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ABSTRACT

A nonlinear fluid-elastic model is proposed for the study

of the dynamics of inverted flags. The quasi-steady version of

Theodorsen’s unsteady aerodynamic theory is used for inviscid

fluid-dynamic modelling of the deforming flag in axial flow. Pol-

hamus’s leading edge suction analogy is employed to model flow

separation effects from the free end at moderate angles of attack

via a nonlinear vortex-lift force. The flag is modelled structurally

via a geometrically-exact Euler-Bernoulli beam theory. Using

the extended Hamilton’s principle, the nonlinear partial-integro-

differential equation governing the dynamics of the inverted flag in

terms of the angle of rotation of the flag is obtained. The equation

of motion is discretised spatially via the Galerkin method and is in-

tegrated in time via Gear’s backward differentiation formula. The

bifurcation diagrams are obtained using a time-integration method

and pseudo-arclength continuation. It is shown that inverted flags

undergo multiple bifurcations with respect to flow velocity, and

they generally exhibit four dynamical states: (i) stretched-straight,

(ii) buckled, (iii) deflected-flapping, and (iv) large-amplitude flap-

ping. Also, flapping of inverted flags probably develops through

fluid-elastic instabilities. Our findings suggest that the system

dynamics is sensitive to the mass ratio. It is shown that the mass

ratio parameter does not affect the stability of the stretched-straight

state and the onset of divergence; however, it controls the possi-

bility of a direct transition from static undeflected equilibrium to

large-amplitude flapping motion and it affects the amplitude of

large-amplitude flapping.

NOMENCLATURE

L, h Flag length, thickness

�p, �f Flag, fluid mass density

� Poisson ratio

D Flag flexural rigidity

� Material viscosity coefficient

U Free stream fluid flow velocity

Re Reynolds number

… Dimensionless flow velocity

� Mass ratio

f , T Frequency, period of oscillation

fR Reduced frequency

! Complex eigenfrequencies

u.x; t/ Longitudinal in-plane deflection

w.x; t/ Transverse deflection

 .x; t/ Cross-section rotation angle

�.x; t/ Curvature of the mid-plane

e.x; t/ Strain of the mid-plane

T .t/ Flag kinetic energy

V.t/ Flag potential energy

Wf.t/ Virtual work of fluid forces

Wd.t/ Virtual work of damping

Vn.x; t/ Normal component of relative velocity in oxz

V� .x; t/ Tangential component of relative velocity in oxz

qi .t/ i th generalized coordinate

‰i .x/ i th eigenfunction

OXZ Undeformed, inertial, Cartesian coordinate

oxz Deformed local, orthogonal curvilinear coordinate

O NX NZ Cartesian coordinate system in the conformally

mapped plane

or� Polar coordinate system in the conformally mapped

plane

qr .�; t/ Radial component of the velocity in r; � coordinate

system

q� .�; t/ Tangential component of the velocity in r; � coordi-

nate system

Pnc.�; t/ Non-circulatory component of the pressure

Pc.�; t/ Circulatory component of the pressure

Fp.�; t/ Nonlinear vortex force

FN.�; t/ Total normal force acting on the flag

@t�, P� First time derivative

@tt �, R� Second time derivative

@x�, �x First space derivative

@xx� Second space derivative

�� Dimensionless counterpart of �
ı� Variation of � in Hamilton’s Principle

INTRODUCTION

The flapping of inverted flags (that is a thin free-clamped

plate, free at the upstream end and clamped at the downstream

one) was first investigated theoretically by Guo and Paı̈doussis [1],

who studied the linear stability of rectangular plates with various

boundary conditions in inviscid, incompressible two-dimensional

(2-D) flow. They found that a free-clamped (or inverted) plate
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flutters at a non-zero critical velocity inversely proportional to

the fluid-to-plate mass ratio. Recently, interest in the dynamics

of inverted flags has been revived mainly due to their potential

application to small-scale energy harvesting: see, for example, the

experimental study on inverted piezoelectric flags by Orrego et

al. [2]. Moreover, exploring the dynamics of inverted flags will

improve our understanding of the flapping of biological structures,

such as leaves in wind [3, 4].

Kim et al. [5] performed the first experiments on inverted

flags in wind and water tunnels. They identified three consecutive

regimes/modes of dynamical behaviour, namely the straight mode,

the flapping mode and the fully deflected mode, as the flow velocity

in the test-section was increased. It was found that the inverted

flag performed flapping only within a finite range of flow velocity,

somewhat analogously to vortex-induced vibration (VIV) of a

spring-supported cylinder in cross-flow. It was also found that

the onset of instability (i.e. divergence and initiation of the large-

amplitude flapping) is relatively insensitive to the mass ratio.

In an elaborate study, Sader et al. [3] employed a combination

of a mathematical approach based on the steady-state aerodynamic

theory by Kornecki et al. [6], a scaling analysis and experimental

measurements to understand the underlying physical mechanism

of inverted flag flapping. They concluded that the large-amplitude

flapping motion of an inverted flag is a vortex-induced oscillation,

in contrast to flapping of a conventional flag, which is a ‘self-

excited’ vibration. However, they concluded that classical VIV

does not occur for heavy flags (i.e. small mass ratios). Moreover,

they showed that the onset of flapping is due to a divergence

instability, and thus, is independent of the mass ratio.

In a subsequent paper, Sader et al. [7] examined theoretically

the stability of zero-aspect-ratio flexible and flexibly-supported

rigid inverted flags in a uniform steady axial flow. They found

that, at low flow velocities, the zero-deflection equilibrium is the

only possible stable state; however, at a critical flow velocity,

a saddle-node bifurcation occurs, from which a new deflected

equilibrium state emanates and grows in amplitude as the flow

velocity is increased. Their experimental measurements for low

aspect ratio inverted flags agree well with their theoretical results

both qualitatively and quantitatively.

This work was pursued by Tavallaeinejad et al. [8, 9] who

developed nonlinear theoretical models to explore the static and

dynamic response of flexible low aspect ratio inverted flags in

axial flow. They found that a low aspect ratio flag undergoes a

static divergence via a subcritical pitchfork bifurcation followed

by a saddle-node bifurcation. However, beyond a critical aspect

ratio, relatively heavy (i.e. � � 0:4) inverted flags go through

the following sequence of dynamical states, as the flow velocity

is increased: (i) stable at the rest position, (ii) flapping about the

rest position via a supercritical Hopf bifurcation (i.e. symmetric

flapping mode), (iii) flapping about a deflected equilibrium (i.e.

asymmetric flapping or deflected-flapping mode) via two saddle-

node bifurcations, and (iv) highly deflected shape on one side via

another Hopf bifurcation. Increasing the mass ratio (from � D 0:1

to � D 0:4) was found to lower the critical flow velocity for

flapping and to increase the flapping amplitude. The latter differs

from the experimental observations reported in [5].

In the present study, an analytical nonlinear model is devel-

oped to investigate the dynamics and post-critical behaviour of

inverted flags in axial flow. In particular, we focus on the dynamics

of high aspect-ratio heavy inverted flags by making use of inviscid

flow aerodynamic theory. Thus, a continuum representation of

flow forces is detailed based on the quasi-steady version of 2-D

unsteady aerodynamic theory [10] to formulate the reactive force

and Polhamus’s leading-edge suction analogy [11] to deal with the

separated flow at the flag leading edge. The resulting equation of

motion is solved numerically to obtain the onset of instabilities

together with the frequency and amplitude of flapping.

ANALYTICAL MODELLING

The system of interest is shown schematically in Fig. 1. It

consists of a vertical cantilevered thin plate subjected to an inviscid

axial flow impinging on its free end, with mean flow velocity U .

Two assumptions are made here: (i) the spanwise deformation of

the flag is neglected, and (ii) the flag is assumed to be infinitely

wide (i.e.A! 1). Accordingly, the aerodynamic forces acting

on the flag may be approximated by a 2-D incompressible flow

theory.

Two coordinate systems are adopted: (i) a right-handed rectan-

gular Cartesian reference system OXZ, with the X.eX / and Z.eZ/

axes being in the axial and transverse direction, respectively, (ii) a

curvilinear coordinate system oxz, with the x-axis being along the

flag from its clamped end towards the free one. The unit vectors

ex and ez are tangential and normal to the centreline, respectively.

Taking into account the inextensibility assumption, all phys-

ical quantities can be expressed in in terms of .x; t/ (that is the

coordinate system embedded in the flag). Moreover, the rotation

angle  and the curvature �1 are related to the longitudinal, u, and

transverse, w, motions of a generic point at a distance z from the

mid-plane on the cross-section by sin D @xw, cos D 1C @xu,

and � D @x , where @x denotes the first spatial derivative. This

condition reduces the number of dependent variables to one, and w

and u can be expressed in terms of the rotation angle of the cross-

section  , which now becomes the primary variable for describing

the flag motion. Derivation of the equation of motion in terms of

 allows for the prediction of large-amplitude deformations even

when the tip rotation exceeds �=2 [9].

The kinetic and potential energies of the inextensible inverted

flag in terms of the rotation angle read

T D
1

2
�ph

Z L

0

�

h

Z x

0

sin .s;t/ P .s;t/ds
i2

C
h

Z x

0

cos .s;t/ P .s;t/ds
i2

�

dxC
1

24
�ph

3

Z L

0

P 2dx;

(1a)

and

VD
1

2
D

Z L

0

 2
x dx; (1b)

in which D D Eh3=.12.1 � �2// is the plane-strain flexural

rigidity for plates of large aspect ratio. The virtual work done

1In the remainder, when space and time dependencies in the various quantities

used in the derivations are obvious, they are omitted for conciseness purposes. The

uncertain reader is referred to the nomenclature.

2



X

Z; z
x

O

U

L

h

dX

dx D .1C e/dX

u.X; t/

w.X; t/

 .X ,t /

z D NZ

x D
� NX � L

2

�

C L2

16 NX

L=4

. NX; e NX
/

. NZ; e NZ
/

�
q r

q �

�

����

��
�

�

�
�

FIGURE 1: (Left) Flag idealised as an inextensible cantilevered beam. An arbitrary infinitesimal element dX of the beam undergoes

longitudinal u and transverse w displacements dependent to each other by the rotation angle  . (Right) Joukowski’s conformal mapping

between the plate (i.e. XZ-plane) and the circle of radius L=4 (i.e. NX NZ-plane); qr and q� are the radial and circumferential velocities on

the circle in the NX NZ-plane, respectively. The impermeability condition is satisfied by considering a set of sources and sinks of strength �

on the top and bottom halves of the circle, respectively. The induced velocity due to a single bound vortex of strength � and its image (i.e.

the wake vortex of strength ��) at an arbitrary point on the circle satisfies the Kutta condition.

by the Kelvin-Voigt type of internal dissipation and by the fluid-

related force normal to the flag may be written as

ıWd D�D�
Z L

0

@xx
P ı dx; (2)

ıWF D
Z L

0

FN.cos ıw�sin ıu/dx; (3)

where � stands for the viscoelastic damping coefficient, and FN

denotes the normal force acting on the flag, which is now derived.

The relative velocity between the solid (or body) and the inci-

dent flow in the inertial frame reads as: Vrel D . PuC U/ex C Pwez .

Upon projecting Vrel onto the tangential and normal directions,

the velocity of an element of the body with respect to the flow,

expressed in the deformed coordinate system may be written as

Vrel D V� eX C VneZ , where

V� D . PuC U/ cos C Pw sin ;

Vn D �. PuC U/ sin C Pw cos ;
(4)

in which

Pu D �
Z x

0

P .s; t/ sin .s; t/ ds;

Pw D
Z x

0

P .s; t/ cos .s; t/ ds:

(5)

The pressure-related forces corresponding to the motion of the

inverted flag in an inviscid fluid flow are modelled based on 2-

D quasi-steady thin airfoil theory involving large angles of at-

tack [12, 13, 14]. First, the quasi-steady forces are derived using

a velocity potential approach in a way that the solution is divided

into non-circulatory and circulatory contributions, each part of

which is obtained most conviniently using Joukowski’s conformal

transformation (see Fig. 1). Next, the leading edge separated flow

effects are modelled utilizing Polhamus’s leading-edge suction

analogy [11].

The pressure distribution over the flag due to the non-

circulatory contribution of the flow in the NX NZ plane at r D L=4

may be written as

�P nc.�; t/ D ��
�

L

2
@t

�

Z 0

�

Z �

0

Vn.'; t/ sin2 '

cos' � cos �
d' d�

�

�
. PuC U/ cos C Pw sin 

sin �

Z �

0

Vn.'; t/ sin2 '

cos' � cos �
d'

�

; (6)

noting that x D .1C cos �/=2. Applying the Kutta condition at

the trailing edge (i.e. � D �)2 and the quasi-steady assumption,3

which neglects only the influence of the shed vortices on the flow

field [12], the pressure distribution originating from the circulatory

contribution of the flow may be written as

�P c.�; t/ D �
�V�

sin �

2

�

Z �

0

Vn.'; t/.1 � cos'/ d': (7)

The nonlinear vortex lift associated to the leading edge vortex may

be expressed in terms of the quasi-steady force obtained in Eq. (6).

Integration of the pressure around a contour at the leading edge,

and application of Bernoulli’s equation yields

Fp D
�fL

16�

Z �

0

Vd.'; t/ d'

ˇ

ˇ

ˇ

ˇ

Z �

0

Vd.'; t/ d'

ˇ

ˇ

ˇ

ˇ

; (8)

in which Vd.'; t/ D Vn.'; t/.1Ccos'/, and the absolute operator

is used to modify the force to be always aligned with motion.

Hence, the total quasi-steady normal force acting on the in-

verted flag is

FN.�; t/ D �.�P nc C�P c/ � 2Fp.t/ıD.cos � � 1/; (9)

2The validity of the Kutta condition for unsteady flows is a challenging issue

in the theoretical aerodynamics. Previous studies on oscillating airfoils in flow,

e.g. [15, 16], suggest that for oscillations of low frequency, small amplitudes and

small angles of attack, the Kutta condition may still be applied to the trailing edge

of the airfoil. Thus, for an inverted flag which is free at the leading edge and

clamped at the trailing edge, it may appear reasonable to apply the Kutta condition

at the trailing edge. The reader is also referred to Ref. [17] for more details.
3This is an approximation of Theodorsen theory, in which C.k/ ! 1, with

C.k/ being the Theodorsen function based on Hankel functions of the second kind,

and k denoting the reduced frequency. The quasi-steady theory can be used in the

time domain for slow harmonic oscillations with small k, or slowly varying motion

that is not harmonic [18].
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with ıD denoting the Dirac delta function. Note that the end-shear

due to the force that results from Polhamus’ effect at the leading

edge is transferred from the boundary condition into the equation

of motion.

Inserting (9) into (3) yields the virtual work done by the fluid-

related forces normal to the flag. Substituting the resultant together

with Eqs. (1) to (2) into the generalised Hamilton’s principle and

performing several manipulations, as well as utilizing the dimen-

sionless parameters x� D x=L, t� D t=.
p

�ph=DL
2/, ˇ D

h2=.12L2/, �d D �=� , � D �fL=.h�p/ and … D LU
p

�fL=D,

one obtains the following nonlinear dimensionless equation of

motion solely expressed in terms of the rotation angle  :

ˇ R � @xx � �d@xx
P 

� sin @tt

�Z 1

x

Z s

0

cos .�; t/ d� ds

�

C cos @tt

�Z 1

x

Z s

0

sin .�; t/ d� ds

�

C cos 

Z x

1

F �

N .s; t/ cos .s; t/ ds

C sin 

Z x

1

F �

N .s; t/ sin .s; t/ ds D 0; (10)

where

F �

N D
�

�

Z 0

�

Z �

0

�

. Rw� Pu P /cos �. RuC Pw P /sin 
�

f d'd#

�
…

p
�

�

Z 0

�

Z �

0

P cos f d'd#

�
2

� sin�

�

�. Pucos C Pwsin /

Z �

0

. Pwcos � Pusin /gd'

�…p
�. Pucos C Pwsin /

Z �

0

sin gd'

C…p
�cos 

Z �

0

. Pwcos � Pusin /gd'

�…2cos 

Z �

0

sin gd'

�

�
1

16�

Z �

0

.1Ccos'/.…
p
� Pwcos �.…p

� PuC1/sin /d'

�
ˇ

ˇ

ˇ

ˇ

Z �

0

.1Ccos'/.…
p
� Pwcos �.…p

� PuC1/sin /d'

ˇ

ˇ

ˇ

ˇ

ıD.s�1/;

in which g � g.'; �/, f � f .'; #/,  �  .�; t/, w � w.�; t/,

u � u.�; t/, � D .1 C cos'/=2, f .'; #/ D sin2 '=.cos' �
cos �/, and g.'; �/ D .1 � cos'/.1 C cos �/=.cos' � cos �/.

The clamped-free boundary conditions are  .0; t/ D 0 and

 x.L; t/ D 0. Note that the asterisk notation of x� and t� has

been dropped throughout for simplicity.

The singular integral in Eq. (6) is evaluated using Glauert’s

principal value integral [16]. To this end, the normal component

of the relative velocity is expressed in a succession Taylor’s expan-

sions. This results in a polynomial representation of the source/sink

sheet strength in terms of  . In this paper, third order Taylor’s

series expansions are retained.

The spatial discretisation of the nonlinear equation of motion

given in (10) is made by employing the Galerkin method. Thus,

we may write

 .x; t/ D
M

X

iD1

‰i .x/qi .t/; (11)

where ‰i .x/ represent suitable comparison functions and qi .t/

are the corresponding unknown time-dependent generalized co-

ordinates; M denotes the number of modes utilized. Applying

Galerkin’s technique results in a set of M second-order ordinary

differential equations (ODEs) with trigonometric terms. Integrals

may not be evaluated in closed form due to the presence of trigono-

metric terms as well as the absolute function. Hence, integrations

in space are computed numerically by evaluating the integrand at

equally spaced points over the domain, retaining sufficient number

of terms to ensure converged results.

In this study, six generalized coordinates are retained in the

series expansion of the rotation angle, resulting in six second-

order ODEs. These equations are then recast into state-space

form, resulting in a set of 12 first-order ODEs. These equations

are then solved using direct time integration via Gear’s backward

differentiation formula (BDF) [19], suitable for the problem at

hand, yielding the time-varying generalised coordinates qi .�/. In

order to construct the bifurcation diagrams, the stable periodic

solutions are numerically traced via direct time integration using

the calculated generalised coordinates for a given flow velocity as

initial conditions for the next flow velocity.

For linear dynamics, a standard eigenvalue problem is solved

to determine the eigenfrequencies of the system and assess the

stability.

NUMERICAL RESULTS
In this section, linear aspects of the dynamics, such as the

mechanism of instability and the critical flow velocities for the

principal bifurcations, as well as nonlinear aspects, such as limit-

cycle frequencies, amplitudes, and transition between the various

dynamical states, are studied in details.

In this paper, the following parameters are used in the sim-

ulations: L D 10 cm, h D 1 mm, �p D 1200 kg m�3, �f D
1:2 kg m�3, D D 2454 N cm2 and �d D 0:0002. The dimension-

less flow velocity… is taken as the bifurcation parameter to explore

the system dynamics, while the other parameters remain fixed.

Linear dynamics
The linear dynamics of the system is examined by obtaining

the eigenfrequencies of the linearised version of Eq. (10) around

the origin, as the dimensionless flow velocity is varied. The evo-

lution of the generally complex eigenfrequencies of the system

as a function of the flow velocity are shown as an Argand di-

agram in Fig. 2 (top). At low flow velocities, the free motion

of the inverted flag is damped. This is reflected in the positive

imaginary part of eigenfrequencies. At a sufficiently high flow

velocity, the frequency of the first mode becomes purely imagi-

nary, which then bifurcates on the =.!/-axis. One of the solution

branches associated with this mode eventually vanishes altogether

(i.e. <.!/ D 0, =.!/ D 0) at about … D 1:36 and crosses from
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FIGURE 2: (Top) Argand diagram for an inverted flag with � D
1:0 showing the evolution of the first three modes as a function

of the dimensionless flow velocity …. The coupled-mode flutter

is of the Paı̈doussis type. (Bottom) First complex frequency with

respect to flow velocity: [ ] imaginary part and [ ] real part.

the positive to the negative half-plane vertically, indicating the

onset of static divergence (buckling). Further increasing the flow

velocity gives rise to the coalescence of the negative and positive

branches of the first mode loci at … D 7:58, where the resulting

branch leaves the imaginary axis with =.!/ < 0, indicating the

onset of Paı̈doussis-type coupled-mode flutter [20, 21]. Ultimately,

the eigenfrequency of the first mode becomes purely imaginary

once again at a higher flow velocity (… D 14:74), generating a

second buckling of the inverted flag in the first mode. More details

are shown in Fig. 2 (bottom).

Let us now consider how well linear theory predicts the dy-

namical behaviour of the system as observed in the experiments.

For the physical system, the inverted flag loses its straight, un-

deformed configuration and buckles similarly to a column under

axial load. Thereafter, the flag exhibits flapping motion. By further

increasing the flow velocity, the flapping motion gradually dimin-

ishes in magnitude, and the flag displays a buckled shape once

again but with a larger amplitude of deformation (compared to the

initial buckling) as the fluid dynamic forces grow with increasing

flow velocity. Thus, up to this point the linear model success-

fully predicts, qualitatively at least, the dynamics of the physical

system. Of course, what concerns the subsequent bifurcations of

the system, one cannot expect a linear model to predict, nor what

concerns amplitudes of oscillation. To this end, a nonlinear model

detailed in the next section is needed.

The stability map shown in Fig. 3 indicates the sensitivity of

the foregoing instabilities to the mass ratio. It is noted that the

1 2 3 4 5
0

5

10

15

Divergence

Paı̈doussis coupled-mode flutter

�

…
cr

FIGURE 3: Stability map for the investigated 2-D inverted flag:

[ ] onset of divergence and [ ] onset of flutter.

stability of the stretched-straight state of the inverted flag up to the

occurrence of divergence is not affected by the mass ratio parame-

ter. Moreover, since the system loses stability by divergence, the

mass ratio does not change the value of that critical flow velocity.

The onset of flapping, on the other hand, is affected by the mass

ratio. More specifically, the Paı̈doussis-type coupled-mode flutter

occurs at considerably higher values of … as � is decreased, in

the range � 2 Œ0:1 0:6�. For larger values of �, the change is less

significant, and the curve corresponding to the flutter boundary

almost reaches a plateau.

The divergence instability mechanism was originally sug-

gested by Kim et al. [5] through experimental observation, whereby

they concluded that the mass ratio does not affect the onset of flap-

ping. A similar mechanism theoretically discovered by Sader et

al. [3] via a linear stability analysis. They argued that the diver-

gence instability of the inverted flag is a steady process, where time

independent aerodynamic forces are involved. Then, unsteadiness

in the flow comes into play and leads to flapping motion. This can

be examined further by means of the present nonlinear model.

It should be remarked here that the stability of the original

equilibrium predicted by the linear model is valid. However, the

post-critical dynamical behaviour may be different from the linear

model predictions, once nonlinear effects are taken into account.

Nonlinear dynamics
In order to investigate the nonlinear aspects of the system

dynamics, such as limit-cycle frequencies and amplitudes, as well

as the transition between the various dynamical states, the nonlin-

ear integro-partial differential model given in Eq. (10) is solved

numerically. The results are plotted in the form of bifurcation

diagrams.

The nonlinear response of the two-dimensional flag is shown

in Fig. 4. The bifurcation diagram illustrates four distinct regimes,

which can be summarized as follows.

Stretched-straight state As expected from linear analysis, the

undeflected static equilibrium trivial solution is stable at small

5



flow velocities. Small perturbations generate a motion which

ultimately dies out, and the inverted flag remains stable.

Buckled state The undeflected static equilibrium loses stability

at point A where … D 1:36 through a supercritical pitchfork

bifurcation. This leads to divergence (buckling) of the first

mode, the amplitude of which increases with flow velocity.

Deformed-flapping state The statically deflected solution loses

stability via a supercritical Hopf bifurcation at point B where

… D 1:70, leading to a periodic flapping motion around

the buckled state. The shape of the response resembles the

first mode of a cantilevered beam. The deformed-flapping

motion lasts until … D 1:82, and the amplitude of oscillation

increases with … in the range of … 2 Œ1:70 1:82�.
Large-amplitude flapping state Increasing the flow velocity fur-

ther causes a transition from the deformed-flapping regime to

flapping around the undeflected trivial equilibrium, the ampli-

tude of which increases with the flow velocity. The transition

is accompanied by a jump in the amplitude of flapping via

two saddle-node bifurcations at points C and D correspond-

ing to … D 1:82 and … D 1:65, respectively. This forms a

region where the response of the system is attracted by either

a stable limit-cycle around the deflected equilibrium or that

around the undeflected equilibrium. Hence, the behaviour of

the system is indeed subcritical. The existence of this bi-stable

zone implies the existence of an unstable repelling limit cycle

bounded by the two saddle-node bifurcations.
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FIGURE 4: (a) Bifurcation diagram for the investigated two-

dimensional inverted flag with � D 1:0, indicating the peak values

of the leading edge rotation over a cycle of steady-state oscillation

of period T �. [ ] Stable static solution (undeflected stable equi-

librium); [ ] stable static solutions (deflected static equilibria)

corresponding to buckling of the inverted flag to either side; [ ]

stable periodic solutions (oscillation around deflected equilibria)

corresponding to deformed-flapping of the inverted flag to either

side; [ ] stable periodic solution (oscillations around undeflected

equilibrium). Shapes of the flag corresponding to each regime: (b)

stretched-straight state (… D 1:35), (c) buckled state (… D 1:40),

(d) deformed-flapping state (… D 1:75), and (e) large-amplitude

flapping (… D 1:65).

The model developed in the present study is believed to accurately

simulate the effects of the fluid forces and thus to predict reason-

ably well the dynamical behaviour of the system up to moderate

angles of attack. It is nevertheless realized that the flag exhibits

highly curved shapes in the course of large-amplitude flapping

(see Fig. 4(e)), signaling that the limit of applicability of inviscid

flow theory may have been surpassed. At very large angles of

attack, massive separation occurs from the leading edge of the flag,

resulting in a sharp drop in the normal force, which in turn causes a

sudden decrease in the amplitude of oscillation. This phenomenon

is not captured by inviscid flow theory which, in principle, cannot

model such viscous effects.

Interestingly, the ‘qualitative route’ (i.e. stability, buckling,

deformed-flapping, and large-amplitude flapping), as well as the

critical values of … predicted by the present analytical model, all

are in very good agreement with the fully-coupled computational

study of Goza et al. [22], who conducted simulations using an

immersed boundary method. For example, as shown in Fig. 5,

for a two-dimensional inverted flag with � D 0:2 (which is the

reciprocal of the dimensionless mass ratio used in [22], there

denoted by M� D 5:0), the present model predicts the onset of

divergence (the pitchfork bifurcation) at …A D 1:36, the onset

of deformed-flapping (Hopf bifurcation) at …B D 1:71, and the

onset of large-amplitude flapping (the saddle-node bifurcation) at

…D D 1:80, while those predicted by the computational model

in [22] are …A D 1:42, …B D 1:55, and …D D 1:78, respectively.
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FIGURE 5: Bifurcation diagrams for the investigated inverted flag

with � D 0:2, showing the peak values of the tip deflection of the

two-dimensional inverted flag over a cycle of steady-state oscil-

lation of period T �. [ ] stretched-straight state; [ ] buckled

state; [ ] deformed-flapping regime; and [ ] large-amplitude

flapping around the origin. Lines show the results obtained by the

present model, while symbols show the results reported in [22],

[ ] Re D 20, and [ ] Re D 200.

The numerical results discussed here suggest that ‘fluid-elastic

instabilities’ may be the underlying mechanism for such a rich dy-

namical behaviour displayed by two-dimensional inverted flags.

Thus, flapping motions may be viewed as ‘self-excited vibration’

or flutter. The same mechanism is responsible for flapping of

conventional flags in axial flows. However, a number of stud-
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ies on the dynamics of inverted flags suggest the existence of a

vortex-induced vibration (VIV) mechanism for flapping [3]. Al-

though several aspects of the dynamics of inverted flags may be

explained through the VIV mechanism, the emergence of flapping

motion for low mass ratio flags in low Reynolds number flows, i.e.

Re < 50 [22], where vortex shedding does not occur, may pose a

challenge to the credence of the VIV mechanism. Further studies

ought to be done to provide more insight into the mechanisms

governing the dynamics of inverted flags.

Influence of mass ratio

As discussed in the foregoing, the undeflected equilibrium

of the inverted flag loses stability first via divergence, and the

post-buckling response of the system remains static prior to the

occurrence of a Hopf bifurcation. As seen from Eq. (10), the mass

ratio parameter � is present only in the time-dependent terms.

Thus, it is expected that � should have no impact on the critical

point for divergence or the existence of the deflected equilibria.

This conclusion agrees well with experimental/theoretical findings

of Sader et al. [3] for the onset of divergence. The existence of

a deflected equilibrium following the onset of divergence was

realised in their experiments by introducing additional damping by

touching the flag with a slender rigid pole.

The mass ratio �, on the other hand, does affect the oscillatory

dynamical behaviour of the system and has a significant impact on

the stability of the associated solution branches. Figure 6 depicts

the effect of � on the nonlinear response of the system. It is
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FIGURE 6: Bifurcation diagrams for a two-dimensional inverted

flag with various mass ratios: (a) � D 0:1, (b) � D 0:5, (c)

� D 2:0 and (d) � D 5:0, indicating the peak values of the leading

edge rotation angle over a cycle of steady-state oscillation of period

T �. The colour scheme in figure 4 is used.

seen that the stability of the trivial solution, and the critical flow

velocities for divergence and virtually the Hopf bifurcation, are

not affected by �. The post-critical behaviour, on the other hand,

is significantly altered. For instance, for the case with � D 0:5,

the critical values of the flow velocity are…A D 1:36,…B D 1:70,

…C D 1:83, and …D D 1:75, while for the case with � D 5:0

these values are …A D 1:36, …B D 1:70, …C D 1:80, and …D D
1:40.

For sufficiently large � (i.e. for a light flag or a heavily-

loaded flag), the transition to large-amplitude flapping becomes

strongly subcritical. A stable periodic solution around the position

of rest originates form point …D at a flow velocity even lower than

that for the onset of divergence. The existence of this solution

would give rise to the possibility of a direct jump from static un-

deflected equilibrium to large-amplitude flapping motion, without

encountering other states. More specifically, considering the case

with � D 5:0 as shown in Fig. 6(d), two stable solutions coexist

for … 2 Œ1:10 1:36�: the trivial solution and a large-amplitude

periodic solution. Considering … D 1:20, for instance, small

perturbations about the undeflected equilibrium die out, and the in-

verted flag returns to the original static equilibrium. Perturbations

of sufficiently large amplitude, on the other hand, could lead the

system to undergo large-amplitude flapping, without experiencing

the usual route outlined earlier.

It is noted that the critical flow velocity for the Hopf bifurca-

tion …B obtained via the nonlinear model is considerably lower

than that obtained via the linearised model. This may be explained

by considering the fact that a linear model assumes that an in-

stability emanates from the position of rest where the deflections

are vanishingly small. Once divergence develops, however, the

amplitude increases with flow velocity. As the deflection becomes

larger, the nonlinear fluid-related forces become dominant. This

generates a Hopf bifurcation, leading to a limit cycle oscillation,

to occur at considerably different, and in this case lower, flow

velocities, compared to the predictions by the linear model.

The findings of the present paper are based on several as-

sumptions, such as that the flag lies within a two-dimensional

quasi-steady flow. These assumptions might limit the capability of

the model to accurately predict the dynamics of the flag, for exam-

ple, when very a large flapping motion occurs. Nevertheless, the

findings of this paper motivate further research on the analytical

modelling of inverted flags subject to axial flow. Such modelling

can provide deep insights into the underlying mechanisms for the

various instabilities, and the impact of different parameters on the

global as well as local dynamics and stability of the system.

CONCLUSION

In the present paper, it was shown that the mechanism for

flapping of infinitely high aspect ratio inverted flags in axial flow

may be through ‘fluid-elastic instability’. In other words, flapping

of two-dimensional inverted flags may be viewed as a ‘self-excited

(or movement-induced) vibration’ similarly to flutter of an aircraft

wing or flutter of a cantilevered pipe conveying fluid.

The numerical results showed that two-dimensional inverted

flags undergo multiple bifurcations as the flow velocity is increased.

Physically-speaking, the flags exhibit four dynamical states (or

regimes) with increasing the flow velocity: (i) stretched-straight

state, (ii) buckled state, (iii) deflected-flapping state, and (iv) large-

amplitude flapping state.
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It was shown that the system dynamics depends on the mass

ratio parameter. The mass ratio does not affect the stability of the

stretched-straight state and the onset of divergence, as they are

static phenomena; however, it controls the possibility of direct

transition from static undeflected equilibrium to large-amplitude

flapping motion, and it affects the amplitude of large-amplitude

flapping. In addition, inverted flags of larger mass ratios are more

prone to undergo flapping motion at lower flow velocities due to

the presence of a subcritical periodic solution. At a certain critical

flow velocity (corresponding to a saddle-node bifurcation), flow-

induced disturbances may result in spontaneous large-amplitude

flapping of flags with sufficiently large mass ratio.

The outcome of this study may be of practical importance for

the design of small-scale energy harvesting systems. The proposed

analytical model is believed to be a promising tool for analyz-

ing some aspects of such systems, with reasonable computational

burden, which can be employed in order to perform sensitivity

analysis, or be utilized in optimization schemes and control algo-

rithms.
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