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Abstract

This paper considers the problem of source coding with side information at the decoder, also called

Slepian-Wolf source coding scheme. In practical applications of this coding scheme, the statistical

relation between the source and the side information can vary from one data transmission to another,

and there is a need to adapt the coding rate depending on the current statistical relation. In this paper,

we propose a novel rate-adaptive code construction based on LDPC codes for the Slepian-Wolf source

coding scheme. The proposed code design method allows to optimize the code degree distributions

at all the considered rates, while minimizing the amount of short cycles in the parity check matrices

at all rates. Simulation results show that the proposed method greatly reduces the source coding rate

compared to the standard LDPCA solution.

I. INTRODUCTION

This paper considers the problem of lossless source coding with side information at the

decoder, also called Slepian-Wolf source coding [3]. In this scheme, the objective is to reduce the

coding rate of the source X by exploiting the side information Y available at the decoder. This

problem has regained attention recently due to its use in many modern multimedia applications

like Distributed Source Coding (DSC) [4], Free-Viewpoint Television (FTV) [5], [6], or Massive

Random Access (MRA) [7]. For instance, in DSC, the source X represents the data sent by one

Parts of the materials of Sections II.C and III of this manuscript were published in WCNC 2018 [1] and ICT 2018 [2]. In

introduction, we describe the differences between this work and the results published in [1], [2].
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sensor, and the side information Y is the data already transmitted by other adjacent sensors. As

another example, FTV is a video system in which the user freely switches from one view to

another; in a soccer game, he may decide to follow a player or to focus on the goal. In FTV,

X is the current requested view, and Y represents the views previously received by the user. A

key aspect of the aforementioned applications is that the source X and the side information Y

are correlated. This allows to reduce the source coding rate to H(X|Y ) bits/source symbols [3]

instead of H(X) when no side information is available.

Practical Slepian-Wolf source coding schemes can be constructed from error-correction codes

such as Low Density Parity Check (LDPC) codes [8]. LDPC codes were first invented by

Gallager [9] in the context of channel coding. For very long codewords (more than 10000 bits),

they are known to approach Shannon capacity in channel coding, and to achieve a coding rate

close to the conditional entropy in Slepian-Wolf source coding [10]. For shorter codewords,

carefully designed LDPC codes show a reasonable loss in performance compared to Shannon

capacity or conditional entropy [11].

The performance of an LDPC code depends on its degree distribution, that gives the amount of

non-zero values in the code parity check matrix. The code degree distribution can be described

either in a polynomial form [12] or by use of a small graph called protograph [13]. In this paper,

we consider the protograph description as it allows the design of capacity-approaching LDPC

codes in a simpler way than polynomial degree distributions [14]. At short to medium length,

the code performance can also be lowered by short cycles in the code parity check matrix [15].

Therefore, the LDPC code construction is usually realized in two steps. The first step optimizes

the protograph for good decoding performance [12], [16], [17]. The second step constructs the

parity check matrix from the selected protograph by applying a PEG algorithm [18]–[20] that

lowers the amount of short cycles in the parity check matrix.

This standard LDPC code construction is adapted to Slepian-Wolf source coding problems

with a fixed statistical relation P (Y |X) between the source X and the side information Y .

However, when this statistical relation varies from one data frame to another, such codes may

suffer from either rate loss or decoding failure. For instance, in FTV, this statistical relation often

changes since different sets of views can be available at the decoder, depending on the successive

requests of the users. This issue can be solved by rate-adaptive LDPC codes that allow to adapt

the rate depending on the current statistical relation between X and Y . In channel coding,

standard solutions to construct rate-adaptive LDPC codes are puncturing [21] and parity check
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matrix extension [22], [23]. However, in source coding, puncturing leads to a poor decoding

performance [24] and parity check matrix extension cannot be applied, as it would require to

artificially increase the source sequence length.

In source coding, standard methods to construct rate-adaptive LDPC codes are Rateless codes [25],

[26] and Low Density Parity Check Accumulated (LDPCA) codes [24]. Rateless codes start from

a low rate code and construct higher rate codes by transmitting a part of the source bits. However,

the main issue of this method is that it is difficult to construct good low rate LDPC codes [27].

LDPCA takes the opposite approach by starting from a high rate code. Lower rates are then

obtained by puncturing accumulated syndrome bits rather than puncturing the syndrome bits

directly. Unfortunately, the LDPCA accumulator has a fixed regular structure, and it cannot

be optimized in order to obtain good degree distributions or to avoid short cycles that could

degrade the code performance at lower rates. In order to improve the LDPCA construction, it

was proposed in [28] to consider a non-regular accumulator optimized for any rate of interest.

The method of [28] optimizes the non-regular accumulator for codes with large length, but it

does propose any finite-length code construction that would allow to reduce the amount of short

cycles in the low-rate codes. As an intermediate solution, [29] starts with an initial rate 1/2

and applies Rateless codes construction to increase the rate and LDPCA codes construction to

decrease the rate. This permits to avoid the main issue of Rateless codes, but the shortage of

LDPCA codes still exists.

In this paper, we consider the intermediate solution of [29] and we replace the LDPCA part

by an alternative rate-adaptive LDPC code construction that was initially introduced in [1], [2].

This construction replaces the LDPCA accumulator by intermediate graphs that combine the

syndrome bits in order to obtain lower rate codes. In this construction, the intermediate graphs

must be full-rank in order to allow the code to be rate-adaptive.

The code design method initially proposed in [1], [2] only consider unstructured finite-length

code constructions, that is without design of the degree distributions of the lower rate codes. Here,

we introduce a novel design method that allows to select the photographs of the intermediate

graphs so as to optimize the decoding performance of all the codes constructed at all rates of

interest. We also propose a new algorithm called Proto-Circle that constructs the intermediate

graphs according to their protographs, while minimizing the amount of short cycles in the codes

at all the considered rates. In addition, the rate-adaptive construction of [1], [2] only permits

to consider a small number of rates, in the order of magnitude of the size of the protograph.
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(a) (b)

Fig. 1: (a) Slepian-Wolf source coding, (b) Source coding with several possible side informations

at the decoder

The code design method we propose in this paper permits to obtain a much larger number of

rates, in the order of magnitude of the size of the parity check matrix. Our simulation results

show that the proposed rate-adaptive LDPC code construction provides improved performance

compared to LDPCA. This comes from the careful protograph selection and from the fact that

our method reduces the number of short cycles in the constructed codes at all rates.

The outline of this paper is as follows. Section II presents the Slepian-Wolf source coding

problem. Section III describes existing rate-adaptive LDPC code construction for source coding.

Section IV restates the rate-adaptive construction of [1], [2]. Section V introduces our code design

method by describing the protograph optimization and the Proto-Circle algorithm. Section VI

presents our solution to consider an increased number of rates. To finish, Section VII shows our

simulation results.

II. SOURCE CODING WITH SIDE INFORMATION AT THE DECODER

This section describes the lossless coding of a source X with side information Y available

at the decoder. The source X generates independent and identically distributed (i.i.d.) symbols

X1, · · · , Xn. For all i ∈ {1, · · · , n}, we assume that the source symbol Xi takes values in a

binary alphabet {0, 1}. The probability mass function of the source X is denoted by P (X). The

source bits Xi may represent the pixels of an image or quantized sensor measurements.

In the original SW source coding scheme [3] depicted in Figure 1 (a), a side information Y

is available at the decoder and helps the reconstruction of X . The side information Y generates

i.i.d. symbols Y1, · · · , Yn and the symbols Yi belong to an alphabet Y that can be either discrete

or continuous. With a slight abuse of notation, we denote by P (Y |X) the correlation channel

between X and Y . If Y is discrete, P (Y |X) is a conditional probability mass function. If Y is

continuous, P (Y |X) is a conditional density. For instance, if the correlation channel between

DRAFT August 21, 2018



5

X and Y is a Binary Symmetric Channel (BSC), then Y = {0, 1}, P (Y = 1|X = 0) = P (Y =

0|X = 1) = p, and p is the crossover probability of the BSC. According to [3], the minimum

achievable rate for lossless SW source coding is given by R = H(X|Y ) bits/source symbol.

The side information Y reduces the coding rate, since H(X|Y ) ≤ H(X).

Alternatively, in this paper, we consider the problem of source coding with several possible

side informations at the decoder [30], see Figure 1 (b). In this setup, the decoder has access to

one side information Y (t) that belongs to a set of T possible side informations {Y (1), · · ·Y (T )}.

Each source Y (t) ∈ {Y (1), · · ·Y (T )} generates a sequence of n i.i.d symbols Y (t)
1 , · · · , Y (t)

n , but

the decoder only observes one of these length-n sequences. Whatever t ∈ {1, · · · , T}, the side

information symbols Y (t)
i belong to the same alphabet Y . However, each of the side informations

Y (t) corresponds to a different correlation channel described by the conditional probability

distribution P (Y (t)|X). For instance, each correlation channel P (Y (t)|X) may correspond to

a BSC with a different crossover probability pt.

For the setup of Figure 1 (b), the minimum achievable rate can be evaluated in two different

ways. If the encoder does not know the index t of the side information available at the decoder,

then the minimum achievable rate is given by R = max
t=1,··· ,T

H(X|Y (t)) [30], [31]. Otherwise, if

the encoder has access to index t by means of e.g. a feedback channel, the minimum achievable

rate depends on t and it is given by Rt = H(X|Y (t)) [32], [33].

In addition, [7] describes the rates Rt as transmission rates from the server (encoder part)

to the users (decoder part) and proposes to also take into account the storage rate Q on the

server. Indeed, in order to achieve transmission rates Rt, one could consider storing one different

codeword per possible side information Y (t), which would give Q =
∑T

t=1H(X|Y (t)) bits/source

symbol. However, [7] proposes an information-theoretic code construction that allows to construct

one single incremental codeword at storage rate Q = max
t=1,··· ,T

H(X|Y (t)) ≤
T∑
t=1

H(X|Y (t)) from

which we can extract T subcodewords with rates Rt = H(X|Y (t)) depending on the side

information Y (t) available at the decoder. In this paper, we propose a practical rate-adaptive

coding scheme based on LDPC codes which provides such incremental codeword construction.

III. LDPC CODES FOR SOURCE CODING WITH SIDE INFORMATION

For the two source coding problems described in Section II, LDPC codes provide efficient

practical coding schemes that perform close to the conditional entropies H(X|Y ) or H(X|Y (t))

when the codeword length n is large [10]. In this section, we first consider the case with one
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possible side information Y available at the decoder, and we describe the standard construction

of LDPC codes with good performance for the Slepian-Wolf source coding scheme. We then

review existing rate-adaptive LDPC-based solutions that provide practical source coding schemes

when side information Y (t) available at the decoder comes from a set {Y (1), · · ·Y (T )}.

A. LDPC codes for Slepian-Wolf source coding

In this section, we consider the Slepian-Wolf source coding setup in which one single side

information Y is available at the decoder. Let xn = (x1, x2, · · ·xn)T stand for a source vector

of length n to be transmitted to the decoder. Consider an LDPC parity check matrix H of size

m×n (m < n) and coding rate R = m/n. The matrix H is sparse and its non-zero components

are all equal to 1. The codeword or syndrome cm = (c1, c2, · · · cm)T that is transmitted to the

decoder is calculated from xn and H as [8]

cm = Hxn. (1)

In the binary matrix multiplication of (1), additions correspond to XOR operations and multi-

plications correspond to AND operations. Once it receives syndrom cm, the decoder produces

an estimate x̂n of xn by applying the Belief Propagation algorithm (BP) to cm and the side

information vector yn [8], [16].

The parity check matrix H can be represented by a Tanner Graph that connects n Variable

Nodes (VN) X1, · · · , Xn with m Check Nodes (CN) C1, · · · , Cm. There is an edge between a

VN Xi and a CN Cj if there is a non-zero value at the corresponding matrix position Hi,j . The

decoding performance of LDPC codes highly depends on the choice of the parity check matrix

H , as we now describe.

B. LDPC code construction

A parity check matrix H can be constructed from a code degree distribution described by

a protograph [13]. A protograph S is a small Tanner Graph of size Sm × Sn with Sm/Sn =

m/n = R. Each row (respectively column) of S represents a type of CN (respectively of VN).

The protograph S thus describes the number of connections between Sn different types of VNs

and Sm different types of CNs. A parity check matrix H can be generated from a protograph

S by repeating the protograph structure Z times such that n = ZSn, and by interleaving the

connections between the VNs and the CNs of the corresponding types. The interleaving is realized
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Fig. 2: Construction of a parity check matrix H of size 2× 4 (right picture) from a protograph

S of size 1× 2 (left picture)

so as to obtain a connected Tanner graph that satisfies the number of connections defined by

the protograph. It can be done by a PEG algorithm [18] that not only permits to satisfy the

protograph constraints, but also to lower the number of short cycles that could severely degrade

the decoding performance of the matrix H .

We now give an example of construction of a parity check matrix H from the protograph

S =
[
1 2

]
(2)

that represents the connections between one CN of type A1 and two VNs of types B1 and B2.

The Tanner graph of this protograph is represented in Figure 2 (left part). In order to construct a

parity check matrix H , the protograph is first duplicated Z = 2 times (middle part of Figure 2),

and the edges are then interleaved (right part of Figure 2). In the final Tanner graph, one can

verify that each VN of type B1 is connected to one CN of type A1, and each VN of type B2 is

connected to two CNs of type A1.

The performance of a given parity check matrix H highly depends on its underlying protograph

S. Density Evolution [34] permits to evaluate the theoretical threshold of a protograph under

asymptotic conditions. The threshold is the worst correlation channel parameter that allows for

a decoding error probability Pe = 0, given that the codeword length tends to infinity. It can thus

be used as an optimization criterion to select the protograph. For a given coding rate R = m/n,

Differential Evolution [17] is an optimization method that permits to find a protograph with a

very good threshold.

In order to optimize the protograph, we fix the size Sm × Sn of the protograph and impose a

maximum degree value dmax for the protograph coefficients. Differential Evolution is a genetic

algorithm that starts with an initial population of V protographs and recombines the elements

August 21, 2018 DRAFT
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of the population in order to get new protographs. The protographs with the best thresholds

(evaluated with density evolution) are then retained in order to form a new population. This

process is repeated over L iterations. The recombination operation proposed in [17] stands for

real vectors, while the protograph coefficients are discrete. In our optimization, we keep the

recombination operation of [17] and simply round each obtained real value to the closest integer.

C. Rate-adaptive LDPC codes

In the above LDPC code construction, the coding rate R is fixed once for all. But if the

available side information Y (t) comes from a set of possible side informations {Y (1), · · · , Y (T )},

sending the data at fixed rate R will cause either a rate loss or a decoding failure. This is why

we now describe rate-adaptive LDPC code constructions that allow to adapt the coding rate

depending on the side information Y (t) available at the decoder.

The rate-adaptive Rateless scheme [25], [26] starts by constructing an initial low-rate LDPC

code. If a higher rate is needed, a part of the source bits xn will be sent in addition to the syndrome

cm. However, the major drawback of the rateless scheme is that it difficult to construct good

low rate LDPC codes [27], [35]1, and a bad initial low rate code will cause poor performance

at any considered higher rate. Therefore, it is not desirable to apply the Rateless construction

from very low rates.

On the opposite, the LDPCA scheme [24] starts from a high-rate LDPC code. It then computes

new accumulated symbols am = [a1, a2, · · · , am]T from the syndrome cm (1) as

a1 = c1,

ai = ai−1 + ci, ∀i = {2, · · · ,m} , (3)

where the binary sum in (3) correspond to XOR operations. If a lower rate is demanded, only a

part of the symbols (a1, a2, · · · , am) will be sent. For instance, if the original rate is R and a rate

R/2 is demanded, only the even symbols a2, a4, a6, · · · will be transmitted. The decoder will

then compute all the differences ai− ai−2 = ci + ci−1, before applying a BP decoder in order to

estimate the source vector xn from all the obtained XOR sums ci + ci−1. In this construction,

puncturing the source symbols ai rather than the syndrome bits ci was shown to better preserve

the code structure and to greatly improve the decoding performance [24]. However, in the LDPCA

1Low rate LDPC codes for source coding correspond to high rate LDPC codes for channel coding
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construction, the accumulator structure (3) is fixed and does not allow for an optimization of the

combinations of syndrome symbols ci that are used by the decoder. The accumulator structure

may in particular induce short cycles in the lowest rates and eliminate some source bits from

the CN constraints. In [28], the LDPCA structure is improved by considering a non-regular

accumulator. The non-regular accumulator is designed for any rate of interest by optimizing its

polynomial degree distribution under asymptotic conditions. Unfortunately, [28] does not propose

any finite-length code construction that could solve the short cycles and VN elimination issues.

Due to the drawbacks of Rateless and LDPCA schemes, an intermediate solution was proposed

in [29]. It first constructs an initial code of rate R = 1/2. It then applies either the LDPCA

method to obtain rates lower than 1/2 or the Rateless method for rates higher than 1/2. In this

way, the shortage of the Rateless construction can be avoided, but the drawbacks of LDPCA

remain. In this paper, we thus propose a novel rate-adaptive construction that replaces the LDPCA

part in the solution of [29]. Our rate-adaptive code design method is based both on an asymptotic

performance analysis and on a finite length code construction that permits to avoid short cycles.

It is thus well adapted to the construction of short length LDPC codes.

IV. RATE-ADAPTIVE CODE CONSTRUCTION

The rate-adaptive code design method we propose in this paper is based on a rate-adaptive

code structure initially proposed in [1], [2]. For the sake of clarity, this section describes the

rate-adaptive code structure of [1], [2]. This construction starts from a mother code of the highest

rate and then builds a sequence of daughter codes of lower rates. This section only describes

the construction of one code of rate R2 from a code of rate R1 > R2. This construction is

generalized to more rates later in the paper.

A. Rate-adaptive code construction

In the rate-adaptive construction of [1], [2], the mother code is described by a parity check

matrix H1 of size m1 × n with coding rate R1 = m1/n. The Tanner graph T1 connects the

n VNs X = {X1, · · · , Xn} to m1 CNs C = {C1, · · · , Cm1}. The matrix H1 is constructed

from a protograph S1 according to the code design method described in Section III. From the

mother matrix H1, we want to construct a daughter matrix H2 of size m2 × n, with m2 < m1,

and rate R2 = m2/n < R1. The Tanner graph T2 will connect the n VNs X to m2 CNs

U = {U1, · · · , Um2}.
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X1

X2
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X4

X5

X6

X7

X8
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U1

U2

X1

X2

X3

X4

X5

X6

X7

X8
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Fig. 3: The left part of the figure shows the combination of T1 with T1→2. The right part of the

figure shows the resulting T2. Here, the matrix H1→2 is full rank, and one may choose between

C ′ = {c1, c2}, C ′ = {c3, c4}, C ′ = {c1, c4}, or C ′ = {c2, c3}.

In the considered construction, the daughter matrix H2 and the mother matrix H1 are linked

by an intermediate matrix H1→2 of size m2 ×m1 such that

H2 = H1→2H1. (4)

The Tanner graph T1→2 of H1→2 connects the m1 CNs C of T1 to the m2 CNs U of T2. Figure 3

shows an example of the construction of T2 from T1 and T1→2. Note that LDPCA codes can be

seen as a particular case of this construction. The intermediate matrix H1→2 should be chosen

not only to give a good decoding performance for H2, but also to allow H1 and H2 to be

rate-adaptive in a sense we now describe.

B. Rate adaptive condition

In the construction of [1], [2], the following transmission rules are set in order to allow H1

and H2 related by (4) to be rate-adaptive. In order to get a rate R2, we simply transmit all the

syndrome values um2 , which corresponds to m2 equations defined by the set U . The decoding is

then realized with the matrix H2. In order to get a rate R1, we transmit all syndrome values in

um2 but also a subset C ′ ⊆ C of size m1−m2 of the values in cm1 . This guarantees that the code

construction is incremental and that the storage rate is given by R1 = max(R1, R2) < R1 +R2.

However, in order to use the matrix H1 for decoding, the receiver must be able to recover the

full syndrome cm1 from um2 and C ′. The code that results from the choice of (H1, H1→2, C ′) is

thus said to be rate-adaptive if is satisfies the following condition.
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Definition 1 ( [1], [2]). The sets U and C ′ define a system of m1 equations with m1 unknown

variables C. If this system has a unique solution, then the triplet (H1, H1→2, C ′) is said to be a

rate-adaptive code.

The following proposition gives a simple condition that permits to verify whether a given

intermediate matrix H1→2 gives a rate-adaptive code.

Proposition 1 ( [1], [2]). If the matrix H1→2 is full rank, then there exists a set C ′ ⊆ C of size

m1 −m2 such that (H1, H1→2, C ′) is a rate-adaptive code.

The above proposition shows that if H1→2 is full rank, it is always possible to find a set

C ′ that ensures that H1 and H2 are rate-adaptive. The decoding performance of H1 does not

depend on the choice of the set C ′, since at rate R1, the decoder uses H1 and at rate R2, the

decoder uses H2. On the opposite, according to (4), the decoding performance of the matrix H2

heavily depends on the matrix H1→2. In [1], the matrix H1→2 is constructed from an exhaustive

search, which is hardly feasible when the codeword length increases (from 100 bits). In [2],

a more efficient method is proposed to construct the intermediate matrix H1→2 so as to avoid

short cycles in H2. However, the method of [2] does not optimize the theoretical threshold of

the degree distribution of H2, which also influences the code performance. In this paper, we

propose a novel method based on protographs for the design of the intermediate matrix H1→2.

This novel method not only allows to optimize the threshold of the protograph of H2, but also

to reduce the amount of short cycles in H2.

V. INTERMEDIATE MATRIX CONSTRUCTION

This section describes our novel method for the construction of the intermediate matrix H1→2

introduced in Section IV. The proposed construction seeks to minimize the protograph threshold

at rate R2, and also to reduce the amount of short cycles in the parity check matrix H2.

A. Protograph S2 of parity check matrix H2

In order to construct a good parity check matrix H2 from the initial matrix H1, we first want

to select a protograph S2 with a good theoretical threshold. In this section, we consider the

following notation. Generally speaking, consider the protograph Sg of size Smg ×Sng associated

with the matrix Hg, where g ∈ {1, 2, 1→ 2}. As a particular case, note that Sm1→2 = Sm2 and
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Sn1→2 = Sm1 . For all (i, j) ∈ {1, · · · , Smg} × {1, · · · , Sng}, denote by s(g)i,j the coefficient at the

i-th row, j-th column of Sg. In the protograph Sg, the CN types are denoted A(g)
1 , · · · , A(g)

Smg
and

the VN types are denoted B(g)
1 , · · · , B(g)

Sng
. In the parity check matrix Hg, the set of CNs of type

A
(g)
i is denoted A(g)

i and the set of VNs of type B(g)
j is denoted B(g)

j . Finally, denote by h(g)k the

k-th row of Hg, and denote by h(g)`,k the coefficient at the `-th row, k-th column of Hg.

Based on the above notation, the following proposition gives the relation between the three

protographs S1, S2, and S1→2.

Proposition 2. Consider a matrix H1 with protograph S1 of size Sm1 ×Sn, a matrix H1→2 with

protograph S1→2 of size Sm2 × Sm1 , and a matrix H2 = H1→2H1. Also consider the following

two assumptions:

1) Type structure: for all j ∈ {1, · · · , Sm1}, B
(1→2)
j = A(1)

j .

2) No VN elimination: For all ` ∈ {1, · · · ,m2}, denote by N (1→2)
` the positions of the non-zero

components in h
(1→2)
` . Then, ∀k1, k2 ∈ N (1→2)

` such that k1 6= k2, and ∀i ∈ {1, · · · , n},

h
(1)
k1,i
6= h

(1)
k2,i

.

If these two assumptions are fulfilled, then the matrix

S2 = S1→2S1 (5)

is of size Sm2 × Sn and it is a protograph of the matrix H2. The operation in (5) corresponds

to standard matrix multiplication over the field of real numbers.

Proof. In this proof, for clarity, we denote by
⊕

the modulo two sums and by
∑

the standard

sums over the field of real numbers. With the above notation, relation (4) can be restated row-wise

as

h
(2)
` =

m1⊕
k=1

h
(1→2)
`,k h

(1)
k =

Sm1⊕
j=1

⊕
k∈B(1→2)

j

s.t. h(1→2)
`,k 6=0

h
(1)
k . (6)

Relation (6) depends on index ` only through h
(1→2)
`,k . This implies that, in (6) the type combi-

nation is the same for every ` ∈ A(1→2)
i . As a result, for all i ∈ {1, · · · , Sm2}, A

(2)
i = A(1→2)

i .

In the same way, deriving relation (4) column-wise permits to show that ∀j ∈ {1, · · · , Sn},

B(2)
j = B(1)

j .
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Now consider i ∈ {1, · · · , Sm2}, v ∈ {1, · · · , Sn}, and ` ∈ A(2)
i . Then, from (6),

s
(2)
i,v =

∑
u∈B(2)v

h
(2)
l,u =

∑
u∈B(2)v


Sm1⊕
j=1

⊕
k∈B(1→2)

j

s.t. h(1→2)
`,k 6=0

h
(1)
k,u

 . (7)

In the vector h(1)k with k ∈ B(1→2)
j , there are s(1)j,v non-zero values over the components hk,u such

that u ∈ B(2)
v . In addition, for k ∈ B(1→2)

j , there are s(1→2)
i,j non-zero values over the components

h
(1→2)
`,k . As a result, and since there is not VN elimination,

s
(2)
i,v =

Sm1∑
j=1

s
(1→2)
i,j s

(2)
j,v , (8)

which implies (5).

In Proposition 2, assumption 1) is required because various interleaving structures may be used

to construct e.g. a matrix H1 from a given protograph S1. This assumption guarantees that the

same interleaving structure is used for the CNs of S1 and the VNs of S1→2. Further, assumption

2 guarantees that relation (4) does not eliminate any VN from the parity check equations in H2.

This permits to preserve the code structure that will be characterized by protograph S2. Then,

by comparing (4) and (5), we observe that there is the same relation between the protographs

S1, S2, and between the parity check matrices H1, H2. Further, according to (5), the problem

of finding a good protograph S2 for H2 can be reduced to finding the intermediate protograph

S1→2 that maximizes the threshold of S2.

B. Optimization of the intermediate protograph S1→2

The protograph S1→2 of size Sm2 ×Sm1 must be full rank in order to satisfy the rate-adaptive

condition defined in Section IV-B. However, even if Sm1 and Sm2 are small, there is a still a lot

of possible protographs S1→2. This is why, here, we impose that each row of S1→2 has either 1

or 2 non-zero components, that each column has exactly 1 non-zero component, and that all the

non-zero components are equal to 1. These constraints are equivalent to considering that each

row of S2 is either equal to a row of S1 or equal to the sum of two rows of S1. They limit

the number of possible S1→2 without being too restrictive. They will also make the intermediate

matrix H1→2 quite sparse, which will help limiting the amount of short cycles in the matrix H2.
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Finally, we observe that these constraints provide satisfactory rate-adaptive code constructions

in our simulations. The design algorithms described in the remaining of the paper can also be

easily generalized to other constraints on the intermediate protograph.

For the optimization, we then generate all the possible intermediate protographs S1→2 that

satisfy the above two conditions (S1→2 is full rank and each of its rows has either 1 or 2 non-

zero components), and select the intermediate protograph that maximizes the threshold of the

protograph S2 calculated from (5).

The intermediate protograph S1→2 defines the degree distribution of the intermediate matrix

H1→2. It also indicates the rows of H1 that can be combined in order to construct the daughter

matrix H2. We would like those rows to be combined in the best possible way in order to

produce H2. In particular, we would like to avoid both short circles and VN elimination during

the construction of H2. In the following, we propose an algorithm that constructs H2 from these

conditions.

C. Algorithm Proto-Circle: connections in H1→2

In Section V-B, we selected the intermediate protograph S1→2 that gives the protograph S2
with highest threshold. We now explain how to construct H1→2 in order to follow the degree

distribution defined by protograph S1→2, but also to limit the amount of short cycles in H2 and

to avoid VN elimination. The algorithm Proto-Circle we propose is described in Algorithm 1. It

constructs one row of H2 at a time by combining rows of H1, which can be regarded as defining

the coefficients of the intermediate matrix H1→2. For each new row of H2, we want to limit the

number of short cycles that are added to the parity check matrix H2.

According to section V-B, each row of the protograph S1→2 has either 1 or 2 non-zero

components. The rows of S1→2 that have 2 non-zero components indicate that two rows of

H1 of some given types should be combined in order to obtain one row of H2. More formally,

assume that the i-th row of S1→2 is such that s(1→2)
i,j1

= 1 and s(1→2)
i,j2

= 1 (j1 6= j2). This means

that two rows of H1 of types A(1)
j1

and A
(1)
j2

should be combined in order to obtain one row

of H2 of type A
(2)
i . For this, we select at random one row h(1)u of H1 of type A

(1)
j1

and K

rows h(1)v1
, · · ·h(1)vK

of type A(1)
j2

such that ∀k ∈ {1, · · · , K}, ∀w ∈ {1, · · · ,m1}, h(1)v1,w.h
(1)
v2,w = 0

(binary AND operation). This condition avoids VN elimination. The algorithm counts the number

N4,k of length-4 cycles that would be added if a new row h(1)u + h(1)vk
was added to H2. The

number of length-4 cycles in H2 is computed with the algorithm proposed in [36]. Note that the
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Algorithm 1 Proto-Circle: construction of the low-rate matrix H2

Inputs: H1, S1, S1→2, K, H2 = {φ}

for i = 1 to Sm2 do

if i-th row of S1→2 has two non-zero components s(1→2)
i,j1

, s(1→2)
i,j2

then

for ` = 1 to m1/Sm1 do

Pick u at random in A(1)
j1

and v1, · · · , vK at random in A(1)
j2

such that ∀k ∈ {1, · · · , K},

∀w ∈ {1, · · · ,m1}, h(1)v1,w.h
(1)
v2,w = 0

For all k ∈ {1, · · · , K}, count the number N4,k of length-4 cycles in H2∪{h(1)u +h(1)vk
}

For the index k? that minimizes N4,k, do H2 ← H2 ∪ {h(1)u + h(1)vk?
}

Remove u from A(1)
j1

and vk? from A(1)
j2

end for

else

for ` = 1 to m1/Sm1 do

Pick u at random in A(1)
j1

(s(1→2)
i,j1

6= 0) and do H2 ← H2 ∪{h(1)u }, remove u from A(1)
j1

end for

end if

end for

outputs: H2, N4 (number of length-4 cycles in H2)

algorithm can be easily modified to also consider larger cycles. The algorithm then chooses the

row combination that adds least cycles in H2.

Once all the lines of types A(1)
j1

and A
(1)
j2

have been combined, the algorithm passes to the

next row of S1→2 with two non-zero components and repeats the same process. It then processes

the rows of S1→2 with one non-zero component. For instance, assume that row i′ of S1→2 has

one non-zero component s(1→2)
i′,j′ = 1. Then, all the lines of H1 of type A(1)

j′ are placed into H2.

The placement order does not have any influence on the amount of cycles in the matrix H2.

After constructing all the rows of H2, the algorithm counts the total number of length-4 cycles

in the newly created H2. At the end, repeating the algorithm Proto-Circle several times allows

us to choose the matrix H2 with least short cycles.
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D. Construction of the set C ′

The intermediate matrix H1→2 follows the structure of the protograph S1→2. As a result,

according to Section V-B, each of its lines has either 1 or 2 non-zero components. Further, the

algorithm Proto-Circle introduced in Section V-C imposes that each row of H1 participates to

exactly one combination for the constructions of the rows of H1. These two conditions guarantee

that H1→2 is full-rank so that the rate-adaptive condition presented in Section IV-B is satisfied.

However, in order to completely define the rate-adaptive code (H1, H1→2, C ′), we need to define

a set C ′ of symbols of C that will be sent together with the set U in order to obtain the rate R1.

The set C ′ will serve to solve a system of m1 equations U with m1 unknowns C \ C ′. For

each syndrome symbol ui ∈ U of degree dk in H1→2, we hence decide to put dk − 1 of the dk

CNs connected to ui into C ′. For example, if u1 = c1 ⊕ c2 ⊕ c3, c1 and c2 may be placed into

C ′. This strategy guarantees that it is always possible to reconstruct the set C from U and C ′. In

the above example, it indeed suffices to recover c3 as c3 = u1 ⊕ c1 ⊕ c2.

We now count the number of symbols ci that are placed into C ′ with this strategy. Since each

line of H1→2 has either 1 or 2 non-zero components, we have dk = 1 or dk = 2. Denote by α

the proportion of values uk of degree 1. We have the following relation between m1,m2 and α:

m1 = αm2 + 2(1− α)m2.

This gives that α = 2− m1

m2
. Further, according to the code construction proposed in Section V-C,

each ci participates to exactly one equation uj . As a result, in the above strategy, the set C ′ is

composed by (1 − α)m2 = m1 −m2 different values ci, which is exactly what is required by

the rate-adaptive construction.

VI. GENERALIZATION TO SEVERAL RATES

The above method constructs the matrix H2 of rate R2 < R1 from the matrix H1. In order

to obtain lower rates RT < RT−1 < · · · < R2 < R1, we need to construct the successive

matrices Ht, t ∈ {2, · · · , T}. As initially proposed in [1], the matrices Ht can be constructed

recursively from intermediate matrices Ht−1→t such that Ht = Ht−1→tHt−1. The intermediate

matrices Ht−1→t are constructed by from the method described in Section V.
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However, with the method of Section V, the rate values R2, · · · , RT are constrained by the

size of the initial protograph S1. For a protograph S1 of size Sm1 × Sn, the rate granularity is

given by

rg =
R1

Sm1

. (9)

For instance, if R1 = 1/2 and S1 is of size 4 × 8, only rates R2 = 3/8, R3 = 1/4, R4 = 1/8

can be achieved. This is why, in this section, we propose two alternatives methods that allow to

decrease the rate granularity rg.

A. Protograph extension

The first method called “protograph extension” consists of lifting the mother protograph S1
by a factor Ze, in the same way as for producing a parity check matrix from a given protograph

(see Section III-B). This extension produces a protograph S ′1 of size ZeSm1×ZeSn. For instance,

the protograph

S1 =

1 2 1 3

1 0 2 5

 (10)

can be extended as

S ′1 =


1 1 1 2 0 1 0 1

0 1 0 1 1 1 1 2

1 0 1 4 0 0 1 1

0 0 1 1 1 0 1 4

 . (11)

The protograph S1 permits to generate an ensemble H1 of parity check matrices with asymp-

totic codeword length. According to [12, Theorem 2], all the asymptotic parity check matrices in

H1 have the same decoding performance given by the threshold of S1. The extended protograph

S ′1 generates a code ensemble H′1 ⊆ H1. As a result, the asymptotic matrices in H′1 have the

same decoding performance as the matrices in H1, and S1 and S ′1 have the same theoretical

threshold.

The above protograph extension allows to consider more rates, since the rate granularity r′g of

S ′1 is given by r′g = rg/Ze ≤ rg. However, it is not desirable neither to end up with an extended

protograph S ′1 of large size, e.g. in the order of magnitude of m1. Indeed, in this case, the number

of possibilities for intermediate protographs St−1→t would also become very large. In addition, it

becomes computationally difficult to compute the theoretical thresholds for large protographs. As

a result, if the size of S ′1 is large, it will be very difficult to optimize the successive protographs
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St according to the method described in Section V-B. This is why we now we propose a second

method that allows to push further the rate granularity improvement.

B. Anchor rates

In this second method, consider a protograph S1 of size Sm1 × Sn. As a first step, we do the

protograph optimization of Section V-B for all the possible rates

Rt = R1 −
(t− 1)R1

Sm1

, (12)

where t ∈ {1, · · · , Sm1}, and Rt−1 − Rt = R1/Sm1 . This produces a sequence of protographs

St, and the rates Rt are called the anchor rates. We now want to construct all the possible

intermediate rates between any Rt−1 and Rt, with a rate granularity rg = R1/m1.

According to Section V-B, the rows of the intermediate protographs St−1→t have either one

or two non-zero components. In addition, in order to obtain all the rates Rt defined in (12),

exactly one row of St−1→t has two non-zero components. This is why, in order to obtain a rate

Rt−1 − 1
m1

, we propose to combine two rows of the corresponding type in Ht−1. The resulting

matrix contains the considered row combination, as well as all the non-combined rows of Ht−1.

As in the algorithm Proto-Circle described in Section V-C, we choose the row combination that

minimizes the amount of short cycles that will be added in the resulting matrix. Applying this

process recursively allows to obtain all rates Rt−1 − kR1/m1, with k ∈ {1, · · · ,m1/Sm1}, and

m1/Sm1 = Z1, where Z1 is the lifting factor. This approach also guarantees that at rate Rt, the

resulting matrix follows the structure of protograph St.

The anchor rates method allows to obtain a rate granularity rg = R1/m1. In the simulation

section, we combine both approaches (protograph extension and anchor rates) in order to obtain

an incremental code construction that permits to handle a wide range of statistical relations

between the source and the side information.

VII. SIMULATION RESULTS

This section evaluates from Monte Carlo simulations the performance of the proposed rate-

adaptive construction. We assume a BSC of parameter p and we consider three binary LDPC

codes C1, C2, C3 constructed from protographs. These codes are set as mother codes for the

initial rate R = 1/2. The algorithm introduced in Section V-C then produces the corresponding
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Rate 3/8 LDPCA
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Fig. 4: BER performance of code C1 with dimension 248 × 496 using proposed construction

compared with LDPCA

Rate LDPCA Our method

R = 3/8 453 455

R = 1/4 1216 737

R = 1/8 5361 3477

TABLE I: Number of length-4 cycles for code C1

daughter codes for lower rates 3/8, 1/4, 1/8. In the following, we compare the performance of

the obtained rate-adaptive codes with LDPCA.

The first code C1 is of size 248x496. In order to construct C1, we first obtained the protograph

S1 of size 2 × 4 in (10) from the Differential Evolution optimization method described in

Section III-B. Differential Evolution was applied by considering V = 60 elements in the

population. This follows [17] which suggests to choose 5D < V < 10D, where in our case,

D = SnSm = 8. In addition, the number of iterations was set as L = 100, and the maximum

degree was set as dmax = 10. The theoretical threshold of S1 is equal to p = 0.094, which is

very close to the maximum value p = 0.11 that can be considered at rate 1/2. Protograph S1
was then extended to the protograph S ′1 of size 4× 8 in (11) according to the method described
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Fig. 5: BER performance of code C2 with dimension 256 × 512 using proposed construction

compared with LDPCA

in Section VI-A.

The parity check matrix of C1 was constructed from the protograph S ′1 by the PEG al-

gorithm [18]. We then applied our construction method introduced in Section V in order to

obtain lower rates 3/8, 1/4 and 1/8. For this, we first needed to decide which rows of the

protograph Sopt1 should be combined (see Section V-B) by checking the thresholds of all

the possible combinations using Density Evolution. From Density Evolution, we chose row

combinations A
(1)
1 + A

(1)
3 for rate 3/8 and A

(1)
1 + A

(1)
3 , A

(1)
2 + A

(1)
4 for rate 1/4, where the

A
(1)
i , i = 1, 2, · · · , Sm, denote the rows of S ′1. From the selected row combinations, we then

constructed the corresponding matrices of rate 3/8, 1/4, 1/8 from the algorithm Proto-Circle

described in Section V-C. This algorithm was applied with K = 20 and repeated 10 times in

order to choose the low-rate matrices with the least short cycles.

Figure 4 shows the Bit Error Rate (BER) performance with respect to the BSC parameter p

for the four considered rates for C1. We observe that our code construction performs better than

LDPCA at all the considered rates. Table I indeed shows that there are less length-4 cycles at

rates 1/4 and 1/8 in our construction than in the LDPCA matrices.
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Fig. 6: BER performance of code C3 with dimension 512 × 1024 using proposed construction

compared with LDPCA

The second code C2 is of size 256× 512 and it was generated from another protograph

Sopt2 =


2 1 1 1 0 1 1 0

1 2 1 1 1 0 1 1

1 1 2 1 1 1 0 1

1 1 1 2 1 1 1 0

 (13)

obtained from Differential Evolution and protograph extension. The codes of lower rates 3/8,

1/4, and 1/8 were constructed by following the same steps as for C1, according to the construction

of Section V. The BER performance of these codes are shown in Figure 5 and compared to

LDPCA. For this case as well, our construction shows better performance than LDPCA. Finally,

the code C3 is of size 512 × 1024 and it was generated from the same protograph Sopt2 as

C2. Figure 6 shows that for C3 as well, our algorithm perform better than LDPCA at all the

considered rates, with a larger code size.

The curves of Figures 4, 5, 6, considered the code performance for the anchor rates given in

Section VI-B. We then applied the method described in Section VI-B to codes C2 and C3 in order

to obtain rate granularities of R1/m1 = 9.8×10−4 for C2 and R1/m1 = 4.9×10−4 for C3, rather
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Fig. 7: Required rate R with respect to H(p) for LDPCA and for our method, for codes C2 and

C3

than R1/Sm1 = 0.125. For this, we considered different values of p, and for every considered

value, we generated 1000 couples (xn, yn) from a BSC or parameter p. For every generated

couple, we found the minimum rate that permits to decode xn from yn without any error. The

same kind of analysis was performed in [24] and [28], with different criterion to measure the

rate needed for a given couple (xn, yn). In [24], this rate was determined as the minimum rate

such that the decoded codeword x̂n verifies HT x̂n = cm, see (1). However, this criterion does

not necessarily means that the codeword was correctly decoded (x̂n can be different from xn),

and this is why we do not consider it here. In [28], the required rate was determined as the

minimum rate that gives a BER lower than 10−6. This is equivalent to our criterion, since one

uncorrectly decoded bit gives a BER of 2.0× 10−3 for C2, and of 1.0× 10−3 for C3.

At the end, Figure 7 represents the average rates needed for the considered values of p with

respect to H(p). We first observe that our method shows a loss compared to the optimal rate

H(p). This rate loss is expected since we consider relatively short codeword length 512 for C2 and

1024 for C3. In addition, for the same codes C2 and C3, LDPCA shows a much more important

rate loss compared to our method, which was also expected from the results of Figures 5 and 6.

This shows that our construction combined with the anchor rates method is valid and outperforms
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LDPCA at all the considered values of p.

VIII. CONCLUSION

This paper introduced a novel rate-adaptive construction based on LDPC codes for the Slepian-

Wolf source coding problem. The introduced construction is based on an optimization of the

protographs of the incremental codes constructed at different rates. It not only allows to optimize

the code thresholds at these rates, but also to reduce the amount of short cycles in the obtained

parity check matrices. The proposed method shows improved performance compared to the

standard LDPCA for all the considered codes and at all the considered rates. This method may

be easily generalized to non-binary LDPC codes.
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