OATAO

Cipen Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22473

Official URL
DOI : https://doi.org/10.1109/cscwd.2018.8465242

To cite this version: Cisse, Mamadou Lakhassane and Tran, Hanh Nhi
and Diaw, Samba and Coulette, Bernard and Bah, Alassane Collaborative
Processes Management: from Modeling to Enacting. (2018) In: 22nd
International Conference on Computer Supported Cooperative Work in
Design (CSCWD 2018), 9 May 2018 - 11 May 2018 (Nanjing, China).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

Collaborative Processes Management:
from Modeling to Enacting

Mamadou Lakhassane Cisse Hanh Nhi Tran Samba Diaw
University of Toulouse Jean Jaures University Paul Sabatier Cheikh Anta Diop University of Dakar
IRIT Laboratory IRIT Laboratory UMMISCO
Toulouse, France Toulouse, France Dakar, Senegal
mamadou.cisse@irit.fr Hanh-Nhi. Tran@irit.fr samba.diaw(@ucad.edu.sn

Bernard Coulette
University of Toulouse Jean
Jaures
IRIT Laboratory
Toulouse, France
coulette@univ-tlse2.fr

Abstract—Collaborative work is a complex activity that
involves several actors thus managing it is complicated. This
article addresses some matters of controlling collaborative work
in the point of view of process management. The underlying
objective is to discuss the issues from modeling to enacting
collaborative processes in existing process management
systems. To overcome the discussed problems, we are developing
a process management framework that integrates directly the
concept of collaborative task into both modeling language and
enacting mechanism. Moreover, we propose a flexible approach
that enables users to choose dynamically a suitable way to enact
their collaborative tasks.

Keywords—collaborative processes, patterns of collaboration,
process modeling, processes enacting, process management

1. INTRODUCTION

Nowadays, collaboration and teamwork are becoming a
necessity in most of processes, especially in System and
Software Engineering to develop complex products.
Considering a task is the smallest manageable work-unit of a
process, the collaboration can happen as coordination among
various tasks to synchronize their progress. It can also happen
as cooperation of multiple stakeholders inside a task, so-called
collaborative task, to achieve a common goal. In this context,
new methodologies and tools to manage collaborative
processes may be needed.

Since the last two decades, many researches have been
conducted in different communities on various aspects of
collaborative works from the way of thinking and working, to
the way of modeling, controlling and supporting [1]. This
paper examines works in (Business) Process Management
field to model and enact processes. We investigate the
adequacy of current Process Management Systems (PMSs) in

Alassane Bah
Cheikh Anta Diop University of
Dakar
UMMISCO
Dakar, Senegal
alassane.bah@ucad.edu.sn

managing emergent collaborative processes. While PMSs
provide support to coordinate well-structured processes with
non-collaborative tasks, few propose mechanisms to really
control collaborative tasks performed by several actors [2]. In
this paper, our objective is to identify the open issues from
modeling to enacting collaborative processes and suggest
some improvements.

Suppose there is a defined process containing collaborative
tasks as described in Section 2, we discuss in Section 3 the
main issues in modeling and enacting such a process. Then,
we attempt to identify the requirements of an efficient
framework allowing to model executable collaborative
processes and especially to easily deploy the modeled
processes in a PMS. Section 4 presents our proposal to
introduce flexibility at modeling and enacting time by an
approach based on collaborative patterns to allow process
actors choosing the most adapted way to perform and control
their collaborative activities. Section 5 discusses some related
works and Section 6 concludes this paper and outlines our
work in-progress.

II. ILLUSTRATING EXAMPLE

In this section, we present a simple process “Review a
Document” which will be used to illustrate our observations.
This process is composed of two tasks: Review Document and
Modify Document. The first task Review Document 1is
performed by the role Reviewer to review the submitted
document. It can be performed by several reviewers thus it is a
collaborative task. The second task Modify Document is
performed by the Author to deal with the annotations made by
the different reviewers and modify the original document.

In this example, we consider the following work sequence
relations between two tasks:

- Finish2Start (FS): the first task must finish so that the
second task can start.

- Start2Start (SS): the second task can start if the first task
has started.

Fig. 1 presents the two possible models (in the figure we
combined the two work sequence relations — FS or SS, but
each one of them consists of a distinct model) of the Review a
Document process corresponding to the above relation
between its two tasks. In these two cases, the process starts
with a Submitted Document to be reviewed as an input of the
Review Document task. This task produces an Annotated
Document artifact which will be used in the second task
Modify Document to produce a Revised Document.

Submitted Document
-

(. pertormes [™

Reviewer Review cument_

\35‘1

Doc
\ FS/SS Annotated Document

[9\ «performsa»
s

‘_——) \,/
T Modify Document —
s
Revis ed Document

Fig. 1. Review Document showing the two cases Finish2Start (FS) and
Start2Start (SS)

In Fig. 1, when the chosen sequencing is Finish2Start
(FS), before starting, the task Modify Document must wait
until the task Review Document is finished. The Start2Start
(SS) sequencing means that the Modify Document can start as
soon as Review Document have started.

As our first task can be realized by several actors,
collaboration for this process has to be supported at two
levels: coordination between the first task and the second task;
cooperation among actors of the first task for its completion.

I1I. ISSUES OF COLLABORATIVE PROCESS MANAGEMENT

The most important objective of process management is to
provide users a support to control the enactment of the
example process, i.e. to coordinate the tasks of the participants
to correctly progress the process. For that purpose, the process
model must provide enough information to process engine so
that it can decide when a task can start or finish.

Based on the illustrating example, this section discusses
some issues from modeling to enacting a collaborative
process. In this paper, we focus on the coordination and the
data exchange of collaborative tasks, the communication
between those tasks is out of scope of this work.

A. Ambiguities of collaborative process modeling

When using a PMS to enact a process model, a process
instance will be created, i.e. the instances of its tasks will be
created. The PMS must have enough information on the task

instances and the relations between them to allow a correct
control of the running process.

However, most of existing process modeling languages
(PMLs) do not provide a clear semantics on how to instantiate
a collaborative task. Consequently, from the process model in
Fig. 1, there are several possible interpretations to establish
the relations among task instances at enacting time. The
interpretations can be defined by using the workflow patterns,
as proposed in [3], describing various execution scenarios
based on different ways to sequence task instances (control-
flow patterns) and to exchange data between task instances
(data patterns). Those patterns served as inspiration in [4] for
Thuan et al. to define some collaboration patterns at
modelling, instantiation or execution time.

Following, we use two patterns proposed from [4] to
present different cases of the instantiation of the process
models from Fig.1:

- Duplicate in Sequence with Multiple Actors (aka
sequential pattern): this pattern is used when a task in
the process is enabled after the completion of the
previous task (in the same process). This pattern serves
to construct a series of consecutive tasks where there is
one input and one output and every actor produces a
specific part of the final output.

- Duplicate in Parallel with Multiple Actors (aka parallel
pattern): this pattern is used when a set of tasks are
executed simultaneously and produce different outputs. It
can be, optionally, followed by a merge of the different
outputs.

In Fig. 2, we present two cases corresponding to the use of
the sequential pattern. Both cases use the sequencing
Finish2Start (FS) between the tasks Review Document and
Modify Document. Review Document is a collaborative task;
thus, it has several task instances at enacting time. That
implies that every instance of Review Document must be
linked with the task instance Modify Document with the FS
sequencing.

=9,
Submitted Document

_ sperforms»s ."}>“ -

Bob Review Doc -inst1- =~ — . ==
’ ~ ==
/ FS Beb Annotated Document
/ -
¥ aperformss &=
B — S L2
e 20 Alice Review Doc -inst2-
Reviewer

X FS - -_r\.
~ FS FS Alice Annotated Document
~ | =performss -
i z
Eve I S SR

Review Doc -inst3-

~
2. i =
Author E®
* — Final Annotated Document

S =performss. e
gy SERTIEITe: : ?4—
Jeft g

Maodify Document

=
Revised Document
with FS

Fig. 2. Sequential case between

the Review Document instances

Finish2Start ~ (FS)

In the case where the sequencing between the instances of
Review Document task are set to FS, to start Review Doc. -
inst2- we must first finish Review Doc. -instl- and so on. The
difficulty in the use of this case lays in the fact that there is not
much support in the choice of the first instance to execute.
Also, what can drive the process manager to start with Bob in
the first place? This points out the problem of sequencing
among reviewers. Starting with Bob, what can drive him to
start with the first instance instead of the second?

However, when the sequencing between the instances of
Review Document are set to SS — meaning an instance can
start as soon as the preceding one has started — the difficulty
lays in the sharing of the different document between
instances. Indeed, to start a task instance, the needed input
might need to be in a defined state before it is manipulated in
the current task instance. Otherwise, in the example of Fig. 2,
we might have a situation where two task instances are
manipulating the same document, which is not wanted.

Given the sequencing between instances are the only
changes that occur in our example, for representation purpose,
we are going to leave out the actors and data shared between
instances.

Fe

Review Doc -inst1-

FS/ss

\,
Review Doc -inst2-

FS/SS

Modify Document

Fig. 3. Sequential case Start2Start (SS) with FS or SS between
the Review Document instances

Fig. 3 presents the cases corresponding to the Start2Start
sequencing between the two tasks of our process. Thus, every
instance of Review Document is linked to Modify Document
with SS.

In Fig. 3, with SS sequencing, Modify Document can start
as soon as all the three instances of Review Document have
started. However, when we have FS between the instances of
Review Document, semantically, Modify Document cannot
start until the last instance of Review Document has been
started.

Sy
Submitted Document
- i ~
- ~
>
Alice = . I s Eve
apsrformss - «perfcrmsa/
\ - Bob
b g uper'armsuﬂ > [O-
o6 Review Dog -inst3-

Rewew Doc -inst2-

™~ © e R
uperformss Modify Document

Fig. 4. Parallel case with FS or SS between Review Document instances and
Modify Document

Considering Fig. 4, the pattern does not semantically allow
to start the Modify Document as soon as one instance of
Review Document is finished (FS) or has started (SS) even
though it is a common scenario in real life (even with the
Review Document example).

If we consider one case (called situation A) where the
second task, Modify Document, has to be collaborative, thus
having multiple instances. In this situation, on both scenarios
(FS and SS) from Fig. 2, each instance of Review Document
would be linked (with FS or SS) to every instance of Modify
Document. That means Review Doc. -instl- would be linked to
two instances or more of Modify Document. That situation
applied in Fig. 4 implies that every output from each instance
of Review Document to be taken as an input in each instance
of Modify Document. This case is represented in Fig. 5. We
omitted the work sequences between the two main tasks and
also the actors on purpose to better represent the links with
inputs and outputs. With regard to this situation, there is no
defined shared data between the instances of the second task
which makes it difficult to really finish the enactment unless
adding a Merging task which will change the initial process.

[2)
Review ?oc -instt- Review Doc -inst2- Review Doc -inst3-

5 ~

™
= A= W=
b o o
Alice Annotated Document Bob Annotated Document Eve Annotated Document
s - L4

Madify Doc. -inst1-
rd

s
= =
o o
Revised Document Revised Document

Fig. 5. Representation of Situation A without the work sequences

B. Inadequacy of collaborative process enacting

When enacting a process, many collaborative situations as
described by the Workflow Patterns [3] can happen. As shown
in the evaluation on the website of Workflow Patterns [17],
not all of these patterns are supported by existing PMSs,
especially the patterns concerning multi-instances and shared
data as described in the given example.

One reason of this lack of support is that the
implementation of the complex patterns is not easy. It requires
the PMS to consider not only the relations between tasks in
the model but also the relations of task and data instances
emerging at enactment time. When a task executes multiple
times, suppose that the relations between its instances are
clearly defined, the process engine has to examine all the
task’s instances to make a decision on a state transition of the
task. For example, in the situation of Fig. 3, we cannot start
Modify Document until the last instance of Review Document
has been started. This implies a fine-grained control on all of
the predecessors of the task to execute (Modify Document) but
also a control on the links between the instances of the
previous task (Review Document).

When a multi-instances task with shared data is enacted
but not all instances are created at the same time, an issue that
can happen is whether the values of data elements are set for
all execution instances at the initialization of the multi-
instance task or whether they can be fixed after this occurs but
prior to the actual invocation of the task instance to which
they relate. Another similar issue can arise when we finish a
multi-instances task with different outputs produced by its
instances. The process engine may deal with a new task to
merge the outputs. Considering the situation depicted in Fig.
5, a merge of the Revised Document outputs is necessary. This
brings up the question of dynamically introducing a new task
during execution.

Even if a PMS implements some proposed patterns, it
provides a rigid way to support the way that a collaborative
task can be enacted, based on how the pattern is implemented.
In reality, the way used to enact a collaborative task should be
flexibly chosen according to the actual organization of the
participants and the nature of the processed data.

IV. TOWARDS A FLEXIBLE PROCESS MANAGEMENT SYSTEM FOR
COLLABORATIVE PROCESSES

To address the aforementioned issues, we have proposed
an approach to manage collaborative software processes
which aim at providing (1) a process modeling language
(PML) equipped with special constructs to describe
collaborative patterns; (2) an operational semantics enabling
execute the selected collaborative patterns; (3) a process
management system supporting flexibility by late binding so
that users can choose, at enactment time, appropriate
collaborative patterns corresponding to their organizational
model. Additionally, our approach allows to dynamically add
new instances of a running collaborative task, new actors for

the execution and part of artifacts and also delete them if
necessary.

For supporting our PML execution, we have also proposed
a process engine prototype, called CPE (Collaborative Process
Engine). Fig. 6 below shows the general architecture of our
collaborative process engine prototype. The project manager
interacts with the prototype to execute the different possible
actions. The component process models holds the different
models of processes that the prototype needs to execute. They
correspond to the process modeling language equipped with
special constructs to describe collaborative patterns. Different
listeners are available inside the process engine. They allow to
track the evolution of state of the different task instances that
are being enacted.

The process engine can access and store the different task
instances through the database management system
represented by the instances store. The necessary resources
and artifacts for the execution of the task instances are
available through external systems such as the artifacts
management system and the resources management system.
They are made available for the process engine through copy
requests.

-

Process Engine
(Listeners)

executes
Instances
Store

o°

-
Frocess

Project
Manager

Retrigve/listan

Resources
Management
System

Management
System

Fig. 6. General architecture of our CPE prototype.

Mainly our prototype allows project teams to upload a
process model and then generate all the activities and task
instances to be enacted. Given project development is
collaborative, the project manager can choose how many
instances of every collaborative task he wishes to instantiate.
This choice can be dependent on the complexity of the task,
the duration of the project and/or other factors organizational-
based. He can also choose the collaboration pattern to apply
for each collaborative task based on the project characteristics.
Our prototype is working with a set of patterns based on
parallel or sequential execution at first. The parallel pattern
means that the instantiated tasks are executed simultaneously
followed by a merge of the different outputs. The sequential
pattern means that every task instance must wait for the
previous task to be finished (for the Finish2Start — FS work
sequence). Those task instances are assigned to actors with
inputs and expected outputs. The resource assignment allows

every stakeholder to know his own tasks and the sequencing
between the others. Finally, every actor will be able to
graphically visualize the states of his task instances and next
steps to take.

V. RELATED WORKS

In order to provide an efficient support for collaborative
works, there are many works in CSCW (Computer-supported
Collaborative Work), CE (Collaboration Engineering) and
KM (Knowledge Management) addressing the problem of
understanding how people collaborate. They have proposed
solutions to design collaborative processes, to support sharing,
communication and negotiation in collaborative situations.
However, these research directions are out of scope of our
paper. We discuss in this section only the works dealing with
modeling and enacting collaborative processes.

Several works identify the recurrent patterns of
collaborative processes. In [3], authors propose a series of
workflow patterns for workflows functionalities. References
[4][5] propose both collaborative patterns even though [5]
only focuses on representing collaborative situations at
modeling time and not real situations at enactment time. Other
works propose special constructs to model collaborative
activities and protocols [6][7]. In [8], authors present an
extension of BPMN modeling language including notation to
handle occurring tasks in collaborative processes. References
[12][13] present a design approach as ThinkLets concepts to
achieve repeatable patterns of collaboration. In [14], authors
have developed a visual language to model collaboration
protocols. That language has been integrated in a model-
driven software development method. Some standard process
modeling languages as SPEM [15] and BPMN [16] provide
also notations to model certain collaborative aspects of
processes, such as activities which can have multiple instances
at enacting time, messages exchanged among activities, etc.
However, the cited modeling solutions focus on
communicating collaborative processes, thus produce non-
executable process models.

On enacting collaborative processes side, most of BPM
and PMS systems provide support for coordinate intra-process
activities, some of them providing also inter-processes
orchestration. However, the above systems do not propose
efficient support to control collaboration at task enactment
level, i.e. task instances inside a collaborative task. As
discussed in [2], there are CSCW systems providing support
for process modeling and execution as [9] and there are BPM
systems providing support for collaborative activities as
[10][11]. The main lack of these systems is their inability to
intertwine collaborative modeling and enacting of processes.

VI. CONCLUSION AND WORKS IN-PROGRESS

Our article mainly addresses issues in collaborative
processes management and limits in support by the existing
PMSs. In this paper, we underlined scenarios occurring during
a collaborative process execution. One of the most important
issue we discussed is the lack of clear semantics by existing

PMLs on how to instantiate a collaborative task. Thus, our
contribution is to propose an approach to manage
collaborative processes with a flexible PMS supporting
unexpected situations at enactment time and collaborative
tasks performed by several actors.

We are now continuing to develop the approach proposed
in section 4. Concretely, we are refining our process modeling
language to integrate the executable concepts dedicated to
collaborative processes. In order to ensure a real cooperation
between stakeholders, the operational semantics of such
concepts will be defined clearly to provide more control over
the transition from a task to another at enacting time.
Adopting the model-driven approach, we use a metamodel to
define our process modeling language. The operational
semantics of the language will be defined using the state
machines associated to each executable concept. We hope that
the proposed language will allow seizing all the steps in the
enactment of collaborative processes.

We are also investigating more control-flow and
collaboration patterns from [3] in order to provide more
choice in the enactment of a collaborative task. Basically,
those patterns will represent the different possible scenarios
during the execution of a collaborative process.

REFERENCES

[1] R. Briggs, G. Kolfschoten, V. Gert-Jan, and D. Douglas, “Defining key
concepts for collaboration engineering,” AMCIS 2006 Proceedings, p. 17,
2006.

[2] Hanane Ariouat, Eric Andonoff, Chihab Hanachi. Do Process-based
Systems Support Emergent, Collaborative and Flexible Processes?
Comparative Analysis of Current Systems. Procedia Computer Science,
Elsevier, 2016, vol. 96 (n C), pp. 511-520.

[3] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros, “Workflow patterns,” Distributed and parallel databases, vol. 14,
no. 1, pp. 5-51, 2003.

[4] T. T. Vo, B. Coulette, H. N. Tran, and R. Lbath, “Defining and Using
Collaboration Patterns for Software Process Development.pdf,” presented
at the International Workshop on Cooperative Model Driven
Development (CMDD 2015) within the 3rd International Conference on
Model-Driven Engineering and Software Development
(MODELSWARD 2015), Angers, France, 2015, pp. 557-564

[5] Jacques Lonchamp. Process model patterns for collaborative work. 15th
IFIP World Computer Congress - Telecooperation'98, Aug 1998, Vienna,
Austria, 12 p, 1998.

[6] K. A. Kedji, R. Lbath, B. Coulette, M. Nassar, L. Baresse, and F. Racaru,
“Supporting collaborative development using process models: a tooled
integration-focused approach. Journal of Software: Evolution and
Process, vol. 26, no. 10, pp. 890-909, Oct. 2014.

[71 . T. Hawryszkiewycz, “A metamodel for modeling collaborative
systems,” Journal of Computer Information Systems, vol. 45, no. 3, pp.
63-72, 2005.

[8] P. Antunes, V. Herskovic, S. F. Ochoa, and J. A. Pino, “Modeling Highly
Collaborative Processes,” in Proceedings of the IEEE 17th International
Conference on Computer Supported Cooperative Work in Design, 2013.

[9] Dustdar S.: Caramba A Process-aware Collaboration System supporting
Ad hoc and Collaborative Process in Virtual Teams. Distributed and
Parallel Databases, vol. 15,2004, pp. 457166.

[10]Charoy F., Guabtni A., Faura M.: A Dynamic Workflow Management
System for Coordination of Cooperative Activities. Business Process
Management Workshops, Vienna, Austria, September 2006, pp. 205-216.

[11]Mundbrod N., Beuter F., Reichert M.: Supporting Knowledge-intensive
Processes through Integrated Task Lifecycle Support. Int. Enterprise
Distributed Object Computing Conference Adelaide, September 2015, pp.
19-28.

[12]G.-J. de Vreede and R. Briggs, “Collaboration Engineering: Designing
Repeatable Processes for High-Value Collaborative Tasks,” in 38"
Annual Hawaii International Conference on System Sciences, 2005.

[13]R. O. Briggs, G.-J. D. Vreede, and J. F. N. Junior, “Collaboration
Engineering with ThinkLets to Pursue Sustained Success with Group
Support Systems,” vol. 19, no. 4, pp. 31-64, 2003.

[14]JesuS Gallardo, Crescencio Bravo, Miguel A. Redondo, and Juan De
Lara. 2013. Modeling collaboration protocols for collaborative modeling

tools: Experiences and applications. J. Vis. Lang. Comput. 24, 1
(February 2013), 10-23.

[15]S. OMG and O. Notation, “Software & Systems Process Engineering
Meta-Model Specification,” OMG Std., Rev, 2008.

[16]Object Management Group (OMG), Business Process Model and
Notation (BPMN), Version 2.0, 2011.

[17]Workflow Patterns ~ Website, http://www.workflowpatterns.com

