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ABSTRACT

As part of the Historic Photographic Paper Classification Challenge,

a multitude of approaches to quantifying paper texture similarity

have been developed. These approaches have yielded encouraging

results when applied to very controlled datasets containing pho-

tomicrographs of familiar specimens. In this paper, we report on

the k-nearest neighbors classification performance of two multis-

cale analysis-based texture similarity approaches when applied to a

much larger reference collection of silver gelatin photographic pa-

pers. The clusters for this data set were derived from a visual sorting

experiment conducted by art conservators and paper experts later ex-

tended through crowd-sourcing. The results show that these texture

similarity approaches, when combined with a simple k-nearest neig-

hbors classification algorithm, yield workable performances with

accuracy of up to 69%. We discuss this outcome in the context of

available data and the cross-validation procedure used, then provide

suggestions for improvement.

Index Terms— Texture similarity, photographic paper, crowd-

sourcing, multiscale analysis

1. INTRODUCTION

Texture is an essential characteristic of any photographic print, and

paper idiosyncrasies can help facilitate the functional and expressive

intentions of artists. After over 100 years of silver gelatin (traditional

black and white) photographic paper manufacture, the profusion of

textures can seem like a nearly infinite universe, defying all but the

most basic attempts at visual classification.

Texture analysis provides important insights to the community

of art scholars at museums and other collecting institutions. Un-

derstanding how a particular photographic paper was manufactured

can help validate authenticity, identify purpose, and make important

connections in the history of an artist or group of artists that may

have worked together [1, 2]. Paper classification has traditionally

been based on visual inspection by art conservators and curators [2];

however, several groups of researchers have begun researching al-

ternate methods as part of the Historic Photographic Paper Classi-

fication Challenge [1, 3] and have developed various computational

measures of texture similarity in the process [1, 2, 4–8]. These met-

hods have demonstrated great promise on very controlled data sets,

though their utility as a similarity measure when applied to larger,

real-world data sets remains an open question.

Work supported by Grant ANR-16-CE33-0020 MultiFracs.

The Yale Lens Media Lab (LML) Reference Collection of Pho-

tographic Papers is perhaps the largest of its kind in the world and

contains thousands of samples [9] from 65 manufacturers and more

than 360 brands, serving as an invaluable resource for developing

texture similarity approaches. The data set includes over 2,000

photomicrographs taken using magnification and raking light [1,10]

with each photopaper sample. Recently, a crowdsourcing experi-

ment was conducted to classify the images in the LML reference

collection into one of 6 groupings identified by art conservators and

paper experts [11]. In this paper, we assess the performance of two

previously-studied texture similarity quantifiers when used to clas-

sify images using a simple k-nearest neighbors algorithm. The two

image processing techniques are both based on multiscale analysis;

with one utilizing anisotropic wavelets [2], and the other fractals [4].

In addition to presenting the k-NN model cross-validation procedure

and classification performance on these two approaches, we present

the resulting confusion matrices and discuss the implications with

respect to the algorithms’ ability to help correctly – or incorrectly

– categorize texture images. The results of this paper serve to vali-

date the use of multiscale analysis approaches for assessing texture

similarity in large, real-world databases.

2. DESCRIPTION OF DATA SET

In 2007, an experiment conducted at the Museum of Modern Art

made a pioneering attempt to identify major texture groupings by

tasking 19 domain experts with sorting 81 texture images chosen

from the LML reference collection. The 6 texture categories ulti-

mately established by the group were analyzed through hierarchical

clustering, and showed that the observers largely shared agreement

across 6 “protean” texture clusters, described in more detail in [12].

As it was infeasible for 19 professionals to manually cluster all

2,000 images in the LML reference collection, a crowd-sourced clas-

sification task was performed using workers on the Amazon Mecha-

nical Turk (mTurk) platform [13]. The final classification labels as-

signed to each image were determined by simple majority consensus

and ultimately demonstrated 92% agreement between the crowd and

domain experts. In this expanded crowd-sourced experiment, 80 uni-

que mTurk workers completed 130 person-hours over two days, with

90% of the work done by 23 mTurk workers. The crowd-sourced

classification resulted in a rich set of data, with each sample recei-

ving 24 “votes” which provided a distribution of the likelihood that

each image was a member of each group. The reader is encoura-

ged to consult [11] for detailed information about the crowd-sourced

classification process.



3. TEXTURE CHARACTERIZATION TOOLS

As they were fully described elsewhere [2,4], we only provide here a

qualitative description of the two texture processing tools considered

herein, emphasizing features and distances on which they rely.

3.1. Anisotropic Multiscale Analysis (AMA)

Anisotropic multiscale analysis (AMA) [14] has been proposed in

the context of the analysis of scale-free (or scale invariant) tex-

tures. It relies on the use of the Hyperbolic Wavelet Transform

(HWT) [15]. The HWT consists of a variation of the 2D-Discrete

Wavelet Transform (2D-DWT) [16], that explicitly takes into ac-

count the possible anisotropic nature of image textures. Indeed,

instead of relying on a single dilation factor a used along both di-

rections of the image (as is the case for the 2D-DWT), HWT relies

on the use of two independent factors a1 = 2j1 and a2 = 2j2 along

directions the horizontal (x1) and vertical (x2) directions. The HWT

coefficients of imaged paper i are defined as inner products against

wavelet templates, dilated with horizontal and vertical factors

a1; a2 and translated at location k1, k2: Ti((a1, a2), (k1, k2)) =
〈i(x1, x2),

1√
a1a2

ψ(x1−k1

a1

, x2−k2

a2

)〉. Structure functions, consis-

ting of space averages of the Ti((a1, a2), (k1, k2)) at scales a1, a2,

are computed: Si((a1, a2), q) = 1
na

∑

k
|Ti((a1, a2), (k1, k2))|

q,

with na the number of Ti((a1, a2), (k1, k2)) actually compu-

ted. To ensure that features do not depend on image intensity

and that all scales contribute to texture characterization, the fe-

atures consist of log-transformed normalized structure functions

S̃i(a, q) = ln Si(a,q)∑
a′ Si(a′,q)

. We use here q = 2 and a vector of 7 dy-

adic scales a = 2l, ranging from 2 pixels (6.51µm) to 27 (834µm),

for a total of 7× 7 = 49 features S̃i(a, q).
To measure proximity between two images i and j, a Lp norm

cepstral-like distance is computed (here we use P = 1):

D(i, j) =
∑

a

|S̃i(a, q)− S̃j(a, q)|
p

) 1

p

.

3.2. Pseudo-area-scale analysis (PASA)

The PASA approach [4] uses fractal analysis to decompose a sur-

face into a patchwork of triangles of a given size. As the size of the

triangles is increased, smaller surface features become less resolva-

ble and the ‘relative area’ of the surface decreases. The topological

similarity of two surfaces is computed by comparing relative areas

at various scales. Though photomicrographs taken using magnifica-

tion and raking light do not provide a direct measure for height, light

intensity (i.e., pixel brightness) is used as a proxy for height.

PASA first extracts a square N × N region from the center of

the image (where N was chosen to be 1024), and normalizes the

intensity of the resulting extracted image. The grid of N2 equally

spaced points (representing pixel locations) is decomposed into a

patchwork of 2(N−1
s

)2 isosceles right triangles where s is a scale

parameter representing the length of two legs of each triangle. The

pixel values at each of the triangle vertices are then taken as the

‘pseudo-height’ of each of the vertices. The area of each triangle in

3-D space is then computed and the areas of all triangular regions are

summed, resulting in the total relative area As at the chosen scale s,
serving as features. a vector S of scales s ranging from 1 pixel to 34

pixels, (6.51 µm to 0.221 mm), for a total of 8 features. To assess

the similarity of two images i and j, a χ2 distance measure d(i, j) is

computed via

D(i, j) =
∑

s∈S

(

A
(i)
s −A

(j)
s

)2

A
(i)
s +A

(j)
s

.

whereA
(i)
s is the vector of relative areas, used as features, computed

for To conduct feature extraction, the relative area for an image is

computed over a range of scale values; in this study, 8 scale values

were used ranging from 1 pixel to 34 pixels, which correspond to

lengths of 6.51 µm to 0.221 mm, respectively.

Small values of d(i, j) indicate high similarity between images

i and j, while large values indicate low similarity.

4. AUTOMATED CLASSIFICATION VIA K-NEAREST

NEIGHBORS ALGORITHM

4.1. k-Nearest Neighbors Algorithm

k-nearest neighbors (k-NN) is a simple and well-known machine

learning algorithm that uses some “nearest” group of training data

around a test data point to classify it. [17]

For this application, we treat the AMA and PASA algorithms

each as a distance function that k-NN uses to classify photomicro-

graphs in texture categories 1-6. Subsequently, we evaluate the accu-

racy to gain insight into the usefulness of texture “distance”, as cal-

culated by AMA and PASA, as features for classifying paper sam-

ples.

In the simplest k-NN implementations, a test point is classified

simply by assigning it to the most common class among the k ne-

arest training points. In the interest of building a “fairer” classifier,

we test this unweighted approach against both rank- and distance-

weighted k-NN variations as described in [18]. This is achieved by

calculating the contribution of each texture category by summing

the inverse distances of the corresponding training samples (in the

distance-weighted method) or the inverse rank of their similarity to

the test sample (in the rank-weighted method) and accepting the ca-

tegory with the largest sum. In the event that multiple categories

have the same value, k is decremented until the tie is broken.

4.2. Dataset partitioning and cross-validation

The dataset was partitioned into training/validation and test sets to

isolate the model-building and evaluation stags. We used the origi-

nal 64 images classified by domain experts as the test set, and this

same test set was employed in [11]. To create the training and vali-

dation set, we first excluded images from the mTurk-classified set of

2,000 where the crowd’s consensus was less than or equal to 50%.

This was done to restrict attention to images where there was large

agreement that the image was a member of a particular group, and

reduced the training/validation set to 1,413 images. Some groups

contained many more images than others as a result, with the largest

group containing 490 images and the smallest group having 120.

To optimize the classifier models’ two hyperparameters (the

value of k in k-NN and a weighting method out of ‘unweighted’,

‘rank’, and ‘distance’ as described in Section 4.1), we used the po-

pular “k-fold cross validation” technique. We clarify that the k in the

name of this cross-validation technique is distinct from the k in the

k-NN algorithm, and in this paragraph only, k refers to the number

of folds. Under this approach, we randomly partitioned the original

1,413 images into k = 10 “folds” or equal sized subsamples, and

iteratively used each of the k subsamples as cross-validation data

for testing the model. Meanwhile, the remaining k − 1 subsamples

were used as training data so that each of the k subsamples was used

exactly once as cross validation data. We selected k = 10 because



of the reported optimal tradeoff of reliability and efficiency for that

number of folds [19].

We then performed 5 randomized trials (by shuffling the data-

set according to random seeds) of each 10-fold cross-validation for

both AMA and PASA with all possible combinations of the hyper-

parameters. The final models were selected by observing the weig-

htings method and values of k in the k-NN algorithms for AMA and

PASA that resulted in the largest Top-1 accuracy. Note that Top-1

accuracy is simply the proportion of times that the model prediction

agrees with the mTurk crowd-assigned label, though we also report

on Top-2 accuracy (i.e., the proportion of times that the model’s top

2 predictions agree with the true label).

Finally, we note that when the aforementioned hand-sorting ex-

periment was conducted by the domain-experts, Group 1 was a so-

mewhat miscellaneous group that included a variety of highly stip-

pled textures that were distinct from the other textures in the group.

As such, we decided to move these stippled images into their own

“seventh” group, and the k-NN classifier was built to classify into 7

groups instead of the original 6. Subsequently, at the output of the

k-NN classifier, any elements which were deemed to be part of this

new seventh group were reassigned to be classified into Group 1,

and so all results reported in the next section evaluate the ability of

the k-NN classifier to classify into the original 6 groups. The choice

between using 6 and 7 groups was in fact another hyperparameter se-

lected during cross-validation, but we will not discuss this at length

in the interest of presenting uncluttered results.

5. RESULTS

5.1. Cross-validation results

In order to select an optimal k and weighting scheme for the k-NN

models on AMA and PASA, a 10-fold cross-validation procedure

was performed on a training set of 1,413 images as described in

Section 4.2. The best average Top-1 and Top-2 accuracy metrics

found across values of k from 1 to 1,271 (the size of 9 training folds)

in 5 randomized trials of cross-validation are given in Table 1 for

both AMA and PASA. In computing the cross-validation results, 5

trials were deemed sufficient because the standard deviation of the

average Top-1 and Top-2 accuracy for each k was no greater than

0.34% for any iteration of the test, meaning that we would not ex-

pect significantly different accuracy results from more trials.

Weighting Best Avg. Top-1 Best Avg. Top-2

AMA

None 75.17% at k = 9 95.06% at k = 25
Rank 78.36% at k = 19 95.78% at k = 43
Distance 74.73% at k = 3 94.73% at k = 25

PASA

None 71.59% at k = 5 89.84% at k = 9
Rank 72.96% at k = 15 90.80% at k = 11
Distance 68.87% at k = 5 88.93% at k = 13

Table 1: Best average accuracies of k-NN weighting schemes for

AMA and PASA over 5 randomized trials of 10-fold cross-validation

As shown in Table 1, the best possible Top-1 accuracy was

achieved during cross-validation using rank weighting at k = 19
and k = 15 respectively for AMA and PASA. The average accuracy

for both algorithms as a function of k is visualized in Fig. 1, and

suggests that in general the choice of k does not have a significant
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Fig. 1: Average accuracy of k-NN on AMA and PASA using rank

weighting during 5 randomized trials of 10-fold cross-validation.

Global maxima indicated with ∗.

impact on accuracy. (Data for k > 60 is not shown but was cal-

culated.) This finding is a logical outcome of the rank-weighted

scheme, since each additional neighbor included in the classification

calculation will contribute increasingly little to the final prediction.

5.2. Test results

From the process of cross-validation on the training set of 1,413 ima-

ges, we built two rank-weighted k-NN models and found the optimal

value of k to be 19 for AMA and 15 for PASA as described in Section

5.1. In this section, we report the results of running the optimal mo-

dels on the test set of 64 images classified by domain experts.

Because the distribution of categories was not uniform across

the dataset, it is important to consider the results in relation to the

size of largest class: for the dataset of 1,477 images used in this

paper, class 6 held the majority with 500 images or about 34% of

the total. Therefore, the Top-1 accuracy is only meaningful relative

to that baseline, since a model that simply classified every image as

class 6 would be 34% accurate.

The accuracy results for the constructed k-NN models for AMA

and PASA using training and test sets of 1,413 and 64 images re-

spectively are displayed in Table 2, showing that k-NN applied to

PASA outperforms AMA in Top-1 accuracy but vice-versa for Top-

2 accuracy. Given the significant advantage of AMA in all cases

during the cross-validation phase, it is surprising that PASA’s k-NN

model is 9% more accurate in Top-1 classification.

Top-1 Accuracy Top-2 Accuracy

AMA, k = 19 62.50% 89.06%

PASA, k = 15 68.75% 87.50%

Table 2: Test results of k-NN on AMA and PASA

To help understand the behavior of k-NN on each algorithm,

confusion matrices are provided in Fig. 2 and show the number of

images from each “true” (crowd- or expert-determined) category that

were predicted to be certain categories by k-NN. Results at the opti-

mal k value for each algorithm are shown for the 5 trials of 10-fold



1 2 3 4 5 6 1 2 3 4 5 6

1 522 26 12 0 5 0 1 411 45 4 62 0 0
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Fig. 2: Confusion matrices for k-NN models indicating the total correct and incorrect classifications in each category

cross-validation as well as the test dataset. Below we present some

interesting observations from the matrices:

• The k-NN models for both AMA and PASA frequently mis-

labeled class 2 images as class 5, class 4 images as class 3,

and class 6 images as class 5 in cross-validation and testing

• Class 2 was always the most commonly misclassified group

• k-NN with PASA was particularly good at identifying class 6

images ( ≈90% accuracy) in both cross-validation and testing

• The classification performance on several categories changed

significantly between the cross-validation and test stages, but

in different ways for AMA and PASA (e.g. accuracy for

class 2 decreased 35.01% in absolute terms with AMA and

increased 21.73% with PASA; accuracy for class 1 decreased

36.28% for AMA but only 1.23% with PASA)

• The distribution of categories in the test set was much more

uniform than in the training set

Although more context is required to determine the relationship

between this information and the test results, the confusion matrices

allow some speculation about the cause of inconsistencies between

cross-validation and testing results. Large false-positive and false-

negative entries in the matrices may suggest that there are aspects of

AMA and PASA which are less ideal for comparing certain types of

texture images. Indeed, the high Top-2 performance of both models

(indicating that most texture images were either classified correctly

or “just” missed) suggests that the algorithms are more intelligent

than the Top-1 metric alone can convey; targeted improvements in

processing certain texture class features may therefore measurably

increase Top-1 accuracy. In addition, the dissimilar distributions un-

derlying the training and test datasets are likely a source of unrelia-

bility; for instance, there is a larger proportion of class 2 images –

the most error prone group – in the test set.

6. CONCLUSIONS AND PERSPECTIVES

In this paper, we described a k-nearest neighbors approach to clas-

sifying photographic paper textures by using calculations from two

multiscale analysis-based texture comparison algorithms (AMA and

PASA) in order to make a preliminary assessment of their usefulness

with uncontrolled datasets. In the cross-validation phase with a trai-

ning set of 1,413 images labeled by mTurk workers, we found that

the k-NN models for AMA and PASA were able to achieve up to

78.36% and 72.96% Top-1 accuracy respectively. When testing on a

domain expert-labeled dataset of 64 images, those accuracies fell to

62.50% and 68.75%, though Top-2 accuracies approached 90%.

Although some performance loss is to be expected when mo-

ving from a training to test scenario, we did not anticipate that the

Top-1 accuracy of the k-NN model for AMA would fall below that

of PASA. While a larger test set is needed to examine the cause, it

is probable that dissimilar distributions and characteristics of ima-

ges between the training and test sets are partly responsible. It also

cannot be ignored that the classifications assigned to the training set

by non-expert mTurk workers were used to evaluate the accuracy of

test images classified by domain experts. While a previous study has

shown that the mTurk workers most often classify images in consen-

sus with domain experts [11], it is possible that some images used to

train the k-NN models were labeled incorrectly (i.e., domain experts

might disagree with the crowd in some cases).

Nonetheless, the initial results demonstrate the feasibility of

using both AMA and PASA to measure texture similarity and

provide features for classification, and a logical extension of the

research would investigate other classification algorithms and in-

clude other available metadata for each texture sample (such as

reflectance, paper brand, etc.) Further, this study demonstrates that

such schemes not only share an internal logic, making for useful

comparisons, but also bear a measurable relationship to human per-

ception. Future work to isolate the specific strengths and weaknesses

of computational methods alongside expert observation has the po-

tential to refine the classification algorithms as well as help experts

achieve heightened visual acuity and incisiveness. Continued work

along these lines also holds promise of more precisely modeling

sets of features that drive human perception and classification of

textured surfaces. More practically, expert systems based on careful

characterization and automated sorting of visual/tactile attributes

could form the basis of networked platforms that would enable the

discovery of material-based affinities among objects, in the fine art

domain and beyond.

The data set of photographic paper textures used in this paper

can be obtained by emailing the contact author.
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