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EXISTENCE, UNIQUENESS AND ASYMPTOTIC ANALYSIS OF OPTIMAL

CONTROL PROBLEMS FOR A MODEL OF GROUNDWATER POLLUTION

Emmanuelle Augeraud-Véron1, Catherine Choquet1 and Élöıse Comte1

Abstract. An optimal control problem of contaminated underground water is considered. The spatio-

temporal objective takes into account the economic trade o↵ between the pollutant use –for instance

fertilizer– and the cleaning costs. It is constrained by a hydrogeological model for the spread of the

pollution in the aquifer. We consider a broad range of reaction kinetics. The aim of the paper is

two-fold. On the one hand, we rigorously derive, by asymptotic analysis, the e↵ective optimal control

problem for contaminant species that are slightly concentrated in the aquifer. On the other hand, the

mathematical analysis of the optimal control problems is performed and we prove in particular that the

latter e↵ective problem is well-posed. Furthermore, a stability property of the optimal control process

is provided: any optimal solution of the properly scaled problem tends to the optimal solution of the

e↵ective problem as the characteristic pollutant concentration decreases.

Résumé. On considère un problème de contrôle optimal de contamination des eaux souterraines.

L’objectif économique prend en compte le nécessaire compromis entre l’utilisation du polluant –par

exemple de l’engrais– et les coûts de dépollution. Il est soumis à la contrainte d’un modèle hy-

drogéologique pour la propagation de la pollution dans l’aquifère. On considère une large gamme de

réactions cinétiques. L’objectif de cet article est double. D’une part, nous construisons rigoureusement,

par analyse asymptotique, le problème de contrôle optimal e↵ectif pour des contaminants présents en

faible concentration dans l’aquifère. D’autre part, nous analysons le problème de contrôle optimal et

nous montrons en particulier que le problème e↵ectif est bien posé. De plus, nous démontrons une pro-

priété de stabilité du processus de contrôle optimal : toute solution optimale du problème adimensionné

converge vers la solution optimale du problème e↵ectif lorsque l’ordre de grandeur de la concentration

du polluant décrôıt.

1991 Mathematics Subject Classification. 49A20,49A50, 37N40, 76R99, 37N35.

April 7, 2018.

Introduction

Groundwater quality is a major concern for water supply. Human activities lead to some inevitable pollution.
For instance, agriculture is the main pollutant source, with 50 to 80% of the total nitrogen and phosphorus
loaded in fresh water in Europe (Lankoski and Ollikainen [17]). When pollution is linked with an economical
activity, the corresponding benefits have to balance somehow the cleaning costs. This question is addressed in
the present paper through an optimal control formulation. The problem is constrained by the dynamics of the
pollutant in the aquifer, thus by the classical conservation principles, in the form of a highly coupled system of
nonlinear partial di↵erential equations. More precisely, the species displacement is ruled by a parabolic equation

Keywords and phrases: Optimal control problem, Hydrogeological state equations, Nonlinearly coupled problem, Parabolic and
elliptic PDEs, Asymptotic analysis, Well-posedness
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of convection-di↵usion-reaction type which is nonlinearly coupled to an elliptic equation ruling the velocity of
the solute.

Let us quote some references devoted to optimal control problems constrained by a reaction di↵usion system.
The spatial dimension of the economic problem is often ignored. This is for instance the case in Van der Ploeg
and de Zeeuw [20], where water production wells and pollution emission are located at the same place. Such an
assumption is refined in [5] where Bordenave et al assume a time delay between the pollutant emission and the
water contamination. Then, it was proved by Augeraud and Leandri [2] that optimal path may be cyclic for
some specific time delay. The spatial dimension is taken into account, especially the di↵usion of pollution, in
Brock and Xepapadeas [6] who study a pattern formation in managed shallow lake. We also mention Camacho
and Pérez-Barahona [7] who worked on a problem of land use under air pollution stress and De Frutos and
Mart́ın-Herrán [11], who consider a groundwater pollution in a multiregional framework. However, except in
De Frutos and Mart́ın-Herrán [11] and in Yuan et al [26] for numerical experiments, or in Benosman et al [4]
for more theoretical results, where two-dimensional problems are considered, space dimension is often one and
fluid velocity and di↵usion coe�cients are always assumed given and constant.

In the present paper instead, a complete hydrogeological model for the spread of the pollutant in the three-
dimensional aquifer is included. The velocity of the flow is given by an elliptic PDE expressing the total
mass and moment conservations. Each species concentration is ruled by a parabolic PDE, of convection-
di↵usion-reaction type, modeling its mass conservation. The microscopic velocity heterogeneity due to the
porous medium geometry distorts the classical di↵usion term, which involves actually a dispersion operator
nonlinearly depending on the velocity. Reaction terms are assumed very generic, allowing all the classical
(nonlinear) isotherms. The economic objective, possibly set on an infinite time length, takes into account the
long-run consequences of the optimal policy. A first analysis of an optimization problem constrained by the
same type of PDEs problem was performed in [1] where we obtained an existence result for a global optimal
control. This result is also established here, with a new proof, and extended in two directions. On the one
hand, we study the behavior of the problem for small pollutant concentrations. More precisely, we rigorously
derive, by asymptotic analysis, the e↵ective optimal control problem for contaminant species that are slightly
concentrated in the aquifer. This dimensionless problem is more tractable since a part of the heterogeneity in
the parameters of the original problem has disappeared thanks to the asymptotic process. The convergence
result allows to substitute this new model to the original one, provided its validity range, specified by the
scaling analysis, is respected. On the other hand, a mathematical analysis of the optimal control problem is
performed, where we prove in particular that the latter e↵ective problem is well-posed. The uniqueness of the
optimal solution is a key result, giving sense to further studies, numerical studies for instance, and to the use of
the results for decision aids. The uniqueness is proved here when assuming small pollutant concentrations but
remains an open question in the general setting. Furthermore, a stability property of the optimal control process
is provided: any optimal solution of the generic problem tends to the optimal solution of the e↵ective problem
as the characteristic pollutant concentration decreases. Let us recall that such a result is not straightforward.
Perturbations of optimal control problems of PDEs have been studied for instance by Haraux and Murat [14]
who proved in particular that the solution of the perturbed problem does not necessary converge to the one of
the limit problem. Other counterexamples are provided in Kogut and Leugering [15].

The paper is organized as follows: in Section 2, we present the optimal control problem constrained by the
transport and the displacement of the pollutant in groundwater. An appropriate scaling is introduced in the
dimensionless form of the model for emphasizing the order of the pollutant concentrations. The main results
of the paper are then claimed. Section 3 is devoted to a preliminary stability analysis of the state problem. In
Section 4, a generic global existence result for the optimal control problem is proved. A well-posedness result
is also achieved. The asymptotic analysis of the model for small characteristic concentrations let us derive in
Section 5 the corresponding e↵ective model, which turns out to be well-posed.
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1. Description of the Problem

Let us begin by the state system, which is issued from the space-time dynamics of the pollutant in the
underground. We refer to [1] for a more precise derivation. Assume for the sake of simplicity that there is only
one pollutant of interest. We denote by c its concentration. The behavior of the pollutant is driven by the
following system of PDEs

R @tc+ v ·rc� div( S(v)rc) = �r̃(c) + p(1� c)� gc, (1)

div(v) = p+ g, v = �r�, (2)

where the velocity of the mixture, v, is expressed as a function of the hydraulic head � through the Darcy law.
Here, p stands for the pollutant load, that is the unknown of the upcoming optimal control problem. Term
g corresponds to another pollution source term which takes into account the contribution from the soil itself
and other inputs. The structure of the soil is described in the porosity function,  , and in the fluid mobility
tensor, , rating the permeability of the underground with the viscosity of the fluid. The dispersion tensor
is S(v). Following Scheidegger [22], we consider the nonlinear dependency of the longitudinal and transverse
components of the dispersion on the velocity: tensor S(v) is such that

S(v) = SmId + Sp(v), Sp(v) = |v|

⇣
↵L

|v|2
v ⌦ v + ↵T (Id�

1

|v|2
v ⌦ v)

⌘
(3)

where Sm, ↵L and ↵T are respectively the di↵usion coe�cient, the longitudinal and transverse dispersion factors.
Here u⌦ v denotes the tensor product, (u⌦ v)ij = uivj , while u · v denotes the scalar product, u · v =

P
N

i=1
uivi

and |u|
2 = u · u. The idendity matrix is denoted by Id. The eventual adsorption of the pollutant by the soil is

assumed to be a linear and instantaneous reaction, following the arguments in de Marsily [19] (page 251). The
corresponding retardation factor is R. The other reactions are resumed in the term r̃(c). Classical isotherms
(see e.g. Williams [25]) are described by linear functions, in the form r̃(c) = kc, or by Freundlich functions,
r̃(c) = kc

k
0
, or by Langmuir functions, r̃(c) = kc/(1 + k

0
c), (k, k0) 2 R2

+
.

The model is scaled with regard to the characteristic pollutant concentrations by denoting:

c = cr ĉ,

where cr is the reference concentration. The characteristic concentration cr is supposed to be very small in a large
part of the present paper. This assumption is frequently realistic (e.g. Commissariat général au développement
durable, [27]). From the mathematical viewpoint, such a scaling justifies the perturbation analysis of the
optimal control problem, depending on a small parameter. Let also v = vrv̂, � = �r�̂, p = prp̂ and g = gr ĝ,
Sm = Sm,rŜm, Sp = Sp,rŜp. We introduce reference characteristic reaction parameters kr 2 Ra, a 2 N, in the
reaction function r̃ and thus get a scaled isotherm denoted by r, r : (k, x) 2 Ra

⇥R 7! r(k, x) 2 R. For instance,
the Freundlich and the Langmuir isotherms presented above depend on two characteristic parameters and thus
correspond to a setting with a = 2. The length scale is denoted by xr, such that x̂ = x/xr, the time scale is tr,
such that t̂ = t/tr. The dimensionless form of (1)-(2) then reads

R cr@t̂ĉ+
vrtr

xr

crv̂ ·rx̂ĉ�
tr

x2
r

cr divx̂
�
 (Sm,rŜmId+ vrSp,rŜp(v̂))rx̂ĉ

�

= �trr(kr, cr ĉ) + trprp̂(1� cr ĉ)� grtrcr ĝĉ,

vr

xr

divx̂(v̂) = prp̂+ gr ĝ, v̂ = �
�r

vrxr

rx̂�̂.



4 TITLE WILL BE SET BY THE PUBLISHER

We now have to use the realistic scalings for the application we have in mind. As already mentioned, our aim
is to focus on settings where the reference concentration cr is very small. We thus set

cr = ✏, ✏⌧ 1.

We also assume that the pollutant flux is of the same order and, of course, that it is not the main process ruling
the displacement in the reservoir so that the Darcy velocity remains of order one:

trpr = O(✏),
gr

xrvr
= O(1), vr = O

⇣
�r

xr

⌘
.

We now choose the characteristic time scale. We bear in mind that we aim to derive a model for the optimal
control of polluted underground water. We thus have to select a large time scale, in the sense that any pollutant
plume infiltrating the reservoir has to be taken into account until it reaches out beyond the captation wells. We
thus choose the di↵usion time scaling:

tr =
x
2

r

Sm,r

.

It is well known (e.g. [3]) that the displacement of water in a porous medium is a convection dominated process
and, moreover, that dispersive e↵ects are more important than the purely di↵usive ones. With the latter
di↵usive scaling, we thus can consider that vrtr/xr � O(1) and trvrSp,r/x

2

r
= O(1). Notice that it means in

particular that the Peclet number, Pe= xrvr/Sm,r, is at least of order one, which is the realistic setting for this
type of flow. With the latter scales, we get the following system:

R @
t̂
(✏ĉ) + ✏v̂ ·rx̂ĉ� ✏ divx̂( S(v̂)rx̂ĉ) = �r(✏, ✏ĉ)� ✏gĉ+ ✏p̂(1� ✏ĉ),

divx̂(v̂) = ✏p̂+ g, v̂ = �rx̂�̂.

Term r(✏, ✏ĉ) is the scaled isotherm taking into account the eventual dependance of the Damköhler number on ✏
(see e.g. Choquet and Mikelić [8] and Remark 2.4 below for explicit examples). For emphasizing the dependance
of the solutions both on ✏ and on the pollutant load p, we denote

ĉ = c✏,p, �̂ = �✏,p, v̂p = v✏,p.

Let also r✏ be defined by
r✏(c) := r(✏, ✏c)/✏.

After simplification by ✏, the scaled state system finally reads (without hats for lighter notations)

R @tc✏,p + v✏,p ·rc✏,p � div( S(v✏,p)rc✏,p) = �r✏(c✏,p)� gc✏,p + p(1� ✏c✏,p), (4)

div(v✏,p) = ✏p+ g, v✏,p = �r�✏,p. (5)

Let us now describe the optimization part of our problem. We consider a standard central planner objective,
which takes into account the benefits of the polluting production (once again, the reader may bear in mind
the example of the fertilizers use) on the one hand and cleaning costs on the other hand. We only address the
critical case where these costs are of order one even for low concentration pollutants. The instantaneous benefits
is modeled by a function f depending on time, space and on the pollutant load. Cleaning costs are described
by an operator D depending on the position of the production wells and on the pollutant concentration c✏,p

at this position. The general form of the cleaning cost operator encompasses several properties highlighted by
empirical studies. First, it has been point out by Clark and Dorsey [9] that treatment costs are site specific. As
they mention no two treatment plants are alike. Costs depend on the water quality, on the cleaning technology
(chemical treatments, such as disinfectants, coagulant, PH adjusters, Ultraviolet treatments, ...). Empirical
studies have been launched to compute these costs. According to Roger [21], the water quality determines the
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quantity of chemicals needed to clean the water. Based on a study realized by Dearmont et al. [10], Roger
explicitly obtains the cost function as a function of water turbidity, pH and ground-water contamination. The
objective thus reads

J(p) =

Z
T

0

⇣Z

⌦

(f(t, x, p)�D(x, c✏,p)) dx
⌘
e
�⇢t

dt (6)

where ⇢ 2]0, 1[ is the social discount rate, [0, T ] and ⌦ are respectively the time and space domain of interest
and c✏,p satisfies (4)–(5) completed by initial and boundary conditions.

To sum up, we state the following definition.

Definition 1.1 (Problem P✏). Let ✏ > 0. Let E✏ be the set of admissible controls. Let J be defined by (6).
Find p

⇤
✏
2 E✏ such that

p
⇤
✏
= argmax

p2E✏

J(p).

Remark 1.2. In the present paper, we assume that there is only one component of interest, the one of
concentration c. This simple setting has been chosen for a clearer presentation of our methodology, despite
a more realistic framework would of course involve several pollutants. If other soluble species are taken into
account, say n components, the state problem (1)-(2) takes the form

Ri @tci + v ·rci � div( S(v)rci) = �r̃i(c)� ci

nX

j=1

r̃j(c)

+pi(1� ci)� ci

nX

j=1,j 6=i

pj + gi � ci

nX

j=1

gj , i = 1, . . . n� 1,

div(v) =
nX

j=1

(pj + gj)�
nX

j=1

r̃j(c), v = �r�,

where we set c = (c1, . . . , cn) and cn = 1 �
P

n�1

i=1
ci. On the one hand, comparing the structure of this model

with the one of (1)-(2), one easily guess that the mathematical analysis providing an existence result is very
similar for both systems. But on the other hand, an hypothetical uniqueness result is very dependent of the
form of the reaction terms r̃j coupling nonlinearly all the equations. It thus requires a case-by-case analysis
according to each chemical kinetics. At the end of the present paper, the reader will be probably convinced that
the assumptions on the reaction functions r̃j are also crucial for stating a uniqueness result for each optimal

control problem in the form Ji(pi) =
R
T

0

�R
⌦
(fi(t, x, pi)�Di(x, ci))dx

�
e
�⇢t

dt that may be associated to the state
system. The uniqueness of the optimal control for a global functional in the form J(p1, · · · , pn) =

P
n

i=1
Ji(pi)

is in general out of reach.

2. Mathematical Assumptions and main Results

Space is limited to a bounded domain ⌦ ⇢ RN , N  3, representing an area containing both the pollution
source and groundwater collection wells. We assume that the boundary @⌦ of ⌦ is such that @⌦ 2 C

2. Time
horizon is denoted by T , with a small abuse of notation allowing

0 < T  1.

Let ⌦T = ⌦⇥ (0, T ).
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We begin with a mathematical setting ensuring, at least, an existence result of weak solutions for the state
system (4)–(5). It is completed by the following initial and boundary conditions. Here we choose Neumann
conditions for c (no-flux) and Dirichlet conditions for �, namely

S(v✏,p)rc✏,p · n = 0 on @⌦⇥ (0, T ), (7)

�✏,p = �1 on @⌦⇥ (0, T ), (8)

where n is the unit exterior normal to @⌦. As mentioned in [1], other boundary conditions could be treated
with slight modifications in our computations. The initial condition is

c|t=0 = c0 in ⌦. (9)

We assume

Sm > 0, 0  ↵T  ↵L, R > 0

and that there exist real numbers  �,  +, and 0 < �  +, such that

0 <  �   (x)   + a.e. x 2 ⌦, (10)

⇠ · ⇠ � � |⇠|
2 and |⇠|  + |⇠| in ⌦, 8⇠ 2 RN

. (11)

Function g is nonnegative and

(t, x) 7! g
�
t, x, p(t, x)

�
2 L

1(⌦T ) for any p 2 L
1(⌦T ).

We assume �1 2 L
1(0, T ;W 2�1/q,q(@⌦)), so that, in view of the smoothness of @⌦, there exists a lifting of �1,

still denoted the same for convenience, such that

�1 2 L
1(0, T ;W 2,q(⌦))

where the value of q depends on another assumption, for , namely:

q > N if  2 (C1(⌦̄))N⇥N
,

q > N/2 if  = ̃Id, ̃ 2 C
1(⌦̄;R).

The existence of the lifting of the boundary condition �1 with the appropriate regularity is ensured by the
surjectivity of the trace operator from W

2,q(⌦) onto W
2�1/q,q(@⌦) (see [18] for the case q = 2 and the references

therein for q 6= 2). Initial data c0 2 L
1(⌦) is in the admissible range for a concentration

0  c0(x)  1 a.e. x 2 ⌦.

For any ✏ > 0, the reaction term x 7! r(✏, x) is defined in the same range of concentrations, the interval [0, 1].
It is assumed Lipschitz in [0, 1] and such that

r(✏, 0) = 0, r(✏, 1) + g � 0, for any 0 < ✏ < ✏0 where ✏0 > 0.

One checks easily that classical isotherms satisfy this technical assumption (see Bear [3]), which is set for
ensuring a physical maximum principle for the concentrations.

We are now in a position to recall the following existence result of global weak solutions for the state system.
We refer to [1], Proposition 3.1 and Lemma 3.1, for its proof.
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Definition 2.1. A couple (c✏,p,�✏,p), with c✏,p 2 L
2(0, T ;H1(⌦)) and �✏,p 2 L

1(0, T ;H2(⌦)), is a weak solution
of (4)-(5), (7)-(9), if for any test function ' 2 H

1(0, T ;H1(⌦)) with '|t=T = 0,

�

Z

⌦T

R c✏,p@t' dx dt�

Z

⌦

R c0'|t=0 dx+

Z

⌦T

(v✏,p ·rc✏,p)' dx dt

+

Z

⌦T

 S(v✏,p)rc✏,p ·r' dx dt =

Z

⌦T

⇣
�r✏(c✏,p) + p✏(1� ✏c✏,p)� gc✏,p

⌘
' dx dt, (12)

Z

⌦T

div v✏,p' dx dt =

Z

⌦T

(✏p+ g)' dx dt, (13)

and, for all '0
2 L

1(0, T ;H1

0
(⌦)),

Z

⌦T

v✏,p ·r'
0
dx dt =

Z

⌦T

�r�✏,p ·r'
0
dx dt, (14)

with moreover �✏,p = �1 on @⌦⇥ (0, T ) in the trace sense.

Proposition 2.2. For any given p 2 L
1(⌦T ) and any 0  ✏ < ✏0, there exists a unique global weak solution

v✏,p 2 (L1(⌦T ))N of (5), (8) and a weak global solution c✏,p 2 C(0, T ;L2(⌦))\L
2(0, T ;H1(⌦)) of (4), (7), (9).

If ✏ > 0, it satisfies moreover 0  c✏,p(t, x)  1/✏ almost everywhere in ⌦T .

Let us now describe the assumptions linked with the optimization part of the problem. A natural admissible
set of control should be

E0 =
�
p 2 L

2(⌦T ); 0  p(t, x)  p̄ a.e. in ⌦T

 
(15)

where p̄ is some arbitrary real number, but for technical reasons we are going to look for an optimal control
belonging to the subset E✏ ⇢ E0 defined by

E✏ =
�
p 2 L

2(⌦T ) \W
1,1(0, T ;X); 0  p(x, t)  p̄ a.e. in ⌦T , k✏↵✏@tpkL1(0,T ;X)

 Cp

 

where Cp � 0 is a given real number, X is a Banach functional space such that the embedding L
2(⌦) ⇢ X is

continuous, and ↵✏ is defined by

↵✏ =

(
0 if ✏p+ g does not depend on p

1 otherwise.
(16)

It means that ↵✏ depends on the influence of the pollutant concentration on the incompressibility equation. In
the ✏-dependent problem, the restriction E✏ of the set of controls E0 is introduced for ensuring a compactness
result despite its coupling with the unknown control p✏ in equation (13). The restriction disappears as ✏ ! 0.
Notice the compatibility in the notations since actually E0 = E✏ for ✏ = 0. The other technical assumptions
are the following. Function p 2 [0, p̄] 7! f(t, x, p) is strictly concave, upper semi-continuous and bounded
almost everywhere in ⌦T . For almost every x 2 ⌦, the operator c 2 L

2(⌦T ) 7! D(x, c) 2 (L2(⌦T ))0 = L
2(⌦T )

is convexe, monotone, hemicontinuous and bounded in the sense that there exists h 2 L
1(⌦T ) such that

kD(x, c)kL2(⌦T )  h(t, x) almost everywhere in ⌦T , for any c 2 L
2(⌦T ).

Bear in mind that Problem P✏ defined in (1.1) consists in finding (p⇤
✏
, c

⇤
✏
,�

⇤
✏
) such that

J(p⇤
✏
) = max

p✏2E✏

J(p✏)

and (c⇤
✏
= c✏,p⇤

✏
,�

⇤
✏
= �✏,p⇤

✏
) is a weak solution of (4)-(5), (7)-(9), associated to p

⇤
✏
in the sense of Definition 2.1.

The first main result of the paper is the following existence result for P✏.



8 TITLE WILL BE SET BY THE PUBLISHER

Theorem 2.3. Let 0 < ✏ < ✏0. There exists a global solution (p⇤
✏
, c

⇤
✏
,�

⇤
✏
) to the optimal control problem P✏ in the

sense of Definition 1.1, such that c⇤
✏
2 C(0, T ;L2(⌦))\L

2(0, T ;H1(⌦)), v⇤
✏
2 (L1(⌦T ))N and 0  c

⇤
✏
(x, t)  1/✏

almost everywhere in ⌦T .

The second aim of the article consists in the analysis of the behavior of the optimal control problem P✏

when the characteristic pollutant concentration is small. More precisely, we derive rigorously the corresponding
e↵ective model by letting ✏ tend to zero. An important point is to state assumptions for the reaction term r✏

which are su�cient to pass to the limit, but nevertheless as generic as possible. We simply assume that:

the sequence r✏ converges pointwise to some function r0 when ✏ tends to 0; the function r0 is
assumed to be concave, derivable and has a bounded derivative on R+.

Remark 2.4. In the simplest setting, the isotherm of the scaled model only depends on the second variable,
that is r(✏, ✏x) = r(✏x), x 2 [0, 1]. By definition of r✏, the existence of r0 is equivalent to the existence of
r
0(0), which is not an additional assumption. Moreover, for ✏c✏ in the nearby of 0, using a Taylor expansion,
we can write r(✏c✏) = r(0) + ✏c✏r

0(0) + ✏c✏⌘(✏c✏) with lim✏c✏!0 ⌘(✏c✏) = 0. In the present paper we have set
r(0) = 0. Then, if c✏ ! c, r✏(c✏) = r(✏c✏)/✏ tends to r

0(0)c := r0(c). We thus get at the limit a linear isotherm.
But taking into account the potential dependance of r on ✏, i.e. r(✏, ✏x), we have to consider the possibility
of various isotherms at the limit. Let us give two simple examples. First, in (1), assume that r̃ corresponds
to a Freundlich isotherm, r̃(x) = kx

1/m, k 2 R+, m > 1. For the dimensionless equation (4), we define a
characteristic reaction parameter kr so that r✏(c) = trkrk✏

1/m�1
c
1/m. The sequence converges pointwise to the

Freundlich function, r0 = r̃, if kr is small, namely such that trkr = O(✏1�1/m). The Langmuir isotherm function
r0(c) = r̃(c) = k1c/(1+ k2c), (k1, k2) 2 R2

+
, may also be considered by setting trk1,r = O(1) and k2,r = O(✏�1).

Notice that all these scalings are physically admissible (see [13]).

We claim that the e↵ective problem corresponding to the limit ✏! 0 in P✏ is the following.

Definition 2.5 (Problem P0). Find p
⇤
2 E0 such that

p
⇤ = arg max

p2E0

J(p)

where J remains defined by (6), that is J(p) =
R
T

0

�R
⌦
(f(t, x, p)�D(x, cp)) dx

�
e
�⇢t

dt, with cp a weak solution
of the following e↵ective state problem:

R @tcp � div( S(v)rcp) + v ·rcp = �r0(cp) + p� gcp in ⌦⇥ (0, T ), (17)

div(v) = g, v = �r� in ⌦⇥ (0, T ), (18)

S(v)rcp · n = 0 on @⌦⇥ (0, T ), cp|t=0 = c0 in ⌦, (19)

� = �1 on @⌦⇥ (0, T ). (20)

On the one hand, when comparing P✏ and P0, one notices straightforward that E✏ tends to E0 as ✏! 0. On
the other hand, choosing E0 in Problem P0 is fully consistent with the (announced) limit state problem since the
incompressibility equation (19) does not depend on p, thus leading to ↵0 = 0 in definition (16). Furthermore,
we state and prove below the following results.

Theorem 2.6. (i) There exists a unique global optimal solution p
⇤
2 E0 to Problem P0. It is associated to

(c⇤ := cp⇤ ,�) defined by (17)-(20). Moreover c
⇤(t, x) � 0 almost everywhere in ⌦T and c

⇤
2 C(0, T ;L2(⌦)) \

L
2(0, T ;H1(⌦)), v⇤ 2 (L1(⌦T ))N .

(ii) As ✏ ! 0, any sequence of optimal solutions (p⇤
✏
, c

⇤
✏
,�

⇤
✏
) of Problem P✏ converges to the optimal solution

(p⇤, c⇤,�) of P0:

c
⇤
✏
* c

⇤ weakly in L
2(0, T ;H1(⌦)), c

⇤
✏
! c

⇤ in L
2(⌦T ) and a.e. in ⌦T ,

v
⇤
✏
! v in (L2(⌦T ))

N
, �

⇤
✏
! � in L

s(0, T ;W 1,s(⌦)) for any s � 1.
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Theorems 2.3 and 2.6 are proved in the three following sections. We begin in Section 3 by a preliminary
stability analysis of the state system. Indeed, several steps of the proofs involve the study of the limit behavior
of perturbations of the optimal control problem, thus in particular of the state system. The stability properties
are first used in Section 4 for stating an existence result for an optimal control problem corresponding to the
generic form of Problem P✏ and Problem P0. The proof is based on the sequential definition of the supremum.
It turns out that the generic statement contains as particular cases the existence result in Theorem 2.3 and the
local-in-time version of the one in Theorem 2.6 (i). We then prove the uniqueness of the solution of Problem
P0 by contradiction. The global existence result for P0 and Theorem 2.6 (ii) are obtained at once in Section 5,
by studying the limit behavior of the global solution of Problem P✏.

3. Preliminary: stability results for the state problem

In the present section we study the stability properties of any weak solution of the state problem, (4)-(5),
(7)-(9), regarding the variations of ✏ and p. We begin by stating some uniform estimates. Here and below, letter
C denotes a generic constant.

Proposition 3.1. Let 0 < ✏ < ✏0. Let p 2 E✏. Any weak solution (c✏,p,�✏,p) of (4)-(5) completed by (7)-(9),
satifies the following estimates, uniform with regard to p and ✏:

k�✏,pkL1(0,T ;W 1,1(⌦))
 C, (21)

kc✏,pkL1(0,T ;L2(⌦))\L2(0,T ;H1(⌦))  C, (22)

k @tc✏,pkL2(0,T ;(H1(⌦))0)  C. (23)

Proof. We begin by the results on the hydraulic head �✏,p. Multiplying (5) by �✏,p��1 and integrating by parts
over ⌦, we get Z

⌦

r�✏,p ·r�✏,p dx =

Z

⌦

r�✏,p ·r�1 dx+

Z

⌦

(✏p+ g)(�✏,p � �1) dx.

Using the assumptions on , �1, g and the Cauchy-Schwarz and Young inequalities, bearing in mind that p 2 E✏

satisfies 0  p  p̄ a.e. in ⌦T , we infer from the latter relation that

�

Z

⌦

|r�✏,p|
2
dx  ⌘

Z

⌦

|r�✏,p|
2
dx+ ⌘

Z

⌦

|�✏,p � �1|
2
dx+

C

⌘

for any ⌘ > 0. Next, using the Poincaré inequality we write ⌘k�✏,p � �1k
2

L2(⌦)
 ⌘Ckr�✏,p � r�1k

2

(L2(⌦))N


⌘Ckr�✏,pk
2

(L2(⌦))N
+ C. Choosing ⌘ su�ciently small, we obtain the following uniform estimate:

k�✏,pkL1(0,T ;H1(⌦))
 C. (24)

Using the regularity assumptions set on  and �1, let us improve the result. Setting f = ✏p + g + div(r�1),
u✏,p = �✏,p � �1 solves the homogenous Dirichet problem

div(�ru✏,p) = f in ⌦T , u✏,p = 0 on @⌦⇥ (0, T ). (25)

Since �1 2 L
1(0, T ;W 2,q(⌦̄)), then f 2 L

1(0, T ;Lq(⌦)). According to the Nirenberg’s theorem (see e.g. [16]),
it follows that u✏,p 2 L

1(0, T ;W 2,q

0
(⌦)). This point allows to multiply (25), written in the form ��u✏,p �

r ·ru✏,p = f , by |�u✏,p|
s�2�u✏,p, s  q, and to integrate by parts in ⌦. We obtain

�

Z

⌦

|�u✏,p|
s
dx 

���
Z

⌦

|�u✏,p|
s�2�u✏,p(r ·ru✏,p) dx

���+
���
Z

⌦

|�u✏,p|
s�2�u✏,pf dx

���. (26)
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We compute

���
Z

⌦

|�u✏,p|
s�2�u✏,p(r ·ru✏,p + f) dx

��� 
Z

⌦

|�u✏,p|
s�1(krkL1(⌦)|ru✏,p|+ |f |) dx

 C

⇣Z

⌦

|�u✏,p|
s
dx

⌘(s�1)/s⇣Z

⌦

|ru✏,p + f |
s
dx

⌘1/s

 ⌘

Z

⌦

|�u✏,p|
s
dx+

C

⌘

Z

⌦

|ru✏,p + f |
s
dx,

for any ⌘ > 0. The latter relation in (26) gives, by choosing ⌘ small enough: for any s  q,

Z

⌦

|�u✏,p|
s
dx  C

Z

⌦

|ru✏,p + f |
s
dx. (27)

Now, our computations somehow di↵ers according to whether we use the assumption q > N or the assumption
q > N/2 with an isotropic di↵usion, that is  = ̃Id with ̃ 2 C

1(⌦̄).
Assume first q > N . Because of (24), we first infer from the relation (27) for s = 2 that k�u✏,pkL1(0,T ;L2(⌦)) 

C. It means that there exists f̃ 2 L
1(0, T ;L2(⌦)), kf̃kL1(0,T ;L2(⌦))  C, such that u✏,p satisfies

�u✏,p = f̃ in ⌦T , u✏,p = 0 on @⌦⇥ (0, T ).

Thus u✏,p is uniformly bounded in L
1(0, T ;H2

0
(⌦)). In particular, ru✏,p is uniformly bounded in the space

(L1(0, T ;H1

0
(⌦)))N , and, due to classical Sobolev’s embeddings, in (L1(0, T ;L4(⌦)))N . Choosing now s =

min(q, 4) in (27), we get

k�u✏,pkL1(0,T ;Ls(⌦))  C.

The same uniform estimate holds true for �✏,p = u✏,p + �1 because of the smoothness of �1. Since s > N , the
latter result is su�cient for proving (21), once again thanks to Nirenberg’s theorem and to classical Sobolev’s
embeddings.

Assume now q > N/2 and  = 
⇤
Id, ⇤ 2 C

1(⌦̄). Because of (24), choosing s = min(q, 2) in (27), we first
obtain a uniform bound for �u✏,p in L

1(0, T ;Ls(⌦)). Assume for simplicity that min(q, 2) = q. It follows that
u✏,p is uniformly bounded in L

1(0, T ;W 2,q

0
(⌦)). The same holds true for �✏,p = u✏,p + �1. This bound and the

specific structure of  let us compute that kcurl(v✏,p)k(L1(0,T ;W 1,q(⌦)))N = kr^r�✏,pk(L1(0,T ;W 1,q(⌦)))N  C.
In particular, due to classical Sobolev’s embedding, kcurl(v✏,p)k(L1(0,T ;Lq0 (⌦)))N  C for some q0 > N since
q > N/2. We also know that k div(v✏,p)kL1(0,T ;Lq0 (⌦)) = k✏p+ gkL1(⌦T )  C. Recall that Hq0(curl, div,⌦) :=
{u 2 (Lq0(⌦))N ; curl(u) 2 (Lq0(⌦))N , div(u) 2 L

q0(⌦)} is a Hilbert space when endowed with the norm

�
kuk(Lq0 (⌦))N + kcurl(u)k(Lq0 (⌦))N + k div(u)kLq0 (⌦)

�1/q0

and is such that Hq0(curl, div,⌦) ⇢ (W 1,q0

loc
(⌦))N . Here we thus claim that v✏,p is uniformly bounded in the

space (L1(0, T ;W 1,q0

loc
(⌦)))N where q0 > N . Then it follows from Rellich–Kondrachov theorem that v✏,p is also

uniformly bounded in (L1(⌦T ))N .
We now look for the uniform estimates of the concentration. Let ⌧ 2]0, T [. We multiply (4) by c✏,p(t, x)�[0,⌧ ](t),

�U denoting the characteristic function of a set U , and we integrate by parts over ⌦T . Thanks to the definition
of tensor S(v✏,p), we obtain

R

2

Z

⌦

 |c✏,p(⌧, x)|
2
dx+

Z
⌧

0

Z

⌦

 �(Sm + ↵T |v✏,p|)|rc✏,p|
2
dx dt+

Z
⌧

0

Z

⌦

(v✏,p ·rc✏,p)c✏,p dx dt

+

Z
⌧

0

Z

⌦

r✏(c✏,p)c✏,p dx dt+

Z
⌧

0

Z

⌦

(g + ✏p)c2
✏,p

dx dt�

Z
⌧

0

Z

⌦

pc✏,p dx dt 
R

2

Z

⌦

 |c0|
2
dx. (28)
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With Cauchy-Schwarz and Young inequalities, we get straightforward

���
Z

⌧

0

Z

⌦

r✏(c✏,p)c✏,p dx dt+

Z
⌧

0

Z

⌦

(g + ✏p)c2
✏,p

dx dt�

Z
⌧

0

Z

⌦

pc✏,p dx dt

���  C + C

Z
⌧

0

Z

⌦

|c✏,p|
2
dx dt.

The main di�culty traditionally lies in the estimate of the convective term. Here, we avoid it thanks to the
work already done for getting a uniform estimate for velocity v✏,p in (L1(⌦T ))N :

���
Z

⌧

0

Z

⌦

(v✏,p ·rc✏,p)c✏,p dx dt
���  kv✏,pk(L1(⌦T ))N krc✏,pk(L2(⌦⇥(0,⌧)))N kc✏,pkL2(⌦⇥(0,⌧))

 ⌘

Z
⌧

0

|rc✏,p|
2
dx dt+

C

⌘

Z
⌧

0

|c✏,p|
2
dx dt

for any ⌘ > 0. Insert the two latter relations in (28) and choose ⌘ =  �Sm/2:

R �
2

Z

⌦

|c✏,p(⌧, x)|
2
dx+

 �
2

Z
⌧

0

Z

⌦

(Sm + ↵T |v✏,p|)|rc✏,p|
2
dx dt  C + C

Z
⌧

0

Z

⌦

|c✏,p(t, x)|
2
dx dt.

We then get (22) using Gronwall’s Lemma.
Now we check that  @tc✏,p is uniformly bounded in L

2(0, T ; (H1(⌦))0). Multiply (4) by some test function '
in L

2(0, T ;H1(⌦)) and integrate by parts over ⌦T . Bearing in mind the latter estimates and that 0  c✏,p(t, x) 
1/✏ almost everywhere in ⌦T , we obtain straightforward

��h @tc✏,p,'iL2(0,T ;(H1(⌦))0)⇥L2(0,T ;H1(⌦))

�� =
���
Z

⌦T

 @tc✏,p ' dx dt

���  C.

Here, we denote by h·, ·iX0⇥X the duality pair defined by hu, viX0⇥X =
R
⌦T

uv dxdt if X is a space of functions
defined in ⌦T , u 2 X

0, v 2 X. Proposition 3.1 is proved. ⇤
Now we state and prove some compactness results. Let (✏n)n2N⇤ and (pn)n2N⇤ be two sequences of, respec-

tively, R⇤
+
and E✏n . Denote �n = �✏n,pn , vn = v✏n,pn , cn = c✏n,pn . Assume that

✏n ! ✏0 in R and pn * p0 weakly in L
2(⌦T )

as n tends to infinity.

Proposition 3.2. The following sequential compactness results hold true, up to subsequences not relabeled for
convenience: there exists v 2 (L1(⌦T ))N and c 2 L

2(0, T ;H1(⌦)) such that

cn ! c in L
s(0, T ;L2(⌦)), 1  s < 2, and a.e. in ⌦T (29)

and
vn ! v in (L2(⌦T ))

N and a.e. in ⌦T , (30)

as n tends to infinity.

Proof. In view of (21), there exists a subsequence of �n, not relabeled for convenience, and a function � 2

L
1(0, T ;W 1,1(⌦)) such that

�n * � weakly in L
q(0, T ;H1(⌦)), vn * v = �r� weakly in (Lq(0, T ; (L2(⌦)))N , 8q � 1.

Let us prove that r�n actually strongly converges to r�.
If ↵✏n = 0 for any n � n0, n0 2 N⇤, which means that source term ✏npn+g in (5) does not depend on n, then

�n = � does not depend on n for n � n0 and the result is straightforward. Assume now that for any n0 2 N⇤,
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there exists n � n0 such that ↵✏n = 1. We can pick o↵ a subsequence, labeling it the same for convenience,
such that ↵✏n = 1 for any n 2 N⇤. We check that �n � � is a weak solution of the following problem:

� div(r(�n � �)) = ✏npn � ✏0p0 in ⌦T , �n � � = 0 on @⌦.

We multiply the latter equation by �n � � and we integrate by parts over ⌦T . Thanks to (11), we write

�

Z
T

0

Z

⌦

|r(�n � �)|2 dx dt 

Z
T

0

Z

⌦

(✏npn � ✏0p0)(�n � �) dx dt. (31)

Since we only assumed that pn�p0 * 0 weakly in L
2(⌦T ), we can not pass directly to the limit in the righthand

side of (31). Nevertheless we know, because of the definition of E✏n , that @t(✏npn � ✏0p0) is uniformly bounded
in L

1(0, T ;X). Since @t(�n � �) satisfies

� div
�
r

�
@t(�n � �)

��
= @t(✏npn � ✏0p0) in ⌦T , @t(�n � �) = 0 on @⌦⇥]0, T [.

the sequence @t(�n � �) is also uniformly bounded in L
1(0, T ;X). This latter point together with the estimate

(21) allows the use of a classical compactness argument of Aubin’s type (see e.g. [23] Corollary 4) for ensuring
that �n � �! 0 in L

2(⌦T ). Then we exploit (31) in the following way:

� lim
n!1

Z
T

0

Z

⌦

|r(�n � �)|2 dx dt  lim
n!1

Z
T

0

Z

⌦

(✏npn � ✏0p0)(�n � �) dx dt = 0,

thanks to the strong convergence of �n � �. Convergence result (30) follows.
It follows from (22) that there exists a subsequence, still denoted cn for convenience, and a function c 2

L
1(0, T ;L2(⌦)) \ L

2(0, T ;H1(⌦)) such that

cn * c weakly in L
2(0, T ;H1(⌦)).

Thanks to estimate (23), since 0 <  �   (x)   + a.e. x 2 ⌦, since H
1(⌦) ⇢ L

2(⌦) ⇢ (H1(⌦))0, the
first embedding being compact, we can use an advanced version of Aubin’s compactness criterium (see Lemma
3.1 in [12]) to prove that cn is sequentially compact in L

p(0, T ;L2(⌦)) for any 1  p < 2. Proposition 3.2 is
proved. ⇤

4. Generic existence and uniqueness results

This section is devoted to the mathematical analysis of the optimal control problems considered in the
present paper. First, the question of existence is addressed. Notice that the next lemma both proves the result
announced in Theorem 2.3 and the local version of the existence part in Theorem 2.6 (i). We actually introduce
a more generic setting by considering the following problem.

Definition 4.1 (Problem Pge). Let Tge > 0. Find p
⇤
ge

2 E1 such that

p
⇤
ge

= arg max
p2E1

J(p) = arg max
p2E1

Z
Tge

0

✓Z

⌦

(f(t, x, p)�D(x, cge,p)) dx

◆
e
�⇢t

dt

where (cge,p,�ge,p) is a weak solution of the following e↵ective state problem:

R @tcge,p � div( S(vge,p)rcge,p) + vge,p ·rcge,p = �r(cge,p) + p(1� cge,p)� gcge,p in ⌦⇥ (0, Tge), (32)

div(vge,p) = p+ g, vge,p = �r�ge,p in ⌦⇥ (0, Tge), (33)

S(vge,p)rcge,p · n = 0 on @⌦⇥ (0, Tge), cge,p|t=0 = c0 in ⌦, (34)

�ge,p = �1 on @⌦⇥ (0, Tge). (35)
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Lemma 4.2. Assume r is a Lipschitz function. For any Tge > 0, there exists a solution p
⇤
ge

of Problem
(Pge). Moreover, c

⇤
ge

:= cge,p⇤
ge

belongs to C([0, Tge];L2(⌦)) \ L
2(0, Tge;H1(⌦)), �⇤

ge
:= �ge,p⇤

ge
belongs to

L
1(0, Tge;W 1,1(⌦)). If, moreover, r(0) = 0 (respectively r(1) + g � 0) then c

⇤
ge

� 0 (respectively c
⇤
ge

 1)
almost everywhere in ⌦ ⇥ (0, Tge). In particular, if the latter two conditions are satisfied by r, the solution is
global, that is the result extents to any 0 < Tge  1.

Remark 4.3. Notice that the assumptions set for x 7! r(✏, x) are su�cient for ensuring that c
⇤
✏
, related to

Problem P✏, satisfies 0  c
⇤
✏
 1/✏ a.e. in ⌦ ⇥ (0, Tge), for any Tge > 0. The global existence of a solution

for P✏ follows directly. The definition of r0 does not allow the same direct consideration for P0. However the
global existence result for P0 will be ensured by the convergence of a sequence of global solutions of P✏ in the
asymptotic analysis below (Section 5).

Proof. The existence of a weak solution for the state system (32)-(35), for any given p 2 E1, satisfying cge,p 2

C([0, Tge];L2(⌦)) \ L
2(0, Tge;H1(⌦)), �ge 2 L

1(0, Tge;W 1,1(⌦)) and cge,p � 0 a.e. if r(0) = 0 (respectively
cge,p  1 if r(1) + g � 0) is a direct consequence of Proposition 2.2 (which is proved in [1]). It follows in
particular that the set

{J(p); p 2 E1} ⇢ R
is nonempty. Since any p 2 E1 satisfies 0  p(t, x)  p̄ almost everywhere in ⌦ ⇥ (0, Tge), and thanks to the
assumptions on f and D, we assert that the latter set is also a bounded set of R. Thus, it admits a supremum,
denoted by J

⇤. Our aim is to prove that there exists p⇤
ge

such that

J
⇤ = J(p⇤

ge
),

meaning that the supremum is actually a maximum.
By definition of the supremum, there exists a sequence (pn)n2N ⇢ E1, associated to the sequence (cge,pn :=

cn,�ge,pn := �n)n2N of solutions to the state problem, such that

lim
n!1

J(pn) = J
⇤
.

The stability results of Proposition 3.2 remain true in this generic setting (here ✏n = ✏ for any n). Thus, there
exists (p⇤, c⇤,�⇤) 2 L

2(⌦⇥ (0, Tge))⇥L
2(0, Tge;H1(⌦)⇥L

1(0, Tge;W 1,1(⌦)) and a subsequence, non renamed
for convenience, such that, for any u � 1,

cn * c⇤ weakly in L
2(0, Tge;H

1(⌦)), cn ! c in L
s(0, Tge;L

2(⌦)), 1  s < 2, and a.e. in ⌦T ,

�n * �⇤ weakly in L
u(0, Tge;W

1,u(⌦)),

vn ! v⇤ = �r�⇤ in (L2(⌦⇥ (0, Tge)))
N and a.e. in ⌦⇥ (0, Tge).

These convergence results are su�cient to pass to the limit in the state problem,

R @tcn + vn ·rcn � div( S(vn)rcn) = �r(cn) + pn(1� cn)� gcn in ⌦⇥ (0, Tge),

div(vn) = pn + g, vn = �r�n in ⌦⇥ (0, Tge),

S(vn)rcn · n = 0 on @⌦⇥ (0, Tge), cn|t=0 = c0 in ⌦, �n = �1 on @⌦⇥ (0, Tge),

using also Lebesgue’s dominated convergence theorem for nonlinear terms and the continuity of the function
c 2 C(0, Tge;⌦) 7! c|t=0 for the initial condition. We conclude that the limit (c⇤,�⇤) of (cn,�n) is a weak
solution of the state equation associated to p⇤, meaning c⇤ = cge,p⇤ , �⇤ = �ge,p⇤ . Moreover, the maximum
principle for c⇤ is preserved when r satisfies the corresponding assumptions.

It remains to show that
lim
n!1

J(pn) = J(p⇤).
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Indeed, since J
⇤ is defined by limn!1 J(pn) = J

⇤, the proof will be ended. The assumptions making D a
M -type operator let us claim that

lim
n!1

Z
Tge

0

⇣Z

⌦

D(x, cn) dx
⌘
e
�⇢t

dt =

Z
Tge

0

⇣Z

⌦

D(x, c⇤) dx
⌘
e
�⇢t

dt.

Then

J
⇤ = lim

n!1

Z
Tge

0

⇣Z

⌦

(f(t, x, pn)�D(x, cn)) dx
⌘
e
�⇢t

dt

= lim
n!1

Z
Tge

0

⇣Z

⌦

f(t, x, pn) dx
⌘
e
�⇢t

dt�

Z
Tge

0

⇣Z

⌦

D(x, c⇤) dx
⌘
e
�⇢t

dt

= lim sup
n!1

Z
Tge

0

⇣Z

⌦

f(t, x, pn) dx
⌘
e
�⇢t

dt�

Z
Tge

0

⇣Z

⌦

D(x, c⇤) dx
⌘
e
�⇢t

dt.

Using pn * p⇤ in L
2(⌦ ⇥ (0, Tge)), the concavity of f and the lower semi-continuity of concave functions

(Tartar [24]), we obtain

lim sup
n!1

Z
Tge

0

⇣Z

⌦

f(t, x, pn) dx
⌘
e
�⇢t

dt 

Z
Tge

0

⇣Z

⌦

f(t, x, p⇤) dx
⌘
e
�⇢t

dt.

We conclude from the two latter relations that

J
⇤


Z
Tge

0

⇣Z

⌦

(f(t, x, p⇤)�D(x, c⇤)) dx
⌘
e
�⇢t

dt = J(p⇤).

However, p⇤ 2 E1. Indeed, since kpnkL1(⌦⇥(0,Tge))
 p̄ for any n 2 N, pn also tends to p⇤ in L

1(⌦⇥ (0, Tge))
weak-⇤ and kp⇤kL1(⌦⇥(0,Tge))

 lim inf kpnkL1(⌦⇥(0,Tge))
 p̄. Likewise, kp⇤ � p̄kL1(⌦⇥(0,Tge))

 p̄. It follows
that 0  p⇤(t, x)  p̄ almost everywhere in ⌦ ⇥ (0, Tge). Since p⇤ 2 E1 and c⇤ = cge,p⇤ , by definition of the
supremum J

⇤, we have
J(p⇤)  J

⇤
.

In view of the two latter relations, J(p⇤) = J
⇤. This ends the proof of the lemma. ⇤

We now state and prove a well-posedness result for Problem P0. The following lemma is a second step in the
proof of Theorem 2.6 (i).

Lemma 4.4. There exists a unique optimal solution p
⇤ of Problem P0 given in Definition 2.5.

Proof. The existence of an optimal solution p
⇤ is obtained by Lemma 4.2. Besides, the asymptotic analysis

performed in Section 5 below will furnish another proof of the existence result for P0 and will ensure its global
character. It remains to prove uniqueness. Let us do it by contradiction. Let p⇤

1
and p

⇤
2
be two optimal solutions

of P0, with p
⇤
1
6= p

⇤
2
almost everywhere in ⌦T . They are associated with cp⇤

i
:= c

⇤
i
, i = 1, 2, satisfying (17)-(20)

with p = p
⇤
i
. We denote by M0 the value of the objective for the optimal solution:

M0 := J(p⇤
1
) = J(p⇤

2
).

We aim at comparing M0 with J
�
(p⇤

1
+ p

⇤
2
)/2

�
.

By definition of J ,

J

⇣1
2
(p⇤

1
+ p

⇤
2
)
⌘
=

Z
T

0

⇣Z

⌦

(f(t, x,
1

2
p
⇤
1
+

1

2
p
⇤
2
)�D(x, c0)) dx

⌘
e
�⇢t

dt
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where c
0 = c(p⇤

1+p
⇤
2)/2

is a weak solution of solution of

R @tc
0 + v ·rc

0
� div( S(v)rc

0) = �r0(c0)� gc
0 + (p⇤

1
+ p

⇤
2
)/2 in ⌦T ,

S(v)rc
0
· n = 0 on @⌦⇥ (0, T ), c

0
|t=0 = c0 in ⌦.

(36)

Due to the strict concavity of f , we have

J

⇣1
2
(p⇤

1
+ p

⇤
2
)
⌘
>

Z
T

0

⇣Z

⌦

⇣1
2
f(t, x, p⇤

1
) +

1

2
f(t, x, p⇤

2
)�D(x, c0)

⌘
dx

⌘
e
�⇢t

dt. (37)

We now compare D(x, c0) and D(x, c) where c = (c⇤
1
+ c

⇤
2
)/2. We infer from (17)-(20) that c is a weak solution

of

R @tc+ v ·rc� div( S(v)rc) = �(r0(c⇤1) + r0(c⇤2))/2� gc+ (p⇤
1
+ p

⇤
2
)/2 in ⌦T ,

S(v)rc · n = 0 on @⌦⇥ (0, T ), c|t=0 = c0 in ⌦.
(38)

Let d = c � c
0. Let us show that d � 0 almost everywhere in ⌦T . In view of (36) and (38), d satisfies the

following equations:

R @td+ v ·rd� div( S(v)rd) = �(r0(c⇤1) + r0(c⇤2))/2 + r0(c0)� gd in ⌦T ,

S(v)rd · n = 0 on @⌦⇥ (0, T ), d|t=0 = 0 in ⌦.
(39)

The trick consists in rewriting the first equation in the form

R @td+ v ·rd� div( S(v)rd) = r0

�1
2
(c⇤

1
+ c

⇤
2
)
�
�

r0(c⇤1)

2
�

r0(c⇤2)

2
�

⇣
r0

�1
2
(c⇤

1
+ c

⇤
2
)
�
� r0(c

0)
⌘
� gd.

We multiply this equation by d
� = min(0, d) and we integrate by parts over ⌦⇥ (0, ⌧), ⌧ > 0. We get

R

2

Z
⌧

0

d

dt

Z

⌦

 
��d�

��2 dx dt+

Z
⌧

0

Z

⌦

 S(v)rd ·rd
�
dx dt = �

Z
⌧

0

g
��d�

��2 dx dt

+

Z
⌧

0

Z

⌦

⇣
r0

�1
2
(c⇤

1
+ c

⇤
2
)
�
�

r0(c⇤1)

2
�

r0(c⇤2)

2

⌘
d
�
dx dt

�

Z
⌧

0

Z

⌦

⇣
r0

�1
2
(c⇤

1
+ c

⇤
2
)
�
� r0(c

0)
⌘
d
�
dx dt+

Z
⌧

0

Z

⌦

(v ·rd)d� dx dt. (40)

We know that
Z

⌦

 |d
�
|
2
dx �

Z

⌦

 �

Z

⌦

|d
�
|
2
dx,

Z

⌦

 S(v)rd ·rd
�
dx �  �Sm

Z

⌦

��rd
���2 dx.

Using Cauchy-Schwarz and Young inequalities, we compute

����
Z

⌧

0

Z

⌦

(v ·rd)d� dx dt

���� 
 �Sm

2

Z
⌧

0

Z

⌦

��rd
���2 dx dt+ C kvk

L1(⌦T )

Z
⌧

0

Z

⌦

��d�
��2 dx dt.

Using moreover the derivability of r0, relation (40) gives

R �
2

Z
⌧

0

d

dt

Z

⌦

��d�
��2 dx dt+

 �Sm

2

Z
⌧

0

Z

⌦

��rd
���2 dx dt�

Z
⌧

0

Z

⌦

⇣
r0

�1
2
(c⇤

1
+ c

⇤
2
)
�
�

r0(c⇤1)

2
�

r0(c⇤2)

2

⌘
d
�
dx dt


�
kgk

L1(⌦T )
+ kr

0
0
k
L1(R) + C kvk

L1(⌦T )

� Z ⌧

0

Z

⌦

��d�
��2 dx dt.
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The third term in the lefthand side of the latter relation is nonnegative because function r0 is concave. Using
Gronwall’s Lemma, we thus get, for any ⌧ 2 (0, T ),

Z
⌧

0

Z

⌦

��d�
��2 dx dt  0.

Then d
� = 0 and d = c� c

0
� 0 almost everywhere in ⌦T .

Remind that our aim was to compare D(·, c0) and D(·, c). Since D is an increasing function, we infer from
c�c

0
� 0 that D(·, c) � D(·, c0) almost everywhere in ⌦T . Then, due to (37) and to the convexity of c 7! D(·, c),

we have

J
�1
2
(p⇤

1
+ p

⇤
2
)
�

>

Z
T

0

⇣Z

⌦

1

2
f(t, x, p1) +

1

2
f(x, p2)�D(x, c0) dx

⌘
e
�⇢t

dt

�

Z
T

0

⇣Z

⌦

1

2
f(t, x, p⇤

1
) +

1

2
f(t, x, p⇤

2
)�D(x, c) dx

⌘
e
�⇢t

dt

=

Z
T

0

⇣Z

⌦

1

2
f(t, x, p⇤

1
) dx+

Z

⌦

1

2
f(t, x, p⇤

2
) dx�

Z

⌦

D
�
x,

1

2
c
⇤
1
+

1

2
c
⇤
2

�
dx

⌘
e
�⇢t

dt

�
1

2

Z
T

0

⇣Z

⌦

f(t, x, p⇤
1
) dx�

Z

⌦

D(x, c⇤
1
) dx+

Z

⌦

f(t, x, p⇤
2
) dx�

Z

⌦

D(x, c⇤
2
) dx

⌘
e
�⇢t

dt

= 2⇥
1

2
M0

that is J
�
(p1 + p2)/2

�
> M0. There is a contradiction with the definition of the maximal value M0. We have

proved the uniqueness of the solution of the problem P0. ⇤

5. Asymptotic Analysis

In this section, we prove that any sequence of optimal solutions p⇤
✏
of the scaled problem P✏ tends, as ✏! 0,

to the unique solution p of the upscaled problem P0. Thus, all at once, we derive rigorously the upscaled optimal
control problem for low concentrations and we prove that this e↵ective problem is globally well-posed. This
result, though already stated in Theorem 2.6, is recalled below.

Lemma 5.1. As ✏! 0, any sequence of optimal solutions (p⇤
✏
, c

⇤
✏
,�

⇤
✏
) of Problem P✏ in the sense of Definitions

1.1 and 2.1 converges to the unique optimal solution (p⇤, c⇤,�) of Problem P0 defined by Definition 2.5:

p
⇤
✏
* p

⇤ weakly in L
u(⌦T ), 8u � 1,

�
⇤
✏
* � weakly in L

u(0, T ;W 1,u(⌦)), 8u � 1,

v
⇤
✏
! v = �r� in (L2(⌦T ))

N and a.e. in ⌦T ,

c
⇤
✏
* c

⇤ weakly in L
2(0, T ;H1(⌦)), c

⇤
✏
! c

⇤ in L
s(0, T ;L2(⌦)), 1  s < 2, and a.e. in ⌦T .

Let us add a remark about the sets of admissible controls. As ✏! 0, E✏ tends to E0 because of the weighting
by ✏ in the condition involving L

1(0, T ;X). Of course, for ✏ > 0, mentioning this weighting was useless. However
we have chosen to add it for emphasizing that the constraint in L

1(0, T ;X) disappears as ✏! 0, which is natural
since the limit hydraulic pressure equation does not depend on the pollutant load p.

Proof. Let (p⇤
✏
, c

⇤
✏
,�

⇤
✏
) a sequence of optimal solutions of Problem P✏. Since 0  p

⇤
✏
 p̄ almost everywhere in

⌦T , the sequence (p⇤
✏
) is uniformly bounded in L

1(⌦T ). Then there exists a subsequence, denoted the same
for simplicity, and a function p 2 E0 such that

p
⇤
✏

⇤
* p weakly-* in L

1(⌦T ).
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Since Proposition 3.2 applies, we also assert that there exist (c,�) 2 L
2(0, T ;H1(⌦))⇥L

1(0, T ;W 1,1(⌦)) and
a subsequence, not renamed for convenience, such that

c
⇤
✏
* c weakly in L

2(0, T ;H1(⌦)), c
⇤
✏
! c in L

s(0, T ;L2(⌦)), 1  s < 2, and a.e. in ⌦T ,

�
⇤
✏
* � weakly in L

u(0, T ;W 1,u(⌦)), 8u � 1,

v
⇤
✏
! v = �r� in (L2(⌦T ))

N and a.e. in ⌦T .

These results are su�cient to derive the e↵ective state system. More precisely, using Lebesgue’s dominated
convergence theorem for nonlinear terms and the continuity of function c 2 C(0, T ;⌦) 7! c|t=0 for the initial
condition, letting ✏! 0 in the variational formulation of

div(v⇤
✏
) = ✏p

⇤
✏
+ g, v

⇤
✏
= �r�

⇤
✏
in ⌦T , �

⇤
✏
= �1 on @⌦⇥ (0, T ),

R @tc
⇤
✏
+ v

⇤
✏
·rc

⇤
✏
� div( S(v⇤

✏
)rc

⇤
✏
) = �r✏(c

⇤
✏
)� gc

⇤
✏
+ p

⇤
✏
� ✏p

⇤
✏
c
⇤
✏
in ⌦T ,

S(v⇤
✏
)rc

⇤
✏
· n = 0 on @⌦⇥ (0, T ), c

⇤
✏|t=0

in ⌦,

bearing in mind the pointwise convergence of r✏ to the continuous function r0, we obtain the variational formu-
lation of

div(v) = g, v = �r� in ⌦T , � = �1 on @⌦⇥ (0, T ),

R @tc+ v ·rc� div( S(v)rc) = �r0(c)� gc+ p in ⌦T ,

S(v)rc · n = 0 on @⌦⇥ (0, T ), c|t=0 in ⌦.

It means actually that (c,�) = (cp,�p) defined by (17)-(20). The e↵ective state system is derived.
We now study the limit behavior of the optimization problem. Let M✏ (resp. M0) be the maximal value of

the objective for Problem P✏ (resp. P0), that is

M✏ = J(p⇤
✏
) =

Z
T

0

⇣Z

⌦

f(t, x, p⇤
✏
)�D(x, c⇤

✏
) dx

⌘
e
�⇢t

dt,

M0 = J(p⇤) =

Z
T

0

⇣Z

⌦

f(t, x, p⇤)�D(x, c⇤) dx
⌘
e
�⇢t

dt = max
q2E0

Z
T

0

⇣Z

⌦

f(t, x, q)�D(x, cq) dx
⌘
e
�⇢t

dt.

We aim at proving that p = p
⇤. In view of the uniqueness result of Lemma 4.4, it is su�cient for our purpose

to prove that J(p) = M0. Of course, since p 2 E0, we only know that

J(p)  M0. (41)

Let us sketch the main steps of the remainder of the proof:

Step 0 We know that J(p)  M0.
Step 1 We use the structure of the objective J for proving that lim sup

✏!0
M✏  J(p).

Step 2 We construct a perturbation of the optimal state concentration c
⇤ = cp⇤ , actually c✏,p⇤ , and we prove

that M0  lim inf✏!0 M✏.
Step 3 We conclude that J(p) = M0.

Step 1 is based on classical continuity type arguments. Using the strong convergence of c⇤
✏
and the assumptions

on D, we claim with a monotonicity argument that

�

Z
T

0

Z

⌦

D(x, c)e�⇢t
dx dt = lim

✏!0

⇣
�

Z
T

0

Z

⌦

D(x, c⇤
✏
)e�⇢t

dx dt

⌘
.
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Since f is concave and p
⇤
✏

⇤
* p weakly-* in L

1(⌦T ), we know, according to the inferior lower-semicontinuity of
concave functions theorem, that

Z
T

0

Z

⌦

f(t, x, p)e�⇢t
dx dt � lim sup

✏!0

Z
T

0

Z

⌦

f(t, x, p⇤
✏
)e�⇢t

dx dt.

Thus

J(p) =

Z
T

0

⇣Z

⌦

f(t, x, p)�D(x, c) dx
⌘
e
�⇢t

dt � lim sup
✏!0

M✏. (42)

In Step 2, we look for an appropriate approximation of c⇤. This point is the tricky part of the proof. For the
convenience of the reader, we recall that c⇤ is a weak solution of

8
><

>:

R @tc
⇤ + v ·rc

⇤
� div( S(v)rc

⇤) = �r0(c⇤)� gc
⇤ + p

⇤ in ⌦T ,

div(v) = g, v = �r� in ⌦T ,

S(v)rc
⇤
· n = 0 on @⌦⇥ (0, T ), c⇤|t=0

= c0 in ⌦, � = �1 in @⌦⇥ (0, T ).

(43)

Since v does not depend on c
⇤, Proposition 3.3. in [1] ensures that c⇤ is actually uniquely defined by (43). Let

us now consider c✏,p⇤ , which is defined by (4)-(5) with p = p
⇤ and (7)-(9), that is:

8
><

>:

R @tc✏,p⇤ + v✏,p⇤ ·rc✏,p⇤ � div( S(v✏,p⇤)rc✏,p⇤) = �r✏(c✏,p⇤)� gc✏,p⇤ + p
⇤(1� ✏c✏,p⇤) in ⌦T ,

div(v✏,p⇤) = ✏p
⇤ + g, v✏,p⇤ = �r�✏,p⇤ in ⌦T ,

S(v✏,p⇤)rc✏,p⇤ · n = 0 on @⌦⇥ (0, T ), c✏,p⇤ |t=0
= c

⇤
0
in ⌦, �✏,p⇤ = �1 on @⌦⇥ (0, T )

(44)

Once again, we exploit Proposition 3.2 (in the case pn = p
⇤ for any n) and we study the behavior of (44) as

✏ ! 0. In particular c✏,p⇤ is sequentially compact in L
2(⌦T ). There exists a subsequence of c✏,p⇤ converging in

L
2(⌦T ) to a function, which turns out to be a weak solution of (43). The solution of this latter problem being

unique, the whole sequence converges and the limit is

c✏,p⇤ ! c
⇤ in L

2(⌦T ) and a.e. in ⌦T .

Moreover

M0 =

Z
T

0

⇣Z

⌦

f(t, x, p⇤)�D(x, c⇤) dx
⌘
e
�⇢t

dt

= lim
✏!0

Z
T

0

⇣Z

⌦

f(t, x, p⇤)�D(x, c✏,p⇤) dx
⌘
e
�⇢t

dt  lim inf
✏!0

M✏, (45)

the second equality being justified by the convergence of c✏,p⇤ and a monotonicity argument, the inequality
being justified by the definition of the maximal value M✏.

Summing up the results in Step 3, with (41), (42) and (45), we have

M0  lim inf
✏!0

M✏  lim sup
✏!0

M✏  J(p)  M0

and thus

J(p) = M0.

In view of the uniqueness result of Lemma 4.4, it follows that p = p
⇤ and that the whole sequence (p⇤

✏
, c

⇤
✏
,�

⇤
✏
)

converges to (p⇤, c⇤,�). This ends the proof of the lemma. ⇤
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Theorem 2.6 is proved by Lemmas 4.4 and 5.1.

Conclusion

This paper presents a realistic model that computes the optimal trade-o↵ between the use of a polluting
process for gaining productivity and the cleaning treatment cost for supplying the population with drinking
water. The hydrogeological model for the spread of the pollutant in the groundwater is space dependent. The
economic cost both depends on the pollution degree and on the treatment plants location. An existence result
of an optimal solution is provided in a generic setting. Since the pollutant concentration in groundwater is
usually small, we justify the use of asymptotic analysis tools for further proving the uniqueness of the optimal
control. Notice that the convergence of the optimal solution of the scaled problem to the optimal solution of
the e↵ective one is also obtained, which is not a foreseeable result.

At least two interesting extensions of the present model could be explored. First, we have considered here an
optimal control problem that can be solved by a central planner. However, the pollution may be issued from
several sources (for instance, agricultural pollution is due to distinct farmers). These agents may di↵er, for
instance, from their distance to the treatment plant and/or from their productivity gains related to the use of
the polluting process. The framework we consider here has thus also to be studied from a game theory point of
view. Moreover, beyond the existence of the game equilibrium, the qualitative comparison of the game solution
with the optimal control solution could be interesting from both a theoretical and a assessment point of view.
Second, we did not assume the existence of bu↵er zones between the polluted area and the treatment plant.
Experimental data show that active bu↵er zones may contribute to the cleaning of soils and groundwater from
contaminants. An ecosystem dynamics providing a cleaning service could be included in the present model. It
would be then worth computing the value of this ecosystem service.
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[19] G. de Marsily, Quantitative Hydrogeology: Groundwater Hydrology for Engineers, Academic Press (1986).
[20] F. van der Ploeg and A. de Zeeuw, A di↵erential game of international pollution control. Systems & Control Letters 17(6)
(1991) 409-414, http://dx.doi.org/10.1016/0167-6911(91)90080-X.

[21] C. S. Rogers, Economic costs of conventional surface-water treatment: A case study of the Mcallen Northwest Facility. Master
of Science Dissertation, Texas A&M University, USA (2010).

[22] A. E. Scheidegger,The Physics of Flow through Porous Media. University of Toronto Press (1974).
[23] J. Simon, Compact sets in the space Lp(0, T ;B), Annali di matematica pura ed applicata (IV) (1987) Vol. CXLVI, 65-96,
https://doi.org/10.1007/BF01762360

[24] L.C. Tartar, Compensated compactness and applications to partial di↵erential equations, in R. J. Knops, Ed., Research Notes
in Mathematics, Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Vol. 4, Pitman Press, London, (1979).

[25] F.A. Williams, Combustion Theory: the fundamental Theory of chemically reacting Flow Systems, Benjamin-Cummings Pub.
Co., Menlo Park, Calif., 2nd ed., (1985).

[26] Y. Yuan, D. Liang and H. Zhu, Optimal control of groundwater pollution combined with source abatement costs and taxes.
Journal of Computational Science 20 (2017) 17-29, http://dx.doi.org/10.1016/j.jocs.2017.03.014.
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