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Abstract Hyperspectral imaging is known for its rich

spatial-spectral information. The spectral bands pro-

vide the ability to distinguish substances spectra which

is substantial for analyzing materials. However, high-

dimensional data volume of hyperspectal images is prob-

lematic for data storage. In this paper, we present a

lossy hyperspectral image compression system based

on the regression of 3D wavelet coefficients. The 3D

wavelet transform is applied to sparsely represent the

hyperspectral images (HSI). A support vector machine

regression (SVR) is then applied on wavelet details and

provides vector supports and weights which represent

wavelet texture features. To achieve the best possible

overall rate-distortion performance after regression, en-

tropy encoding based on run-length encoding (RLE)

and arithmetic encoding are used. To preserve the spa-

tial pertinent information of the image, the lowest sub-

band wavelet coefficients are furthermore encoded by

a lossless coding with differential pulse code modula-

tion (DPCM). Spectral and spatial redundancies are

thus substantially reduced. Experimental tests are per-

formed over several hyperspectral images from airborne

and spaceborne sensors and compared with the main

existing algorithms. The obtained results show that the

proposed compression method has high performances

in terms of rate-distortion and spectral fidelity. Indeed,

high PSNRs and classification accuracies, which could

exceed 40.65 dB and 75.8 % respectively, are observed

for all decoded HSI images and overpass those given by
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many cited famous methods. In addition, the evalua-

tion of detection and compression over various bands

shows that spectral information is preserved using our

compression method.

Keywords Remote sensing · Hyperspectral image ·
Lossless compression · Image coding · Spectral

classification · Texture feature learning

1 Introduction

Nowadays images have an important role in many fields,

notably in remote sensing applications like forestry, city

planning and land use classification in agriculture, etc.

Hyperspectral imaging has become a popular remote

sensing as it achieves hundreds of contiguous spectral
bands which provide the ability to distinguish virtu-

ally the major part of materials. The aim of spectral

analysis is to find objects, identify materials or detect

processes. The principle is to compare waveforms of im-

age spectrum to those of known substance spectra, and

to precisely discriminate different types using the ade-

quate spectral information. Hyperspectral imaging sen-

sors provide high quality data for utility assessments

due to their advanced technologies. AVIRIS is an air-

borne hyperspectral sensor that records 224 contiguous

bands, from 400 nm to 2500 nm, of size 2048 rows by

614 columns and 2 bytes/sample per band (over 537

Megabytes per image). HYDICE is also an airborne sen-

sor with high spectral resolution; it provides 210 spec-

tral bands from 400 to 2500 nm and 10 nm wide cov-

ering the spectral range. HYPERION is an spaceborne

hyperspectral sensor, it is a pushbroom imaging instru-

ment. It records 220 spectral bands from 400 nm to

2500 nm with a 6.5Km swath width and a spatial res-

olution of 30m. Due to such highly correlated data and
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high data volumes, the hyperspectral data compression

has become increasingly important in data processing,

analysis and storage. Huge volumes of daily-generated

data can be handled and stored only with the help

of efficient compression algorithms. Image compression

techniques fall broadly into two main categories: loss-

less and lossy compression depending on whether the

original image can be precisely re-generated from the

compressed data. Although the lossless compression is

often used to preserve the full information of original

images, it provides a lower compression ratio than that

of lossy compression, which is a disadvantage for chan-

nel transmission and storage. For the last few years,

discrete wavelet transform (DWT) has been commonly

used for image compression and restoration [1–4] . It

is a robust technique for image compression due to its

multiresolution feature, scalability and flexibility. Many

promising 3D image compression algorithms based on

wavelet transforms were recently proposed [5–14]. In

[15–17] authors suggest different techniques for 2D im-

age compression method based on combining DWT and

support vector machine (SVM). They remove blocking

artifacts and improve the quality of the 2D image. The

wavelet transform generates approximation coefficients

(AC) and detail coefficients (DC). Approximation coef-

ficients represent pixel values of an image dataset while

detail coefficients are distributed in horizontal, vertical

and diagonal sub-bands. Moreover, the wavelet trans-

form provides fundamental trade-off between frequency

and time localization. Although these methods are very

effective for 2D grey-level and color image compression,

many papers as [18, 19] highlight that most of these

coding methods do not consider the spectral charac-

teristics of hyperspectral images (HSI). This may be

problematic for the identification of classes and ob-

jects in 3D HSI and could notably affect analysis re-

sults. [18, 19] present an HSI compression algorithm

based on the three-order tensor which can simultane-

ously consider both the spatial and spectral domains of

the data cube. However the spectral correlation (band

redundancy) is generally considered stronger than spa-

tial correlation.An effective lossless compression algo-

rithm based on classification is proposed in [20], it is

based on the selection of bands with considerable infor-

mation and performed with K-means to obtain classifi-

cation map. The introduction of a multilinear regression

model on this algorithm allowed to construct the high-

quality side information of each class. In [21], authors

proposed hyperspectral lossless coding scheme based

regression wavelet analysis. The proposed scheme al-

lowed to increase the wavelet coefficients independence

and so reduce redundancy. According to the results,

this approach yields to better performances than many

other famous techniques such as PCA. In this paper,

an effective hyperspectral image compression method

is proposed. It considers the spectral information while

preserving the most pertinent information in the im-

age. Our method is based on the 3D wavelet transform

and support vector regression (SVR). The regression

is applied on spectral dimension data to provide the

most important coefficients in the sequence, that are

called support vectors (SVs). This method allows the

most significant part of spectral to be preserved. First

of all, the HSI is sparsely represented by DWT to ob-

tain 3D wavelet coefficients which define the AC and

DC. The compression step is then performed by appli-

cation of differential pulse code modulation (DPCM)

on approximate coefficients and this generates the first

code sequence. Note that this code sequence includes a

large amount of image energy, which is efficient for im-

age reconstruction. While the SVR is used to produce

the vector and its weight support of spectral wavelet

detail coefficients, the obtained coefficients are encoded

by run-length encoding (RLE) and arithmetic encod-

ing and the other code sequence is generated. The two

code sequences are then used for HSI reconstruction.

This approach eliminates the spatial and spectral re-

dundancies which are observed in HSI. Compared to

several other methods, the approach considerably pre-

serves the quality of the spectral HSI data. The classifi-

cation performances of the method have been also eval-

uated. Results show that the proposed method yields

to high classification accuracy and overcomes famous

other compression/classification methods. This paper

is organized as follows. The wavelet-SVM compression

algorithm for hyperspectral images is proposed in sec-

tion 2. Section 3 shows the experimental results ob-

tained from several HSI and the comparisons with the

main existing algorithms. Section 4 gives the classifica-

tion performances of the method. Section 5 describes

the impact of the proposed method on the spectral in-

formation of HSI. Section 6 draws some conclusions.

2 Compression Algorithm

2.1 Principle

First of all the proposed HSI compression provides wavelet

coefficients by applying the 3D DWT transform to get

AC and DC (see Fig. 1). We perform three level wavelets

decomposition to arrive time computation and quality.

The approximation signal displays pixel values and the

detail signal displays the horizontal, vertical, and diag-

onal details of an image dataset. These different coeffi-

cients will be processed according to their importance.

An adapter quantization, named deadzone, is used on
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Fig. 1: The Wavelet-SVR compression algorithm.

these coefficients and enables all source values which

are considered low to be quantified in a single same

value (usually zero). The lowest sub-band wavelet co-

efficients are encoded by differential pulse code modu-

lation (DPCM) to preserve the large amount of image

energy present in this sub-band. The SVM regression

is thus applied to the spectral wavelet detail sub-bands

coefficients to represent the original data and eliminate

redundancy. Weights and support vectors are computed

and encoded together by entropy encoder. The aim of

this procedure is to preserve, as well as possible, the

spectral information of HSI data which is substantially

important for the subsequent 3D HSI data analysis.

Furthermore the spatial information is preserved using

DPCM on low-frequency image.

2.2 Wavelet transform

The wavelet transform is an effective mathematical tool

for time-frequency analysis in signal processing and pat-

tern recognition. A wavelet is a normalized function

ψ ∈ L2(R) with a null mean [22]. A discrete wavelet is

the inner product of finite-length sequence and a dis-

cretized wavelet basis with a scale factor sa0 and a trans-

lation factor b:

ψb,a(n) =
1√
sa0
ψ

(
n− b
sa0

)
. (1)

The wavelet coefficients Wf (b, a) of a sequence f(n)
is obtained by projecting f onto the family ψb,a(n):

Wf (b, a) =< f(t), ψ∗b,a >=

N∑
n=0

f(n).ψ∗b,a(n), (2)

where ψ∗b,a denotes the conjugate of ψb,a and < . >

the scalar product. Parameter a determines the fre-

quency region. A large |a| indicates low frequencies,

while a small |a| indicates high frequencies [23]. Note

that for the dyadic discrete wavelet transform s0 = 2 .

In image processing, a 2D decomposition algorithm

to compute discrete wavelet transform consists in choos-

ing a low pass and a high pass filter, known as analy-

sis filter pair [24]. The analysis filter divides data into

low frequency and the high frequency components. The

data can be sub-sampled by two. For a hyperspectral
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image, 1D transforms in the third direction are added.

In a 3D transform, 8 subband cubes are created at the

first decomposition level. The low pass sub-band at the

top of the pyramid contains approximate coefficients,

which are the most significant information of the im-

age. The high frequency sub-bands contain the edges

of the low resolution image. The size of high frequency

components of DWT is furthermore increased by 3D

bicubic interpolation with factor 2. Low frequency (A)

and high frequency (D) wavelet coefficients of an image

in resolution level l in the three dimensions (x, y, z) are

defined as follows:

A(l)
n (x, y, z) =

1

2
(A

(l−1)
2n +A

(l−1)
2n+1) (3)

D(l)
n (x, y, z) =

1

2
(A

(l−1)
2n −A(l−1)

2n+1) (4)

Wavelet transform codings provide many interesting

advantages over other transform methods. They have

been used extensively in such research work as, EZW

[25], SPIHT [26], SPECK [27, 28] and EBCOT [29] that

are all wavelet based schemes. In this study, we use the

Cohen-Daubechies-Feauveau (CDF) 9/7 tap biorthog-

onal filters [30]. This transform is one of the most pop-

ular transforms used in image compression [26–29, 31],

it produces floating point wavelet coefficients. Filters

CDF 5/3, Db4 and Symlet Wavelets filters [32, 33] are

also tested to prove the effect of the approach on the

results.

2.3 Differential Pulse Code Modulation

The lowest sub-band of the HSI is encoded by DPCM

for including a large amount of image energy. It is based

on the fact that most source signals show significant

correlation between successive samples so the encoding

uses the redundancy in sample values, which implies a

lower bit rate. A linear prediction is employed to predict

the coefficients, by minimizing the expected value of the

squared error inside each band. The linear approximate

wavelet coefficient prediction function is:

Âx,y,z =

Mz∑
i=1

(pz,s,iAx,y,z + pz,s,0). (5)

where Ax,y,z and , Âx,y,z represent the pixel AC sub-

band value and predictive value at band z with the

spatial location(x, y) respectively, Mz is the prediction

length that is used in the prediction, and pz,s,i denotes

the prediction coefficients for cluster s at band z.

2.4 Support Vector Machine Regression For Image

Compression

2.4.1 Principle of SVM regression

As a recent machine learning method, SVM has been

commonly used in many areas because of its good gen-

eralization capability. Although SVM was initially de-

signed to solve classification problems the Support vec-

tor (SV) techniques can be successfully applied in re-

gression, i.e., for functional approximation problems.

The application of SVM learning to regression problems

is used in this paper. In regression, the learning ma-

chine is given a set of training points. The real function

is approximated within a predefined error or margin

of tolerance, by choosing the lowest number of train-

ing points termed Support Vectors. For each Support

Vector, there is a corresponding weight (W) [34].

Let the set of training data be

C = {(x1,y1), . . . , (xN ,yN )} (6)

where xi (1 ≤ i ≤ N) is a vector in the input space,

which represents in our case the spectral wavelet vector

for each coefficient of DC sub-band and, yi ∈ R the

corresponding target. The number of training samples

is equal to N. To predict data x, we want to learn the

following regression function g(x):

g(x) =< w,φ(x) > +B, (7)

where w ∈ RN is the weight vector in the kernel fea-

ture space, φ(x) is the kernel feature map of data x,

and b ∈ R is a bias. The solution is obtained by re-

formulating and solving a convex optimization problem

proposed by Vapnik [35] . The final prediction model

can be formulated as follows:

g(x) =

N∑
i=1

(αi − α∗i )k(xi,x) +B. (8)

where k(., .) is a kernel function, coefficients αi and α∗i
are the SV support. In data compression, the smaller

number of support vectors allows a higher compression

ratio.

2.4.2 Definition of kernel function

The Support Vector machine is a dot product kernel.

The kernel function is to map inputs in the low-dimensional

space into a high-dimensional feature space. The target

data can then be classified by using the hyperplane.

SVM kernel function k(x) must satisfy the Mercer’s

conditions [36]. In theory, the most well known SVM

kernels are polynomial, Gaussian, linear, sigmoidal or

a radial basis function. The polynomial kernel and the

Gaussian radian basis function are defined as follows:
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– A polynomial kernel:

k (xi,xj) = [< xi,xj > +c]
q
, (9)

where q is the degree of the polynomial function

and c ∈ [0,+∞[. To note that a linear kernel can be

defined with q = 1.

– Gaussian radial basis function:

k (xi,xj) = e−γ‖xi−xj‖2 , (10)

with γ a free parameter. We have chosen to use ε-SVR

model with three SVM kernels (linear, polynomial and

Gaussian), which is the original SVM formulation for

Regression (SVR). It uses parameter ε ∈ [0,+∞[ to

apply a penalty to the optimization for points which

were not correctly predicted.

2.4.3 Quantization and arithmetic coding

The nonzero weight coefficients are not integers so they

should be quantized before the arithmetic coding. We

use a floating-point quantizer for this purpose. To re-

duce the physical size of the quantized sequence, we ap-

ply the RLE coding. It replaces sequences of the same

data values within a file by a count number and a sin-

gle value. To achieve significant compression, the clas-

sical arithmetic coder is used [37]. It transforms the

sequence of quantizied data to a bitstream by trans-

mitting the most probable weight coefficients in fewer

bits. The bitstream of each HSI sub-band for the three

wavelet decomposition levels is saved. The detail cod-

ing sequence of the HSI dataset is obtained by taking

all the bitstreams.

After SVM regression, weight and support vectors

are encoded together by entropy coding. The main steps

of the encoding algorithm are given briefly in algorithm

1. The decompression of the proposed SVR-3D Wavelet

method mainly contains the reconstruction process. It

is briefly shown in Algorithm. 2.

3 Experimental Results

To demonstrate the effectiveness of the proposed 3D-

DWT + SVR method, An extensive amount of exper-

iments have been performed over calibrated and un-

calibrated hyperspectral images acquired by AVIRIS,

HYDICE and HYPERION sensors. In this section, ob-

tained results are shown and discussed.

Data: Hyperspectral image H

Result: Encoded sequence Sf
Perform 3-level 3D wavelet transform to

generate A
(l)
n (x, y, z) and D

(l)
n (x, y, z)

coefficients ;

Encode lowest sub-band coefficients (A
(3)
n )

using DPCM;

for the data of the fine scale subbands do
Normalize wavelet coefficients;

Vectorize wavelet coefficients D(x, y) along

the z-dimension;

for each coefficient vector D(x, y, .) do
Train SVM and combine the weights

and the support vectors together;

Quantize the weights;

Encode the weight vectors with RLE

and arithmetic encoding;

end

end

Algorithm 1: SVM-based encoding algorithm

Data: Encoded sequence Sf
Result: Reconstructed Hyperspectral image H

Decode the bitstream by RLE and arithmetic

decoding;

Perform the high scale subbands ;

Inverse normalize of fine scale subbands

coefficients;

Decode lowest sub-band coefficients using the

inverse DPCM;

Reconstruct HSI with inverse wavelet

transform;

Algorithm 2: Decompression

3.1 Experimental Data Set

We consider four airborne hyperspectral images : the

Yellowstone uncalibrated scene 0, Cuprite scene 1 and

Indiana Pines images acquired by Airborne Visible In-

frared Imaging Spectrometer (AVIRIS) sensor, and the

Washington DC Image acquired by Hyperspectral Digi-

tal Image Collection Experiment (HYDICE) sensor. To

estimate the robustness of our method, an spaceborne

hyperspectral remote sensing data system is also con-

sidered. Thus, two other hyperspectral images acquired

by HYPERION sensor are considered. i.e. Mt. St. He-

lens and Erta Ale images. The choice of these images is

due to the variety of information which is useful for an-

alyzing the effect of SVM learning on different datasets

(water, agglomeration, ground, ...). The detailed de-
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scriptions of these HSIs datasets are shown in Fig. 2

and Fig. 3.

Yellowstone uncalibrated scene 0 image The image was

acquired in 2006. It contains 224 spectral bands with

512 by 614-pixel resolution for each band and 16 bits

per pixel per band (bpppb). This AVIRIS image can be

downloaded from NASA web site1. Fig. 2 (a) shows the

71st band of Yellowstone image.

Cuprite image The Cuprite image was acquired in 1996,

it is included in standard 1997 AVIRIS calibrated ra-

diance images. This image is a 20 m spatial resolution

containing 224 spectral bands between 0.4 and 2.5 µm.

The noisy bands (1, 2, 109-112, 156-167) of Cuprite

data are removed in the experiment. Fig. 2 (b) shows

the 2nd of Cuprite image.

Indiana Pines image The HSI was acquired over the

agricultural Indiana Pines test site in Northwestern In-

diana in 1992. It contains 220 bands across the spectral

range from 0.4 to 2.5 µm with 145 by 145 pixels for

each band. This HSI dataset can be downloaded from

the web site2. We removed noisy bands in the experi-

ment i.e. 2,3, 104-108, 150-165, 219 and 220. The fourth

band of this image is shown on Fig. 2 (c).

Washington DC Image The HSI was acquired over the

Washington DC Mall, it can be downloaded from the

web site3. It consists of 191 spectral bands from 0.4 to

2.4 nm and of 1280 by 307 spatial size. The 10th band

of this image is shown on Fig. 2 (d).

Mt. St. Helens This HSI image was acquired in 2009 by

HYPERION sensor and provided by the EO-1 Mission,

NASA/USGS. This image is a 30 m spatial resolution

containing 242 spectral bands with 3242 × 256 pixel

resolution for each band and 12 bpppb. This image can

be downloaded from 4. The image is shown on Fig. 3

(a).

Erta Ale Image The Erta Ale Image was acquired in

2010 by HYPERION sensor. As Mt. St. Helens image,

The Erta Ale is a 30 m spatial resolution with 242 spec-

tral bands and 12 bpppb. Each band is a 3187 × 256

1 http://aviris.jpl.nasa.gov/html/aviris.freedata.

html
2 http://www.ehu.eus/ccwintco/uploads/2/22/Indian_

pines.mat
3 http://cobweb.ecn.purdue.edu/~biehl/

Hyperspectral_Project.zip
4 https://coding.jpl.nasa.gov/hyperspectral/

pixel resolution. The image can be downloaded from 5

( Fig. 3 (b)).

For our experiments, we use different size data cubes.

The sizes of the test sub-images are 512 x 512 for Yel-

lowstone, 256 x 256 for Cuprite, 128 x 128 for Indiana

Pines and 256 x 256 for Washington DC image as shown

on Fig. 2. For both the Mt. St. Helens and the Erta Ale

images, a size of 768× 256 is used (Fig. 3).

Fig. 2: Airborne compression dataset: (a) Yellowstone

scene 0 image (512 × 512); (b) Cuprite image (256 x

256), (c) Indiana Pines image (128×128) and (d) Wash-

ington DC image (256× 256).

3.2 Evaluation method

Our algorithm is implemented with MATLAB and we

have used LibSVM6 for ε-SVR. To evaluate the perfor-

mance, following measurements are adopted as criteria

to measure the reconstruction error:

– Bit-rate quantified using bit-per-pixel (bpp):

Bit rate =
Number of bits per pixel in the original image

CR
,

(11)

5 https://coding.jpl.nasa.gov/hyperspectral/
6 http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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R B D M i K
(a) (b)

Fig. 3: Spaceborne compression dataset: (a) Mt. St. He-

lens image (768×256); (b) Erta Ale image (768×256).

where CR is the Compression Ratio which is formu-

lated as follows:

CR =
Original image size in bits

Compressed bitstream size in bits
(12)

– Rate Distortion Performance (SNR):

SNR = 10 log10

‖H||2∥∥∥H − Ĥ|∥∥∥2 ; (13)

where H is the original image and Ĥ is the recon-

structed image.

– Mean-square-error (MSE):

MSE(u,v) =
1

M

∑
u,v

‖u− v‖2 ; (14)

– Peak signal-to-noise ratio (PSNR):

PSNR(u,v) = 10 log10

(2r − 1)
2

MSE(u,v)
(15)

– Structural similarity (SSIM) index [38, 39]:

SSIM(u,v) =
(2µuµv + c1)(2σuv + c2)

(µ2
u + µ2

v + c1)(σ2
u + σ2

v + c2)
(16)

where u and v denote the vectors of original images

of size M , µu and µv the mean of u and v, σu
and σv the standard deviation of u and v. c1 =

(k1L)2 and c2 = (k2L)2 are two variables to avoid

instability with weak denominator, L = 2r−1 is the

dynamic range of the pixel-values and r denotes the

maximum bit depth. k1 and k2 are set to 0.01 and

0.03 [38, 39].

– McNemar’s test: To evaluate the statistical differ-

ence between two classifiers, the McNemar’s test

is performed. This standardized statistical test de-

scribes if two classifiers are significantly different.

The Z value of McNemar’s test is given as in [40]:

Z =
fr12 − fr21√
fr12 − fr21

(17)

where fr12 represents the correctly classified sam-

ples by the first classifier and incorrectly classified

samples by the second one. According to state of

the art, the value of Z which reflects the significant

difference of one classifier from another is estimated

between 1.96 [40] and 2.58 [41].

3.3 Discussions on kernels

To evaluate the impact of kernels on the compression,

the compression scheme is tested over the six datasets

with Gaussian (G), polynomial (P) and linear (L) ker-

nels. To fix the optimal SVR parameters, we empiri-

cally fix values which maximize the estimated PSNRs.

For the polynomial kernel, degree q is equal to 0.6 and

offset c is equal to 0.1. For the Gaussian kernel, γ is set

to 0.9129.

The visual results for one sub-band of reconstructed

images for each dataset are shown in Fig. 4 for Yellow-

stone (subband 71), Fig. 5 for Cuprite (subband 66),

Fig. 6 for Indiana Pine (subband 4), Fig. 7 for Wash-

ington DC (subband 11), Fig. 8 for Mt. St. Helens

(subband 19) and Fig. 9 for Erta Ale (subband 21)

datasets. The original images can be compared to re-

constructed images with the three SVR kernels. By vi-

sual comparisons of reconstructed images, it is observed

that almost regions of entire images scenes are provided

with good visual image quality. However, we also ob-

served that many sub-bands of reconstructed images,

with Polynomial and Linear kernels, present significant

distortions (see Fig. 10) especially when the ε is over

0.0001. These results are consistent with those given
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by Table. 1. The reconstructed images with Gaussian

kernel present less noisy and show more details than

the other reconstructed images (see Fig. 10).

On Table. 1, experimental results show that our HSI

compression algorithm achieves high compression ratios

with a good image quality. Indeed, with the Yellowstone

data set, we obtain a PSNR = 40.68dB for SSIM = 0.75

and CR = 26.44 corresponding to 0.6 bpp. For Cuprite

data, we obtain PSNR = 43.62 dB for SSIM = 0.93

and CR = 26.95 corresponding to 0.59 bpp, for Indiana

Pines PSNR = 44.14dB for SSIM = 0.85. and CR =

27.02 corresponding to 0.59 bpp and for Washington

DC PSNR = 40.76dB for SSIM = 0.83. and CR = 26.95

corresponding to 0.59bpp. Results for Hyperion M.S.

Helens dataset show a PSNR = 49.47dB for SSIM =

0.89 and CR = 22.12 corresponding to 0.72 bpp. For

Hyperion Erta Ale a PSNR = 38.46dB for SSIM =

0.86 and CR = 20.85 corresponding to 0.76 bpp are

obtained.

By varying the hyper-parameters of the Gaussian

and Polynomial kernels used by SVM, PSNR and SSIM

increase when ε-SVR decreases according to a law which

can be approximately exponential (Table . 1). The Gaus-

sian kernel converges to the best PSNR and SSIM faster

than the two other kernels. Indeed, as shown in Table

. 1, results for all datasets with Gaussian kernel achieve

best values for ε-SVR=0.001, when results given by

Polynomial and Linear kernels still bellow their best

values with about 1dB and 0.05 of PSNR and SSIM re-

spectively for all airborne datasets. For the two space-

borne datasets, the best PSNRs and SSIMs given by

Polynomial and Linear kernels are lower than those

given by Gaussian kernel with about 3dB.

In general, we can see that the developed approach,

whether with Gaussian or Polynomial SVM kernels,

leads to interesting result compression. In terms of qual-

ity, one can conclude that this approach preserves most

significant part of information.

3.4 Discussions on DWT filters

Table. 2 shows results of our compression approach with

four wavelet functions. The minimum PSNR are: 26.09

dB, 29.04 dB, 29.70 dB, 27.72 dB, 19.72 dB and 20.06

dB for Yellowstone, Cuprite, Indiana Pines, Washing-

ton DC, M.S.Helens and Erta Ale datasets respectively,

with a bit rate 0.1, and they belong to Db4 wavelet fil-

ter, while the maximum PSNR: 42.41 dB, 47.62 dB,

44.14 dB, 44.76 dB, 49.47 dB and 38.46 dB belong to

CDF 7/9 wavelet filter. The CDF 7/9 wavelet filter out-

performs the other wavelet functions.

3.5 Comparison results with others approaches

We compared the SNR obtained with our compression

process with those obtained by [42] for Indiana Pines

and Washington DC images and [43] for Cuprite image.

Fig. 11 shows the comparison results of our algorithm

and the other approaches applied on Cuprite (256 x

256 x 128), Indiana Pines (145 x 145 x 200) and Wash-

ington DC ( 280 x 307 x 191) datasets. Note that di-

mensions of the taken images are similar to those taken

by the cited references bellow. The compression perfor-

mance is substantially improved by the proposed 3D-

DWT+SVR method, when compared to other meth-

ods such as: 3D-SPECK [42–44], PCA+JPEG2000 [42,

43, 45, 46], SSASR [42], JPEG-BIFR [42, 47], 3D-DCT

[43, 48] and 3D-DCT+SVM [43] algorithms.

The comparison of our approach with the approaches

3D-DCT+SVM and SSASR demonstrates competitive

results in term of performance and outperforms the

other approaches. The developed approach achieves high

compression ratios with good decoded image quality.

3.6 Computational time

The execution times of our method is evaluated in this

section. The computational time of the used HSI data

are shown In Table. 3. For all datasets the execution

time increases with the bit rates. The taken times de-

pend on the sizes and distributions of data.

Furthermore, results of the proposed approach, ap-

plied on Indiana Pines, are compared to those given

by [42] ( Table. 4). The methods in [42] are executed

with Intel Core CPU processors of 2.50 GHz and 16-

GB RAM. PWSR and SSASR [42] methods are im-

plemented on the MATLAB platform and 3D-SPECK

[42–44], JPEG-BIFR [42, 47] and PCA+JPEG2000 [42,

43, 45, 46] methods are implemented by the C/C + +

code.

The results show that the computational time ob-

tained using our approach for various bit rates is very

efficient for the lowest bit rates and increases consid-

erably for the bit rates: 0.5 to 1. This is due to the

number of SVs that increases when SVR parameters

are changed. However the execution time can be con-

siderably improved with the use of a processor with

better performances and a parallel computation.

4 Classification performances

To evaluate the effect of our method on classification

performances, we use rbf-SVM classifier as in [42, 46,
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Table 1: Experimental results for Gaussian (G), polynomial (P) and linear (L) SVR kernels.

Image Kernels ε-SVR 0.1 0.05 0.01 0.003 0.001 0.00001 1 e- 6

Yellowstone

L

PSNR (dB) 23.32 31.18 31.18 33.98 29.73 39.90 40.68

Bit rate 0.47 1.57 1.06 2.21 1.59 0.61 1.21

SSIM 0.07 0.11 0.29 0.48 0.64 0.74 0.74

P

PSNR (dB) 22.06 24.10 30.46 35.09 38.24 40.68 40.68

Bit rate 0.38 0.52 0.59 0.60 0.60 0.60 0.60
SSIM 0.05 0.09 0.25 0.48 0.67 0.75 0.75

G

PSNR (dB) 26.01 29.49 31.65 40.65 40.68 40.68 40.68

Bit rate 0.46 0.51 0.52 0.60 0.60 0.60 0.60

SSIM 0.12 0.17 0.51 0.74 0.75 0.75 0.75

Cuprite

L

PSNR 29.84 31.19 36.65 40.72 42.64 43.62 43.62

Bit rate 0.40 0.48 0.57 0.59 0.59 0.59 0.59

SSIM 0.07 0.10 0.35 0.66 0.83 0.92 0.92

P

PSNR 29.18 30.62 36.84 41.00 42.92 43.62 43.62

Bit rate 0.36 0.46 0.57 0.59 0.59 0.59 0.59

SSIM 0,06 0,09 0,37 0,69 0,86 0,93 0.93

G

PSNR 29.20 32.06 39.16 43.57 43.62 43.62 43.62

Bit rate 0.33 0.49 0.58 0.59 0.59 0.59 0.59

SSIM 0.08 0.15 0.51 0.93 0.93 0.93 0.93

Indiana

L

PSNR 21.51 23.78 29.26 31.32 31.96 32.14 32.14

Bit rate 0.42 0.51 0.58 0.59 0.59 0.59 0.59

SSIM 0.11 0.17 0.47 0.70 0.81 0.84 0.84

P

PSNR 32.87 35.26 41.18 43.36 44.04 44.14 44.14

Bit rate 0.39 0.50 0.41 0.60 0.59 0.59 0.59

SSIM 0.09 0.16 0.48 0.72 0.83 0.85 0.85

G

PSNR 32.70 35.97 42.39 44.12 44.14 44.14 44.14

Bit rate 0.36 0.50 0.58 0.59 0.59 0.59 0.59

SSIM 0.12 0.21 0.59 0.85 0.85 0.85 0.85

Washington

L

PSNR 26.88 28.50 33.84 37.97 39.79 40.76 40.76

Bit rate 0.40 0.50 0.58 0.59 0.59 0.59 0.59

SSIM 0.07 0.11 0.33 0.58 0.73 0.82 0.82

P

PSNR 26.29 27.93 34.00 38.12 40.15 40.76 40.76

Bit rate 0.36 0.48 0.58 0.59 0.59 0.59 0.59

SSIM 0.05 0.09 0.33 0.60 0.77 0.83 0.83

G

PSNR 25.83 28.66 36.11 40.72 40.76 40.76 40.76

Bit rate 0.34 0.50 0.58 0.59 0.59 0.59 0.59

SSIM 0.05 0.11 0.44 0.82 0.83 0.83 0.83

M.S. Helens

L

PSNR 21.38 21.60 21.68 22.06 33.62 33.75 45.61

Bit rate 0.45 0.56 0.58 0.61 0.61 0.69 0.72

SSIM 0.18 0.25 0.26 0.34 0.37 0.60 0.85

P

PSNR 22.79 22.79 22.79 22.99 34.61 34.70 46.62

Bit rate 0.60 0.60 0.60 0.61 0.61 0.69 0.72

SSIM 0.10 0.10 0.10 0.36 0.82 0.83 0.86

G

PSNR 24.42 24.50 24.58 47.25 49.47 49.47 49.47

Bit rate 0.48 0.59 0.60 0.69 0.72 0.72 0.72

SSIM 0.26 0.29 0.31 0.80 0.89 0.89 0.89

Erta Ale

L

PSNR 20.18 20.19 20.19 22.70 22.71 23.52 32.51

Bit rate 0.45 0.59 0.59 0.66 0.71 0.71 0.72

SSIM 0.21 0.21 0.43 0.43 0.68 0.71 0.82

P

PSNR 21.91 21.91 21.93 22.71 22.73 24.87 36.58

Bit rate 0.42 0.50 0.59 0.73 0.75 0.75 0.76

SSIM 0.22 0.22 0.43 0.55 0.69 0.76 0.82

G

PSNR 22.47 22.50 22.76 24.74 38.48 38.48 38.46

Bit rate 0.43 0.59 0.62 0.66 0.76 0.76 0.76

SSIM 0.23 0.23 0.54 0.68 0.86 0.86 0.86
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(a)

%
(b) (c) (d)

Fig. 4: Compression results for Yellowstone:

(a) Yellowstone original image, reconstructed images with CR close to 26 with (b)Gaussian, (c)polynomial and

(d)linear kernels.

(C) (d)

Fig. 5: Compression results for Cuprite scene:

(a) Cuprite original image, reconstructed images with CR close to 27 with (b)Gaussian, (c)polynomial and (d)linear

kernels.

(a) (b) (c) (d)

Fig. 6: Compression results for Indiana Pines scene:

(a) Indiana Pines original image, reconstructed images with CR close to 39 with (b)Gaussian, (c)polynomial and

(d)linear kernels.

47, 49] . We apply the classifier on originals and recon-

structed images over the four airborne HSI datasets,

which contain rich variety of information. The ground

truth images of Indiana Pines (with 16 classes and 10366

samples) and Washington DC ( with 7 classes and 7869

samples) are available online 7. For Yellowstone and

Cuprite scenes, we used ENVI to create the labeled pix-

els. The classes number of Cuprite ground truth image

7 http:www.ehu.eus/ccwintco/index.php?title=

Hyperspectral_Remote_Sensing_Scenes, http://lesun.

weebly.com/hyperspectral-data-set.html
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Fig. 7: Compression results for Washington DC scene :

(a) Washington DC original image, reconstructed images with CR close to 27 with (b)Gaussian, (c)polynomial

and (d)linear kernels.

Fig. 8: Compression results for M.S.Helens image :

(a) M.S.Helens original image, reconstructed images with CR close to 23 with (b)Gaussian (PSNR=49.47 dB), (c)

polynomial (PSNR=46.62 dB) and (d)linear ( (PSNR=45.61 dB) kernels.

is fixed to 12 by reducing the number of minerals witch

represent similar proprieties (initially Cuprite image

represents 14 classes) 8. For Yellowstone ground refer-

8 http://www.escience.cn/people/feiyunZHU/Dataset_

GT.html
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(a) (b) (c) (d)

Fig. 9: Compression results for Erta Ale image :

(a) Erta Ale original image, reconstructed images with CR close to 22 with (b)Gaussian (PSNR= 38.46 dB), (c)

Polynomial (PSNR= 36.58 dB) and (d) Linear ( (PSNR= 32.51 dB) kernels.

ence, we have considered 5 classes. The training samples

number of HSI datasets is fixed to about 5% for each

class. The rest of samples represents the test samples.

In table 5, we give Overall Accuracy (OA), Average Ac-

curacy (AA) and Kappa coefficient (K) for Bit rates of

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 (bppb) of the

six HSI datasets. In the same table, classification perfor-

mances results with SVM classifier applied on original

HSI images and 2D-DWT + SVR compressed data are

provided. This last compression method consists in per-

forming a 2D-DWT and SVR over all bands (band per

band) of HSI image [50]. The best classification results

obtained with 2D-DWT + SVR method appear for bit

rates of 0.5 bppb for Yellowstone, 0.1 bppb for Cuprite

and 1 bppb for Indiana and Washington datasets. Clas-

sification results are shown in table 5.

We compare results given by the proposed method

on Indiana Pines with those in [46]. The comparison

is shown in Fig. 12. Results in table 5 show that the

best classification performances appear for bit rate 0.4

bppb for Cuprite and Indiana Pines datasets and bit

rates 0.2 and 0.5 bppb for Yellowstone and Washington

DC datasets respectively. In Fig. 12, one can see that

except for bit rates of 0.1, 0.2 and 0.3 bppb, for which

PCA+JPEG2000 and AR+PCA+JPEG2000 greatly out-

perform the other approaches. The proposed 3D-DWT

+ SVR method overcomes all compared methods, espe-

cially for bit rates from 0.4 to 1 bppb. Results given by

3D-DWT + SVR show the effectiveness of the method

for classification purpose. In addition, one can observe

that the classification performances for compressed im-

ages exceed those of original images. This phenomena

is observed for all tested datasets. One can also observe

that the proposed method overcomes the 2D-DWT +

SVR in term of classification accuracy. To confirm the

accuracy of the proposed approach for classification tasks,

we also apply the McNemar’s test on the method. Ta-

ble 6 gives results of McNemar’s test of 3D-DWT+SVR
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Fig. 10: Reconstructed images with linear and polynomial kernels:

Linear: (a)Yellowstone (subband 91), (b) Cuprite (subband 6), (c) Indiana Pines (subband 183 (g) M.S.Helens

(subband 40)

Polynomial: (d) Yellowstone (subband 91), (e) Cuprite (subband 6), (f) Washington DC (subband 160) (h) Erta

Ale (subband 93).

SN
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Bit Rate (bpp)
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Bit Rate (bpp) 
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Bit Rate (bpp)
(c)

Fig. 11: Rate distortion performances of vari-

ous compression methods (3D-SPECK [42–44],

PCA+JPEG2000 [42, 43, 45, 46], PWSR and SSASR

[42], JPEG-BIFR [42, 47], 3D-DCT [43, 48] and

3D-DCT+SVM [43]) over three HSIs. (a):Cuprite. (b):

Indiana Pines. (c):Washington DC.

over SVM and 2D-DWT+SVR methods. Results show

that the Z value of McNemar’s test is larger than 2

which means that our method-based classification out-

performs the two others.

A remarkable classifiers based on Conventional Neu-

ral Network (CNN) are recently proposed for HSI classi-
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Fig. 12: Comparison of OA% with famous compression

methods over Indiana Pines.
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Table 2: Compression results of the proposed method with different wavelet filters

Image
PSNR (dB) for the proposed approach

Wavelet Function CDF 9/7 CDF 5/3 Db4 Sym

Yellowstone Bit rate

0.1 28.20 27.49 26.09 26.78

0.25 31.81 30.25 29.85 30.09

0.5 39.79 39.64 38.57 38.87

0.75 42.34 41.75 41.29 41.35

1 42.41 41.81 41.41 41.60

Cuprite Bit rate

0.1 35.20 30.80 29.04 29.78

0.25 40.06 39.35 38.94 39.11

0.50 45.16 40.09 37.88 39.71

0.75 46.78 44.06 41.95 42.48

1 47.62 44.13 42.03 42.53

Indiana Pines Bit rate

0.1 34.02 30.55 29.70 30.52

0.25 40.7 39.14 38.82 39.02

0.50 42.39 42.30 41.76 42.10

0.75 44.11 43.52 43.39 43.41

1 44.14 43.60 43.42 43.5

Washington DC Bit rate

0.1 32.66 30.80 27.72 28.44

0.25 40.11 39.35 31.09 31.51

0.50 41.66 40.09 37.39 39.47

0.75 44.72 44.06 41.93 42.22

1 44.76 44.13 42.09 42.53

M.S. Helens Bit rate

0.1 22.42 22.06 19.72 19.92
0.25 24.22 23.71 21.33 22.76

0.50 24.50 23.80 21.58 22.76

0.75 49.47 34.06 24.35 33.52

1 49.47 42.23 36.62 41.79

Erta Ale Bit rate

0.1 20.72 20.47 20.06 20.20

0.25 22.40 21.70 20.06 20.26

0.50 22.50 21.92 20.52 21.64

0.75 38.46 36.66 25.32 23.59

1 38.46 36.69 25.36 24.15

Table 3: Execution time (s) of 3D-DWT + SVR

Rate (bpp) Yellowstone Cuprite Indiana Washington M.S.Helens Erta Ale

0.1 122.82 54.06 7.02 49.15 284.70 227.75

0.2 178.52 190.11 8.50 154.06 303.64 258.60

0.3 191.37 132.63 26.28 190.16 357.17 269.84

0.4 324.28 262.42 52.29 235.16 417.22 294.61

0.5 402.81 318.40 65.20 325.98 771.30 416.80

0.6 917.50 772.94 160.34 540.67 820.42 522.77

0.7 1376.25 998.41 870.95 770.04 1253.36 1049.90

0.8 1634.76 1293.23 895.05 802.81 1313.34 1078.81

0.9 1658.71 1606.71 967.15 950.27 2247.12 2084.01

1 1985.88 1645.34 1032.01 1608.60 2747.97 2613.50

fication such as [51–54]. These classifiers demonstrated

their effectiveness in HSI classification field and out-

performed many known effective classifiers. Compari-

son classification accuracy of the proposed method with
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Table 4: Comparison of execution time (s) over Indiana Pines

Bit Rate

Code Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3D SPECK 20.3 2.24 2.58 2.84 3.21 2.52 2.72 4.07 4.35 4.67

C/C + + JPEG-BIFR 1.88 1.74 1.68 2.08 1.97 2.06 1.93 2.04 1.98 1.91

JPEG-2000 2.28 2.06 2.12 2.20 2.43 2.54 2.87 2.90 2.82 3.06

PWSR 6.19 8.61 12.2 16.9 21.3 28.5 36.1 43.0 50.8 60.7

MATLAB SSASR 7.13 7.61 8.57 9.35 10.1 11.0 12.3 13.9 15.3 17.1

3D-DWT+ SVR 7.02 8.50 26.28 52.29 65.20 160.34 870.96 895.06 967.15 1032.01

Table 5: Classification performances of 3D-DWT + SVR applied over Yellowstone, Cuprite, Indiana Pines and

Washington DC datasets

2D 3D-DWT + SVR
Dataset Measure Original DWT Bit Rate

Image +SVR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

OA % 91.20 91.35 91.02 91.55 90.86 91.31 90.37 89.78 91.17 89.40 88.84 89.28

Yellowstone AA % 87.58 88.85 87.75 88.97 87.18 88.02 85.97 85.20 87.34 84.36 83.17 84.11

Kappa 0.84 0.85 0.84 0.85 0.83 0.84 0.82 0.81 0.84 0.80 0.79 0.80

OA % 78.43 77.77 75.54 75.63 75.01 78.59 72.72 78.32 77.93 77.38 78.07 77.23

Cuprite AA % 77.26 76.45 74.12 74.17 73.15 77.28 70.43 77.02 76.67 75.94 76.83 75.74
Kappa 0.73 0.72 0. 69 0.69 0.68 0.73 0.68 0.72 0.72 0 .71 0.72 0.71

OA % 82.45 83.67 83.57 81.99 81.28 84.20 82.65 83.81 81.66 83.82 83.21 84.14

Indiana AA % 76.21 77.43 78.69 78.81 76.89 80.76 77.51 77.21 77.35 80.31 75.66 78.48

Kappa 0.79 0.81 0.80 0.79 0.78 0.81 0.79 0.80 0.79 0.81 0.80 0.81

OA % 79.72 80.08 72.41 76.23 75.15 76.10 80.34 78.71 77.61 78.48 78.07 77.27

Washington AA % 74.57 75.73 57.33 66.60 68.68 70.14 75.87 72.21 57.02 71.76 70.66 66.15

Kappa 0.78 0.79 0.65 0.69 0.73 0.74 0.79 0.77 0.76 0.76 0.76 0.75

Table 6: McNemar’s test (Z) of 3D-DWT + SVR over

SVM and 2D-DWT + SVM methods.

3DDWT-SVR 3DDWT-SVR

Dataset vs vs

SVM 2DDWT-SVM

Yellowstone 6.70 2.23

Cuprite 13.03 3.87

Indiana 2.82 3.74

Washington 16.76 3.87

those of CNN-based classifiers given by [55] applied over

Indiana Pines dataset with 200 training, yields to clas-

sification accuracies of 87.01% for CNN [51], 93.9% for

CNN-PPF [53], 94.24 % for CD-CNN [56] and 98.54 %

for DR-CNN [55]. This presents differences of 2.81%,

9.7%, 10.04% and 14.34% against our method.

5 Impact on compressed reflectances

We compress the Aviris Yellowstone and Washington

DC images with spectra between 460nm and 2130nm

and a compression ratio equal to 42.12 and 42.60 re-

spectively. The regression is computed with a Gaussian

kernel. We measured for 3D-DWT+SVR compressed

image, PSNR(dB) of 30.21 (ground), 39.32 (rail), 31.57

(building) for Yellowstone scene and 27.13 (feild), 47.37

(building), 33.62 (ground) for Washington DC. In or-

der to compare results with those of 2D-DWT + SVR,

PSNR (dB) of 30.78 (ground), 34.31(rail), 36.26 (build-

ing) for Yellowstone scene and 30.62 (field), 45.25 (build-

ing), 37.44 (ground) for Washington DC are also mea-

sured for 2D-DWT + SVR method . Figure. 13 shows

the spectrum variation over bands for arbitrarily se-

lected pixel blocks: ground, rail and building of Yellow-

stone image and field, building and ground of Washing-

ton DC image. For all the datasets, variations in the

spectrum of the 3D-DWT + SVR compressed image

are almost identical to those of the original image. Al-

though there could be some differences between original
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Fig. 13: Original and 3D-DWT + SVR compressed reflectances with their difference (symbole lines) and 2D-

DWT + SVR compressed reflectances with original reflectance difference (solid line) for a Gauss kernel: Yellow-

stone(CR=42.12), (a) ground , (b) rail , (c) building; Washington DC (CR=42.60), (d) field, (e) building, (f)

ground.

and compressed data, it is reasonable to conclude that

the spectral information is preserved using our com-

pression method. Despite a high compression ratio, the

PSNR between compressed spectra and corresponding

original spectra are correct. Thus, results support those

presented obviously witch demonstrate the effectiveness

of the method for classification-oriented applications.

This may allow good separation of classes and the pre-

sentation of the almost part of information present in

the image. Furthermore, a comparison of spectrum vari-

ation with 2D-DWT + SVR method over the selected

blocks and the difference between results given by 3D-

DWT + SVR and 2D-DWT + SVR are shown in the

Figure. 13. Results, show that the proposed method

presents more spectral fidelity than the 2D-DWT +

SVR.

6 Conclusion

An effective hyperspectral compression method, based

on 3D wavelets transform and spectrum learning with

regression vector machine, is proposed in the current

work to efficiently exploit the spectral and the spatial

redundancies in HSI images. To demonstrate the effec-

tiveness of our approach, extensive experiments on six
hyperspectral images, acquired by AVIRIS, HYDICE

and HYPERION sensors, have been performed. The

experimental results outcomes validate the effectiveness

of the method in term of image quality. Indeed, the ap-

proach yields to high compression ratios with preserv-

ing most significant part of information in HSI images.

Compared to other famous compression techniques such

as the 3DSPECK, SSASR and 3D-DCT+SVM, the 3D-

DWT + SVR method substantially improves compres-

sion performances. Results obtained from applying 2D-

DWT for HSI data compression are more efficient than

3D-DWT in term of increasing distortion performance.

In our case, we obtained for ε lower than 0.0001 with

SVR gaussian kernel, an average PSNR close to 42.38,

46.58, 46.10, 41.29 dB, 49.47 dB and 38.46 dB with

bit rate about 0.7 for Yellowstone, Cuprite, Indiana,

Washington DC, M.S.Helens and Erta Ale datasets re-

spectively. Thus a PSNR improvement of at least 0.53

dB is observed. However, increasing compression perfor-

mances does not necessarily improve specific data anal-
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ysis. Indeed to demonstrate the effectiveness of the pro-

posed method in classification-based applications, we

evaluate the classification performances. Results show

that the method outperforms in terms of accuracy and

McNemars’s test. Furthermore, the spectral reflectance

over bands of 3D-DWT + SVR compressed data show

that the variations are almost identical to those of the

original image. Finally we can highlight three major ad-

vantages of the proposed method: 1) from compression

performances evaluation, the 3D-DWT + SVR sub-

stantially gives high compression ratios with good im-

age quality 2) even with small training samples the

compressed data gives high classification accuracy and

outperforms those given by compared methods. In ad-

dition, method achieves better performances for com-

pressed data than those of original data without com-

pression 3) the proposed method presents spectral fi-

delity, which is substantially useful in specific-applications

such as anomalies detection or data analysis. The ma-

jor disadvantage of the method is the taken time ex-

ecution, especially for high levels resolution which is

mainly due to time processing of the SVR model. The

use of parallel computation and C/C++ version codes

are future prospects for improving the time execution of

the method. Further work using Wavelet-Packet trans-

form and CNN-based classifier for improving compres-

sion and classification performances is an interest per-

spective to consider.
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