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Abstract

We compute lattice correlation functions for the model of critical dense polymers on a
semi-infinite cylinder of perimeter n. In the lattice loop model, contractible loops have
a vanishing fugacity whereas non-contractible loops have a fugacity α ∈ (0,∞). These
correlators are defined as ratios Z(x )/Z0 of partition functions, where Z0 is a reference
partition function wherein only simple half-arcs are attached to the boundary of the
cylinder. For Z(x ), the boundary of the cylinder is also decorated with simple half-arcs,
but it also has two special positions 1 and x where the boundary condition is different.
We investigate two such kinds of boundary conditions: (i) there is a single node at each
of these points where a long arc is attached, and (ii) there are pairs of adjacent nodes
at these points where two long arcs are attached. We find explicit expressions for these
correlators for finite n using the representation of the enlarged periodic Temperley-Lieb
algebra in the XX spin chain. The resulting asymptotics as n → ∞ are expressed as
simple integrals that depend on the scaling parameter τ =

x−1
n ∈ (0, 1). For small τ, the

leading behaviours are proportional to τ1/4, τ1/4 logτ, logτ and log2 τ. We interpret
the lattice results in terms of ratios of conformal correlation functions. We assume that
the corresponding boundary changing fields are highest weight states in irreducible, Kac
or staggered Virasoro modules, with central charge c = −2 and conformal dimensions
∆ = −1

8 or ∆ = 0. With these assumptions, we obtain differential equations of order two
and three satisfied by the conformal correlation functions, solve these equations in terms
of hypergeometric functions, and find a perfect agreement with the lattice results. We
use the lattice results to compute structure constants and ratios thereof which appear in
the operator product expansions of the boundary condition changing fields. The fusion
of these fields is found to be non-abelian.
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1 Introduction

A synthetic presentation of the study of critical phenomena, taking into account some of the
main lessons learned during the first half-century following Onsager’s celebrated exact solu-
tion of the two-dimensional Ising model [1], would run roughly as follows: A physical system
standing at a second-order phase transition possesses a continuum limit which is scale invari-
ant [2] and usually also conformally invariant [3, 4]. It is characterised by a set of critical
exponents and universal amplitude ratios that define a given universality class, characteristic
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of all systems with a given set of symmetries. The exponents are related to the eigenvalues of
the dilation operator, and they characterise the algebraic decay of the correlation functions.
This operator can be defined either in lattice models (as the transfer matrix or Hamiltonian)
or in the quantum field theory describing the continuum limit, so a paramount goal of the
theoretician is to diagonalise it. In two dimensions, this task can be efficiently accomplished
by identifying suitably tractable lattice models whose spin chain descriptions can be solved ex-
actly by integrability techniques [5–7], or by studing the properties of suitable highest-weight
representations of infinite-dimensional conformal algebras [3, 4, 8–10]. The compatibility of
the conclusions obtained from these two approaches has been witnessed in thousands of model
studies.

As appealing as this outline may appear, a significant proviso was brought forward in the
early 1990’s [11, 12]: What happens if the dilation operator is not diagonalisable after all?
After a lingering start, the importance of this question has become increasingly clear in the
last two decades [13, 14] and has lead directly to the detailed study of non semi-simple rep-
resentations of certain algebras, both in the lattice model [15–17] and conformal field theory
(CFT) [18–22] contexts. The latter define what has become known as logarithmic conformal
field theory (LCFT) [23], since the correlation functions exhibit both power-law and logarith-
mic factors. Quite remarkably, the interplay between the lattice models and their continuum
limit has turned out to be as tight as ever before, with essentially the same indecomposable
structures appearing in either [24].

A necessary condition for this logarithmic behaviour is provided by non-unitarity. While
there are various ways of providing this ingredient, a very natural and physically relevant
context arises in the study of models formulated in terms of extended degrees of freedom, such
as loops and clusters. In this paper, we shall focus on so-called critical dense polymers [25], of
which the basic manifestation is a single completely-packed closed curve that fills up the whole
lattice. It is the first member, LM(1, 2), of the family of logarithmic minimal models [26], with
its central charge and conformal weights given by

c = −2, ∆r,s =
(2r − s)2 − 1

8
. (1.1)

Theories with c = −2 are the most well understood logarithmic conformal field theories [27–
31]. Other cognate models described by logarithmic CFTs include self-avoiding walks and
critical percolation. A common feature of such lattice models is the appearance of cellular
algebras [32] of the Temperley-Lieb type.

Logarithms in correlation functions were previously found in various lattice models, in-
cluding the abelian sandpile model [33–35], critical dense polymers [36–38], critical percola-
tion [39–41] and the Q-state Potts model [42–44]. In many cases, the results were obtained
using conformal arguments and verified numerically on a computer. Our goal is to provide
new examples of such logarithmic behaviour where the correlators are computed both rigor-
ously from the lattice using the toolbox of integrability, and using the arguments of conformal
invariance extended to the logarithmic theories [45].

In a previous paper [38], we have defined several types of two-point boundary correlation
functions of critical dense polymers. We established their exact finite-size expressions on a
semi-infinite strip of width n and compared the corresponding asymptotic expansions with
the field-theoretical predictions. These correlators describe boundaries with defect points,
allowing them to be connected by the loops in various ways. Some of the correlators turned
out to exhibit logarithmic features, while others did not. The main goal of the present paper
is to extend parts of this study to periodic boundary conditions, where now the correlation
functions are defined on a semi-infinite cylinder of circumference n. An interesting by-product
of this modification is that we can now allow for non-contractible loops with a generic weightα,
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while contractible loops are forbidden (they have the dense polymer weight β = 0). This is also
interesting from the CFT perspective, as the relevant conformal correlation functions involve
boundary fields, as in our previous work, but also a bulk field ψα(z, z∗), which is responsible
for assigning the weight α to the non-contractible loops.

In the usual CFT setting, there is a close connection between conformally invariant bound-
ary conditions and highest-weight representations in the bulk theory [46, 47]. Moreover, a
number of strong results (see, e.g., [48, 49] in the loop model context) have been obtained
from the principle of modular invariance, that is, by comparing the equivalent results of a
closed evolution operator (i.e. subject to periodic boundary conditions) acting between two
given boundary states with those of an open evolution operator (with given boundary con-
ditions) acting in periodic imaginary time. Our setup similarly replaces the open evolution
operator of [38] with a closed one, but we keep the defect points at the boundary. The correct
interpretation of our results thus remains within the boundary version of LCFT. The relation
between bulk and boundary theories is much more involved in the LCFT setting [50,51], and
in particular it is known that in bulk LCFT primary operators can mix into Jordan cells of rank
higher than two [52,53].

The outline of the paper is as follows. We start out, in Section 2, by recalling the definition
of the model of critical dense polymers and its connection with the Temperley-Lieb algebra
and the XX spin chain. Due to our setup, we shall need the enlarged periodic version of the
Temperley-Lieb algebra, and shall consider the spin chain with periodic boundary conditions.
In Sections 3 and 4, we define two types of lattice correlation functions, where each inser-
tion point on the boundary involves respectively a single node or a pair of nearest-neighbour
nodes. We find exact expressions for each of these correlators, compute the leading large-
n asymptotics in the form of integral formulae, and extract the limiting cases of small and
large distances. The same correlation functions are then discussed in the context of LCFT in
Sections 5 and 6. Each lattice correlator is understood as a ratio of conformal correlation
functions. We use conformal invariance to obtain differential equations for these conformal
correlators and find that the solutions to these equations precisely reproduce the exact results
of Sections 3 and 4. In Section 7, we study the operator product expansions of the boundary
conformal fields and use the lattice results to compute some of the structure constants. The
fusion of the corresponding boundary conformal fields distinguishes between operators that
mark the start and end of arcs attached to the boundary, and is found to be non-abelian. The
paper ends in Section 8 with a discussion of our results and with concluding comments.

2 Dense polymers with periodic boundary conditions

2.1 Dense polymers and two-point functions

We study the model of critical dense polymers on the m× n cylinder. We draw it in the plane,
as in Figure 1, and choose n to be even. A configuration of the model is the choice of a tile

or for each face of the lattice. The boundary conditions are periodic in the horizontal
direction, meaning that the left and right ends of the rectangle are identified in the planar
representation. The top of the cylinder is decorated exclusively with simple arcs. Labeling the
nodes from 1 to n, these arcs connect the points in the pairs (1, 2), (3, 4), . . . , (n − 1, n). In
contrast, the bottom of the cylinder is decorated with a collection of defects and arcs. Their
organisation depends on the correlation function that we are studying and is detailed below.
A loop configuration σ has the weight wσ = αnαδnβ ,0 where nα and nβ are the numbers of
non-contractible and contractible loops in the configuration. A collection of arcs that connects
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1 x=6 1 x=7

Figure 1: Loop configurations on the 10×8 cylinder, with the boundary conditions correspond-
ing to Z0, Z (x = 6) and Z (x = 7).

two defects of the boundary has weight one. The partition function is defined as

Z =
∑
σ

wσ. (2.1)

We denote by Z0 the partition function for the model where the lower segment is identical
to the top segment of the cylinder and is therefore exclusively decorated with simple arcs. We
consider α ∈ (0,∞) for which Z0 ̸= 0. Likewise, we denote by Z (x) the partition function
wherein the bottom of the cylinder has simple arcs, and two defects inserted in positions 1
and x . Finally, we denote by Z (x) the partition function where the bottom of the cylinder
has two pairs of adjacent defects in the positions (1, 2) and (x , x+1), and simple arcs occupying
the other nodes. Examples of configurations for the three partition functions are given in
Figure 1. The corresponding two-point correlation functions are then defined as follows:

C (x) = lim
m→∞

Z (x)

Z0
, C (x) = lim

m→∞
Z (x)

Z0
. (2.2)

2.2 The enlarged periodic Temperley-Lieb algebra

Definition of the algebra. This periodic Temperley-Lieb algebra [54–58] is a unital asso-
ciative algebra that is used to describe many classes of statistical models on periodic geome-
tries. The terminology and conventions vary, and here we work with the enlarged periodic
Temperley-Lieb algebra EPTLn(α,β) defined in [59]:

EPTLn(α,β) =


I ,Ω,Ω−1, e j; j = 1, . . . , n

�
. (2.3)

Each element of the algebra is associated to a connectivity diagram drawn inside a rectangle
that has periodic boundary conditions in the horizontal direction. For the generators, this
identification is

I = ...

1 2 3 n

, e j = ... ...

1 nj j+1

, en =
1 2 3 n

... , (2.4a)

1 2 3 ... n

Ω= ,
1 2 3 ... n

Ω−1 = . (2.4b)

The defining relations of the algebra are

e2
j = βe j , e je j±1e j = e j , eie j = e jei (|i − j|> 1), (2.5a)

ΩΩ−1 = Ω−1Ω= I , ΩeiΩ
−1 = ei−1, Ωnen = enΩ

n, (Ω±1en)
n−1 = Ω±n(Ω±1en),

(2.5b)
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where the indices are in the set {1, . . . , n} and taken modulo n. For n even, there are extra
relations which remove each non-contractible loop and replace it by a weight α:

EΩ±1E = αE where E = e2e4 . . . en−2en. (2.6)

Henceforth, we set β = 0 corresponding to the model of critical dense polymers for which
contractible loops have a vanishing fugacity.

Transfer tangle. The transfer tangle for the model of polymers with periodic boundary con-
ditions is an element of EPTLn(α, 0) defined as

T(u) = . . . . . .u u u︸ ︷︷ ︸
n

, u = cos u + sin u , (2.7)

where u is the so-called spectral parameter. The isotropic value is u = π
4 , and we use the

short-hand notation T(π4 ) = T . The transfer tangle commutes at different values of u, namely
[T(u), T(v)] = 0, and satisfies

T(u) = Ω
�
I − uH+O(u2)

�
, H = −

n∑
j=1

e j , (2.8)

where H is the Hamiltonian. It also commutes with T(u).

The standard module Wn,0. The algebra EPTLn(α, 0) has a family of standard modules
Wn,d labeled by an integer number d of defects. Our calculations below only require the
standard module with no defects, Wn,0. This module is defined on the vector space generated
by link states with no defects. These are diagrams drawn over a segment where n marked
nodes are connected pairwise by non-intersecting loop segments. The boundary conditions are
cylindric, namely periodic in the horizontal direction so that the loop segments may connect
via the back of the cylinder. Here are the link states for n= 2 and n= 4:

W2,0 : , , W4,0 : , , , , , .
(2.9)

We define the action of the elements of EPTLn(α, 0) on the link states via the action of
the algebra’s generators. To compute av with a = e j or a = Ω±1, we draw the connectivity
diagram corresponding to a below v. The new link state is read from the connectivity of the
bottom segment. If one (or more) contractible loop is formed, the result is set to zero. If
one (or more) non-contractible loop is formed, each such loop is erased and replaced by a
multiplicative factor of α. Here are examples for n= 4:

= α , = 0 , = .

(2.10)

The bilinear Gram form. Let v, w be two link states in Wn,0. Their Gram overlap, denoted
v · w, is obtained by flipping v vertically and attaching its nodes to those of w. The resulting
diagram then has nα non-contractible loops and nβ contractible loops. The overlap is then
defined as v · w = αnαδnβ ,0. It is then bilinearly extended to all states in Wn,0. The values of

6
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the overlaps in the link state basis are encoded in the Gram matrix. To illustrate, in the bases
(2.9), the Gram matrices for n= 2 and n= 4 are

�
0 α

α 0

�
and


0 0 0 α 0 0
0 0 α 0 α α2

0 α 0 0 α2 α

α 0 0 0 0 0
0 α α2 0 0 α

0 α2 α 0 α 0

 . (2.11)

The spin-chain representation Xn. The representation Xn of EPTLn(α, 0) is defined on the
vector space (C2)⊗n. The generators e1, . . . , en−1 are represented by the matrices

Xn(e j) = I j−1 ⊗
0 0 0 0

0 i 1 0
0 1 i−1 0
0 0 0 0

⊗ In− j−1, j = 1, . . . , n− 1, (2.12)

where I j is the identity matrix of size 2 j . The representants for en and Ω depend on a twist
angle ϕ,

Xn(en) = t




0 0 0 0
0 i eiϕ 0
0 e−iϕ i−1 0
0 0 0 0

⊗ In−2

 t−1, Xn(Ω) = t eiϕσz
1/2, (2.13)

where t is the translation operator:

t|v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉= |v2〉 ⊗ · · · ⊗ |vn〉 ⊗ |v1〉. (2.14)

One can check that the defining relations (2.5) and (2.6) are satisfied, with the weight α of
the non-contractible loops related to the twist angle via the relation

α= 2cos
�ϕ

2

�
. (2.15)

For α ∈ (0, 2], ϕ is real and in the range [0,π), whereas for α ∈ (2,∞), ϕ is purely imaginary
in the range (i0, i∞).
Homomorphism and overlaps. There exists a homomorphism between the standard mod-
ule Wn,0 and the spin-chain module Xn of EPTLn(α, 0). It is defined via the following local
maps:

| 〉=ω |↑↓〉+ω−1 |↓↑〉, | 〉=ω eiϕ/2|↓↑〉+ω−1e−iϕ/2|↑↓〉, ω= eiπ/4. (2.16)

For link states with more than one arc, the local map is applied multiplicatively to each arc.
For instance:

| 〉= e−iϕ/2|↑↓↑↓〉+ω−2e−iϕ/2|↑↓↓↑〉+ω2 eiϕ/2|↓↑↑↓〉+ eiϕ/2|↓↑↓↑〉. (2.17)

It is well known that this is indeed a homomorphism, namely for each v in Wn,0 we have

Xn(e j)|v〉= |e j v〉, Xn(Ω
±1)|v〉= |Ω±1v〉, (2.18)

where α and ϕ are related as in (2.15). The dual states are then defined as 〈v| = |v〉t��
ϕ→−ϕ .

The spin-chain overlap between v and w then equals the Gram overlap between v and w:

〈v|w〉= v ·w, v, w ∈Wn,0. (2.19)
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2.3 XX Hamiltonian

The periodic XX Hamiltonian with the twist ϕ is defined as

H = Xn(H) = −
� n−1∑

j=1

σ+j σ
−
j+1 +σ

−
j σ
+
j+1

�− eiϕσ+nσ
−
1 − e−iϕσ−nσ+1 . (2.20)

It is hermitian and therefore has real eigenvalues. In terms of the fermions

c j = (−1) j−1
� j−1∏

k=1

σz
k

�
σ−j , c†

j = (−1) j−1
� j−1∏

k=1

σz
k

�
σ+j , (2.21)

it is expressed as

H = −� n−1∑
j=1

c†
j c j+1 + c†

j+1c j

�− ei(π2 (n+2Sz+2)+ϕ)c†
nc1 − e−i(π2 (n+2Sz+2)+ϕ)c†

1cn , (2.22)

where Sz = 1
2

∑n
j=1σ

z
j is the magnetisation. Applying a Fourier transform allows us to put H

in diagonal form:

H = −
n∑

k=1

2 cos(θk)η
†
kηk , (2.23)

where

ηk =
1p
n

n∑
j=1

ei jθk c j , η†
k =

1p
n

n∑
j=1

e−i jθk c†
j , θk =

( 2πk−ϕ
n

n
2 + Sz odd,

2π(k− 1
2 )−ϕ

n
n
2 + Sz even.

(2.24)

A full set of fermionic operators is obtained by taking k in the set {1, . . . , n}. In what follows,
it is however convenient to extend the definition of ηk to integer values of k that are nega-
tive, using the periodicity properties ηk+n = ηk and η†

k+n = η
†
k. Then, for ϕ ∈ [0,π) and

ϕ ∈ (i0, i∞), the groundstate of H lies in the magnetisation sector Sz = 0 and is given by

|w0〉=
(
η†
(2−n)/4 · · ·η†

(n−2)/4|0〉 n
2 odd,

η†
(4−n)/4 · · ·η†

n/4|0〉 n
2 even,

|0〉= |↓ · · · ↓〉. (2.25)

This state is also the groundstate of the transfer matrix T (u) for 0⩽ u⩽ π
2 . The corresponding

eigenvalue Λ0 of T = T (π4 ) is [59,60]

Λ0 =
cos(ϕ2 )

2n−1

n/2∏
j=1

(1+ tan x j)
n∏

j=n/2+1

(1− tan x j), x j =
π( j − 1

2)− ϕ2
n

. (2.26)

3 Lattice correlators for single entry points

3.1 Refined partition functions

For each loop configuration that contributes to Z (x), the two defects can connect either via
the back or the front of the cylinder. We denote these two possible connections as and
and define the refined partition functions Z (x) and Z (x). The partition function Z (x)
decomposes as

Z (x) = Z (x) + Z (x). (3.1)

8

https://scipost.org
https://scipost.org/SciPostPhys.7.3.040


Select SciPost Phys. 7, 040 (2019)

Let us also define two more partition functions: Z (x) and Z (x). They are defined in a
similar way to Z (x), but with the two defects on the lower boundary attached together to
become a long arc, in the two possible ways. This means that, in the middle panel of Figure 1,
the boundary condition at the lower end of the cylinder is replaced with the following states
flipped vertically:

va
x = ...

1 x
... , vb

x = ...
1 x

... .

(3.2)
Clearly, we have �

Z (x)
Z (x)

�
=

�
0 α

α 0

��
Z (x)
Z (x)

�
. (3.3)

The matrix on the right side is the Gram matrix for W2,0 given in (2.11). We also note that
the state attached to the top of the cylinder in Figure 1 is none other than va

2 . Its translation
by one node is vb

n .
We define the refined correlation functions corresponding to and :

C (x) = lim
m→∞

Z (x)

Z0
, C (x) = lim

m→∞
Z (x)

Z0
. (3.4)

In constrast to C (x), these two functions have a well-defined α → 0 limit. Indeed, the
numerators and denominators are polynomials in α with the lowest-degree term proportional
to α. In the limit α→ 0, these correlation functions give ratios of partition functions where the
configurations with non-zero weights have a single non-contractible loop, and no contractible
loops.

The partition functions Z (x) and Z (x) are expressed in terms of Gram overlaps as

Z (x) = 2mn/2(va
x · T mva

2), Z (x) = 2mn/2(vb
x · T mva

2), (3.5)

where the factor of 2mn/2 ensures that the tiles have weight 1 and not 1p
2
, as they do in (2.7)

for u= π
4 . Because of the invariance under translation, we can equivalently write

Z (x) = 2mn/2(va
n+2−x · T mvb

n). (3.6)

These partition functions are then expressed as overlaps in the spin chain:

Z (x) = 2mn/2〈va
x |T m|va

2〉, Z (x) = 2mn/2〈va
n+2−x |T m|vb

n〉, (3.7)

where T = Xn(T) is the transfer matrix.

3.2 Closed-form expressions in the limit m→∞
In the limit m→∞, the leading contribution to the overlaps comes from the groundstate,

Z (x)≃ 2mn/2Λm
0 〈va

x |w0〉〈w0|va
2〉, Z (x)≃ 2mn/2Λm

0 〈va
n+2−x |w0〉〈w0|vb

n〉, (3.8)

where ≃ indicates an equality up to terms that are exponentially small in m compared to the
leading term. Because |w0〉 is invariant under translation, we know that 〈w0|va

2〉 = 〈w0|vb
n〉.

The partition function Z0 is equal to Z (2), and as a result we have

C (x) =
〈va

x |w0〉
〈va

2 |w0〉 , C (x) =
〈va

n+2−x |w0〉
〈va

2 |w0〉 = C (n+ 2− x). (3.9)
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We therefore focus on computing C (x). Following (2.16), the state va
x is represented in

the spin chain by

〈va
x |= 〈0|an−1an−3 · · · ax+1ax−2ax−4 · · · a2

�
ω c1 + (−1)

x−2
2 ω−1cx

�
, (3.10)

where
a j =ωc j +ω

−1c j+1, ω= eiπ/4. (3.11)

The sign (−1)
x−2

2 of the last factor in (3.10) comes from anticommuting cx with the factors
a2, a4, . . . , ax−2. We have the following identity,

�
ω c1 + (−1)

x−2
2 ω−1cx

�
=

x−1∑
ℓ=1

iℓ−1aℓ, (3.12)

and the following commutation relation:

{a j ,η
†
k}= 2n−1/2 cos

�θk
2 +

π
4

�
e−i( j+1/2)θk . (3.13)

Using Wick’s theorem, we find

〈va
x |w0〉=

x−1∑
ℓ=1

iℓ−1 det M (ℓ) , (3.14a)

where

M (ℓ)jk =


{aℓ,η†

k} j = 1,

{a2 j−2,η†
k} j = 2, . . . , x

2 ,

{a2 j−1,η†
k} j = x+2

2 , . . . , n
2 ,

k ∈ K =

¨ {4−n
4 , . . . n

4} n
2 even,

{2−n
4 , . . . n−2

4 } n
2 odd.

(3.14b)

For ℓ even, the determinant is zero, as the first row is identical to the row with label j = ℓ+2
2 .

The factors appearing in (3.13) that are constant or depend only on k can be extracted from
the denominator, and we find

C (x) =
〈va

x |w0〉
〈va

2 |w0〉 =
∑

ℓ=1,3,...,x−1

(−1)(ℓ−1)/2 det M̃ (ℓ)

det M̃ (1)
, (3.15a)

M̃ (ℓ)jk =


e−i(ℓ+1/2)θk j = 1,

e−i(2 j−3/2)θk j = 2, . . . , x
2 ,

e−i(2 j−1/2)θk j = x+2
2 , . . . , n

2 ,

k ∈ K . (3.15b)

The inverse of the matrix M̃ (1) has the entries

(M̃ (1))−1
k j =

2
n

eiθk(2 j−1/2), j = 1, . . . , n
2 , k ∈ K . (3.16)

The next step is to multiply M̃ (ℓ) by (M̃ (1))−1 from the right:

�
M̃ (ℓ)(M̃ (1))−1
�

jk =


δi,(ℓ+1)/2 j = 1,

−2(−1) j+keiϕ(2 j−2k−1)/n

n sin(πn (2 j − 2k− 1))
2⩽ j ⩽ x

2 ,

δ j,k
x+2

2 ⩽ j ⩽ n
2 ,

k = 1, . . . , n
2 . (3.17)
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This holds for both parities of n
2 . The presence of the Kronecker-δ functions stems from the

fact that the rows of M̃ (ℓ) and M̃ (1) with labels j = 1 and j = x+2
2 , . . . , n

2 are identical. The
determinant of M̃ (ℓ)(M̃ (1))−1 thus reduces to the determinant of a matrix of size x−2

2 . Except
for the sin(πn (2 j − 2k− 1)) in the denominator, all the other factors can be extracted from the
determinant. After simplification, we find

C (x) =
�−4i

n

� x−2
2

e−
iϕ(x+2)

2n e
iπ(x−1)(x+2)

2n

x/2∑
ℓ=1

(−1)ℓ−1e
2iℓ(ϕ−π)

n det N (ℓ) (3.18a)

N (ℓ)jk =

¨
(w j − zk)−1 1⩽ k ⩽ ℓ− 1,

(w j − zk+1)−1 ℓ⩽ k ⩽ x−2
2 ,

j = 1, . . . , x−2
2 , (3.18b)

where w j = e4iπ( j− 1
2 )/n and zk = e4iπk/n. The determinants are evaluated using Cauchy’s

identity:
a

det
j,k=1

� 1
w j − zk

�
=

∏
1⩽ j<k⩽a(wk −w j)(z j − zk)∏a

j,k=1(w j − zk)
. (3.19)

This gives us a closed-form expression for C (x) in terms of a complicated sum, wherein the
summand is written as a ratio of trigonometric functions. Many factors are independent of ℓ
and can be factored from the sum. After simplification, we find

C (x) =
�−2

n

� x−2
2

∏
1⩽ j<k⩽(x−2)/2

sin
�2π

n (k− j)
� ∏

1⩽ j<k⩽x/2

sin
�2π

n ( j − k)
�

(x−2)/2∏
j=1

x/2∏
k=1

sin
�2π

n ( j − k+ 1
2)
� (3.20)

×
x/2∑
ℓ=1

cos
�ϕ

n (2ℓ− x+2
2 )
�
(x−2)/2∏

j=1

sin
�2π

n ( j − ℓ+ 1
2)
�

x/2∏
j=1
j ̸=ℓ

sin
�2π

n (ℓ− j)
� .

3.3 Asymptotic behaviour

We compute the asymptotic behaviour of (3.20) as n→∞ with the ratio of x and n fixed. We
achieve this by setting τ = x−1

n and sending n to infinity with τ fixed in the range (0, 1). As

a first step, we write all the sine functions in terms of the cardinal sine function s[x] = sin(x)
x .

The products of integers that appear are then rewritten in terms of the Gamma and Barnes
functions:

Γ (z + 1) = z Γ (z), G(z + 1) = Γ (z)G(z). (3.21)

The result simplifies to

C (x) =
G( x

2 )G(
x+2

2 )G
2(1

2)

G2( x+1
2 )

(x−2)/2∏
j=0

s[2π
n ( j +

1
2)]

s[2π
n j]

(x−2)/2∏
j=0

(x−2)/2∏
k=0

s[2π
n ( j − k)]

s[2π
n ( j − k− 1

2)]

×
(x−2)/2∑
ℓ=0

cos
�ϕ

n (2ℓ− x−2
2 )
�

s[2π
n (ℓ+

1
2)]

Γ (ℓ+ 1
2)Γ (

x−1
2 − ℓ)

Γ (ℓ+ 1)Γ ( x
2 − ℓ)

(x−2)/2∏
j=0

s[2π
n ( j − ℓ− 1

2)]

s[2π
n ( j − ℓ)]

, (3.22)
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where we use the convention s[0] = 1. The large-z asymptotics of G(z) is

log G(z) =

�
(z − 1)2

2
− 1

12

�
log(z − 1)− 3(z − 1)2

4
+

z − 1
2

log(2π) +
1

12
− log A+O
�
z−1
�

,

(3.23)
where A is the Glaisher-Kinkelin constant. This yields

G( nτ+1
2 )G(

nτ+3
2 )

G2( nτ+2
2 )

=
�nτ

2

�1/4
+O(n−3/4). (3.24)

To compute the asymptotics of the products in (3.22), we use the 1/n expansions

(nτ−1)/2∑
j=0

log s[2π( j−a)
n − b] = n

∫ τ/2
0

dx log s[2πx − b] +
�
a+ 1

2)(log s[b]− log s[πτ− b]
�
+O(n−1),

(3.25a)
(nτ−1)/2∑

j,k=0

log s[2π( j−k−a)
n ] = n2

∫∫ τ/2
0

dxdy log s[2π(x − y)] + (a2 − 1
6) log s[πτ] +O(n−1),

(3.25b)

which are obtained from the Euler-Maclaurin formula. This yields

(x−2)/2∏
j=0

s[2π
n ( j +

1
2)]

s[2π
n j]

= s[πτ]1/2 +O(n−1),
(x−2)/2∏

j,k=0

s[2π
n ( j − k)]

s[2π
n ( j − k− 1

2)]
= s[πτ]−1/4 +O(n−1).

(3.26)
To evaluate the asymptotic behaviour of the sum in (3.22), we first change the summation
index to z = ℓ

n , so that the sum goes from 0 to τ with increments of 1
n . We have the following

asymptotics

(x−2)/2∏
j=0

s[2π
n ( j − 1

2)− 2πz]

s[2π j
n − 2πz]

=
s[2πz]1/2

s[π(τ− 2z)]1/2
+O(n−1). (3.27a)

Γ (nz + 1
2)Γ (

nτ
2 − nz)

Γ (nz + 1)Γ ( nτ+1
2 − nz)

=
1
n

1
z1/2(τ2 − z)1/2

+O(n−2). (3.27b)

The first is obtained from (3.25a) and the second from the known asymptotic expansion of
log Γ (z). As n→∞, the sum has a well-defined limit in terms of an integral. Putting all the
results together yields

C (x)
���
x=nτ+1

=n1/4 sin(πτ)1/4(2π)3/4G2(1
2)∫ τ/2

0

dz
cos
�
ϕ(2z − τ2 )
�

sin(2πz)1/2 sin
�
π(τ− 2z)
�1/2 +O(n−3/4). (3.28)

This is our final formula for the asymptotics for generic values of τ in (0, 1). The results are
displayed in Figure 2.

We analyse its behaviour in the limiting cases τ→ 0+ and 1−. The former is easily evalu-
ated to

C (x)
���
x=nτ+1

n≫1,τ→0+−−−−−−−→ ( nτ
2 )

1/4πG2(1
2). (3.29)
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The latter requires closer scrutiny, as the integral in (3.28) diverges for τ = 1. Let us denote
this integral by J . To obtain its asymptotics for τ→ 1−, we first use the reflection symmetry
of the integrand under z→ τ

2 − z:

J =
∫ τ/2

0

dz
cos
�
ϕ(2z − τ2 )
�

sin(2πz)1/2 sin
�
π(τ− 2z)
�1/2 = 2

∫ τ/4
0

dz
cos
�
ϕ(2z − τ2 )
�

sin(2πz)1/2 sin
�
2π(z + 1−τ

2 )
�1/2 .

(3.30)
We substract and add a counter-term in the form of an integral wherein the numerator and
denominator are simpler:

J =2

∫ τ/4
0

dz
� cos
�
ϕ(2z − τ2 )
�

sin(2πz)1/2 sin
�
2π(z + 1−τ

2 )
�1/2 − cos ϕ2

2πz1/2(z + 1−τ
2 )1/2

�
+

∫ τ/4
0

dz
cos ϕ2

πz1/2(z + 1−τ
2 )1/2

. (3.31)

The first integral has a well-defined limit for τ → 1, whereas the second one is evaluated
explicitly:

J ≃ 2

∫ 1/4
0

dz
�cos
�
ϕ(2z − 1

2)
�

sin(2πz)
− cos ϕ2

2πz

�
+

2 cos(ϕ2 )

π
log
�Æ1− τ2 +Æτ2p

1−τ
�
, (3.32)

where ≃ indicates an equality up to terms of order (1 − τ)1. The logarithmic divergence as
τ→ 1− is explicit in the last term. This yields

C (x)
���
x=nτ+1

n≫1,τ→1−−−−−−−−→ n1/4(1−τ)1/42−1/4G2(1
2)
�
K −α log(1−τ

2 )
�

, (3.33)

where

K = 2π

∫ 1/2
0

dy
�cos
�
ϕ(y − 1

2)
�

sinπy
− cos(ϕ2 )

πy

�
. (3.34)

Recalling from (3.9) that C (x) = C (n+ 2− x), the final results for the asymptotics of
these correlation functions for 1≪ x ≪ n are

C (x)
1≪x≪n−−−−→ ( x

2 )
1/4πG2(1

2), C (x)
1≪x≪n−−−−→ ( x

2 )
1/4G2(1

2)
�
α log n+ K −α log( x

2 )
�
.

(3.35)
The first has a pure power-law behaviour, namely it is proportional to x−2∆ with ∆ = −1

8 .
The second has the same power-law exponent as the first, but with an added logarithmic
dependence upon the position x . The conformal interpretation of these results is discussed in
Section 5.

4 Lattice correlators for double entry points

4.1 Refined partition functions

For each loop configuration that contributes to Z (x), the four defects can connect in six
possible ways, according to the six link states of W4,0, see (2.9). We thus define six refined
partition functions, one for each connectivity of the defects:

Z (x) = Z (x) + Z (x) + Z (x) + Z (x) + Z (x) + Z (x). (4.1)
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C (x)

τ= x−1
n

Figure 2: The correlation function C (x) for ϕ = 1. The points are the exact values for
n= 200. The blue, yellow and purple solid curves are respectively drawn from (3.28), (3.29)
and (3.33).

To compute these refined partition functions, we define six more partition functions. These are
defined similarly to Z (x), but with the following link states flipped vertically and attached
to the lower boundary of the rectangle:

vc
x = ...

1 x
... , vd

x = ...
1 x

... ,

(4.2a)

ve
x = ...

1 x
... , vf

x = ...
1 x

... ,

(4.2b)

vg
x = ...

1 x
... , vh

x = ...
1 x

... .

(4.2c)

We denote them Z (x), Z (x), Z (x), Z (x), Z (x) and Z (x). We have the
following decompositions:

Z (x)
Z (x)
Z (x)
Z (x)
Z (x)
Z (x)

=


0 0 0 α 0 0
0 0 α 0 α α2

0 α 0 0 α2 α

α 0 0 0 0 0
0 α α2 0 0 α

0 α2 α 0 α 0




Z (x)
Z (x)
Z (x)
Z (x)
Z (x)
Z (x)

 . (4.3)

The matrix appearing on the right side is the Gram matrix for W4,0 given in (2.11). Clearly,
we have

Z (x) = Z0, Z (x) = Z (x) = Z (n), (4.4a)

Z (x) = Z (n+ 2− x), Z (x) = Z (n+ 2− x). (4.4b)

Indeed, for the link states , and , either the nodes 1 and 2 are tied together or the
nodes x and x + 1 are tied together, or both. The corresponding partition functions reduce to
partition functions with fewer entry points. The resulting correlation functions, obtained by
dividing by Z0 and taking the limit m→∞, were computed in Section 3 and are independent
of x . There are therefore only two new independent quantities to compute:

C (x) = lim
m→∞

Z (x)

Z0
, C (x) = lim

m→∞
Z (x)

Z0
. (4.5)
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The partition functions in the numerators in (4.5) are expressed in terms of spin-chain overlaps
as

Z (x) = 2mn/2〈vd
x |T m|va

2〉, Z (x) = 2mn/2〈vf
x |T m|va

2〉. (4.6)

4.2 Closed-form expressions in the limit m→∞
In the limit m→∞, the leading contribution for the overlaps is

Z (x)≃ 2mn/2Λm
0 〈vd

x |w0〉〈w0|va
2〉, Z (x)≃ 2mn/2Λm

0 〈vf
x |w0〉〈w0|va

2〉, (4.7)

and therefore

C (x) =
〈vd

x |w0〉
〈va

2 |w0〉 , C (x) =
〈vf

x |w0〉
〈va

2 |w0〉 . (4.8)

The states vd
x and vf

x are represented in the spin chain by

〈vd
x |= 〈0|an−1an−3 · · · ax+2ax−2ax−4 · · · a3

�
ω c2 + (−1)

x−3
2 ω−1cx

��
ω c1 + (−1)

x−1
2 ω−1cx+1

�
,

(4.9a)

〈vf
x |= 〈0|an−1an−3 · · · ax+2ax−2ax−4 · · · a3

�
ω c2 + (−1)

x−3
2 ω−1cx

�
× �ω−1eiϕ/2c1 + (−1)

x−1
2 ω e−iϕ/2cx+1

�
. (4.9b)

As a result, we have

C (x) =ω2 f1,2 + (−1)
x−3

2 f1,x + (−1)
x−3

2 f2,x+1 +ω
−2 fx ,x+1, (4.10a)

C (x) = eiϕ/2 f1,2 + eiϕ/2ω−2(−1)
x−3

2 f1,x + e−iϕ/2ω2(−1)
x−3

2 f2,x+1 + e−iϕ/2 fx ,x+1, (4.10b)

where

fa,b =
det P(a,b)

det M (1)
, P(a,b)

i j =


{ca,η†

k} j = 1,

{cb,η†
k} j = 2,

{a2 j−3,η†
k} j = 3, . . . , x+1

2 ,

{a2 j−1,η†
k} j = x+3

2 , . . . , n
2 ,

k ∈ K . (4.11)

We use (3.13), remove from the determinant some of the factors that depend on k, and find

fa,b =
det P̃(a,b)

det M̃ (1)
, P̃(a,b)

jk =



e−iaθk

2cos(
θk
2 +

π
4 )

j = 1,

e−ibθk

2cos(
θk
2 +

π
4 )

j = 2,

e−iθk(2 j−5/2) j = 3, . . . , x+1
2 ,

e−iθk(2 j−1/2) j = x+3
2 , . . . , n

2 ,

k ∈ K . (4.12)

All the rows of P(a,b) except for the first two appear in M (1). Using (3.16), we find

Q(a,b)
jℓ =
�
P̃(a,b)(M̃ (1))−1
�

jℓ =



1
n

∑
k∈K

eiθk(2ℓ−a−1/2)

cos(θk
2 +

π
4 )

j = 1,

1
n

∑
k∈K

eiθk(2ℓ−b−1/2)

cos(θk
2 +

π
4 )

j = 2,

δ j,k+1 j = 3, . . . , x+1
2 ,

δ j,k j = x+3
2 , . . . , n

2 .

(4.13)
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The determinant of Q(a,b) thus reduces to the determinant of a 2× 2 matrix:

fa,b = (−1)
x−3

2 det

Q(a,b)
1,1 Q(a,b)

1,(x+1)/2

Q(a,b)
1,2 Q(a,b)

2,(x+1)/2


=
(−1)

x−3
2

n2

∑
k,ℓ∈K

e−i(aθk+bθℓ) e
3
2 iθk+iθℓ(x+

1
2 ) − e 3

2 iθℓ+iθk(x+
1
2 )

cos(θk
2 +

π
4 ) cos(θℓ2 +

π
4 )

. (4.14)

After simplifications, this yields

C (x) =
2
n2

∑
k,ℓ∈K

�cos(θℓ+θk
2 )− cos
�
(x − 1

2)θℓ − (x − 3
2)θk

�
cos(θk

2 +
π
4 ) cos(θℓ2 +

π
4 )

+ (−1)
x−1

2
sin
�
(x − 3

2)θℓ +
θk
2

�− sin
�
(x − 1

2)θℓ − θk
2

�
cos(θk

2 +
π
4 ) cos(θℓ2 +

π
4 )

�
, (4.15a)

C (x) =
2
n2

∑
k,ℓ∈K

�sin(θℓ+θk
2 + ϕ

2 )− sin
�
(x − 1

2)θℓ − (x − 3
2)θk +

ϕ
2

�
cos(θk

2 +
π
4 ) cos(θℓ2 +

π
4 )

+ (−1)
x−3

2
cos
�
(x − 3

2)θℓ +
θk
2 +

ϕ
2

�− cos
�
(x − 1

2)θℓ − θk
2 +

ϕ
2

�
cos(θk

2 +
π
4 ) cos(θℓ2 +

π
4 )

�
.

(4.15b)

Many of these double sums can be reduced to single sums. For instance,∑
k,ℓ∈K

cos(θℓ+θk
2 )

cos(θk
2 +

π
4 ) cos(θℓ2 +

π
4 )
=
∑

k,ℓ∈K

cos(θℓ2 +
π
4 ) sin(

θk
2 +

π
4 ) + cos(θk

2 +
π
4 ) sin(

θℓ
2 +

π
4 )

cos(θk
2 +

π
4 ) cos(θℓ2 +

π
4 )

=
∑

k,ℓ∈K

tan(θk
2 +

π
4 ) + tan(θℓ2 +

π
4 ) = n
∑
k∈K

tan(θk
2 +

π
4 ). (4.16)

The other terms are simplified using similar ideas, and after some algebra we find

C (x) =
4
n

(n−2)/2∑
k=0

cot
�
π
n (k+

1
2) +

ϕ
2n

�
sin2
�
(x − 1)
�
π
n (k+

1
2) +

ϕ
2n

��
, (4.17a)

C (x) =
4sin(ϕ2 )

n

(n−2)/2∑
k=0

cot
�
π
n (k+

1
2) +

ϕ
2n

�
sin2
�
(x − 1)
�
π
n (k+

1
2) +

ϕ
2n

��
+

2cos(ϕ2 )

n

(n−2)/2∑
k=0

cot
�
π
n (k+

1
2) +

ϕ
2n

�
sin
�
2(x − 1)
�
π
n (k+

1
2) +

ϕ
2n

��
− 2cos(ϕ2 )

n2

� (n−2)/2∑
k=0

cot
�
π
n (k+

1
2) +

ϕ
2n

�
cos
�
2(x − 1)
�
π
n (k+

1
2) +

ϕ
2n

���2
(4.17b)

− 2cos(ϕ2 )

n2

� (n−2)/2∑
k=0

cot
�
π
n (k+

1
2) +

ϕ
2n

�
sin
�
2(x − 1)
�
π
n (k+

1
2) +

ϕ
2n

���2
+

2cos(ϕ2 )

n2

� (n−2)/2∑
k=0

cot
�
π
n (k+

1
2) +

ϕ
2n

��2 − cos(ϕ2 )

2
.
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In the second expression, some of the double sums could not be simplified to single sums and
were instead rewritten as the square of single sums. We simplify these expressions further
using the identity

sin( ℓξn )

cos(ξn )
=
ℓ−1∑
t=0

(−1)t sin
�
ξ
n (ℓ− 1− 2t)
�
, ℓ even. (4.18)

After some manipulations, we find

C (x) =
4
n

(x−3)/2∑
t=0

cos
�ϕ

n (2t + 1)
�

sin
�
π
n (2t + 1)
� , (4.19a)

C (x) =
�4sin(ϕ2 )

n
+

8Y (n) cos(ϕ2 )

n2

� (x−3)/2∑
t=0

cos
�ϕ

n (2t + 1)
�

sin
�
π
n (2t + 1)
�

− 8cos(ϕ2 )

n2

�� (x−3)/2∑
t=0

cos
�ϕ

n (2t + 1)
�

sin
�
π
n (2t + 1)
� �2 + � (x−3)/2∑

t=0

sin
�ϕ

n (2t + 1)
�

sin
�
π
n (2t + 1)
� �2�, (4.19b)

where

Y (n) =
(n−2)/2∑

k=0

cot
�
π
n (k+

1
2) +

ϕ
2n

�
. (4.20)

4.3 Asymptotic behaviour

We compute the asymptotics for τ= x−1
n with τ ∈ (0, 1) and n→∞. We find

1
n

(x−3)/2∑
t=0

cos
�ϕ

n (2t + 1)
�

sin
�
π
n (2t + 1)
� = 1

2π

�
log(nτ) + log2+ γ

�
+ I1(τ) +O(n−1), (4.21a)

1
n

(x−3)/2∑
t=0

sin
�ϕ

n (2t + 1)
�

sin
�
π
n (2t + 1)
� = I2(τ) +O(n−1), (4.21b)

Y (n)
n
=

1
π

�
log n− logπ−ψ(1

2 +
ϕ
2π)
�
+O(n−1), (4.21c)

where ψ(z) = Γ ′(z)/Γ (z) is the digamma function, γ is the Euler-Mascheroni constant, and

I1(τ) =
1
2

∫ τ
0

dt
�

cos(ϕ t)
sin(πt)

− 1
πt

�
, I2(τ) =

1
2

∫ τ
0

dt
�

sin(ϕ t)
sin(πt)

�
. (4.22)

From (4.19a), we obtain

C (x)
���
x=nτ+1

=
2
π

�
log(nτ) + log2+ γ+ 2πI1(τ)

�
+O(n−1). (4.23)

The functions I1(τ) and I2(τ) have the following asymptotic behaviour for τ→ 0+:

I1(τ) =
πτ2

8

�
1
3
− �ϕ
π

�2�
+O(τ4), I2(τ) =

ϕτ

2π
+O(τ3). (4.24)
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For τ→ 1−, we have

I1(τ) =− cosϕ
2π

log(1−τ) + cos2(ϕ2 )

∫ 1/2
0

dt
�cos(ϕ t)

sin(πt)
− 1
πt

�
+

sinϕ
2

∫ 1/2
0

dt
sin(ϕ t)
sin(πt)

− cos2(ϕ2 ) log2

π
+

1
2π
(1−τ)(1−ϕ sinϕ) +O

�
(1−τ)2�. (4.25)

The asymptotic behaviour for C (x) is then given by

C (x)
���
x=nτ+1

n≫1,τ→0+−−−−−−−→ 2
π

�
log(nτ) + log2+ γ

�
, (4.26a)

C (x)
���
x=nτ+1

n≫1,τ→1−−−−−−−−→ 2
π

�
log n− cosϕ log(1−τ)− cosϕ log2+ γ

�
+ bK , (4.26b)

where

bK = �2cos(ϕ2 )
�2∫ 1/2

0

dt
�

cos(ϕ t)
sin(πt)

− 1
πt

�
+ 2sinϕ

∫ 1/2
0

dt
sin(ϕ t)
sin(πt)

. (4.27)

Likewise from (4.19a), we obtain

C (x)
���
x=nτ+1

=
2
π2

�
cos(ϕ2 )(log n)2 − cos(ϕ2 )

�
(2πI2(τ))

2 + (γ+ 2πI1(τ) + log2+ logτ)2
�

+
�
γ+ 2πI1(τ) + log2+ log(nτ)

��
π sin(ϕ2 )− 2cos(ϕ2 )(logπ+ψ(1

2 +
ϕ
2π))
��
+O(n−1).

(4.28)

In the limit τ→ 0+, this yields

C (x)
���
x=nτ+1

n≫1,τ→0+−−−−−−−→ 2
π2

�
cos(ϕ2 )(log n)2 − cos(ϕ2 )

�
(γ+ log2+ logτ)2

�
(4.29)

+
�
γ+ log2+ log(nτ)

��
π sin(ϕ2 )− 2cos(ϕ2 )(logπ+ψ(1

2 +
ϕ
2π))
��

.

The results are plotted in the right panel of Figure 2. As expected from (4.4b), C (x) is
symmetric under the transformation τ→ 1−τ. This is not immediately obvious from (4.28),
but can be shown using the identities

I1(1−τ) =− cosϕ
2π

�
logτ− log2+ 2πI1(τ)

�− I2(τ) sinϕ − log(1−τ
2 )

2π

− cos2(ϕ2 )

π
(γ+ logπ+ 2 log2+ψ(1

2 +
ϕ
2π)) +

sinϕ
4

, (4.30a)

I2(1−τ) =− sinϕ
2π

�
γ+ log2+ logπ+ logτ+ψ(1

2 +
ϕ
2π) + 2πI1(τ)
�
+ I2(τ) cosϕ + 1

2 sin2(ϕ2 ).

(4.30b)

Recalling from (4.4) that C (x) = C (n+2− x), the final results for the asymptotics for
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C (x)

τ= x−1
n

C (x)

τ= x−1
n

Figure 2: The correlation functions C (x) and C (x) for ϕ = 1. The points are the exact
values for n= 200. In the left panel, the blue, orange and purple solid curves are drawn from
(4.23), (4.26a) and (4.26b). In the right panel, the blue and orange curves are drawn from
(4.28) and (4.29).

1≪ x ≪ n are

C (x)
1≪x≪n−−−−→ 2

π

�
log x + log2+ γ

�
, (4.31a)

C (x)
1≪x≪n−−−−→ 2

π

�
2cos2(ϕ2 ) log n− cosϕ log x

�
+ bK , (4.31b)

C (x)
1≪x≪n−−−−→ 2

π2
(γ+ log2+ log x)

�
π sin(ϕ2 )− 2cos(ϕ2 )

�
log n+ logπ+ψ(1

2 +
ϕ
2π)
��

(4.31c)

− 2cos(ϕ2 )

π2

�
γ+ log2+ log x

�2
.

These lattice correlators have a purely logarithmic behavior. The power-law behavior is thus
absent, consistent with the conformal weight ∆ = 0. We discuss the conformal interpretation
of these results in Section 6.

5 Conformal correlators for single entry points

5.1 Preliminaries

In this section, we provide an interpretation of the lattice results of Section 3 in terms of
logarithmic conformal field theory. We denote by V the semi-infinite cylinder drawn in the
plane. We claim that, in the conformal description, the lattice correlation function C (x) is a
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ratio of correlation functions on V:

C (x21) = lim
x3→i∞

〈ϕ (x1)ϕ (x2)ψα(x3, x∗3)〉V
〈ψα(x3, x∗3)〉V , (5.1)

where x21 = x2 − x1.
The fields ϕ (x) and ϕ (x) are chiral primary fields of conformal weight −1

8 that live on
the boundary. As their labels suggest, their insertion on a boundary respectively marks the
start or end of a long boundary arc. In our derivation below, we assume that these fields are
highest weight states |ϕ〉 in irreducible representations of the Virasoro algebra with c = −2
and ∆ = ∆1,2 = −1

8 . By contrast, ψα(z, z∗) is a field that lives in the bulk and is therefore
not chiral. It changes the weight of the loops encircling the point z from 0 to α. Its action is
therefore non-local. The derivation below uses the method of images [46] and works with the
assumption that correlators involvingψα(z, z∗) on the upper-half plane are equal to correlators
on the full plane with this field replaced by ψα(z)ψα(z∗), where ψα(z) is a primary field. The
calculations below strongly support this claim and will allow us to extract the value of the
conformal weight ∆ of ψα(z) as a function of α, see (5.36). The transformation laws of the
fields under conformal maps are

ϕ(z) 7→ ϕ(y) = �dy
dz

�1/8
ϕ(z), ψα(z) 7→ψα(y) =

�dy
dz

�−∆
ψα(z), (5.2)

and the two-point functions are

〈ϕ(z1)ϕ(z2)〉= κ̃ϕϕ(z2 − z1)
1/4, 〈ψα(z1)ψα(z2)〉= κψψ

(z2 − z1)2∆
, (5.3)

where κ̃ϕϕ and κψψ are constants. The fields ϕ (x) and ϕ (x) transform identically under
conformal transformations. As we shall see in Section 7.1, the distinction between these two
fields lies in their fusion rules and in the values of the structure constants. For convenience,
their labels are omitted in this section.

The conformal map from V to the upper-half plane H is

z(x) =
sin
�
π
n (x − x1)
�

sin
�
π
n (x2 − x1)
� sin(πx2

n )

sin(πx
n )

. (5.4)

It is illustrated in Figure 3. The points x1 and x2 are sent to 0 and 1, whereas the point at
x = i∞ is mapped to a finite point in the upper-half plane:

lim
x→i∞ z(x) = eiπx1/n

sin(πx2
n )

sin
�
π
n (x2 − x1)
� . (5.5)

The derivative of this transformation is

dz(x)
dx

=
π

n

sin
�πx1

n

�
sin(πx2

n )

sin
�
π
n (x2 − x1)
�

sin(πx
n )2

. (5.6)

5.2 Differential equation for the four-point function

We consider the correlation functions appearing in (5.1), but defined on H. Using the method
of images, the correlation functions on H are equal to correlation functions in the full complex
plane:

〈ϕ(z1)ϕ(z2)ψα(z, z∗)〉H = 〈ϕ(z1)ϕ(z2)ψα(z)ψα(z
∗)〉C, 〈ψα(z, z∗)〉H = 〈ψα(z)ψα(z∗)〉C.

(5.7)
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x1 x2

x V

x 7→ z(x)−−−−−→

z(x1)=0 z(x2)=1

×z(i∞)

−∞ ∞

z H

Figure 3: The map z(x) from the semi-infinite cylinder V to the upper half-plane H.

We proceed to compute the four-point function

G = 〈ϕ(z1)ϕ(z2)ψα(z3)ψα(z4)〉C. (5.8)

We use the known techniques of conformal field theory to compute four-point functions of
primary fields in the case where one of them has a null descendant [3, 4]. The conformal
Ward identities are� 4∑

i=1

∂

∂ zi

�
G = 0,
� 4∑

i=1

zi
∂

∂ zi
+∆i

�
G = 0,
� 4∑

i=1

z2
i
∂

∂ zi
+ 2∆izi

�
G = 0, (5.9)

and imply that G is of the form

G =
(z2 − z1)1/4

(z4 − z3)2∆
G̃(η), η=

(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

, (5.10)

where η is the cross-ratio. Because |ϕ〉 has the null descendant (2L2−1 − L−2)|ϕ〉 at level two,
G satisfies the second-order partial differential equation�

2
∂ 2

∂ z2
1

−
4∑

i=2

� 1
z1 − zi

∂

∂ zi
+

∆i

(z1 − zi)2
��

G = 0. (5.11)

This differential equation is rewritten as an ordinary differential equation for G̃(η):

η(1−η)G̃′′(η) + (1− 3η
2 )G̃

′(η)− ∆
2

η

1−η G̃(η) = 0. (5.12)

By setting
G̃(η) = (1−η)ρ/2F(η), ρ = 1

2(1−
p

1+ 8∆), (5.13)

we find that F(η) satisfies the hypergeometric differential equation

z(1− z)F ′′(z) +
�
c − (1+ a+ b)z

�
F ′(z)− ab F(z) = 0 (5.14)

for
a = ρ, b = 1

2 , c = 1. (5.15)

For c generic, the two solutions are 2F1(a, b; c|z) and z1−c
2F1(1+ a− c, 1+ b− c; 2− c|z).

For c = 1, these two solutions coincide and a second independent solution [61] is given by

H(a, b|z) = 2F1(a, b; 1|z) log z +
∞∑
k=0

(a)k(b)kzk

(k!)2
�
ψ(a+ k) +ψ(b+ k)− 2ψ(1+ k)

�
, (5.16)
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where ψ(x) is the digamma function. The general solution is a linear combination of these
two solutions.

Before continuing, let us immediately use the transformation laws (5.2) of the fields to
obtain the form of the lattice correlator on the cylinder. This computation is achieved by first
considering the insertion points of the fields ψα(x3, x4) on V to be in finite positions x3 and
x4, instead of ±i∞. This yields

〈ϕ(x1)ϕ(x2)ψα(x3, x4)〉V =
�

n
π sin
�
π
n (x2 − x1)
��1/4� n

π sin
�
π
n (x4 − x3)
��−2∆

(1−η)ρ/2F(η),

(5.17a)

〈ψα(x3, x4)〉V =
�

n
π sin
�
π
n (x4 − x3)
��−2∆

κψψ. (5.17b)

For x4 = x∗3 and x3 → i∞, the expression sin
�
π
n (x4 − x3)
�

diverges. However, the ratio of
these correlation functions, as in (5.1), has a well-defined limit. In the same x3, x4 limit, the
cross-ratio is given by

η= 1− e2πiτ, τ=
x2 − x1

n
. (5.18)

The parameter τ is the same as the one that was defined in Section 3.3. It lies in the range
(0, 1). As τ explores this range, η takes complex values and draws a counterclockwise circle
of unit radius around the point η= 1, starting and ending at the origin. We therefore have

C (x21) =
1
κψψ

G̃(1− e2πiτ). (5.19)

The hypergeometric function 2F1(a, b; c|η) has a branch cut on the real η-axis for η > 1,
which the circle crosses at η= 2, for τ= 1

2 . One way to obtain a smooth function for C (x21)

is to search for two solutions to the differential equation, one for τ ∈ (0, 1
2) and another for

τ ∈ (1
2 , 1), and to impose that the function be smooth at τ= 1

2 .
Before proceeding with this plan, we note that, instead of (5.13), one can choose to set

G̃(η) = F̃
� η

4(η− 1)

�
. (5.20)

Then the function F̃(z) satisfies (5.14) with

a =
ρ

2
, b =

1−ρ
2

, c = 1. (5.21)

The general solution is again given by a linear combination of 2F1(a, b; 1|z) and H(a, b|z) for
the appropriate values of a and b. This basis of solutions is more convenient because, for
z1 = 0, z2 = 1, z3 = z(i∞) and z4 = z(−i∞), the expression

η

4(η− 1)
= sin2(πτ) (5.22)

is real for τ ∈ (0, 1). In this basis, the argument z of the two solutions remains real and
bounded in (0, 1]. It makes contact with the endpoint of the branch cut at τ= 1

2 . The deriva-
tive of 2F1

�ρ
2 , 1−ρ

2 ; 1| sin2(πτ)
�

with respect to τ is discontinuous at τ = 1
2 , and likewise for

H
�ρ

2 , 1−ρ
2 | sin2(πτ)
�
, so we search for separate solutions on the two sub-intervals. We write

the general solution as

C (x21) =
�
n sin(πτ)
�1/4×( A1 2F1

�ρ
2 , 1−ρ

2 ; 1| sin2(πτ)
�
+ A2 H
�ρ

2 , 1−ρ
2 | sin2(πτ)
�

τ < 1
2 ,

B1 2F1

�ρ
2 , 1−ρ

2 ; 1| sin2(πτ)
�
+ B2 H
�ρ

2 , 1−ρ
2 | sin2(πτ)
�

τ > 1
2 ,

(5.23)
where A1, A2, B1, B2 are constants to be determined.
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5.3 Solving for the unknowns and verifying smoothness

Near z = 0, the functions 2F1(a, b; 1|z) and H(a, b|z) behave as

2F1(a, b; 1|z) = 1+O(z), H(a, b|z) = log(z) +
�
ψ(a) +ψ(b) + 2γ

�
+O(z). (5.24)

We fix A1, A2, B1, B2 by imposing that the expression (5.23) for C (x21) has the same asymp-
totic behaviour, for τ→ 0+ and τ→ 1−, as the result we obtained from the lattice, see (3.29)
and (3.33). We find

A1 =
π3/4

21/4
G2(1

2), A2 = 0, B2 = −α2
G2(1

2)

(2π)1/4
, (5.25a)

B1 =
G2(1

2)

(2π)1/4

�
K +α
�

log2π+ γ+ 1
2

�
ψ(ρ2 ) +ψ(

1−ρ
2 )
���

. (5.25b)

The only remaining unknown is the conformal weight ∆. It is fixed by imposing that the
solution is continuous at τ= 1

2 :

(A1 − B1) 2F1(
ρ
2 , 1−ρ

2 ; 1|1) = B2H(ρ2 , 1−ρ
2 |1). (5.26)

The left side is evaluated using the relation

2F1(a, b; c|1) = Γ (c)Γ (c − a− b)
Γ (c − a)Γ (c − b)

, Re(c − a− b)> 0. (5.27)

To evaluate the right side, we use the identity

H(a, b|z) = lim
c→1

� ∂
∂ a
+
∂

∂ b
+ 2

∂

∂ c
+ψ(a) +ψ(b)− 2ψ(c)

�
2F1(a, b; c|z). (5.28)

Combining this with (5.27) yields

H(a, b|1) = Γ (1− a− b)
Γ (1− a)Γ (1− b)

�
ψ(a) +ψ(b)−ψ(1− a)−ψ(1− b)

�
. (5.29)

The equality (5.26) then simplifies to

K = π−α� log2π+ γ+ 1
2

�
ψ(2−ρ

2 ) +ψ(
1+ρ

2 )
��

. (5.30)

We compare this with the integral expression (3.34) for K , which we now rewrite in terms
of digamma functions:

K = 2π

∫ 1/2
0

dy
cos
�
ϕ(y − 1

2)
�− cos(ϕ2 )

sinπy
+ 2π cos(ϕ2 )

∫ 1/2
0

dy
�

1
sin(πy)

− 1
πy

�
(5.31)

= eiϕ/2 L(ϕ) + e−iϕ/2 L(−ϕ) +α(2 log2− logπ),

where

L(ϕ) = 2πi

∫ 1/2
0

dy
e−iϕ y − 1

eiπy − e−iπy
= −
∫ e−iπ

ei0

dt
t1/2

t
ϕ
2π − 1
1− t

=

∫ 1
−1

dt
t1/2

t
ϕ
2π − 1
1− t

=

∫ 1
0

dt
t1/2

t
ϕ
2π − 1
1− t

+

∫ 1
0

dt
t1/2e−iπ/2

t
ϕ
2π e− iϕ

2 − 1
1+ t

=ψ(1
2)−ψ( ϕ2π + 1

2)− iπ
2 + ie−iϕ/2
�
ψ( ϕ4π +

3
4)−ψ( ϕ4π + 1

4)
�
. (5.32)
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At the last step, we used the following integral formula for the digamma function:

ψ(z) = −γ+
∫ 1

0

dt
1− tz−1

1− t
, Re(z)> 0. (5.33)

The corresponding expression for K is simplified using properties of ψ(z):

ψ(1− z)−ψ(z) = π cotπz, ψ(2z) = log2+ 1
2

�
ψ(z)+ψ(z+ 1

2)
�
, ψ(1

2) = −2 log 2−γ.
(5.34)

We find
K = π−α� log2π+ γ+ 1

2

�
ψ(3

4 +
ϕ
4π) +ψ(

3
4 − ϕ

4π)
��

. (5.35)

Comparing with (5.30), we see that the equality is satisfied for ρ = 1
2 ± ϕ

2π , both of which lead
to the following value for the conformal weight:

∆=
(ϕπ )

2 − 1

8
. (5.36)

This is precisely the value expected from Coulomb gas arguments. Indeed, the groundstate
of the transfer matrix of the six-vertex model with periodic twisted boundary condition in the
zero-magnetization sector has precisely this conformal dimension [62,63]. We also note that,
with these values of ρ, the expression for B1 in (5.25b) simplifies to

B1 = −π
3/4

21/4
G2(1

2) = −A1. (5.37)

All the unknowns have been solved for. It remains to check that the expression (5.23) is a
smooth function of τ at τ= 1

2 , namely

lim
τ→(1/2)−

dkC (x21)

dτk
= lim
τ→(1/2)+

dkC (x21)

dτk
, k = 1, 2, . . . . (5.38)

It in fact suffices to check that the equality holds for k = 1. Indeed, the function C (x21)
satisfies the same second-order differential equation in each of the two sub-intervals. The
higher-order derivatives at τ = 1

2 are then uniquely fixed by C (x21) and d
dτC (x21) at this

point. The continuity of C (x21) and of its first derivative at τ = 1
2 therefore implies that all

the higher-order derivatives are continuous and that the function is smooth at this point.
The equality (5.38) for k = 1 boils down to

lim
τ→1/2

d
dτ

∞∑
k=0

(a)k(b)k sin2k(πτ)
(k!)2
�
ψ(a+ k) +ψ(b+ k)− 2ψ(1+ k)

�
= 0. (5.39)

This identity is readily verified by applying the derivative to each term in the sum, rewriting
the result in terms of a differential operator acting on a hypergeometric function similarly to
(5.28), and finally evaluating the limit τ→ 1

2 using (5.27).
We have therefore produced a prediction for C (x21) using conformal invariance. By plot-

ting the corresponding curve alongside the exact data for n= 200, we find that the expression
(5.23) with the constants fixed as in (5.25a) and (5.37) precisely reproduces the solid curve in
Figure 2. It is indeed non-trivial that the solution obtained from conformal invariance, which
is defined separately on the two sub-intervals, is equal to the integral expression (3.28), which
is defined with a unique expression on the full interval.
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To prove that the two expressions are equal, we check that the function in (3.28) satisfies
the differential equation predicted by conformal field theory. Rewriting (5.12) as a second-
order differential equation in τ and setting ∆ to its value (5.36), we find that the following
identity should hold: � d2

dτ2
+π cot(πτ)

d
dτ
+ 2π2∆
�
J = 0, (5.40)

where J is defined in (3.30). With a simple rescaling of the integration variable, it is expressed
as

J = 1
2

∫ 1
0

dz
τ cos(ϕτ2 (1− 2z))

sin(πτz)1/2 sin(πτ(1− z))1/2
. (5.41)

The differential operator in (5.40) can then be applied to the integrand. After a bit of work,
we find that (5.40) translates to

1
4

∫ 1
0

dz
d
dz

�
π cos
�ϕτ

2 (1− 2z)
�

sin
�
πτ(1− z)
�1/2

sin(πτz)1/2

sin(πτ)

�
(1− z)2

sin
�
πτ(1− z)
�2 − z2

sin(πτz)2

�

− 2ϕz(1− z) sin
�ϕτ

2 (1− 2z)
�

sin
�
πτ(1− z)
�1/2

sin(πτz)1/2

�
= 0. (5.42)

The expression in the bracket vanishes at z = 0 and z = 1, so the equality indeed holds.
As a result, the lattice expression for C (x21) is a linear combination of the two hyperge-

ometric solutions on each of the sub-intervals, as in (5.23). It is a continuous function of τ
and, by construction of the conformal solution in terms of the lattice data, the constants A1,
A2, B1 and B2 are equal to those given in (5.25a) and (5.37). This concludes the proof that
the lattice and conformal expressions for C (x21) are equal.

6 Conformal correlators for double entry points

6.1 Preliminaries

In the conformal picture, the lattice correlation functions C (x) and C (x) are ratios of
conformal correlation functions on the semi-infinite cylinder:

C (x21) = lim
x3→i∞

〈µ (x1)µ (x2)ψα(x3, x∗3)〉V
〈ψα(x3, x∗3)〉V , (6.1a)

C (x21) = lim
x3→i∞

〈ω (x1)ω (x2)ψα(x3, x∗3)〉V
〈ψα(x3, x∗3)〉V . (6.1b)

The evidence given below will support the following claims for the conformal interpretation:

(a) The fields µ (z) and µ (z) form a pair of highest weight states of dimension
∆ = ∆1,3 = 0. One of these fields belongs to a Kac module and the other belongs
to a staggered module.

(b) The field ω (z) is a logarithmic highest weight state in a staggered module, also with
∆= 0.
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The structure and specifics of these representations are described in Section 6.2.
The transformation law for ω(z) under a conformal transformation z 7→ y(z) involves its

primary partner φ(z):

ω(z) 7→ω(y) =
�
ω(z)−λφ(z) log

�dy
dz

��
. (6.2)

In CFT derivations, the value of λ can be adjusted by changing the normalisation of the field
ω(z), so it is common to fix λ= 1. In the current context, however, the field ω(z) arises from
the lattice with a natural normalisation, so we leave λ free. We will in fact compute its value
below, see (6.23). The invariance under the global conformal transformations fixes [12] the
two-point functions to

〈ω(z1)ω(z2)〉C = κωω − 2λκω log z21, 〈ω(z1)φ(z2)〉C = κω, 〈φ(z1)φ(z2)〉C = 0.
(6.3)

Likewise, the three-point functions involving two fieldsψα and one field of the pair (φ,ω) are
fixed by conformal invariance to

〈φ(z1)ψα(z2)ψα(z3)〉C = κ
ψψ

z2∆
32

, 〈ω(z1)ψα(z2)ψα(z3)〉C =
κωψψ −λκψψ log( z21z31

z32
)

z2∆
32

.

(6.4)
In the context of loop models, the boundary fieldφ(z) has a simple interpretation: It inserts

a simple half-arc at the point z on the boundary. The Dirichlet boundary conditions that we
are considering consist of a macroscopic collection of these simple arcs. The insertion of φ(z)
on such a boundary is thus trivial. This implies that, in any correlator involving other fields,
if φ(z) appears, it can be simply removed, with the corresponding correlator independent of
the position z. For instance, from (6.3), we have 〈ω(z)〉C = κω. For generic value of β , the
one-point function 〈φ(z)〉V then corresponds to the partition function of the loop model on the
cylinder, with all loops (contractible and non-contractible) having fugacity β . This partition
function vanishes for β = 0, implying that the one-point function of φ(z) equals zero at this
value.

6.2 Representations of the Virasoro algebra at c = −2

This subsection discusses the structure of five modules over the Virasoro algebra with c = −2
and ∆ = 0. The Loewy diagrams of these modules are given in Figure 4. To start, let us
consider the module M defined from the free action of the Virasoro generators Lm, m⩽ 0, on
two highest-weight states |φ〉 and |ω〉 satisfying

L0|φ〉= 0, L0|ω〉= λ|φ〉, Lm|φ〉= Lm|ω〉= 0, m> 0. (6.5)

The state |φ〉 and its descendants generate a submodule of M isomorphic to the Verma
module of highest weight ∆= 0, which we denote by V. This submodule is reducible. In par-
ticular, it has the singular vector L−1|φ〉 at level 1 and the singular vector (L2−1−2L−2)L−1|φ〉 at
level 3. This last state is a descendant of L−1|φ〉, which is consistent with the known structure
for this Verma module for c = −2 in the form of an imbricated chain [9,10]. By quotienting V
by the singular state at level 1, we obtain the irreducible module I. Likewise, by quotienting
V by the singular state at level 3, we obtain the so-called Kac module K.

We now investigate the descendants of the logarithmic state |ω〉 in M. Clearly, if λ = 0,
M splits as the direct sum of two copies of V. For λ ̸= 0, we observe that the state L−1|ω〉 is
not singular because L1 L−1|ω〉= 2λ|φ〉. It is however sub-singular: if one quotients M by the
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0

∆ |φ〉 |ω〉
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Figure 4: The Loewy diagrams for the modules V, I, K, M and S.

submodule generated by |φ〉, then the state L−1|ω〉 becomes singular. One can check that the
state

(L3−1 − 2L−2 L−1 + L−3 L0)|ω〉= (L2−1 − 2L−2)L−1|ω〉+λL−3|φ〉 (6.6)

is also subsingular: by acting on it with any element of the Virasoro algebra that has a pos-
itive multi-index, one obtains a linear combination of states belonging to the tower of states
generated by L−1|φ〉. In Rohsiepe’s original paper [18], these free modules (like M) were re-
ferred to as Jordan-Verma modules. Their structure is known [18,22], and for the case we are
considering, it is as depicted in the fourth panel of Figure 4.

The staggered module S is obtained by quotienting M by the submodule generated by the
singular state at level 3 given in (6.6). The three composition factors of S are irreducible
modules of weights ∆ = 0, 0, 1, and L0 has rank-two Jordan cells tying the states from the
two irreducible factors with ∆ = 0. We also note that for λ = 0, the module S decomposes
as the direct sum I⊕K. This is used in our calculations below, where we obtain a differential
equation for a correlation function involving the field |ω〉 in S, and obtain the corresponding
result for K by setting λ= 0.

6.3 Differential equation for the four-point function

The correlators on the right sides of (6.1) involve one non-chiral field, which we rewrite as the
product of two chiral fields using the method of images. We proceed to compute the correlator

G = 〈ω1(z1)ω2(z2)ψα(z3, z4)〉H = 〈ω1(z1)ω2(z2)ψα(z3)ψα(z4)〉C. (6.7)

We work under the hypothesis that ω1(z) and ω2(z) are potentially different fields, and in
particular that the corresponding constants λ1 and λ2 dictating their behaviour under confor-
mal transformations, as in (6.2), may not be equal. The correlator G satisfies the logarithmic
version [45] of the Ward identities, namely� 4∑

i=1

∂

∂ zi

�
G = 0,
� 4∑

i=1

zi
∂

∂ zi
+∆i+δ̂i

�
G = 0,
� 4∑

i=1

z2
i
∂

∂ zi
+2∆izi+2ziδ̂i

�
G = 0, (6.8)

with ∆1 = ∆2 = 0 and ∆3 = ∆4 = ∆ given in (5.36). In its action on G, the operator δ̂i
replaces ωi by its primary partner φi and gives zero otherwise. These identities imply that G
has the following form:

G =
1

z2∆
43

�
F(η)−λ1κ

ωψψ
2 log
�z41z31

z43

�−λ2κ
ωψψ
1 log
�z42z32

z43

�
+λ1λ2κ

ψψ log
�z41z31

z43

�
log
�z42z32

z43

��
,

(6.9)
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where η is the cross-ratio, defined in (5.10), and κωψψ1 and κωψψ2 are the constants appearing
in the three-point function (6.4) for ω1(z) and ω2(z). Mapping this result to the cylinder, we
find

〈ω1(x1)ω2(x2)ψα(x3, x4)〉V =� n
π

s43

�−2∆
�

F(η)−λ1κ
ωψψ
2 log
� n
π

s41s31

s43

�−λ2κ
ωψψ
1 log
� n
π

s42s32

s43

�
+λ1λ2κ

ψψ log
� n
π

s41s31

s43

�
log
� n
π

s42s32

s43

��
, (6.10)

where we use the compact notation

si j = sin(
πx i j

n ). (6.11)

For x4 = x∗3 and x3 → i∞, the ratios s41s31/s43 and s42s32/s43 tend to i
2 , and as a result we

have

lim
x3→i∞

〈ω1(x1)ω2(x2)ψα(x3, x∗3)〉V
〈ψα(x3, x∗3)〉V =

1
κψψ

�
F(η)− (λ1κ

ωψψ
2 +λ2κ

ωψψ
1 ) log
� in

2π

�
+λ1λ2κ

ψψ log2
� in

2π

��
. (6.12)

In the staggered module, the state |ω〉 has the null descendant (6.6) at level 3, which
results in the following differential equation for G:

(L3−1 − 2L−2L−1 +L−3L0)G = 0 , (6.13)

where

L−n =
4∑

i=2

(n− 1)(∆i + δ̂i)
(zi − z1)n

− 1
(zi − z1)n−1

∂

∂ zi
. (6.14)

The partial differential equation (6.13) simplifies to an ordinary differential equation satisfied
by F(η):

η3(1−η)2F ′′′(η) + 2(1− 2η)(1−η)η2F ′′(η)− 2η2(1− (1−∆)η)F ′(η) = (2−η)λ1λ2κ
ψψ.

(6.15)

6.4 Correlation function for the Kac module

We solve the differential equation (6.15) for the case λ1λ2 = 0. This means that either λ1 or
λ2 vanishes. The analysis below is independent of which one is set to zero. We choose λ1 = 0,
for which ω1 becomes a highest state µ of a Kac module K, and we write κωψψ1 = κµψψ1 .
Comparing (4.23) and (6.12), we see that the terms proportional to log n are equal for

λ2
κ
µψψ
1

κψψ
= − 2

π
, (6.16)

implying that λ2 ̸= 0. We note that, for τ → 0, the term proportional to logτ in (4.26a)
has the overall constant 2/π, which is identical to the universal value predicted in [42, equa-
tion (76)]. The result obtained here is however more general, as the correlation function
C (x21) involves the field ψα(z, z∗) as well.
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We use the notation F0(η) = F(η)
��
λ1λ2=0 for the solution to (6.15) in the homogeneous

case. The differential equation is in fact a second-order homogeneous differential equation for
F ′0(η). Setting ∆ to its value given in (5.36), the general solution is

F ′0(η) = A1
(1−η)− 1

2 (1−ϕπ )
η

+ A2
(1−η)− 1

2 (1+
ϕ
π )

η
, (6.17)

where A1 and A2 are constants to be determined. According to (6.1a) and (6.12), we have

C (x21) =
1
κψψ

F0(η), η= 1− e2πiτ, (6.18)

and therefore

∂ C (x21)

∂ τ
=

1
κψψ

∂ F0

∂ η

∂ η

∂ τ
=

π

κψψ

�
A1eiϕτ + A2e−iϕτ

sinπτ

�
. (6.19)

Comparing this with the lattice result, we see that the derivative of the expression (4.23)
with respect to τ is easily evaluated because τ only appears in the upper integration limit:

∂ C (x21)

∂ τ
=

2cos(ϕτ)
sin(πτ)

. (6.20)

We find that (6.19) and (6.20) coincide for

A1 = A2 =
κψψ

π
. (6.21)

This consistency between the lattice and conformal results supports our claim that the fields
µ and µ form a pair of heighest-weight states of dimension ∆= 0, one of which belongs
to a Kac module K and the other to a staggered module S.

6.5 Correlation function for the staggered module

For the correlator (6.1b), the four-point correlator contains two copies of the same logarithmic
field: ω1 = ω2 = ω . We therefore write λ1 = λ2 = λ and κωψψ1 = κωψψ2 = κωψψ. For

λ1λ2 = λ2 ̸= 0, the differential equation (6.15) has an extra inhomogeneous term. The
complete solution is equal to the two-parameter solution of the homogeneous equation plus a
second function that takes into account the inhomogeneous term:1

F ′(η) = F ′0(η) +
2λ2κψψ

ϕ
π (1−η)η2

�
2
�

2F1(
1
2 +

ϕ
2π , 1, 5

2 +
ϕ
2π

�� 1
1−η)

3+ ϕ
π

− 2F1(
1
2 − ϕ

2π , 1, 5
2 − ϕ

2π

�� 1
1−η)

3− ϕπ
�

−η
�

2F1(
1
2 +

ϕ
2π , 1, 3

2 +
ϕ
2π

�� 1
1−η)

1+ ϕ
π

− 2F1(
1
2 − ϕ

2π , 1, 3
2 − ϕ

2π

�� 1
1−η)

1− ϕπ
��

,

(6.22)

where the constants A1 and A2 of F ′0(η) in (6.17) remain to be fixed.
We fix the remaining unknowns using the lattice expression. Comparing (4.28) with

(6.12), we see that the log2(n) and log(n) terms are identical for

λ=
(2cos ϕ2 )

1/2

π
,

κωψψ

κψψ
=

1

π(2cos ϕ2 )1/2

�
2cos(ϕ2 )
� iπ

2 − log2+ψ(1
2 +

ϕ
2π)
�−π sin(ϕ2 )
�
.

(6.23)
1This solution to the differential equation (6.15) was obtained using Mathematica.
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It may seem odd that λ depends onϕ, as this parameter dictates the behaviour of the boundary
field ω (z), which a priori one expects not to depend on α. This will be discussed further in

Section 7. We also note that the structure constant κωψψ originates from the correlator, given
in (6.4), of a bulk field and two boundary fields. So it is perhaps not surprising that the ratio
κωψψ/κψψ is complex. The remaining constant factors in (4.28), which are independent of
n and τ, are accounted for in the conformal solution by the integration constant that appears
when one integrates (6.22) to obtain F(η).

To fix the constants A1 and A2, we compare the asymptotic behaviour of the lattice and
conformal expressions for F ′(η) in the neighbourhood of η= 1, corresponding to τ→ 0+. For
the lattice expression, (4.29) yields

∂ C

∂ τ

n≫1,τ→0+−−−−−−→ 2
π2τ

�
π sin(ϕ2 )− 2cos(ϕ2 )

�
γ+ log 2+ logπ+ψ(1

2 +
ϕ
2π) + logτ
��

. (6.24)

For the conformal expression, we extract the behaviour of the hypergeometric functions in
(6.22) at z = 1 by using the relations

2F1(a, b, a+ b|z) = − Γ (a+ b)
Γ (a)Γ (b)

H(a, b|1− z), (6.25a)

2F1(a, b, a+ b+ 1|z) = − Γ (a+ b+ 1)
Γ (a+ 1)Γ (b+ 1)

(1− z)
∂ H(a, b|1− z)

∂ z
, (6.25b)

and the series expansion (5.16) of H(a, b|z). This yields

∂ C

∂ τ
=

1
κψψ

∂ η

∂ τ

∂ F
∂ η

= −1
τ

�
A1 + A2 + 2λ2
�
γ+ logπ+ log 2+ψ(1

2 +
ϕ
2π) + logτ+ iπ

2 +
π
2 tan( ϕ2π)
��

− 2iϕ
�
A1 − A2 +πλ

2 tan(ϕ2 )
�
. (6.26)

With λ evaluated to its value in (6.23), we find that (6.24) and (6.26) are equal for

A1

κψψ
=

e−iϕ/2

iπ
,

A2

κψψ
=

eiϕ/2

iπ
. (6.27)

The final conformal expression for
∂ C

∂ τ is

∂ C

∂ τ
=

8cos(ϕ2 )

iϕ(1− e2πiτ)2

�
2
�

2F1(
1
2 +

ϕ
2π , 1, 5

2 +
ϕ
2π

��e−2πiτ)

3+ ϕ
π

− 2F1(
1
2 − ϕ

2π , 1, 5
2 − ϕ

2π

��e−2πiτ)

3− ϕπ
�

− (1− e2πiτ)
�

2F1(
1
2 +

ϕ
2π , 1, 3

2 +
ϕ
2π

��e−2πiτ)

1+ ϕ
π

− 2F1(
1
2 − ϕ

2π , 1, 3
2 − ϕ

2π

��e−2πiτ)

1− ϕπ
��

+
2i cos
�
ϕ(τ− 1

2)
�

sin(πτ)
. (6.28)

It is in fact not obvious that this function is real for τ ∈ (0, 1), but indeed it is. Plotting this

function alongside the lattice expression for
∂ C

∂ τ , we find that the two functions precisely
coincide, on the full interval. To prove the equality, we show that the lattice expression also
satisfies the differential equation (6.15). In terms of τ, this equation reads� ∂ 2

∂ τ2
+ 2π cot(πτ)

∂

∂ τ
+ 8π2∆
�∂ C

∂ τ
= 2π3λ2 cos(πτ)

sin3(πτ)
. (6.29)
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To check this, we take the derivative of (4.28) and simplify it to

∂ C

∂ τ
=− 8cos(ϕ2 )

∫ τ
0

dt
sin( tϕ

2 ) sin
�
(τ− t

2)ϕ
�

sin(πτ) sin(πt)
+ 2sin(ϕ2 )

cos(ϕτ)
sin(πτ)

− 4cos(ϕ2 )

π

cos(ϕτ)
sin(πτ)

�
γ+ 2 log2+ log tan(πτ2 ) +ψ(

1
2 +

ϕ
2π)
�
. (6.30)

Applying the operator that appears on the left-hand side of (6.29) to the terms proportional
to cos(ϕτ)

sin(πτ) gives zero, as this is a solution of the homogeneous differential equation discussed
in Section 6.4. For the remaining terms, after simplifications we find

� ∂ 2

∂ τ2
+ 2π cot(πτ)

∂

∂ τ
+ 8π2∆
��4cos(ϕ2 )

π

cos(ϕτ)
sin(πτ)

log tan(πτ2 )
�

= 8π cos(ϕ2 )
�cos(πτ) sin(ϕτ2 )

2

sin3(πτ)
− ϕ
π

sin(ϕτ)
sin2(πτ)

�
− 2π3λ2 cos(πτ)

sin3(πτ)
(6.31)

and ∫ 1
0

dt
� ∂ 2

∂ τ2
+ 2π cot(πτ)

∂

∂ τ
+ 8π2∆
��τ sin(ϕτt

2 ) sin
�
ϕτ(1− t

2)
�

sin(πτt) sin(πτ)

�
=

∫ 1
0

dt
d
dt

�
t

sin(πτ) sin(πτt)

�
ϕ sin(ϕτ)− (1− t

2)ϕ sin
�
ϕτ(1− t)
�

−πt cot(πτt) sin(ϕτt
2 ) sin
�
ϕτ(1− t

2)
���

= ϕ
sin(ϕτ)
sin2(πτ)

−πcos(πτ) sin2(ϕτ2 )

sin3(πτ)
. (6.32)

Combining these results, we confirm that the lattice expression (6.30) indeed satisfies (6.29).
The lattice and conformal solutions therefore satisfy the same differential equation. Recalling
that the constants A1 and A2 were fixed so that the lattice and conformal expressions have the
same asymptotics, we conclude that the two expressions coincide.

7 Operator product expansion and structure constants

7.1 Analysis for the fields ϕ(z)

In this section, we use the lattice expressions for the correlators C (x) and C (x) to obtain
conformal structure constants and ratios thereof. We claim that the fields ϕ (z) and ϕ (z)
satisfy the following operator product expansions (OPEs):

ϕ (z1)ϕ (z2) = z1/4
21 κ

ϕϕφ(z2) + . . . , (7.1a)

ϕ (z1)ϕ (z2) = z1/4
21

�
κϕϕω
�
ω (z2) +λφ(z2) log z21

�
+κϕϕ φ(z2)
�
+ . . . . (7.1b)

From (6.3), this yields the following two-point functions:

〈ϕ (z1)ϕ (z2)〉C = 0, 〈ϕ (z1)ϕ (z2)〉C = z1/4
21 κ

ϕϕωκω. (7.2)

31

https://scipost.org
https://scipost.org/SciPostPhys.7.3.040


Select SciPost Phys. 7, 040 (2019)

We therefore see that the constant κ̃ϕϕ appearing in (5.3) vanishes for the first correlator, but
equals κϕϕωκω for the second correlator.

With these OPEs, we can easily obtain the behaviour of the four-point functions studied
in Section 5.2 in the regime where z1 approaches z2. Indeed, in this regime, the four-point
functions reduce to two- and three-point functions of the form (6.4), and we find

〈ϕ (z1)ϕ (z2)ψα(z3)ψα(z4)〉C z1→z2−−−→ z1/4
21

z2∆
43

κϕϕκψψ, (7.3a)

〈ϕ (z1)ϕ (z2)ψα(z3)ψα(z4)〉C z1→z2−−−→ z1/4
21

z2∆
43

�
κϕϕωκωψψ + κϕϕωκψψλ log

�z21z43

z32z42

�
+ κϕϕκψψ
�
.

(7.3b)

The corresponding correlators on the cylinder are obtained by applying the transformation
laws (5.2). The regime z1 → z2 then corresponds to x2 − x1 ≪ n, or equivalently to τ→ 0+.
In this regime, we also have s21 ≃ πτ and x1

n ≃ x2
n , where ≃ indicates an equality up to

corrections of order τ. We obtain expressions for the correlators C (x21) and C (x21) by
dividing by 〈ψα(x3)ψα(x4)〉V, setting x4 = x∗3 and sending x3 to ±i∞. This yields

C (x21)
τ→0+−−−→ (nτ)1/4κϕϕ ,

C (x21)
τ→0+−−−→ (nτ)1/4�κϕϕωκωψψ

κψψ
+ κϕϕωλ log(−2πiτ) + κϕϕ

�
. (7.4)

We compare these expressions with (3.29) and (3.33), assuming that the structure constants
are independent of n and τ. We find

κϕϕ =
πG2(1

2)

21/4
, κϕϕω = −

�
2cos(ϕ2 )
�1/2
πG2(1

2)

21/4
, κϕϕ =

2cos(ϕ2 )G
2(1

2)

21/4
(−γ+ log2),

(7.5)
where we used (6.23) for the ratio κωψψ

κψψ
.

We have therefore computed the structure constants for the fields ϕ (z) and ϕ (z) in
their OPEs (7.1). We see that the fusion of these fields is non-abelian. We expect that this is
a general feature of logarithmic CFT. If the fusion product of two fields involves a logarithmic
field, then interchanging the order of the two fields induces a non-trivial change of the value
of the correlator. The (weak) non-locality of the two fields endows them with a non-trivial
monodromy, which can for instance be compared with that of disorder operators in the Ising
model or in more general parafermionic field theories [64]. The unusual distinction made
here between defect insertions that mark the start and end of boundary arcs goes beyond
the introduction of a mere phase. We note that the same behaviour was observed for the
abelian sandpile model in [33], wherein two fieldsµD,N (z) andµN ,D(z) that mark the transition
between dissipative and non-dissipative sites on the boundary satisfy different fusion rules
according to the order in which they are fused.

Finally, we note that, similarly to the value of λ in (6.23), the structure constants κϕϕω

and κϕϕ depend on α. This is somewhat unexpected, as one might expect the boundary

fields ϕ (z), ϕ (z) and ω (z) not to depend on α. We believe that the resolution to this
conundrum lies in the non-local nature of the field ψα(z). Its action on the lattice is indeed
non-local, as it modifies the weight of all loops that encircle its insertion point, independently
of how distant these are. We believe that, in the conformal interpretation, the non-locality of
this field means that it modifies some conformal properties of the other fields of the theory,
namely their structure constants and transformation laws, even if these are inserted a large
distance away.
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7.2 Analysis for the fields µ(z)

The results of Section 6.4 are derived with the assumption that µ (z) is a field that belongs
to a Kac module, whereas µ (z) belongs to a staggered module. (We recall that these identi-
fications could equivalently have been made the other way around). Here, we claim that the
OPEs for these fields are of the form

µ (z1)µ (z2) = κ
µµ φ(z2) + . . . , (7.6a)

µ (z1)µ (z2) = κ
µµω̃
�
ω̃ (z2) +λ2φ(z2) log z21

�
+ κµµ φ(z2) + . . . . (7.6b)

We believe that the field ω̃ (z) is a logarithmic field with weight∆= 0 in a rank-two Jordan
cell. It is potentially different from the field ω (z), although the evidence below cannot
rule out that they are in fact identical. Similarly to µ (z), ω̃ (z) transforms conformally
according to (6.2), with the constant λ replaced by λ2. Its three-point correlator with two
copies of the field ψα(z) is

〈ω̃ (z1)ψα(z2)ψα(z3)〉C =
κω̃ψψ −λ2κ

ψψ log( z21z31
z32
)

z2∆
32

, (7.7)

where κω̃ψψ is a constant.
In the regime z1→ z2, we have the following four-point functions:

〈µ (z1)µ (z2)ψα(z3)ψα(z4)〉C z1→z2−−−→ 1

z2∆
43

κµµ κψψ, (7.8a)

〈µ (z1)µ (z2)ψα(z3)ψα(z4)〉C z1→z2−−−→
1

z2∆
43

�
κµµω̃ κω̃ψψ +λ2 κ

µµω̃ κψψ log
�z21z43

z32z42

�
+κµµ κψψ
�
. (7.8b)

We map these correlators on the cylinder, divide by 〈ψα(x3)ψα(x4)〉V, take the limit x3→ i∞
with x4 = x∗3, and obtain

C (x21)
τ→0+−−−→ κµµ −λ2

κ
µψψ
1

κψψ
log(nτ), (7.9a)

C (x21)
τ→0+−−−→ κµµω̃ κω̃ψψ

κψψ
+λ2 κ

µµω̃ log(−2πiτ) + κµµ −λ2
κ
µψψ
1

κψψ
log(nτ). (7.9b)

In each of these expressions, the last term originates from the logarithmic transformation law
for the field µ (z), and κ

µψψ
1 is the constant that appears in the correlator

〈µ (z1)ψα(z2)ψα(z3)〉C. Comparing these expressions with (4.31a) and (4.31b), we equate
the different terms, assuming that the structure constants are independent of n and τ. We find

κµµ =
2
π
(log2+ γ), λ2 κ

µµω̃ = −
�
2cos(ϕ2 )
�2

π
, (7.10a)

κµµω̃
κω̃ψψ

κψψ
+ κµµ =

2
π

�
γ+ log2+ 2cos2(ϕ2 )(logπ− iπ

2 )
�
+ bK , (7.10b)

where we used (6.16).
The lattice derivations of Section 4 are therefore insufficient to fix individually all the struc-

ture constants appearing in (7.6). In comparison, all the constants for the OPEs of the fields
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ϕ (z) and ϕ (z) were obtained in (7.5). This was possible because the four-point correla-
tor involving the field ω (z) was computed from the lattice in Section 4. Presumably, by
computing

lim
x3→i∞

〈ω̃ (x1)ω̃ (x2)ψα(x3, x∗3)〉V
〈ψα(x3, x∗3)〉V (7.11)

from the lattice, one would be able to compute λ2 and κω̃ψψ/κψψ directly and then solve for
the remaining unknowns, namely κµµω̃ , κµµ and κµψψ1 /κψψ.

Thus, in the present state of affairs, these results do not allow us to determine whether
ω (z) and ω̃ (z) are the same field. If they turn out not to be, one may have to consider the
possibility that the LCFT for the model of critical dense polymers involves an infinite number
of boundary logarithmic fields of conformal dimension ∆ = 0, one for each link state of the
form , , , etc.

7.3 Analysis for the fields ω(z)

Following the notation of [33], we write the OPE of the field ω (z) with itself as

ω (z1)ω (z2) = (a− 2λ log z21)ω (z2) + (b+ aλ log z21 −λ2 log2 z21)φ(z2) + . . . (7.12)

where a and b are constants. The two-point function is then given by (6.3) with κωω = aκω.
We use this OPE to obtain the four-point function involving two copies of ω (z) and two
copies of ψα(z), in the regime z1→ z2:

〈ω (z1)ω (z2)ψα(z3)ψα(z4)〉C z1→z2−−−→ 1

z2∆
43

�
(a− 2λ log z21)
�
κωψψ −λκψψ log

� z32z42
z43

��
+ (b+ aλ log z21 −λ2 log2 z21)κ

ψψ

�
. (7.13)

We obtain the same correlation function on V using the conformal mapping. We divide by
〈ψα(x3)ψα(x4)〉V, set x4 = x∗3, send x3→ i∞ and find

C (x21)
τ→0+−−−→ �a− 2λ log(nτ)

��κωψψ
κψψ

+λ log(−2πiτ)
�
+ b+λ2 log2(nτ). (7.14)

We compare this result with (4.29) and equate separately the terms in log2 n, log2τ, log n,
logτ and the constant term. This confirms the values obtained in (6.23) and yields

a = − 2
π

�
2cos(ϕ2 )
�1/2
(γ+ log2), b = −2 cos(ϕ2 )

π2
(γ+ log2)2 = −a2

4
. (7.15)

Interestingly, comparing with the results of [33], we see that the values of a and b are different,
but that the relation b = − a2

4 is the same, leading us to wonder whether this is a universal
feature of logarithmic CFTs at c = −2.

8 Discussion and conclusion

In this paper, we computed correlation functions for the model of critical dense polymers on
a semi-infinite cylinder. These were obtained from an exact lattice derivation using the XX
spin-chain representation of the enlarged periodic Temperley-Lieb algebra. The asymptotic
behaviour as the system size n grows to infinity was obtained in terms of integral formulae
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involving the scaling parameter τ = x−1
n ∈ (0, 1). For small τ, the leading behaviour of these

correlators are proportional to τ1/4, τ1/4 logτ, logτ and log2τ. This logarithmic dependence
of the correlation functions upon the position of the fields is the defining feature of logarithmic
conformal field theories. This behaviour involving the square of the logarithm of the distance
is rather uncommon, but has previously been observed in the Potts model for certain Fortuin-
Kasteleyn probabilities [42].

In the conformal interpretation, these lattice observables were understood to be ratios of
conformal correlation functions: a four-point function divided by a two-point function. Using
conformal invariance, we derived differential equations for the four-point functions and solved
these equations. We found a perfect agreement with the lattice results, with the logarithmic
behaviour arising in two ways: (i) from degenerate solutions to the hypergeometric differential
equation, and (ii) from the logarithmic generalisation of the differential equations for highest-
weight fields in rank-two Jordan cells that have null descendants.

Admittedly, our conformal derivation is really a hybrid approach, as the constants that
arose in the solutions of the differential equations were fixed using the asymptotics of the
lattice results. It should in fact be possible to fix these constants directly using the conformal
bootstrap [3, 65], and thus to avoid any input coming from the lattice. It would certainly be
interesting to understand how this method applies to the case at hand.

We also used the lattice results to compute the structure constants that appear in the op-
erator product expansions of the boundary fields of the model. An intriguing feature that we
found pertains to the role played by the field ψα(z). Indeed, the fields ϕ (z), ϕ (z), µ (z),
µ (z) and ω (z) are boundary fields that are expected not to depend on α, but the calcula-
tions of Section 7 show that the structure constants appearing in their OPEs do in fact depend
on α. These are of the form αι times constants, with ι ∈ 1

2Z. We interpret this unexpected
dependence on α as a consequence of the non-locality of the field ψα(z), which appears to
modify the conformal behaviour of the other fields that are present in the theory. It is cur-
rently uncertain whether this feature extends to other values of β , and in particular if it occurs
only for values of β where the boundary CFT has non-trivial indecomposable modules and Jor-
dan cells. There was also another logarithmic field that appeared in the OPEs: ω (z). Our
calculation of the structure constants did not allow us to determine whether it coincides with
ω (z), and left open the possibility that the boundary CFT for critical dense polymers has an
infinite number of such logarithmic fields with dimension ∆ = 0. (It certainly does have an
infinity of rank-two Jordan cells, and some of the corresponding logarithmic couplings have
been computed in [16].)

We believe there is more to be learned about the field ψα(z). Notably, our lattice results
have only allowed us to put constraints on ratios of structure constants involving the field
ψα(z), see (6.23) and (7.10b). This can be traced back to the fact that, in the ratios of confor-
mal correlation functions that we considered, the field ψα(z) appears in both the numerator
and denominator. For β = 0, we believe that the fusion of this field with itself is of the form
ψα×ψα = φ+ ω̄+ . . . where ω̄ is a logarithmic bulk field with dimension ∆= 0. Indeed, the
two-point function 〈ψα(z1)ψα(z2)〉C is non-vanishing, and because 〈φ(z)〉C = 0, the fusion of
ψα with itself must include a second field with a vanishing conformal dimension. There is,
in fact, a simple geometrical interpretation for the fields ψα(z) and ω̄(z). When two fields
ψα(z1) and ψα(z2) are inserted, the loops that encircle only z1 or only z2 have a fugacity α,
whereas the loops that encircle neither or both have a fugacity β . On the lattice, one can bring
z1 close to z2 until these points are one lattice spacing apart. In this case, there is a unique
loop that passes between the two insertion points, and for β = 0, this is the only loop in the
configuration. This loop is space-filling and its fugacity α appears as an overall prefactor. This
is consistent with a field ω̄ whose conformal dimension is independent of α.

There also remains some light to be shed upon the fields µ (z) and µ (z). Although
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the consistency of the lattice and conformal results is quite convincing, we struggle to find a
proper justification for treating these two fields in an asymmetric way, with one of them be-
longing to a Kac module and the other one to a staggered module. Moreover, the structure
constant κµψψ1 that appears in (7.9) belongs to a three-point function 〈µ (z1)ψα(z2)ψα(z3)〉C
for which we have no lattice interpretation. One possibility is that our identification of µ (z)
and µ (z) as primary fields is incorrect, and that the correct identification should be made in
terms of specific linear combinations of link states inserted in the four marked nodes, instead
of only . One attempt at resolving this issue would be to compute the five-point cor-
relator 〈µ (z1)ϕ (z2)ϕ (z3)ψα(z4)ψα(z5)〉C from the lattice and investigate its conformal
behaviour.

It is by now well-known that the six-vertex model at q = i and the model of critical dense
polymers are intimately related. The model of critical dense polymers has the central charge
c = −2, whereas the six-vertex model has the central charge c = 1. On the torus, the two
models share the same modular invariant partition function [60,66], and many questions that
arise in one model have a natural interpretation in the other. For instance, assigning a fugacity
α to non-contractible loops in the loop model corresponds to inserting the fieldψα(z, z∗) at i∞.
In the vertex model, this corresponds to inserting two electric operators of opposite charges,
one at i∞ and another one on the boundary of the cylinder, with a twist line connecting the
two. In the related Coulomb gas formalism [62, 66], these electric operators correspond to
vertex operators. Their scaling dimensions are to be measured relative to the corresponding
groundstate in which non-contractible and contractible loops get the same weight, namely
α= β = 0, and this results in the value (5.36) for∆. Thus, the insertion of the vertex operators
in the six-vertex model changes the central charge from c = 1 to c = −2 and shifts all the
scaling dimensions. The indecomposable structures of the representations, which eventually
lead to the logarithmic behaviour of the correlation functions of critical dense polymers, are
key features of the conformal description with c = −2.

The boundary fields that we studied also have an elegant geometric interpretation in terms
of the Q-state Potts model and its Fortuin-Kasteleyn high-temperature expansion. The loop
fugacity is related to the number of states in the Potts model via the relation β =

p
Q. The

Potts spins occupy one half of the lattice (for instance the odd sublattice) and the closed loops
draw the contours of the Fortuin-Kasteleyn clusters [67]. On the boundary, free boundary
conditions for the Potts spins correspond to having a segment of the boundary decorated with
simple half-arcs, ... , where the red circles mark the positions of the Potts spins.
One can also choose a boundary where the Potts spins are fixed to one of the Q values. The
Potts model has SQ symmetry, so in computing the partition function on a domain with this
boundary, one can equivalently impose that the boundary spins take the same value, which
can be any of the Q spin values, and then divide by Q. In the loop model, the corresponding
boundary condition also consists of simple arcs, but with the spins shifted with respect to the
half-arcs: ... . This is usually referred to as wired boundary conditions. As a result,
the fields ϕ (z) and ϕ (z)mark transitions between free and wired (or free and fixed, up to a
factor of Q) boundary conditions for the Potts spins. Such boundary operators that change the
boundary condition from free to wired were previously studied in [68,69], and found to have
the conformal weight ∆1,2. Likewise, ω (z) marks a transition between two adjacent large
connected clusters of boundary Potts spins. Finally, the fields µ (z) and µ (z) correspond
to having two spins on the boundary that are in the same cluster, but where all the other
adjacent spins are free. Their conformal weight is ∆1,3. These five boundary operators thus
appear to be refined versions of the similar operators that insert d adjacent straight defects in
the boundary (for d = 1, 2), and whose conformal weights are known [70] to equal ∆1,d+1.
The logarithmic nature of the fields µ and ω is special to the value β =

p
Q = 0, as in this
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case there is a collision [13] of the values of the conformal weights: ∆1,3 =∆1,1.
To conclude, we expect that it will be possible to generalise our results to other values

of β using the algebraic Bethe ansatz, and similarly to cases where the boundary condition
at the edge of the cylinder has blobbed half-arcs [71, 72]. We believe that both cases are
accessible using the methods of logarithmic conformal field theory. For other values of β of
the form 2cos
�π(p′−p)

p′
�

with p, p′ coprime integers, the nature of the logarithmic fields will
differ compared to what occurs for β = 0, as the coincidences of the conformal weights are
different. The blobbed case is in particular interesting because it gives access to weights∆r,r±s
for r ∈ R [69], thus offering more possibilities for the formation of indecomposable structures.

Acknowledgments

AMD is an FNRS Postdoctoral Researcher under the project CR28075116. He acknowledges
support from the EOS-contract O013018F. JLJ is grateful for support from the European Re-
search Council under the Advanced Grant NuQFT. The authors thank the staff and members
of the School of Mathematics and Statistics at the University of Melbourne for their kind hos-
pitality during a simultaneous visit in 2018. The authors thank Yacine Ikhlef, Philippe Ruelle
and David Ridout for helpful discussions, and Gilles Parez for proofreading the manuscript.

References

[1] L. Onsager, Crystal statistics. I. A two-dimensional model with an order-disorder transition,
Phys. Rev. 65, 117 (1944), doi:10.1103/PhysRev.65.117.

[2] K. Wilson, The renormalization group and the ε expansion, Phys. Rep. 12, 75 (1974),
doi:10.1016/0370-1573(74)90023-4.

[3] A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformal symmetry in
two-dimensional quantum field theory, Nucl. Phys. B 241, 333 (1984), doi:10.1016/0550-
3213(84)90052-X.

[4] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer New York
(1997), doi:10.1007/978-1-4612-2256-9.

[5] E. K. Sklyanin, L. A. Takhtadzhyan and L. D. Faddeev, Quantum inverse problem method.
I, Theor. Math. Phys. 40, 688 (1979), doi:10.1007/BF01018718.

[6] R.J. Baxter. Exactly solved models in statistical mechanics, Academic Press (1982).

[7] V. E. Korepin, N. M. Bogoliubov and A. G. Izergin, Quantum inverse scat-
tering method and correlation functions, Cambridge University Press (1993),
doi:10.1017/CBO9780511628832.

[8] D. Friedan, Z. Qiu and S. Shenker, Conformal invariance, unitarity and two dimensional
critical exponents, in Mathematical Sciences Research Institute Publications, Springer US
(1985), doi:10.1007/978-1-4613-9550-8_21.

[9] V. G. Kac, A. K. Raina and N. Rozhkovskaya, Bombay lectures on highest weight rep-
resentations of infinite dimensional lie algebras, World Scientific, Singapore (2013),
doi:10.1142/8882.

[10] K. Iohara and Y. Koga, Representation theory of the Virasoro algebra, Springer London
(2011), doi:10.1007/978-0-85729-160-8.

37

https://scipost.org
https://scipost.org/SciPostPhys.7.3.040
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1016/0370-1573(74)90023-4
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://dx.doi.org/10.1007/978-1-4612-2256-9
http://dx.doi.org/10.1007/BF01018718
http://dx.doi.org/10.1017/CBO9780511628832
http://dx.doi.org/10.1007/978-1-4613-9550-8_21
http://dx.doi.org/10.1142/8882
http://dx.doi.org/10.1007/978-0-85729-160-8


Select SciPost Phys. 7, 040 (2019)

[11] L. Rozansky and H. Saleur, Quantum field theory for the multi-variable Alexander-Conway
polynomial, Nucl. Phys. B 376, 461 (1992), doi:10.1016/0550-3213(92)90118-U.

[12] V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B 410, 535 (1993),
doi:10.1016/0550-3213(93)90528-W.

[13] J. Cardy, Logarithmic correlations in quenched random magnets and polymers (1999),
arXiv:cond-mat/9911024.

[14] V. Gurarie and A. W. W. Ludwig, Conformal algebras of two-dimensional disordered systems,
J. Phys. A: Math. Gen. 35, L377 (2002), doi:10.1088/0305-4470/35/27/101.

[15] J. Dubail, J. L. Jacobsen and H. Saleur, Conformal field theory at central charge c = 0:
A measure of the indecomposability (b) parameters, Nucl. Phys. B 834, 399 (2010),
doi:10.1016/j.nuclphysb.2010.02.016.

[16] R. Vasseur, J. L. Jacobsen and H. Saleur, Indecomposability parameters in
chiral logarithmic conformal field theory, Nucl. Phys. B 851, 314 (2011),
doi:10.1016/j.nuclphysb.2011.05.018.

[17] D. Ridout and Y. Saint-Aubin, Standard modules, induction and the struc-
ture of the Temperley-Lieb algebra, Adv. Theor. Math. Phys. 18, 957 (2014),
doi:10.4310/ATMP.2014.v18.n5.a1.

[18] F. Rohsiepe, On reducible but indecomposable representations of the Virasoro algebra
(1996), arXiv:hep-th/9611160.

[19] M. R. Gaberdie and H. G. Kausch, Indecomposable fusion products, Nucl. Phys. B 477, 293
(1996), doi:10.1016/0550-3213(96)00364-1.

[20] P. Mathieu and D. Ridout, From percolation to logarithmic conformal field theory, Phys.
Lett. B 657, 120 (2007), doi:10.1016/j.physletb.2007.10.007.

[21] P. Mathieu and D. Ridout, Logarithmic M(2, p) minimal models, their
logarithmic couplings, and duality, Nucl. Phys. B 801, 268 (2008),
doi:10.1016/j.nuclphysb.2008.02.017.

[22] K. Kytölä and D. Ridout, On staggered indecomposable Virasoro modules, J. Math. Phys.
50, 123503 (2009), doi:10.1063/1.3191682.

[23] A. Gainutdinov, D. Ridout and I. Runkel, Logarithmic conformal field theory, J. Phys. A:
Math. Theor. 46, 490301 (2013), doi:10.1088/1751-8113/46/49/490301.

[24] A. M. Gainutdinov, J. L. Jacobsen, H. Saleur and R. Vasseur, A physical approach to the
classification of indecomposable Virasoro representations from the blob algebra, Nucl. Phys.
B 873, 614 (2013), doi:10.1016/j.nuclphysb.2013.04.017.

[25] P. A. Pearce and J. Rasmussen, Solvable critical dense polymers, J. Stat. Mech. P02015
(2007), doi:10.1088/1742-5468/2007/02/P02015.

[26] P. A. Pearce, J. Rasmussen and J.-B. Zuber, Logarithmic minimal models, J. Stat. Mech.
P11017 (2006), doi:10.1088/1742-5468/2006/11/P11017.

[27] H. G. Kausch, Curiosities at c=-2 (1995), arXiv:hep-th/9510149.

[28] M. R. Gaberdiel and H. G. Kausch, A local logarithmic conformal field theory, Nucl. Phys.
B 538, 631 (1999), doi:10.1016/S0550-3213(98)00701-9.

38

https://scipost.org
https://scipost.org/SciPostPhys.7.3.040
http://dx.doi.org/10.1016/0550-3213(92)90118-U
http://dx.doi.org/10.1016/0550-3213(93)90528-W
https://arxiv.org/abs/cond-mat/9911024
http://dx.doi.org/10.1088/0305-4470/35/27/101
http://dx.doi.org/10.1016/j.nuclphysb.2010.02.016
http://dx.doi.org/10.1016/j.nuclphysb.2011.05.018
http://dx.doi.org/10.4310/ATMP.2014.v18.n5.a1
https://arxiv.org/abs/hep-th/9611160
http://dx.doi.org/10.1016/0550-3213(96)00364-1
http://dx.doi.org/10.1016/j.physletb.2007.10.007
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.017
http://dx.doi.org/10.1063/1.3191682
http://dx.doi.org/10.1088/1751-8113/46/49/490301
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.017
http://dx.doi.org/10.1088/1742-5468/2007/02/P02015
http://dx.doi.org/10.1088/1742-5468/2006/11/P11017
https://arxiv.org/abs/hep-th/9510149
http://dx.doi.org/10.1016/S0550-3213(98)00701-9


Select SciPost Phys. 7, 040 (2019)

[29] H. G. Kausch, Symplectic fermions, Nucl. Phys. B 583, 513 (2000), doi:10.1016/S0550-
3213(00)00295-9.

[30] S. Kawai and J. F. Wheater, Modular transformation and boundary states in loga-
rithmic conformal field theory, Phys. Lett. B 508, 203 (2001), doi:10.1016/S0370-
2693(01)00503-2.

[31] A. Bredthauer and M. Flohr, Boundary states in c=2 logarithmic conformal field theory,
Nucl. Phys. B 639, 450 (2002), doi:10.1016/S0550-3213(02)00466-2.

[32] J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math. 123, 1 (1996),
doi:10.1007/BF01232365.

[33] G. Piroux and P. Ruelle, Pre-logarithmic and logarithmic fields in a sandpile model, J. Stat.
Mech.: Theor. Exp. P10005 (2004), doi:10.1088/1742-5468/2004/10/P10005.

[34] M. Jeng, G. Piroux and P. Ruelle, Height variables in the Abelian sandpile model:
scaling fields and correlations, J. Stat. Mech. P10015 (2006), doi:10.1088/1742-
5468/2006/10/P10015.

[35] P. Ruelle, Logarithmic conformal invariance in the abelian sandpile model, J. Phys. A: Math.
Theor. 46, 494014 (2013), doi:10.1088/1751-8113/46/49/494014.

[36] E. V. Ivashkevich, Correlation functions of dense polymers and c=-2 conformal field theory,
J. Phys. A: Math. Gen. 32, 1691 (1999), doi:10.1088/0305-4470/32/9/015.

[37] E. V. Ivashkevich and C.-K. Hu, Exact multileg correlation functions for the dense
phase of branching polymers in two dimensions, Phys. Rev. E 71, 015104 (2005),
doi:10.1103/PhysRevE.71.015104.

[38] A. Morin-Duchesne and J. L. Jacobsen, Two-point boundary correlation functions of dense
loop models, SciPost Phys. 4, 034 (2018), doi:10.21468/SciPostPhys.4.6.034.

[39] R. Vasseur, J. L. Jacobsen and H. Saleur, Logarithmic observables in critical percolation, J.
Stat. Mech. L07001 (2012), doi:10.1088/1742-5468/2012/07/L07001.

[40] G. Gori and J. Viti, Four-point boundary connectivities in critical two-dimensional
percolation from conformal invariance, J. High Energ. Phys. 12, 131 (2018),
doi:10.1007/JHEP12(2018)131.

[41] X. Tan, R. Couvreur, Y. Deng and J. L. Jacobsen, Observation of nonscalar and log-
arithmic correlations in 2D and 3D percolation, Phys. Rev. E 99, 050103 (2019),
doi:10.1103/PhysRevE.99.050103.

[42] R. Vasseur and J. L. Jacobsen, Operator content of the critical Potts model
in d dimensions and logarithmic correlations, Nucl. Phys. B 880, 435 (2014),
doi:10.1016/j.nuclphysb.2014.01.013.

[43] R. Couvreur, J. L. Jacobsen and R. Vasseur, Non-scalar operators for the Potts model in
arbitrary dimension, J. Phys. A: Math. Theor. 50, 474001 (2017), doi:10.1088/1751-
8121/aa7f32.

[44] G. Gori and J. Viti, Exact logarithmic four-point functions in the critical two-dimensional
Ising model, Phys. Rev. Lett. 119, 191601 (2017), doi:10.1103/PhysRevLett.119.191601.

[45] M. A. I. Flohr, Bits and pieces in logarithmic conformal field theory, Int. J. Mod. Phys. A
18, 4497 (2003), doi:10.1142/S0217751X03016859.

39

https://scipost.org
https://scipost.org/SciPostPhys.7.3.040
http://dx.doi.org/10.1016/S0550-3213(00)00295-9
http://dx.doi.org/10.1016/S0550-3213(00)00295-9
http://dx.doi.org/10.1016/S0370-2693(01)00503-2
http://dx.doi.org/10.1016/S0370-2693(01)00503-2
http://dx.doi.org/10.1016/S0550-3213(02)00466-2
http://dx.doi.org/10.1007/BF01232365
http://dx.doi.org/10.1088/1742-5468/2004/10/P10005
http://dx.doi.org/10.1088/1742-5468/2006/10/P10015
http://dx.doi.org/10.1088/1742-5468/2006/10/P10015
http://dx.doi.org/10.1088/1751-8113/46/49/494014
http://dx.doi.org/10.1088/0305-4470/32/9/015
http://dx.doi.org/10.1103/PhysRevE.71.015104
http://dx.doi.org/10.21468/SciPostPhys.4.6.034
http://dx.doi.org/10.1088/1742-5468/2012/07/L07001
http://dx.doi.org/10.1007/JHEP12(2018)131
http://dx.doi.org/10.1103/PhysRevE.99.050103
http://dx.doi.org/10.1016/j.nuclphysb.2014.01.013
http://dx.doi.org/10.1088/1751-8121/aa7f32
http://dx.doi.org/10.1088/1751-8121/aa7f32
http://dx.doi.org/10.1103/PhysRevLett.119.191601
http://dx.doi.org/10.1142/S0217751X03016859


Select SciPost Phys. 7, 040 (2019)

[46] J. L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324,
581 (1989), doi:10.1016/0550-3213(89)90521-X.

[47] J. Cardy, Boundary conformal field theory, in Encyclopedia of Mathematical Physics, El-
sevier (2006), arXiv:hep-th/0411189.

[48] J. Dubail, J. L. Jacobsen and H. Saleur, Conformal two-boundary loop model on the annu-
lus, Nucl. Phys. B 813, 430 (2009), doi:10.1016/j.nuclphysb.2008.12.023.

[49] J. de Gier, J. L. Jacobsen and A. Ponsaing, Finite-size corrections for uni-
versal boundary entropy in bond percolation, SciPost Phys. 1, 012 (2016),
doi:10.21468/SciPostPhys.1.2.012.

[50] A. M. Gainutdinov, N. Read and H. Saleur, Continuum limit and symmetries of the periodic
spin chain, Nucl. Phys. B 871, 245 (2013), doi:10.1016/j.nuclphysb.2013.01.018.

[51] A. M. Gainutdinov, N. Read and H. Saleur, Bimodule structure in the periodic gℓ(1|1) spin
chain, Nucl. Phys. B 871, 289 (2013), doi:10.1016/j.nuclphysb.2013.02.017.

[52] A. Morin-Duchesne and Y. Saint-Aubin, Jordan cells of periodic loop models, J. Phys. A:
Math. Theor. 46, 494013 (2013), doi:10.1088/1751-8113/46/49/494013.

[53] A. M. Gainutdinov, N. Read, H. Saleur and R. Vasseur, The periodic sℓ(2|1) alternating
spin chain and its continuum limit as a bulk logarithmic conformal field theory at c = 0, J.
High Energ. Phys. 05, 114 (2015), doi:10.1007/JHEP05(2015)114.

[54] D. Levy, Algebraic structure of translation-invariant spin-1/2 xxz and q-Potts quantum
chains, Phys. Rev. Lett. 67, 1971 (1991), doi:10.1103/PhysRevLett.67.1971.

[55] P. Martin and H. Saleur, On an algebraic approach to higher dimensional statistical me-
chanics, Commun. Math. Phys. 158, 155 (1993), doi:10.1007/BF02097236.

[56] J.J. Graham and G.I. Lehrer, The representation theory of affine Temperley-Lieb algebras,
Enseign. Math. 44, 173 (1998).

[57] R.M. Green, On representations of affine Temperley-Lieb algebras, Can. Math. Soc. Conf.
Proc. 24, 245 (1998).

[58] K. Erdmann and R. M. Green, On representations of affine Temperley-Lieb algebras, II
(1998), arXiv:math/9811017.

[59] P. A. Pearce, J. Rasmussen and S. P. Villani, Solvable critical dense polymers on the cylinder,
J. Stat. Mech. P02010 (2010), doi:10.1088/1742-5468/2010/02/P02010.

[60] A. Morin-Duchesne, P. A. Pearce and J. Rasmussen, Modular invariant par-
tition function of critical dense polymers, Nucl. Phys. B 874, 312 (2013),
doi:10.1016/j.nuclphysb.2013.05.016.

[61] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook
of Mathematical Functions, Cambridge University Press (2010), doi:10.1111/j.1751-
5823.2011.00134_18.x.

[62] B. Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the
Coulomb gas, J. Stat. Phys. 34, 731 (1984), doi:10.1007/BF01009437.

40

https://scipost.org
https://scipost.org/SciPostPhys.7.3.040
http://dx.doi.org/10.1016/0550-3213(89)90521-X
https://arxiv.org/abs/hep-th/0411189
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.023
http://dx.doi.org/10.21468/SciPostPhys.1.2.012
http://dx.doi.org/10.1016/j.nuclphysb.2013.01.018
http://dx.doi.org/10.1016/j.nuclphysb.2013.02.017
http://dx.doi.org/10.1088/1751-8113/46/49/494013
http://dx.doi.org/10.1007/JHEP05(2015)114
http://dx.doi.org/10.1103/PhysRevLett.67.1971
http://dx.doi.org/10.1007/BF02097236
https://arxiv.org/abs/math/9811017
http://dx.doi.org/10.1088/1742-5468/2010/02/P02010
http://dx.doi.org/10.1016/j.nuclphysb.2013.05.016
http://dx.doi.org/10.1111/j.1751-5823.2011.00134_18.x
http://dx.doi.org/10.1111/j.1751-5823.2011.00134_18.x
http://dx.doi.org/10.1007/BF01009437


Select SciPost Phys. 7, 040 (2019)

[63] V. Pasquier and H. Saleur, Common structures between finite systems and conformal field
theories through quantum groups, Nucl. Phys. B 330, 523 (1990), doi:10.1016/0550-
3213(90)90122-T.

[64] A. B. Zamolodchikov and V. A. Fateev. Disorder fields in two-dimensional conformal quan-
tum field theory and N = 2 extended supersymmetry. Sov. Phys. JETP 63, 913 (1986).

[65] Vl. S. Dotsenko and V. A. Fateev, Conformal algebra and multipoint correlation functions in
2D statistical models, Nucl. Phys. B 240, 312 (1984), doi:10.1016/0550-3213(84)90269-
4.

[66] P. Di Francesco, H. Saleur and J. B. Zuber, Relations between the Coulomb gas picture
and conformal invariance of two-dimensional critical models, J. Stat. Phys. 49, 57 (1987),
doi:10.1007/BF01009954.

[67] R. J. Baxter, S. B. Kelland and F. Y. Wu, Equivalence of the Potts model or Whitney poly-
nomial with an ice-type model, J. Phys. A: Math. Gen. 9, 397 (1976), doi:10.1088/0305-
4470/9/3/009.

[68] J. L. Cardy, Critical percolation in finite geometries, J. Phys. A: Math. Gen. 25, L201
(1992), doi:10.1088/0305-4470/25/4/009.

[69] J. L. Jacobsen and H. Saleur, Conformal boundary loop models, Nucl. Phys. B 788, 137
(2008), doi:10.1016/j.nuclphysb.2007.06.029.

[70] H. Saleur and M. Bauer, On some relations between local height probabilities and conformal
invariance, Nucl. Phys. B 320, 591 (1989), doi:10.1016/0550-3213(89)90014-X.

[71] P. Martin and H. Saleur, The blob algebra and the periodic Temperley-Lieb algebra, Lett.
Math. Phys. 30, 189 (1994), doi:10.1007/BF00805852.

[72] P. P. Martin and D. Woodcock, On the structure of the blob algebra, J. Algebra 225, 957
(2000), doi:10.1006/jabr.1999.7948.

41

https://scipost.org
https://scipost.org/SciPostPhys.7.3.040
http://dx.doi.org/10.1016/0550-3213(90)90122-T
http://dx.doi.org/10.1016/0550-3213(90)90122-T
http://dx.doi.org/10.1016/0550-3213(84)90269-4
http://dx.doi.org/10.1016/0550-3213(84)90269-4
http://dx.doi.org/10.1007/BF01009954
http://dx.doi.org/10.1088/0305-4470/9/3/009
http://dx.doi.org/10.1088/0305-4470/9/3/009
http://dx.doi.org/10.1088/0305-4470/25/4/009
http://dx.doi.org/10.1016/j.nuclphysb.2007.06.029
http://dx.doi.org/10.1016/0550-3213(89)90014-X
http://dx.doi.org/10.1007/BF00805852
http://dx.doi.org/10.1006/jabr.1999.7948

	Introduction
	Dense polymers with periodic boundary conditions
	Dense polymers and two-point functions
	The enlarged periodic Temperley-Lieb algebra
	XX Hamiltonian

	Lattice correlators for single entry points
	Refined partition functions
	Closed-form expressions in the limit m 
	Asymptotic behaviour

	Lattice correlators for double entry points
	Refined partition functions
	Closed-form expressions in the limit m 
	Asymptotic behaviour

	Conformal correlators for single entry points
	Preliminaries
	Differential equation for the four-point function
	Solving for the unknowns and verifying smoothness

	Conformal correlators for double entry points
	Preliminaries
	Representations of the Virasoro algebra at c=-2
	Differential equation for the four-point function
	Correlation function for the Kac module
	Correlation function for the staggered module

	Operator product expansion and structure constants
	Analysis for the fields 
	Analysis for the fields 
	Analysis for the field 

	Discussion and conclusion
	References

