of the related work. We present in Sect. 4 our
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approach for heterogeneous data interrogation in order to simplify data querying. The

results of the experimental evaluation of our approach are presented in Sect. 5.

2 Problem Modeling

2.1 Notations

The data modeling in NoSQL graph-oriented systems consists in representing the

database as a graph. Figure 1 illustrates an example of a simple graph G = (V, E, c)

where V = {u1, … un} denotes the set of nodes, E = {e1, … em} is the set of edges

connecting one node to another and c : E ! V xV represents a function that deter-

mines the nodes pairs connected by the edges.

The different nodes are described with textual format as presented below:

We can notice in Fig. 1 that the name of the edges can vary (either To_Write or

To_Compose). Similarly, the graph’s nodes and their attributes can be heterogeneous.

2.2 Heterogeneity Classes

The heterogeneity can be considered from different perspectives [10] depending on the

structural elements composing the graph:

Structural heterogeneity refers to data represented by variable structural elements.

Syntactic heterogeneity refers to the fact that a structural element can be refered to

a variable way; e.g., the attributes ‘birth_date’ and ‘birth’ belong to different nodes but

both refer to an author’s date of birth.

Semantic heterogeneity defines the problem of two different elements corre-

sponding to the same data, or inversely when a single element is related to two different

data; e.g., the edges ‘To_Write’ and ‘To_Compose’ both have the same meaning. In

this article, we address the different heterogeneity classes discussed in this section.

Fig. 1. A graph example



2.3 Querying Heterogeneous NoSQL Graph

We use Cypher language [4] offer by Neo4j NoSQL graph database to illustrate the

problem of querying heterogeneous graphs.

Our model is based on a theoretical foundations, called algebraic core, which

ensures the genericity of the approach. In this paper, we only examine the operators

defined for projection and selection. This set of elementary operators compose the

algebraic core.

Therefore, using naively Cypher language in the context of heterogeneous graphs

may leads to produce wrong analyses and to take decisions on incomplete data. In this

paper, we propose an approach that allows the user to express a query using the set of

attributes, without considering the structural, syntactic, and semantic differences,

without changing the original structures of the graphs. Our solution grants the possi-

bility to obtain a “complete” results, without having to explicitly manage the various

heterogeneity aspects.

3 Related Work

The problem of querying heterogeneous data is an active research domain studied in

several contexts such as data-lake, federated database [15], data integration, schema

matching [16]. We classify the state-of-the-art as follows.

Schema Integration. The schema integration process is an intermediary step to

facilitate the query execution. In [16] the authors present a survey on techniques used to

Table 1. Querying heterogeneous data problem



automate the schema integration process. The schema integration techniques may lead

to data duplication and original structure loss, which affects the support of legacy

applications.

Physical Re-factorization. Several works are conducted to enable querying data

without any prior schema restrictions. Generally, they propose to flatten data into a

relational form [11, 17, 18]. SQL queries are formulated based on relational views built

on top of the inferred structures. This strategy suggests performing heavy physical re-

factorization. Hence, this process requires additional resources such as external rela-

tional database and extra efforts to learn the new relational schema whenever new

schemas are inserted.

Schema Discovery. Other works propose to infer implicit schemas. The idea is to give

an overview of the different elements present in the integrated data [19, 21]. In [12] the

authors propose summarizing all schema under a skeleton to discover the existence of

fields or sub-schema. In [20] the authors suggest extracting all structures to help

developers while designing their applications. The limitation with such logical view is

the need to manual process while building queries by including all attributes and their

corresponding paths.

Others works suggest resolving the heterogeneity problem by working on the query

side. Query rewriting is a strategy to rewrite an input query into several derivations to

overcome the heterogeneity [14, 24, 25]. Most of works are designed in the context of

the relational database where heterogeneity is usually restricted to the lexical level

only. In NoSQL, the first papers focused on document stores and using another query

language that cannot be applied to oriented graph systems [22].

4 EasyGraphQuery: Query Rewriting Engine

EasyGraphQuery differs from the conventional systems, which require a prior

knowledge of the different schemas to formulate adequate queries. EasyGraphQuery

takes for input the user’s query, rewrites it using the dictionary to eventually extract

similar attributes and run it into Neo4J. Figure 2 gives an overview of the Easy-

GraphQuery architecture.

Fig. 2. The EasyGraphQuery architecture



The creation of the dictionary is done automatically when inserting data and is

updated with each new insertion or update of the already stored data. For performance

reasons, the update is continuously operated in the background. By keeping the dates of

the last modifications in files, that are independent of the similarity matrix and the

dictionary, it is possible to consult the updates status without affecting the queries being

executed.

4.1 Data and Dictionary Modeling

We denote L ¼ l1; . . .; lLf g a set of terms indicating the different nodes labels and

possible relations.

We denote SV ¼
Si¼N

i¼1

S

lk2Li

S

ai;j2Si
lk:ai;j

� �

the graph node schema.

We denote SE ¼
Si¼M

i¼1

S

ai;j2Si
li:ai;j

� �

the graph edges schema. Thus, SG ¼

SN [ SM is the graph’s attributes schema.

We define LG ¼
Si¼N

i¼1 Li

� �

[
Si¼M

i¼1 li
� �

.

Example. Let us consider the graph illustrated in Fig. 1.

Node u1 = ({Author}, {firstname, lastname, birth_date, date_of_death}) and node

u7 = ({Book}, {number, title, year}). Edge e3 = (Book, {}, u1, u7).



In order to consider the different heterogeneity aspects of the graph (structural,

syntactic and semantic), we introduce two data dictionaries that allow to determine for

each element of the graph (label, attribute), similar elements.

Similarity is calculated between the eventual heterogeneous elements of the graph.

In this paper, we only consider the labels, attributes of nodes and edges. The hetero-

geneity aspects considered are structural, syntactic and semantic. Two matrices are

constructed to determine the similarities between the graph’s elements: the syntactic

similarity matrix is based on the Leivenshtein measure while the semantic similarity

matrix is based on the Lin measure. We do not detail the pre-processing applied during

multi-terms like To_Write or birth_date, when calculating matrices. We can

consider extending the approach with other similarity measures, and improve the

process by a weighted combination of these various measures [8, 10].

In this paper, we only consider the attributes structural heterogeneity. The labels

structural heterogeneity is not examined. That means that an attribute can be located at

various positions in the graph, marked by the labels that prefix the property.

4.2 The Algebraic Core of Operators

The interrogation is based on a set of elementary operators forming a closed minimum

core. We denote Gin the queried graph and Gout the resulting graph. These elementary

operators allow projection and selection (restriction) operations.



The predicates of a complex selection, combining several predicates, are repre-

sented in their conjunctive normal form: Predicate ¼
V

x

W

ypx;y

� �

.

Example. Let us consider the queries from Sect. 2.3. We can express these queries

with an algebraic representation (internal) as follows:

We present the obtained results in the Table 1. When the attributes are projected,

the identifiers of the nodes (ui) and the edges (ei) are lost; this breaks the closure

principle of the algebraic core, thus not allowing to combine these results with a new

operation.

Projection and Selection. « Get the titles of the books for author having

name = ‘Baudelaire’»

The obtained results are given in the Table 2.

The use of this internal representation, of the interrogation operations on graphs,

does not support the heterogeneity of the graph’s elements. Therefore, these queries’

results remain incomplete regarding the information represented in the graph.

We present, in the following, the rewriting process of these internal queries

allowing to obtain a complete result that is transparent to the user and dynamic (without

data transformation).

Table 2. Results of the selection and projection operations combination.



4.3 Queries Rewriting Algorithm

Neo4J does not provide native operators to manage the graphs heterogeneity; e.g., the

match operation is very case-sensitive and does not automatically allow comparisons

of labels and attributes that are syntactically, semantically or structurally similar. This

sensitivity leads to ignore several data that are relevant to the result. Our approach aims

at assisting users with querying, by automatic query reformulation. This process makes

use of the dictionary and indirectly the similarity matrix to reformulate the query by

determining similar elements (nodes, edges, and attributes). The following algorithm

describes the automatic rewriting process of the user’s query.

The function exists(A, L) verifies if L includes the pattern constituted from the

labels resulting from A. The union operation, denoted [ , allows unifying two graphs

G1 [G2 ¼ Gout Voutj ¼ V1 [V2;Eout ¼ E1 [E2; cout : Eout ! Vout xVout eoutj 2 c1v eout 2 c2



Example. Let us consider the following query

The projection operator is rewritten according to the different similar labels of the

pattern, ∇Author = {Author, author, Writer} and ∇Book = {Book, book,

Publication}, and the different similar attributes, ∆Author.firstname = {Author.-

firstname, Writer.firstname, author.firstname} et ∆Author.last-

name = {Author.lastname, Writer.lastname, author.lastname}.

The algorithm constructs the following sets, according to which the operator is

rewritten.

The selection operator is rewritten according to the different labels of the selection

pattern, ∇Author = {Author, author, Writer}, and to the different similar attributes

of the predicate, ∆Author.lastname = {Author.firstname, Writer.firstname,

author.firstname} and ∆Author.lastname = {Author.lastname, Writer.

lastname, author.lastname}.

Then, the operator is rewritten according to the set constructed by the algorithm.

5 Experiments

We use the EasyGraphQuery tool to evaluate the query rewriting algorithm proposed

in this article as well as the construction of the defined dictionary.



Dataset. To validate our approach, we consider ontology data because of their strong

structural heterogeneity. We used the Conference Track collection made available by

OAEI 20171. These ontologies lack instances; so we had to generate synthetic

instances. The goal is to evaluate the cost of interrogation; the generation and the

loading times are not evaluated [26–28].

Tests Environment. We use a cluster composed of a machine (i5-4 core, 8Go

RAM, 2To hard drive, 1 Gb/s network) in which we have installed a Neo4J instance –

version 3.2.

The Queries Set. We defined a set of 10 queries: three queries for selection, three

queries for projection, and four queries to evaluate the selection-projection combina-

tion. The set of queries based on the different comparison operators supported by

Cypher language. We employed the classical comparison operators, i.e.

{< , > , � , � , = ,} for numerical values as well as classical logical operators, i.e.

{and, or, exists} between query predicates. Also, we employed a regular expression to

deal with string values.

5.1 Setting up the Dictionary and the Similarity Matrix

In these experiments, we study the time needed to create and update the similarity

dictionary. Table 3 shows the maintenance time of the dictionary as the ontologies are

brought in. The results are clearly influenced by the number of elements (labels, edges,

attributes) already present in the graph. Indeed, the log file is regularly analyzed by our

parser, but it is not cleaned at each pass.

5.2 Evaluation of the Query Rewriting Module

In this experiment, we study the additional cost of our proposed approach, i.e. an

interrogation with a rewritten query via our similarity algorithm, compared to the cost

of a non-rewritten query, called initial query. We also compare the cost of the refor-

mulated query against the sum of the costs of the subqueries, obtained from the

decomposition of the reformulated queries.

The Table 4 reports the execution time of the rewritten queries, the initial queries,

and the subquery cumulative execution times. A first comparison addresses the exe-

cution time of the rewritten queries and the cumulative execution time of the

Table 3. Maintenance time of the syntactical dictionary according to the number of ontologies

Number of ontologies 2 4 6 8

Creation/update time (in seconds) 1.3 s 4.2 s 13.5 s 18.7 s

The dictionary size (KB) 2.7 2.9 3.4 3.5

the parsed logs file size (KB) 1333 14534 17602 21265

1 http://oaei.ontologymatching.org/2017/



sub-queries. We can note that the execution time of our approach is, at worst, equal to

the cumulative execution time of sub-queries, and it can go up to 2 times faster (in the

case of combined queries, for example in the case of our dataset). On the other hand, it

is at best equal to the execution time of an initial query.

To get a deeper understanding of these results, we have plotted the execution of our

queries. For example, during the execution of the query Q1.2 where we can notice that

during a reformulated query (where our algorithm uses the operator ‘Union’), Neo4J

starts the execution of the two ‘Match’ simultaneously; and the union of the two

results is consolidated only after the completion of the last ‘Match’ (the one with the

most rows). More precisely, in this projection query Q2.1, two types of labels are

evaluated: the first corresponds to the label of the initial query, which processes 35054

lines; the second corresponds to the label added by our rewriting algorithm and which

deals with 10000 lines. The number of lines explains the results illustrated in Table 2

and shows why our solution is at most equal to the execution time of the slowest sub-

query and at best is equal to the initial query.

6 Conclusion

In this paper, we have defined an approach based on the construction of data similarity

dictionaries allowing a rewriting of the users’ queries without transforming the stored

data. Our method is able to overcome the interrogation problem caused by the data

heterogeneity in graph-oriented NoSQL storage systems. Our approach computes for

each attribute, the set of its similar attributes (syntactic, semantic, and structural

heterogeneity) and it transparently rewrites users’ queries. Rewritten queries allow to

enrich initial queries and return the complete set of data.

As a perspective for this work, we intend to extend our mechanisms to support

more heterogeneity aspects; for example, consider the entities heterogeneity. We will

Table 4. Comparison of the execution time (in seconds) of the reformulated queries and the

initial queries (without reformulation)

Reformulated

query

Initial

query

Cumulative resulting

queries

Projection Q1.1

Q1.2

Q1.3

316

0.160

0.027

222

0.008

0.0013

316

0,166

0.027

Selection Q2.1

Q2.2

Q2.3

4.05

0.77

2.34

2.98

0.77

1.73

4.8

0.85

3.73

Combination (Projection -

Selection)

Q3.1

Q3.2

Q3.3

Q3.4

0.2734

0.0055

0.434

0.324

0.2082

0.0059

0.0431

0.324

0.4062

0.0073

0.9342

0.659



also expand the algebraic core of operators supported by the rewrite engine; for

example, by integrating aggregation operations.
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